JP5034282B2 - Inductive load drive controller - Google Patents

Inductive load drive controller Download PDF

Info

Publication number
JP5034282B2
JP5034282B2 JP2006077221A JP2006077221A JP5034282B2 JP 5034282 B2 JP5034282 B2 JP 5034282B2 JP 2006077221 A JP2006077221 A JP 2006077221A JP 2006077221 A JP2006077221 A JP 2006077221A JP 5034282 B2 JP5034282 B2 JP 5034282B2
Authority
JP
Japan
Prior art keywords
winding
resistance
inductance
voltage
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006077221A
Other languages
Japanese (ja)
Other versions
JP2007259522A (en
Inventor
和久 小竹
順一 岡田
敏雄 松本
佐藤  忍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP2006077221A priority Critical patent/JP5034282B2/en
Publication of JP2007259522A publication Critical patent/JP2007259522A/en
Application granted granted Critical
Publication of JP5034282B2 publication Critical patent/JP5034282B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Ac Motors In General (AREA)

Description

本発明は、巻き線を有する電磁アクチュエータ、電磁石、サーボモータなどの誘導性負荷を駆動する駆動制御装置に関し、特に過負荷からの保護や、巻き線の異常検出が可能な電磁アクチュエータ等の誘導性負荷駆動制御装置に関する。   The present invention relates to a drive control device for driving an inductive load such as an electromagnetic actuator having a winding, an electromagnet, and a servo motor, and more particularly to an inductivity such as an electromagnetic actuator capable of protecting from overload and detecting an abnormality of the winding. The present invention relates to a load drive control device.

電磁アクチュエータの駆動制御装置としてサーボアンプなどがあるが、この駆動制御装置における負荷保護機能として、サーマルリレーにより過熱から負荷を保護することが一般的に行われている。しかしながら、一度過負荷保護動作後、短時間して再起動した場合には、負荷の温度が十分下がらないまま再度上昇するため過熱されて、負荷の巻き線の絶縁不良や焼損を招くことがある。サーマルリレーではこのような短時間後再起動の場合の保護ができなかった。
これに対して、電動機の巻き線の温度を検出した温度信号と、電流検出器からの電流信号とに基づいて、各々設定値を超えた場合にインバータ装置のスイッチング素子の電流を制限するようにしたものもある(例えば、特許文献1参照)。
また、サーボモータに流れる電流値を使ってサーボモータの発熱量を算出し、モータの熱抵抗と熱容量に基づく熱モデルを適用してモータ温度を算出して、このモータ温度が設定温度を超えた時間が一定時間を超えた場合に、駆動制御装置の出力を停止するようにしたものもある(例えば、特許文献2参照)。
負荷の電流と電圧を検出して、電力が一定の基準値を超えた時、開閉手段を開動作して電流を遮断するものもある(例えば、特許文献3参照)。
As a drive control device for an electromagnetic actuator, there is a servo amplifier or the like. As a load protection function in this drive control device, a load is generally protected from overheating by a thermal relay. However, after restarting in a short time after the overload protection operation, the load temperature rises again without being sufficiently lowered and may be overheated, resulting in poor insulation or burning of the load windings. . The thermal relay could not protect in the case of restart after such a short time.
On the other hand, based on the temperature signal that detects the temperature of the winding of the motor and the current signal from the current detector, the current of the switching element of the inverter device is limited when each exceeds a set value. (For example, refer patent document 1).
Also, the calorific value of the servo motor is calculated using the current value flowing through the servo motor, the motor temperature is calculated by applying a thermal model based on the thermal resistance and heat capacity of the motor, and the motor temperature exceeds the set temperature. In some cases, the output of the drive control device is stopped when the time exceeds a certain time (see, for example, Patent Document 2).
In some cases, the current and voltage of the load are detected, and when the electric power exceeds a certain reference value, the switching means is opened to cut off the current (for example, see Patent Document 3).

図6は特許文献3記載の過負荷保護を示す回路図である。図において、61が負荷制御装置で、三相電源母線62と負荷である三相の誘導電動機63の各相巻線端子との間には主回路64が形成されており、この主回路64には、電源母線62側から順に配線用遮断器65、開閉手段66、電流検出手段67、零相変流器68がある。配線用遮断器65は過大な電流が流れると開路して主回路64を電源母線62から切り離すようになっている。配線用遮断器65の負荷側には電磁接触器66の主接点66aが介在している。この主接点66aは、励磁コイル66bに通電することにより閉動作し、励磁コイル66bを断電することにより開動作するようになっている。75は電圧検出回路、76は電流検出回路である。負荷63の電流と電圧を電圧検出回路75と電流検出回路76で検出し,これらを制御回路77に入力して、電力その他を演算し、負荷の電流や電力が一定の基準値を超えた時、これらの時間積分値が限界値に達した時、または所定の遅延時間が経過した時、開閉手段を開動作して電流を遮断するものである。
特開平11−381884号公報 特許第2745166号公報 特開2001−281275公報
FIG. 6 is a circuit diagram showing overload protection described in Patent Document 3. In FIG. In the figure, 61 is a load control device, and a main circuit 64 is formed between a three-phase power source bus 62 and each phase winding terminal of a three-phase induction motor 63 as a load. Are a circuit breaker 65 for wiring, an opening / closing means 66, a current detection means 67, and a zero-phase current transformer 68 in this order from the power supply bus 62 side. The circuit breaker 65 for wiring is opened when an excessive current flows to disconnect the main circuit 64 from the power supply bus 62. A main contact 66a of an electromagnetic contactor 66 is interposed on the load side of the circuit breaker 65 for wiring. The main contact 66a is closed by energizing the exciting coil 66b, and is opened by de-energizing the exciting coil 66b. 75 is a voltage detection circuit, and 76 is a current detection circuit. When the current and voltage of the load 63 are detected by the voltage detection circuit 75 and the current detection circuit 76 and input to the control circuit 77 to calculate the power and others, and when the load current and power exceed a certain reference value When these time integration values reach a limit value or when a predetermined delay time elapses, the switching means is opened to interrupt the current.
Japanese Patent Application Laid-Open No. 11-381884 Japanese Patent No. 2745166 JP 2001-281275 A

しかしながら、特許文献1の過負荷保護方法では、温度検出器で電動機の温度を検出することで過熱からの保護を可能としているが、温度検出器の追加が必要であり、装置が複雑になるという問題があった。
また、特許文献2の過負荷保護方法では、温度検出器が不要であるが、熱モデルを使った演算が複雑で大きな処理能力が必要になるという問題があった。
また、いずれの方法も、負荷の冷却条件が変化した場合に過負荷保護検出条件の再設定が必要であり、負荷の巻き線の部分的な短絡などの異常は検出できないなどの問題もあった。
また、特許文献3記載の発明には、一度、過負荷保護動作し、短時間後、再起動すると、負荷の温度が十分下がらないまま上昇し、負荷の巻き線の絶縁不良や焼損を招くという問題があった。
本発明はこのような問題点に鑑みてなされたものであり、簡単な構成で信頼性の高い過負荷異常検出ができて、かつ負荷の巻き線の異常をも検出できるアクチュエータ等の誘導性負荷駆動制御装置を提供することを目的とする。
However, in the overload protection method of Patent Document 1, protection from overheating is possible by detecting the temperature of the electric motor with a temperature detector, but the addition of the temperature detector is necessary, and the device is complicated. There was a problem.
Further, the overload protection method disclosed in Patent Document 2 does not require a temperature detector, but has a problem in that computation using a thermal model is complicated and a large processing capacity is required.
In addition, each method has a problem that it is necessary to reset the overload protection detection condition when the load cooling condition changes, and abnormalities such as partial short-circuiting of the load winding cannot be detected. .
Further, in the invention described in Patent Document 3, when the overload protection operation is performed once and restarted after a short time, the temperature of the load rises without being sufficiently lowered, resulting in poor insulation and burnout of the winding of the load. There was a problem.
The present invention has been made in view of such problems, and it is possible to detect an overload abnormality with a simple configuration with high reliability, and to detect an abnormality in the winding of the load, and an inductive load such as an actuator. An object is to provide a drive control device.

上記問題を解決するため、本発明は、次のようにしたのである。
請求項1記載の発明は、誘導性負荷駆動制御装置に係り、交流を整流し平滑する整流平滑部と整流平滑した電圧を交流に変換する電力変換部を有し、巻き線を有する電磁アクチュエータを前記電力変換部の出力で駆動する誘導性負荷駆動制御装置であって、前記電力変換部を制御するベースドライブ部と、該ベースドライブ部を制御するPWM(パルス幅変調)演算部とを備えた誘導性負荷駆動制御装置において、前記巻き線の電圧と前記巻き線の電流と検出された前記電磁アクチュエータの可動子の位置とを使って前記巻き線の抵抗値を電圧方程式から逐次演算して求め、求めた抵抗値から前記巻き線の抵抗の温度係数を用いて巻き線の温度を算出してこの算出した温度を基に前記ベースドライブ部を制御する抵抗・インダクタンス演算部を備え
前記抵抗・インダクタンス演算部は、下式から各時点の前記抵抗値とインダクタンス値をそれぞれ求め、

Figure 0005034282
(ここで、Tはサンプリング周期、時刻t=kT時点(但しk=1,2,・・・,N)、Va(k),Ia(k),およびdP/dt(k)はkT時点の巻き線の各電圧、電流、および速度、Lは前記巻き線のインダクタンス、Keは誘起電圧定数で、誘起電圧eM(k)=Ke・dP/dt(k)である。)
それらの値の時間的変化に一定値以上の増(+)減(−)があるとき、前記抵抗値の変化分をdR(k)とし前記インダクタンスの変化分をdL(k)とすると、
(a)+dR(k)と+dL(k)で巻線が加熱状態、
(b)−dR(k)と+dL(k)で巻線が放熱状態、
(c)+dR(k)と−dL(k)で巻線が部分短絡状態、
(d)−dR(k)と−dL(k)で巻線短絡状態、
と判断することを特徴としている。
請求項2記載の発明は、誘導性負荷駆動制御装置に係り、巻き線を有する電磁石を駆動するリニアアンプを備えた誘導性負荷駆動制御装置において、前記巻き線の電圧と前記巻き線の電流とを使って前記巻き線の抵抗値を電圧方程式から逐次演算して求め、求めた抵抗値から前記巻き線の抵抗の温度係数を用いて巻き線の温度を算出してこの算出した温度を基に前記リニアアンプを制御する抵抗・インダクタンス演算部を備え
前記抵抗・インダクタンス演算部は、下式から各時点の前記抵抗値とインダクタンス値をそれぞれ求め、
Figure 0005034282
(ここで、Tはサンプリング周期、時刻t=kT時点(但しk=1,2,・・・,N)、Va(k),Ia(k),およびdP/dt(k)はkT時点の巻き線の各電圧、電流、および速度、Lは前記巻き線のインダクタンス、Keは誘起電圧定数で、誘起電圧eM(k)=Ke・dP/dt(k)である。)
それらの値の時間的変化に一定値以上の増(+)減(−)があるとき、前記抵抗値の変化分をdR(k)とし前記インダクタンスの変化分をdL(k)とすると、
(a)+dR(k)と+dL(k)で巻線が加熱状態、
(b)−dR(k)と+dL(k)で巻線が放熱状態、
(c)+dR(k)と−dL(k)で巻線が部分短絡状態、
(d)−dR(k)と−dL(k)で巻線短絡状態、
と判断することを特徴としている。
請求項3記載の発明は、誘導性負荷駆動制御装置に係り、交流を整流し平滑する整流平滑部と整流平滑した電圧を交流に変換する電力変換部を有し、3相巻き線を有するサーボモータを前記電力変換部の出力で駆動する誘導性負荷駆動制御装置であって、前記電力変換部を制御するベースドライブ部と、該ベースドライブ部を制御するPWM(パルス幅変調)演算部とを備えた誘導性負荷駆動制御装置において、
前記各相について前記巻き線の電圧と前記巻き線の電流と検出された前記サーボモータの出力軸の位置とを使って前記巻き線の抵抗値を電圧方程式から逐次演算して求め、求めた抵抗値から前記巻き線の抵抗の温度係数を用いて巻き線の温度を算出してこの算出した温度を基に前記ベースドライブ部を制御する抵抗・インダクタンス演算部を備え
前記抵抗・インダクタンス演算部は、下式から各時点の前記抵抗値とインダクタンス値をそれぞれ求め、
Figure 0005034282
(ここで、Tはサンプリング周期、時刻t=kT時点(但しk=1,2,・・・,N)、Va(k),Ia(k),およびdP/dt(k)はkT時点の巻き線の各電圧、電流、および速度、Lは前記巻き線のインダクタンス、Keは誘起電圧定数で、誘起電圧eM(k)=Ke・dP/dt(k)である。)
それらの値の時間的変化に一定値以上の増(+)減(−)があるとき、前記抵抗値の変化分をdR(k)とし前記インダクタンスの変化分をdL(k)とすると、
(a)+dR(k)と+dL(k)で巻線が加熱状態、
(b)−dR(k)と+dL(k)で巻線が放熱状態、
(c)+dR(k)と−dL(k)で巻線が部分短絡状態、
(d)−dR(k)と−dL(k)で巻線短絡状態、
と判断することを特徴としている。 In order to solve the above problem, the present invention is as follows.
An invention according to claim 1 relates to an inductive load drive control device, comprising: a rectifying / smoothing unit that rectifies and smoothes alternating current; a power converter that converts rectified and smoothed voltage into alternating current; and an electromagnetic actuator having a winding. An inductive load drive control device that is driven by the output of the power conversion unit, comprising: a base drive unit that controls the power conversion unit; and a PWM (pulse width modulation) calculation unit that controls the base drive unit In the inductive load drive control device, the winding resistance value is sequentially calculated from the voltage equation using the winding voltage, the winding current, and the detected position of the mover of the electromagnetic actuator. A resistance / inductance calculation unit for calculating the winding temperature from the obtained resistance value using the temperature coefficient of the resistance of the winding and controlling the base drive unit based on the calculated temperature Provided,
The resistance / inductance calculation unit obtains the resistance value and the inductance value at each time point from the following formula,
Figure 0005034282
(Where T is the sampling period, time t = kT time (where k = 1, 2,..., N), Va (k), Ia (k), and dP / dt (k) are Each voltage, current, and speed of the winding, L is the inductance of the winding, Ke is an induced voltage constant, and the induced voltage eM (k) = Ke · dP / dt (k).
When there is an increase (+) or decrease (−) of a certain value or more in the temporal change of those values, if the change in the resistance value is dR (k) and the change in the inductance is dL (k),
(A) The winding is heated with + dR (k) and + dL (k)
(B) -dR (k) and + dL (k), winding is in heat dissipation state,
(C) The winding is partially short-circuited at + dR (k) and -dL (k).
(D) Winding short-circuited with -dR (k) and -dL (k)
It is characterized by judging .
The invention according to claim 2 relates to an inductive load drive control device, and in an inductive load drive control device comprising a linear amplifier for driving an electromagnet having a winding, the voltage of the winding and the current of the winding The resistance value of the winding is obtained by sequentially calculating from the voltage equation using, the temperature of the winding is calculated from the obtained resistance value using the temperature coefficient of the resistance of the winding, and the calculated temperature is used as a basis. A resistance / inductance calculation unit for controlling the linear amplifier is provided .
The resistance / inductance calculation unit obtains the resistance value and the inductance value at each time point from the following formula,
Figure 0005034282
(Where T is the sampling period, time t = kT time (where k = 1, 2,..., N), Va (k), Ia (k), and dP / dt (k) are Each voltage, current, and speed of the winding, L is the inductance of the winding, Ke is an induced voltage constant, and the induced voltage eM (k) = Ke · dP / dt (k).
When there is an increase (+) or decrease (−) of a certain value or more in the temporal change of those values, if the change in the resistance value is dR (k) and the change in the inductance is dL (k),
(A) The winding is heated with + dR (k) and + dL (k)
(B) -dR (k) and + dL (k), winding is in heat dissipation state,
(C) The winding is partially short-circuited at + dR (k) and -dL (k).
(D) Winding short-circuited with -dR (k) and -dL (k)
It is characterized by judging .
A third aspect of the invention relates to an inductive load drive control device, and includes a rectifying / smoothing unit that rectifies and smoothes alternating current, a power conversion unit that converts the rectified and smoothed voltage into alternating current, and a servo having a three-phase winding. An inductive load drive control device for driving a motor with an output of the power conversion unit, comprising: a base drive unit that controls the power conversion unit; and a PWM (pulse width modulation) calculation unit that controls the base drive unit. In an inductive load drive control device provided,
For each phase, the resistance value of the winding is obtained by sequentially calculating the resistance value of the winding from the voltage equation using the winding voltage, the winding current and the detected position of the output shaft of the servo motor. A resistance / inductance calculation unit that calculates the temperature of the winding using the temperature coefficient of the resistance of the winding from the value and controls the base drive unit based on the calculated temperature ;
The resistance / inductance calculation unit obtains the resistance value and the inductance value at each time point from the following formula,
Figure 0005034282
(Where T is the sampling period, time t = kT time (where k = 1, 2,..., N), Va (k), Ia (k), and dP / dt (k) are Each voltage, current, and speed of the winding, L is the inductance of the winding, Ke is an induced voltage constant, and the induced voltage eM (k) = Ke · dP / dt (k).
When there is an increase (+) or decrease (−) of a certain value or more in the temporal change of those values, if the change in the resistance value is dR (k) and the change in the inductance is dL (k),
(A) The winding is heated with + dR (k) and + dL (k)
(B) -dR (k) and + dL (k), winding is in heat dissipation state,
(C) The winding is partially short-circuited at + dR (k) and -dL (k).
(D) Winding short-circuited with -dR (k) and -dL (k)
It is characterized by judging .

請求項記載の発明は、請求項1〜3のいずれか1項記載の誘導性負荷駆動制御装置において、前記抵抗・インダクタンス演算部は前記巻線が部分短絡又は短絡状態と判断したとき、巻き線異常を表示部に表示をするか又はアラーム警報を発することを特徴としている。
請求項記載の発明は、請求項1〜3のいずれか1項記載の誘導性負荷駆動制御装置において、温度θ0時の銅線の抵抗をR0とし、温度θx時の抵抗をRXとすると、温度θxは下式から求めることを特徴としている。
θx= RX・(234.5+θ0)/ R0-234.5
請求項記載の発明は、請求項記載の誘導性負荷駆動制御装置において、前記抵抗・インダクタンス演算部は前記巻線の温度θxが所定の温度を超えたとき、過熱状態と判断し、表示部に過熱の表示をするか又はアラーム警報を発することを特徴としている。
According to a fourth aspect of the present invention, in the inductive load drive control device according to any one of the first to third aspects, when the resistance / inductance calculation unit determines that the winding is a partial short circuit or a short circuit state, The line abnormality is displayed on the display unit or an alarm is issued.
The invention according to claim 5 is the inductive load drive control device according to any one of claims 1 to 3, wherein the resistance of the copper wire at the temperature θ 0 is R 0 and the resistance at the temperature θx is R X. Then, the temperature θx is obtained from the following equation.
θx = RX ・ (234.5 + θ0) / R0-234.5
According to a sixth aspect of the present invention, in the inductive load drive control device according to the fifth aspect , when the temperature θx of the winding exceeds a predetermined temperature, the resistance / inductance calculation unit determines that the state is overheated and displays It is characterized in that overheating is displayed on the part or an alarm is issued.

請求項1−6記載の発明によると、負荷である電磁アクチュエータの巻き線温度を推定することができ、この推定温度によって、過負荷保護を行うので、特定の冷却条件で負荷に供給された電流や電力に基づく過負荷保護と違って、信頼性の高い過負荷保護を実現することができ、かつ、巻き線のインダクタンスLと抵抗Rの増減から、Lが減少あるいは、LとRが共に減少した場合は巻き線の短絡、Lが通常の値でRが非常に高い場合は部分短絡等の判断を行うことで、巻き線の異常を検出することができる。 According to the first to sixth aspects of the present invention, the winding temperature of the electromagnetic actuator, which is a load, can be estimated, and overload protection is performed based on the estimated temperature. Therefore, the current supplied to the load under specific cooling conditions Unlike overload protection based on power and power, reliable overload protection can be realized, and L decreases or both L and R decrease due to the increase and decrease of winding inductance L and resistance R In such a case, the winding abnormality can be detected by making a judgment such as a short-circuiting of the winding, or a partial short-circuiting or the like when L is a normal value and R is very high.

以下、本発明の方法の具体的実施例について、図に基づいて説明する。   Hereinafter, specific examples of the method of the present invention will be described with reference to the drawings.

図1は、本発明の電磁アクチュエータを駆動する場合の機能ブロック図、図2は、本発明の電磁アクチュエータを駆動する場合の抵抗・インダクタンス演算部の動作フローチャートである。
図1において、10は電磁アクチュエータを駆動する本発明に係る駆動制御装置、20は負荷である電磁アクチュエータの等価回路である。電磁アクチュエータの等価回路20は、電磁アクチュエータの抵抗R(給電線の抵抗Rr+電磁アクチュエータの巻き線の抵抗Rw)、インダクタンスL、誘起電圧eMで表している。
PWMサーボアンプである駆動制御装置10の出力電圧と出力電流は、電圧検出回路D.V16と電流検出回路D.I17で検出され、それぞれ低域濾波回路Vfil16f、Ifil17fによって高周波のキャリア成分が除去され、出力電圧Vaと出力電流Iaを得る。
FIG. 1 is a functional block diagram when driving the electromagnetic actuator of the present invention, and FIG. 2 is an operation flowchart of the resistance / inductance calculation unit when driving the electromagnetic actuator of the present invention.
In FIG. 1, 10 is a drive control apparatus according to the present invention for driving an electromagnetic actuator, and 20 is an equivalent circuit of the electromagnetic actuator as a load. The equivalent circuit 20 of the electromagnetic actuator is represented by a resistance R (feed wire resistance Rr + electromagnetic actuator winding resistance Rw), inductance L, and induced voltage eM of the electromagnetic actuator.
The output voltage and output current of the drive control device 10 which is a PWM servo amplifier are detected by a voltage detection circuit D.V16 and a current detection circuit D.I17, and high-frequency carrier components are removed by low-pass filtering circuits Vfil16f and Ifil17f, respectively. The output voltage Va and the output current Ia are obtained.

一方、電磁アクチュエータ20の可動子には位置検出器D.P21が搭載されていて、この位置検出器D.P21によって可動子の位置Pが検出され、検出された位置Pは速度演算部S.C18で微分されて速度dP/dtを得る。
抵抗・インダクタンス演算部R.L.C15に上記各出力電圧Va、出力電流Ia、速度dP/dtが入力され、サンプリング周期Tとすると時刻t=kT時点(但しk=1,2,・・・,N)の電圧Va、電流Ia、速度dP/dtをVa(k),Ia(k),dP/dt(k)として(図2のステップS21)、次の電圧方程式(1)を得る。
Va(k)=L[Ia(k)-Ia(k-1)]/T+R(k)・Ia(k)+Ke・dP/dt(k)・・・(1)
ここで、Keは誘起電圧定数で、eM(k)=Ke・dP/dt(k)である。
同様に、時刻t=(k+1)T時点では、
Va(k+1)=L[Ia(k+1)-Ia(k)]/T+R(k+1)・Ia(k+1)+Ke・dP/dt(k+1)・・・(1)’
式(1)から式(2)を得る。(図2のステップS22)
R(k)=[Va(k)-L[Ia(k)-Ia(k-1)]/T- Ke・dP/dt(k)]/Ia(k)・・・(2)
式(2)は、サンプリング周期T毎に抵抗・インダクタンス演算部15で演算される。式(2)で求めた抵抗R(k)は、給電線の抵抗Rrを含むが、電磁アクチュエータの巻き線の抵抗Rwに対して、
給電線の抵抗Rrが無視できる場合は、Rw(k)=R(k)・・・(3)
給電線の抵抗Rrが無視できない場合は、Rw(k)=R(k)- Rr・・・(3)’
とする。
式(3)’は、給電線は温度上昇が小さくほぼ一定である、即ちRr=定数(既知)としている。
On the other hand, a position detector D.P21 is mounted on the mover of the electromagnetic actuator 20, and the position P of the mover is detected by the position detector D.P21. The detected position P is the speed calculation unit S.P. Differentiated by C18 to obtain speed dP / dt.
When the output voltage Va, the output current Ia, and the speed dP / dt are input to the resistance / inductance calculation unit RLC15 and the sampling period is T, the time t = kT (where k = 1, 2,..., N). Assuming that the voltage Va, current Ia, and speed dP / dt are Va (k), Ia (k), dP / dt (k) (step S21 in FIG. 2), the following voltage equation (1) is obtained.
Va (k) = L [Ia (k) -Ia (k-1)] / T + R (k) · Ia (k) + Ke · dP / dt (k) (1)
Here, Ke is an induced voltage constant and eM (k) = Ke · dP / dt (k).
Similarly, at time t = (k + 1) T,
Va (k + 1) = L [Ia (k + 1) -Ia (k)] / T + R (k + 1) ・ Ia (k + 1) + Ke ・ dP / dt (k + 1) ・ ・・ (1) '
Equation (2) is obtained from Equation (1). (Step S22 in FIG. 2)
R (k) = [Va (k) -L [Ia (k) -Ia (k-1)] / T-Ke · dP / dt (k)] / Ia (k) (2)
Expression (2) is calculated by the resistance / inductance calculation unit 15 for each sampling period T. The resistance R (k) obtained by the equation (2) includes the resistance Rr of the feeder line, but with respect to the resistance Rw of the winding of the electromagnetic actuator,
When the resistance Rr of the power supply line can be ignored, Rw (k) = R (k) (3)
When the resistance Rr of the power supply line cannot be ignored, Rw (k) = R (k) -Rr (3) '
And
In the expression (3) ′, the temperature of the feeder line is small and almost constant, that is, Rr = constant (known).

ところで、温度θ0時の銅線の抵抗をR0とすると、温度θx時の抵抗RXは、周知の次式となる。
RX= R0・(234.5+θx)/(234.5+θ0)・・・(4)
これから
θx= RX・(234.5+θ0)/ R0-234.5 ・・・(5)
となる。
温度θ0時の銅線の抵抗R0は、既知として式(3),または (3)’のRw(k)を、RXとして式(5)からθx即ち、アクチュエータの巻き線温度θwが得られる(図2のステップS23)。
このθwが、アクチュエータの絶縁階級あるいは巻き線の温度仕様による限界温度θLを超えると(図2のステップS24)、従来の過負荷保護動作である出力の遮断とOL(オーバーロード)の表示を行なう(図2のステップS25)。
温度θxと抵抗RXは、線形であるので限界温度(許容温度)θLの代わりに限界抵抗RLを使って、過負荷保護動作の判定をしてもよい(図2のステップS25)。
By the way, when the resistance of the copper wire at the temperature θ 0 is R 0 , the resistance R X at the temperature θx is a well-known equation.
R X = R 0・ (234.5 + θx) / (234.5 + θ 0 ) (4)
From now on, θx = R X・ (234.5 + θ 0 ) / R 0 -234.5 (5)
It becomes.
The resistance R 0 of the copper wire at the temperature θ 0 is known as Rw (k) in the equation (3) or (3) ′, and R x is expressed as θx from the equation (5), that is, the winding temperature θw of the actuator. Is obtained (step S23 in FIG. 2).
When this θw exceeds the limit temperature θL according to the insulation class of the actuator or the temperature specification of the winding (step S24 in FIG. 2), output cutoff and OL (overload) are displayed as conventional overload protection operations. (Step S25 in FIG. 2).
Temperature θx and resistance R X uses the limit resistance RL instead of limit temperature (allowable temperature) .theta.L because it is linear, may be determined overload protection operation (step S25 in FIG. 2).

また、式(1),(1)’よりインダクタンスL=L(k)とR(k)=R(k+1)を、未知数として、式(6)を得る。これもサンプリング周期T毎に、抵抗・インダクタンス演算部15で演算される(図2のステップS26)。
更に、R(k)=R(k+1)として求めた抵抗は、短時間では、変化しないと見なされるが、一定時間後、即ちT/=m・T毎に新しい値に更新される。ここで、mは、正の整数である。

Figure 0005034282

これらのL(k)とR(k)が、一定時間に増減する割合dL(k)とdR(k)の大きさを、移動平均によって求め(図2のステップS27)、次の表1に従って巻き線の状態を判断し(図2のステップS28)、抵抗・インダクタンス演算部15で判断し、表示部19に表示する(図2のステップS29)。
Figure 0005034282


表示部19への表示に加えて、あるいはこれに代えて、表示内容を音声で報知するようにしてもよい。 Further, equation (6) is obtained by using inductances L = L (k) and R (k) = R (k + 1) as unknowns from equations (1) and (1) ′. This is also calculated by the resistance / inductance calculation unit 15 for each sampling period T (step S26 in FIG. 2).
Further, the resistance obtained as R (k) = R (k + 1) is regarded as not changing in a short time, but is updated to a new value after a certain time, that is, every T / = m · T. Here, m is a positive integer.
Figure 0005034282

The magnitudes of the ratios dL (k) and dR (k) at which these L (k) and R (k) increase or decrease within a certain time are obtained by moving average (step S27 in FIG. 2), and according to the following Table 1 The state of the winding is determined (step S28 in FIG. 2), determined by the resistance / inductance calculation unit 15, and displayed on the display unit 19 (step S29 in FIG. 2).
Figure 0005034282


In addition to or instead of the display on the display unit 19, the display content may be notified by voice.

図3は本発明の電磁石を駆動する場合の機能ブロック図を示す。図4は、本発明の電磁石を駆動する場合の抵抗・インダクタンス演算部の動作フローチャートである。図において、電磁石の電流を制御する駆動制御装置30は、リニアアンプ31を備えている。従って、図1のPWMアンプ(整流平滑部11+電力変換部12)と違って出力電流リップルを含まないので、図1における電圧信号用低域フィルタ回路16fと電流信号用低域フィルタ回路17fが不要である。また、抵抗・インダクタンス演算部35では、サンプリング周期T毎に、A/D変換された負荷の出力電圧Vaと出力電流Ia(図4のステップS41)から、
R(k)=[Va(k)-L[Ia(k)-Ia(k-1)]/T]/Ia(k) ・・・(7)
の式を演算する(図4のステップS42)。
そして、R(k)>RL(限界抵抗)の判断を行い(図4のステップS43)、
真ならば、過負荷の判定をして、出力の遮断とOL(オーバーロード)を表示し(図4のステップS44)、一方、偽ならばステップS45へ進む。
FIG. 3 is a functional block diagram when driving the electromagnet of the present invention. FIG. 4 is an operation flowchart of the resistance / inductance calculation unit when driving the electromagnet of the present invention. In the figure, a drive control device 30 that controls the current of an electromagnet includes a linear amplifier 31. Therefore, unlike the PWM amplifier (rectifying / smoothing unit 11 + power converting unit 12) of FIG. 1, the output current ripple is not included, so that the voltage signal low-pass filter circuit 16f and the current signal low-pass filter circuit 17f in FIG. 1 are unnecessary. It is. Further, in the resistance / inductance calculation unit 35, for each sampling period T, from the output voltage Va and output current Ia (step S41 in FIG. 4) of the A / D converted load,
R (k) = [Va (k) -L [Ia (k) -Ia (k-1)] / T] / Ia (k) (7)
Is calculated (step S42 in FIG. 4).
Then, R (k)> R L (limit resistance) is determined (step S43 in FIG. 4),
If true, overload is determined and output cutoff and OL (overload) are displayed (step S44 in FIG. 4). If false, the process proceeds to step S45.

ステップS45では、(6)’の式を演算する。

Figure 0005034282


L(k)とR(k)から、一定時間に増減する割合dL(k)とdR(k)の大きさを、移動平均によって求め(図4のステップS46)、表1に従って、巻き線の状態を判断し(図4のステップS47)、抵抗・インダクタンス演算部35で判断し、これを表示部39に表示する(図4のステップS48)。
また、表示部39への表示に加えて、あるいはこれに代えて、表示内容を音声で報知するようにしてもよい。 In step S45, the expression (6) ′ is calculated.
Figure 0005034282


From L (k) and R (k), the ratios dL (k) and dR (k) that increase or decrease in a certain time are obtained by moving average (step S46 in FIG. 4). The state is determined (step S47 in FIG. 4), and the resistance / inductance calculation unit 35 determines it and displays it on the display unit 39 (step S48 in FIG. 4).
Further, in addition to or instead of the display on the display unit 39, the display content may be notified by voice.

図5は、本発明のサーボモータを駆動する場合の機能ブロック図である。
図において、50はサーボモータを駆動する本発明に係る駆動制御装置、60は負荷であるサーボモータの等価回路である。サーボモータの等価回路60は、サーボモータの巻き線の抵抗Rw、インダクタンスL、誘起電圧eMで表している。駆動制御装置50の出力電圧と出力電流は、電圧検出回路56と電流検出回路57で検出され、それぞれ低域濾波回路56f、57fによって高周波のキャリア成分が除去され、出力電圧Vaと出力電流Iaを得る。
一方、サーボモータ60の出力軸には位置検出器60aが搭載されていて、この位置検出器60aによって出力軸の位置Pが検出され、検出された位置Pは速度演算部58で微分されて速度dP/dtを得る。
抵抗・インダクタンス演算部55に各相(U相、V相、W相)についてそれぞれの相電圧Va、相電流Iaと速度dP/dtが入力され、サンプリング周期Tとすると時刻t=kT時点(但しk=1,2,・・・,N)の相電圧Va、相電流Ia、速度dP/dtをVa(k),Ia(k),dP/dt(k)として、各相毎に上記の電圧方程式(1)を得る。
サーボモータ(等価回路)60の場合は、実施例2の電磁石とは違って、誘起電圧eMを考慮しなければならない。従って、3相のU相・V相・W相それぞれ毎に、式(1)〜式(3)又は式(3)’を、抵抗・インダクタンス演算部55で演算し、各相の抵抗R(k)をRLと比較を行い、R(k)>RL(限界抵抗)なら過負荷と判断し、その結果、出力の遮断をしかつOL(オーバーロード)を表示する。
過負荷でない時には、引きつづいて、式(6)を各相について演算し、一定時間に増減する割合dL(k)とdR(k)の大きさを、移動平均によって求め、表1に従って、巻き線の状態を判断し、これを表示部59に表示する。
また、表示部59への表示に加えて、あるいはこれに代えて、表示内容を音声で報知するようにしてもよい。
FIG. 5 is a functional block diagram for driving the servo motor of the present invention.
In the figure, 50 is a drive control device according to the present invention for driving a servo motor, and 60 is an equivalent circuit of a servo motor as a load. The equivalent circuit 60 of the servo motor is represented by the winding resistance Rw, inductance L, and induced voltage eM of the servo motor. The output voltage and output current of the drive control device 50 are detected by the voltage detection circuit 56 and the current detection circuit 57, respectively, and the high frequency carrier components are removed by the low-pass filtering circuits 56f and 57f, respectively, and the output voltage Va and the output current Ia are obtained. obtain.
On the other hand, a position detector 60a is mounted on the output shaft of the servomotor 60, and the position P of the output shaft is detected by the position detector 60a. dP / dt is obtained.
The phase / voltage Va, phase current Ia, and speed dP / dt for each phase (U phase, V phase, W phase) are input to the resistance / inductance calculation unit 55. Assuming that the sampling period is T, time t = kT (however, k = 1, 2,..., N) with phase voltage Va, phase current Ia, speed dP / dt as Va (k), Ia (k), dP / dt (k) Obtain the voltage equation (1).
In the case of the servo motor (equivalent circuit) 60, the induced voltage e M must be taken into consideration, unlike the electromagnet of the second embodiment. Therefore, for each of the three phases U, V, and W, Equation (1) to Equation (3) or Equation (3) ′ is calculated by the resistance / inductance calculator 55, and the resistance R ( k) is compared with RL, and if R (k)> R L (limit resistance), it is determined as an overload, and as a result, the output is cut off and OL (overload) is displayed.
When it is not overloaded, equation (6) is calculated for each phase, and the ratios dL (k) and dR (k) that increase or decrease in a certain time are obtained by moving average. The state of the line is determined and displayed on the display unit 59.
Further, in addition to or instead of the display on the display unit 59, the display content may be notified by voice.

このように、駆動制御装置の出力電圧と出力電流を検出して、式(1)〜式(5)により演算し、負荷の巻き線温度を推定するという手順をとるので、巻き線の温度上昇を所定の値に抑え、信頼性の高い過負荷保護と巻き線異常を検出することができる。   In this way, the output voltage and output current of the drive control device are detected and calculated according to the equations (1) to (5) to estimate the winding temperature of the load. Can be suppressed to a predetermined value, and reliable overload protection and winding abnormality can be detected.

負荷が巻き線を有する電磁アクチュエータで無い場合でも、等価回路が抵抗RとインダクタンスLの直列回路で表されれば、誘起電圧定数 Keを零として、または等価回路が抵抗Rだけで表されるなら、KeとLを零にして、式(1)〜式(5)により、マイクロコンピュータで演算し基準値と比較して判定するという手順をとるため、負荷がR−LまたはRという用途にも適用できる。   Even if the load is not an electromagnetic actuator having windings, if the equivalent circuit is represented by a series circuit of a resistor R and an inductance L, the induced voltage constant Ke is set to zero or the equivalent circuit is represented only by the resistor R. , Ke and L are set to zero, and a procedure of calculating with a microcomputer and comparing with a reference value according to formulas (1) to (5) is taken. Applicable.

本発明の電磁アクチュエータを駆動する場合の機能ブロック図Functional block diagram for driving the electromagnetic actuator of the present invention 本発明の電磁アクチュエータを駆動する場合の抵抗・インダクタンス演算部の動作フローチャートOperation flow chart of resistance / inductance calculation unit when driving electromagnetic actuator of the present invention 本発明の電磁石を駆動する場合の機能ブロック図Functional block diagram when driving the electromagnet of the present invention 本発明の電磁石を駆動する場合の抵抗・インダクタンス演算部の動作フローチャートOperation flow chart of resistance / inductance calculation unit when driving electromagnet of the present invention 本発明のサーボモータを駆動する場合の機能ブロック図Functional block diagram for driving the servo motor of the present invention 従来の過負荷保護を示す回路図である。It is a circuit diagram which shows the conventional overload protection.

符号の説明Explanation of symbols

10、30、50 本発明に係る駆動制御装置
15、35、55 抵抗・インダクタンス演算部R.L.C
16、36、56 電圧検出回路D.V
16f、56f 電圧信号用低域フィルタ回路Vfil
17、37、57 電流検出回路D.I
17f、57f 電流信号用低域フィルタ回路Ifil
18、38、58 速度演算部S.C
20 電磁アクチュエータの等価回路
21、60a位置検出器D.P
40 電磁石の等価回路
60 サーボモータの等価回路
eM 誘起電圧
Ia 出力電流
L インダクタンス
R 電磁アクチュエータの抵抗
Rr 給電線の抵抗
Rw 巻き線抵抗
RL (温度)限界抵抗
T サンプル周期
Va 出力電圧
10, 30, 50 Drive control device 15, 35, 55 according to the present invention Resistance / inductance calculation unit RLC
16, 36, 56 Voltage detection circuit DV
16f, 56f Voltage signal low-pass filter circuit Vfil
17, 37, 57 Current detection circuit DI
17f, 57f Current signal low-pass filter circuit Ifil
18, 38, 58 Speed calculator SC
20 Equivalent circuit 21 of electromagnetic actuator, 60a Position detector DP
40 Equivalent circuit of electromagnet 60 Equivalent circuit of servo motor
eM induced voltage
Ia Output current L Inductance R Electromagnetic actuator resistance
Rr Feed line resistance
Rw Winding resistance
R L (Temperature) Limit resistance T Sample period Va Output voltage

Claims (6)

交流を整流し平滑する整流平滑部と整流平滑した電圧を交流に変換する電力変換部を有し、巻き線を有する電磁アクチュエータを前記電力変換部の出力で駆動する誘導性負荷駆動制御装置であって、前記電力変換部を制御するベースドライブ部と、該ベースドライブ部を制御するPWM(パルス幅変調)演算部とを備えた誘導性負荷駆動制御装置において、前記巻き線の電圧と前記巻き線の電流と検出された前記電磁アクチュエータの可動子の位置とを使って前記巻き線の抵抗値を電圧方程式から逐次演算して求め、求めた抵抗値から前記巻き線の抵抗の温度係数を用いて巻き線の温度を算出してこの算出した温度を基に前記ベースドライブ部を制御する抵抗・インダクタンス演算部を備え
前記抵抗・インダクタンス演算部は、下式から各時点の前記抵抗値とインダクタンス値をそれぞれ求め、
Figure 0005034282
(ここで、Tはサンプリング周期、時刻t=kT時点(但しk=1,2,・・・,N)、Va(k),Ia(k),およびdP/dt(k)はkT時点の巻き線の各電圧、電流、および速度、Lは前記巻き線のインダクタンス、Keは誘起電圧定数で、誘起電圧eM(k)=Ke・dP/dt(k)である。)
それらの値の時間的変化に一定値以上の増(+)減(−)があるとき、前記抵抗値の変化分をdR(k)とし前記インダクタンスの変化分をdL(k)とすると、
(a)+dR(k)と+dL(k)で巻線が加熱状態、
(b)−dR(k)と+dL(k)で巻線が放熱状態、
(c)+dR(k)と−dL(k)で巻線が部分短絡状態、
(d)−dR(k)と−dL(k)で巻線短絡状態、
と判断することを特徴とする誘導性負荷駆動制御装置。
An inductive load drive control device that includes a rectifying / smoothing unit that rectifies and smoothes alternating current and a power conversion unit that converts the rectified and smoothed voltage into alternating current, and drives an electromagnetic actuator having a winding by the output of the power converting unit. In the inductive load drive control device comprising a base drive unit that controls the power conversion unit and a PWM (pulse width modulation) calculation unit that controls the base drive unit, the voltage of the winding and the winding The resistance value of the winding is obtained by sequentially calculating from the voltage equation using the detected current and the detected position of the mover of the electromagnetic actuator, and the temperature coefficient of the resistance of the winding is obtained from the obtained resistance value. A resistance / inductance calculation unit that calculates the temperature of the winding and controls the base drive unit based on the calculated temperature ,
The resistance / inductance calculation unit obtains the resistance value and the inductance value at each time point from the following formula,
Figure 0005034282
(Where T is the sampling period, time t = kT time (where k = 1, 2,..., N), Va (k), Ia (k), and dP / dt (k) are Each voltage, current, and speed of the winding, L is the inductance of the winding, Ke is an induced voltage constant, and the induced voltage eM (k) = Ke · dP / dt (k).
When there is an increase (+) or decrease (−) of a certain value or more in the temporal change of those values, if the change in the resistance value is dR (k) and the change in the inductance is dL (k),
(A) The winding is heated with + dR (k) and + dL (k)
(B) -dR (k) and + dL (k), winding is in heat dissipation state,
(C) The winding is partially short-circuited at + dR (k) and -dL (k).
(D) Winding short-circuited with -dR (k) and -dL (k)
Inductive load drive control apparatus characterized by determining the.
巻き線を有する電磁石を駆動するリニアアンプを備えた誘導性負荷駆動制御装置において、前記巻き線の電圧と前記巻き線の電流とを使って前記巻き線の抵抗値を電圧方程式から逐次演算して求め、求めた抵抗値から前記巻き線の抵抗の温度係数を用いて巻き線の温度を算出してこの算出した温度を基に前記リニアアンプを制御する抵抗・インダクタンス演算部を備え
前記抵抗・インダクタンス演算部は、下式から各時点の前記抵抗値とインダクタンス値をそれぞれ求め、
Figure 0005034282
(ここで、Tはサンプリング周期、時刻t=kT時点(但しk=1,2,・・・,N)、Va(k),Ia(k),およびdP/dt(k)はkT時点の巻き線の各電圧、電流、および速度、Lは前記巻き線のインダクタンス、Keは誘起電圧定数で、誘起電圧eM(k)=Ke・dP/dt(k)である。)
それらの値の時間的変化に一定値以上の増(+)減(−)があるとき、前記抵抗値の変化分をdR(k)とし前記インダクタンスの変化分をdL(k)とすると、
(a)+dR(k)と+dL(k)で巻線が加熱状態、
(b)−dR(k)と+dL(k)で巻線が放熱状態、
(c)+dR(k)と−dL(k)で巻線が部分短絡状態、
(d)−dR(k)と−dL(k)で巻線短絡状態、
と判断することを特徴とする誘導性負荷駆動制御装置。
In an inductive load drive control device including a linear amplifier for driving an electromagnet having a winding, a resistance value of the winding is sequentially calculated from a voltage equation using a voltage of the winding and a current of the winding. A resistance / inductance calculation unit for controlling the linear amplifier based on the calculated temperature by calculating the temperature of the winding using the temperature coefficient of the resistance of the winding from the obtained resistance value ,
The resistance / inductance calculation unit obtains the resistance value and the inductance value at each time point from the following formula,
Figure 0005034282
(Where T is the sampling period, time t = kT time (where k = 1, 2,..., N), Va (k), Ia (k), and dP / dt (k) are Each voltage, current, and speed of the winding, L is the inductance of the winding, Ke is an induced voltage constant, and the induced voltage eM (k) = Ke · dP / dt (k).
When there is an increase (+) or decrease (−) of a certain value or more in the temporal change of those values, if the change in the resistance value is dR (k) and the change in the inductance is dL (k),
(A) The winding is heated with + dR (k) and + dL (k)
(B) -dR (k) and + dL (k), winding is in heat dissipation state,
(C) The winding is partially short-circuited at + dR (k) and -dL (k).
(D) Winding short-circuited with -dR (k) and -dL (k)
Inductive load drive control apparatus characterized by determining the.
交流を整流し平滑する整流平滑部と整流平滑した電圧を交流に変換する電力変換部を有し、3相巻き線を有するサーボモータを前記電力変換部の出力で駆動する誘導性負荷駆動制御装置であって、前記電力変換部を制御するベースドライブ部と、該ベースドライブ部を制御するPWM(パルス幅変調)演算部とを備えた誘導性負荷駆動制御装置において、
前記各相について前記巻き線の電圧と前記巻き線の電流と検出された前記サーボモータの出力軸の位置とを使って前記巻き線の抵抗値を電圧方程式から逐次演算して求め、求めた抵抗値から前記巻き線の抵抗の温度係数を用いて巻き線の温度を算出してこの算出した温度を基に前記ベースドライブ部を制御する抵抗・インダクタンス演算部を備え
前記抵抗・インダクタンス演算部は、下式から各時点の前記抵抗値とインダクタンス値をそれぞれ求め、
Figure 0005034282
(ここで、Tはサンプリング周期、時刻t=kT時点(但しk=1,2,・・・,N)、Va(k),Ia(k),およびdP/dt(k)はkT時点の巻き線の各電圧、電流、および速度、Lは前記巻き線のインダクタンス、Keは誘起電圧定数で、誘起電圧eM(k)=Ke・dP/dt(k)である。)
それらの値の時間的変化に一定値以上の増(+)減(−)があるとき、前記抵抗値の変化分をdR(k)とし前記インダクタンスの変化分をdL(k)とすると、
(a)+dR(k)と+dL(k)で巻線が加熱状態、
(b)−dR(k)と+dL(k)で巻線が放熱状態、
(c)+dR(k)と−dL(k)で巻線が部分短絡状態、
(d)−dR(k)と−dL(k)で巻線短絡状態、
と判断することを特徴とする誘導性負荷駆動制御装置。
An inductive load drive control device having a rectifying / smoothing unit for rectifying and smoothing alternating current, and a power conversion unit for converting the rectified and smoothed voltage into alternating current, and driving a servo motor having a three-phase winding by the output of the power converting unit In an inductive load drive control device including a base drive unit that controls the power conversion unit and a PWM (pulse width modulation) calculation unit that controls the base drive unit,
For each phase, the resistance value of the winding is obtained by sequentially calculating the resistance value of the winding from the voltage equation using the winding voltage, the winding current and the detected position of the output shaft of the servo motor. A resistance / inductance calculation unit that calculates the temperature of the winding using the temperature coefficient of the resistance of the winding from the value and controls the base drive unit based on the calculated temperature ;
The resistance / inductance calculation unit obtains the resistance value and the inductance value at each time point from the following formula,
Figure 0005034282
(Where T is the sampling period, time t = kT time (where k = 1, 2,..., N), Va (k), Ia (k), and dP / dt (k) are Each voltage, current, and speed of the winding, L is the inductance of the winding, Ke is an induced voltage constant, and the induced voltage eM (k) = Ke · dP / dt (k).
When there is an increase (+) or decrease (−) of a certain value or more in the temporal change of those values, if the change in the resistance value is dR (k) and the change in the inductance is dL (k),
(A) The winding is heated with + dR (k) and + dL (k)
(B) -dR (k) and + dL (k), winding is in heat dissipation state,
(C) The winding is partially short-circuited at + dR (k) and -dL (k).
(D) Winding short-circuited with -dR (k) and -dL (k)
Inductive load drive control apparatus characterized by determining the.
前記抵抗・インダクタンス演算部は前記巻線が部分短絡又は短絡状態と判断したとき、巻き線異常を表示部に表示をするか又はアラーム警報を発することを特徴とする請求項1〜3のいずれか1項記載の誘導性負荷駆動制御装置。   The resistance / inductance calculation unit displays a winding abnormality on a display unit or issues an alarm warning when the winding is determined to be partially short-circuited or short-circuited. The inductive load drive control device according to claim 1. 温度θ0時の銅線の抵抗をR0とし、温度θx時の抵抗をRXとすると、温度θxは下式から求めることを特徴とする請求項1〜3のいずれか1項記載の誘導性負荷駆動制御装置。
θx= RX・(234.5+θ0)/ R0-234.5
4. The induction according to claim 1, wherein the resistance of the copper wire at the temperature θ 0 is R 0 and the resistance at the temperature θx is R X , the temperature θx is obtained from the following equation. Load drive control device.
θx = RX ・ (234.5 + θ0) / R0-234.5
前記抵抗・インダクタンス演算部は前記巻線の温度θxが所定の温度を超えたとき、過熱状態と判断し、表示部に過熱の表示をするか又はアラーム警報を発することを特徴とする請求項5記載の誘導性負荷駆動制御装置。   6. The resistance / inductance calculation unit, when a temperature θx of the winding exceeds a predetermined temperature, determines that the coil is overheated and displays an overheat on the display unit or issues an alarm warning. The inductive load drive control device described.
JP2006077221A 2006-03-20 2006-03-20 Inductive load drive controller Expired - Fee Related JP5034282B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006077221A JP5034282B2 (en) 2006-03-20 2006-03-20 Inductive load drive controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006077221A JP5034282B2 (en) 2006-03-20 2006-03-20 Inductive load drive controller

Publications (2)

Publication Number Publication Date
JP2007259522A JP2007259522A (en) 2007-10-04
JP5034282B2 true JP5034282B2 (en) 2012-09-26

Family

ID=38633185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006077221A Expired - Fee Related JP5034282B2 (en) 2006-03-20 2006-03-20 Inductive load drive controller

Country Status (1)

Country Link
JP (1) JP5034282B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106353476A (en) * 2016-09-12 2017-01-25 国网天津市电力公司 Signal acquisition device for solving temperature coefficient of resistance of transformer winding material

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5090840B2 (en) 2007-10-03 2012-12-05 日立オートモティブシステムズ株式会社 Brake control device
GB2473803A (en) * 2009-07-02 2011-03-30 Pg Drives Technology Ltd Prevention of motor overload by calculation of motor resitance and temperature

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0654572A (en) * 1992-07-31 1994-02-25 Omron Corp Heat protection apparatus for motor
JP2005080450A (en) * 2003-09-02 2005-03-24 Hitachi Ltd Concentrated winding rotating electric machine system, and actuator and brake system using it
JP2005218215A (en) * 2004-01-29 2005-08-11 Nsk Ltd Driving method and temperature-estimating method of pm motor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106353476A (en) * 2016-09-12 2017-01-25 国网天津市电力公司 Signal acquisition device for solving temperature coefficient of resistance of transformer winding material
CN106353476B (en) * 2016-09-12 2018-06-05 国网天津市电力公司 For solving the signal pickup assembly of transformer winding material temperature-coefficient of electrical resistance

Also Published As

Publication number Publication date
JP2007259522A (en) 2007-10-04

Similar Documents

Publication Publication Date Title
JP4114697B2 (en) Inverter control method
JP4497149B2 (en) Inverter device
JP5274236B2 (en) Three-phase inverter power circuit protection device
JP5549505B2 (en) Temperature protection device, motor control device, and temperature protection method
JP6107936B2 (en) Power converter
US10924055B2 (en) Motor drive apparatus having input power supply voltage adjustment function
JP5474421B2 (en) Motor winding burnout protection device
TWI597931B (en) Motor controller
JP2009005553A (en) System and method for controlling permanent magnet motor, and method for controlling elevator
JP2012135119A (en) Inverter device
US8994317B2 (en) Output control apparatus for electric motor and method for controlling output of electric motor
JP5034282B2 (en) Inductive load drive controller
JP2009261078A (en) Motor controller and temperature estimation method
JP2007318824A (en) Driving device for motor-driven compressor
WO2021235367A1 (en) Failure detection device that detects failure of parallel-driven switch, and motor drive device
CN111010051A (en) Motor driving device
JP2009011042A (en) Method for protecting rush current prevention circuits, and inverter device
JP2002186171A (en) Overheat-protecting device of switching element for regenerative power consuming resistor of voltage type inverter
US20220385207A1 (en) Inverter device for driving electric motor and control method thereof
JP2009022060A (en) Controller of ac electric motor
KR102318722B1 (en) managing device for cooling inverter
WO2011151906A1 (en) Inverter apparatus
JP2003254591A (en) Driving circuit of air conditioner and driving circuit of electrical equipment
JP5659330B2 (en) Power converter
JP3630103B2 (en) Fault detection device for servo control system

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071127

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110927

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120605

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120618

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees