JP5034038B2 - A proton conductive material using general incineration ash as a raw material and a method for producing the same. - Google Patents

A proton conductive material using general incineration ash as a raw material and a method for producing the same. Download PDF

Info

Publication number
JP5034038B2
JP5034038B2 JP2006185160A JP2006185160A JP5034038B2 JP 5034038 B2 JP5034038 B2 JP 5034038B2 JP 2006185160 A JP2006185160 A JP 2006185160A JP 2006185160 A JP2006185160 A JP 2006185160A JP 5034038 B2 JP5034038 B2 JP 5034038B2
Authority
JP
Japan
Prior art keywords
conductive material
proton conductive
incineration ash
proton
calcium phosphate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006185160A
Other languages
Japanese (ja)
Other versions
JP2008016273A (en
Inventor
国博 福井
英人 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hiroshima University NUC
Original Assignee
Hiroshima University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hiroshima University NUC filed Critical Hiroshima University NUC
Priority to JP2006185160A priority Critical patent/JP5034038B2/en
Publication of JP2008016273A publication Critical patent/JP2008016273A/en
Application granted granted Critical
Publication of JP5034038B2 publication Critical patent/JP5034038B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、一般焼却灰を原料とするプロトン伝導性材料及びその製造方法に関するものである。   The present invention relates to a proton conductive material using general incineration ash as a raw material and a method for producing the same.

本発明は一般焼却灰の新たなリサイクルの手段を提供すると共に、水素を燃料とする燃料電池や電解式オゾン水製造装置用として安価なプロトン伝導性材料を提供し、特に燃料電池の普及促進に貢献するものである。非特許文献1に拠れば、わが国の一般廃棄物の排出量は、平成15年度では5,160万トンであり、ほぼ横ばいである。排出量の約90%は中間処理に回される。その中間処理の80%弱は直接焼却であり、その結果として650万トン以上の焼却灰(前記のように一般廃棄物を焼却処理した結果排出された焼却灰を以後一般焼却灰と呼ぶ)が排出する。そして、この一般焼却灰が最終処分量の約80%を占めている。近年、リサイクルの促進により徐々に一般焼却灰の排出量が減少しているとは言え、上記の構図に大きな変化はない。年々最終処分場の確保が難しくなっている現状において、この一般焼却灰処分の負担は非常に大きく、それを減らすことは急務である。   The present invention provides a new means for recycling general incineration ash, and also provides an inexpensive proton conductive material for hydrogen fueled fuel cells and electrolytic ozone water production equipment, especially for promoting the spread of fuel cells. It contributes. According to Non-Patent Document 1, the amount of general waste discharged in Japan is 51.6 million tons in 2003, which is almost flat. About 90% of the discharged amount is sent to intermediate processing. Nearly 80% of the intermediate treatment is direct incineration. As a result, over 6.5 million tons of incineration ash (the incineration ash discharged as a result of incineration of general waste as described above will be referred to as general incineration ash hereinafter). Discharge. This general incineration ash accounts for about 80% of the final disposal amount. In recent years, although the amount of general incineration ash discharged has gradually decreased due to the promotion of recycling, the composition has not changed significantly. In the current situation where it is difficult to secure a final disposal site year by year, the burden of this general incineration ash disposal is very large, and it is urgent to reduce it.

一般焼却灰の一部は、既にセメントの原料として再利用されているが、セメント原料としては既に高炉スラグ、石炭灰、副産石膏、汚泥・スラッジその他多くの廃棄物が使用されている上、セメント自体の需要はむしろ減少傾向にあることから、これ以上多くは望めない。他に、一般焼却灰をゼオライトやトバモライトの原料として利用する研究がされているが、未だ研究段階である上、付加価値としては高くはない。従って、もっと付加価値が高く有効な再利用の方法の開発が望まれているのが現状である。   Part of the general incineration ash has already been reused as a raw material for cement, but blast furnace slag, coal ash, by-product gypsum, sludge / sludge and many other wastes have already been used as cement raw materials. Since the demand for cement itself is rather declining, more cannot be expected. In addition, research has been conducted on the use of general incineration ash as a raw material for zeolite and tobermorite, but it is still in the research stage and the added value is not high. Therefore, the present situation is that development of a recycling method having higher added value and effective is desired.

一方、一般焼却灰はカルシウム(以下Caと表す)を主成分とする金属類の混合物であることから、本発明の発明者等は、これを原料とするプロトン伝導性材料の合成の可能性に着目した。   On the other hand, since general incineration ash is a mixture of metals whose main component is calcium (hereinafter referred to as Ca), the inventors of the present invention are able to synthesize proton-conductive materials using this as a raw material. Pay attention.

特許文献1には、プロトン伝導性材料に関する従来の技術とその問題点ついて詳しく述べられている。即ち、室温付近で高い電導性を示すプロトン伝導性材料として、ウラニル酸水和物やモリブド酸水和物の無機結晶系プロトン伝導体や、フッ化ビニル系高分子にパースルホン酸基を含む側鎖を有する高分子イオン交換膜等の有機系プロトン伝導材、さらにケイ酸塩を主成分としリン酸が少量添加されたゾル−ゲル多孔質ガラスなどが知られている。   Patent Document 1 describes in detail the conventional technology and problems associated with proton conductive materials. That is, as a proton conductive material exhibiting high conductivity near room temperature, an inorganic crystalline proton conductor of uranic acid hydrate or molybdo acid hydrate, or a side containing a persulfonic acid group in a vinyl fluoride polymer. Known are organic proton conductive materials such as polymer ion exchange membranes having chains, and sol-gel porous glass containing silicate as a main component and a small amount of phosphoric acid added.

さらに、特許文献1によれば、上記の無機結晶系プロトン伝導体は結晶が微小な固体であることから薄肉化及び大型化され難く燃料電池には不向きである。また、有機系プロトン伝導体やゾル−ゲル多孔質ガラスは、高い電導性を維持するために周囲の水蒸気圧を飽和状態に近く維持する必要があり、そのためにこれらを燃料電池用の電解質として使用する場合、燃料電池に加湿器が必須となってシステムが大型化するなどの問題がある。これは実用化の大きな障害となっている。さらに、高分子イオン交換膜やゾル−ゲル多孔質ガラスを燃料電池の電解質として使用する場合、材料に存在する微小な孔が、水素を供給するためのメタノール自体を透過してしまう現象(クロスオーバー現象)を生じ発電効率が悪化し易いことも知られている。   Further, according to Patent Document 1, the inorganic crystalline proton conductor is not suitable for a fuel cell because the crystal is a fine solid and is difficult to be reduced in thickness and size. In addition, organic proton conductors and sol-gel porous glasses need to maintain the surrounding water vapor pressure close to saturation in order to maintain high electrical conductivity, and therefore they are used as electrolytes for fuel cells. In this case, there is a problem that a humidifier is essential for the fuel cell and the system is enlarged. This is a major obstacle to practical use. Furthermore, when a polymer ion exchange membrane or sol-gel porous glass is used as an electrolyte for a fuel cell, a phenomenon in which minute pores existing in the material permeate methanol itself for supplying hydrogen (crossover). It is also known that the power generation efficiency is likely to be deteriorated.

特許文献1ではこれらの問題点を解決するする手段として、二価の金属のリン酸塩ハイドロゲルをプロトン伝導性材料とすることを提唱している。   Patent Document 1 proposes to use a divalent metal phosphate hydrogel as a proton conductive material as a means for solving these problems.

しかし、焼却灰を原料としたリン酸塩ハイドロゲルによるプロトン伝導性材料に関する研究は報告されていない。
環境省大臣官房廃棄物リサイクル対策部廃棄物対策課 : 日本の廃棄物処理 平成 15 年度版(2005) 特開2003-217339号公報
However, there has been no report on proton conductive materials using phosphate hydrogel made from incinerated ash.
Ministry of the Environment Minister's Secretariat Waste Recycling Department Waste Management Section: Japanese Waste Management 2003 (2005) JP 2003-217339 A

一般焼却灰を原料とするプロトン伝導性材料と、その製造法を提供することを解決すべき課題とする。   Providing a proton conductive material using general incineration ash as a raw material and a method for producing the same is an issue to be solved.

本発明は一般焼却灰にリン酸を混合し熱処理する方法によりプロトン伝導性物質を製造し、一般焼却灰を再利用することを特徴とする。一般廃棄物焼却に於いては、燃焼の際にダイオキシンやSOx・NOxの発生を抑制する目的でカルシウム化合物が供給される。そのため派生する灰には、主成分としてCaが通常50%以上含まれるが、廃棄物や補助燃料に由来する他の金属、例えばカリウムK、ケイ素Si、アルミニウムAl、イオウS、亜鉛Zn、鉄Fe、チタンTiなども含まれるのが通常である。発明者は一般焼却灰にリン酸を混合して熱処理することにより、リン酸カルシウムハイドロゲルを主成分とする物質であってプロトン伝導材料としての特性を有する物質が生成されることを確認した。   The present invention is characterized in that a proton conductive material is produced by a method in which phosphoric acid is mixed with general incineration ash and heat-treated, and the general incineration ash is reused. In general waste incineration, calcium compounds are supplied for the purpose of suppressing the generation of dioxins and SOx / NOx during combustion. Therefore, the derived ash usually contains 50% or more of Ca as a main component, but other metals derived from waste and auxiliary fuel, such as potassium K, silicon Si, aluminum Al, sulfur S, zinc Zn, iron Fe In general, titanium Ti is also included. The inventor has confirmed that by mixing phosphoric acid with general incineration ash and heat-treating it, a substance containing calcium phosphate hydrogel as a main component and having characteristics as a proton conducting material is generated.

前記したプロトン伝導材料としての特性を示すリン酸カルシウムハイドロゲルを主成分とする物質の生成工程は、一般焼却灰にリン酸を加えた混合物を800℃以上、望ましくは800℃〜1300℃の温度で熱処理をする。リン酸の添加量は灰に含まれる金属分をリン酸塩にするに要する理論量の0.5〜2.5倍量(リン酸/Ca重量比)の範囲であり、望ましくは5/8以上とする。前記の一般焼却灰に含まれた各種金属はリン酸と反応してリン酸塩となり、反応の進行とともにガラス化する。その結果、リン酸カルシウムガラスを主成分とし、他の金属のリン酸塩のガラスも含んだ混合物を得る。   The production process of the substance mainly composed of calcium phosphate hydrogel having the characteristics as the proton conducting material described above is a heat treatment of a mixture obtained by adding phosphoric acid to general incineration ash at a temperature of 800 ° C. or higher, preferably 800 ° C. to 1300 ° C. do. The addition amount of phosphoric acid is in the range of 0.5 to 2.5 times the theoretical amount (phosphoric acid / Ca weight ratio) required to convert the metal contained in the ash into phosphate, and is preferably 5/8 or more. Various metals contained in the above general incineration ash react with phosphoric acid to become phosphate, and vitrify as the reaction proceeds. As a result, a mixture containing calcium phosphate glass as a main component and glass of other metal phosphates is obtained.

次に、得られたリン酸カルシウムガラスを主成分とする金属リン酸塩ガラスを粉砕して微粉末とし、これに水を加えて20℃〜60℃、相対湿度80%以上の環境下に保持してゲル化反応を進行させる。この反応でリン酸カルシウムハイドロゲルを主成分とする金属リン酸塩ハイドロゲルを得る。実験の結果このゲルは、純粋な炭酸カルシウムを原料として、同様の方法で造ったリン酸カルシウムハイドロゲルを上回るプロトン伝導性を有することが確認された。   Next, the obtained metal phosphate glass mainly composed of calcium phosphate glass is pulverized into a fine powder, and water is added to the glass to maintain it in an environment of 20 ° C. to 60 ° C. and a relative humidity of 80% or more. The gelation reaction is allowed to proceed. By this reaction, a metal phosphate hydrogel mainly composed of calcium phosphate hydrogel is obtained. As a result of the experiment, it was confirmed that this gel has proton conductivity exceeding that of calcium phosphate hydrogel made by the same method using pure calcium carbonate as a raw material.

さらに、上記0011及び0012に記載した工程で生成したゲルを、80℃以上の高温の水蒸気に暴露して結晶化させることにより、プロトン伝導性は更に向上することが確認された。以上に記載した一般焼却灰とリン酸との化合物を熱処理して生成された物質は、一般焼却灰に通常含有される微量金属の存在にも関わらずプロトン伝導性を有し、燃料電池等の電解物質としての使用が可能であることが確認された。   Furthermore, it was confirmed that the proton conductivity was further improved by crystallization of the gel produced in the steps described in the above-mentioned 0011 and 0012 by exposure to water vapor at a high temperature of 80 ° C. or higher. The substance produced by heat treatment of the compound of general incineration ash and phosphoric acid described above has proton conductivity despite the presence of trace metals normally contained in general incineration ash, such as fuel cells. It was confirmed that it can be used as an electrolytic substance.

一般焼却灰を原料とするリン酸カルシウムハイドロゲルを主成分とするリン酸塩ハイドロゲルをプロトン伝導性材料として使うことにより、燃料電池の大幅なコストダウンを実現し、燃料電池の普及が図れ、結果として地球環境対策に大きく貢献することができる。また、一般焼却灰のリサイクルを促進し、最終処分場の負荷の軽減に貢献することができる。   By using phosphate hydrogel, which is mainly composed of calcium phosphate hydrogel made from general incineration ash, as a proton conductive material, the cost of fuel cells can be significantly reduced and fuel cells can be widely used. It can greatly contribute to global environmental measures. In addition, the recycling of general incineration ash can be promoted, contributing to the reduction of the load on the final disposal site.

以下に実施例を示すが、これは本発明の限定を意図するものではない。
まず、一般焼却灰の組成の一例を表−1に示す。これは、蛍光X線分析により定量分析した結果である。Caを主成分とする金属の混合物であることが分かる。

Figure 0005034038
The following examples illustrate but are not intended to limit the invention.
First, an example of the composition of general incineration ash is shown in Table-1. This is the result of quantitative analysis by fluorescent X-ray analysis. It turns out that it is a mixture of the metal which has Ca as a main component.
Figure 0005034038

上記の例と同じ一般焼却灰(中位径60μm )20.0gと85%リン酸27.0gの混合物を、マッフル炉により30分間1,200℃で熱処理を行った後、急冷させてリン酸カルシウムを主成分とする金属リン酸塩のガラスを得る。比較のために、一般焼却灰の代わりに純粋な炭酸カルシウムを原料として同様の方法でリン酸カルシウムガラスを造った。   A mixture of 20.0 g of the same general incineration ash (median diameter 60 μm) and 27.0 g of 85% phosphoric acid as in the above example was heat treated at 1,200 ° C. for 30 minutes in a muffle furnace, and then rapidly cooled to obtain calcium phosphate. A glass of metal phosphate as the main component is obtained. For comparison, a calcium phosphate glass was made in the same manner using pure calcium carbonate as a raw material instead of general incineration ash.

次に、上記で得られたリン酸カルシウムを主成分とする金属リン酸塩ガラスを鋼製ボールミルで粉砕した。このガラス粉末と蒸留水を混合し、恒温恒湿度条件下でゲル化反応を進行させることにより、リン酸カルシウムを主成分とする金属リン酸塩ハイドロゲルを生成させた。ハイドロゲルの電導率をゲル化反応時間に応じて測定した。導電率は後述の測定法を用いて行った。比較のために造った上記の純粋なリン酸カルシウムガラスについても、同様の方法で、ゲル化させてリン酸カルシウムハイドロゲルとし導電率を測定した。   Next, the metal phosphate glass mainly composed of calcium phosphate obtained above was pulverized with a steel ball mill. The glass powder and distilled water were mixed and the gelation reaction was allowed to proceed under constant temperature and humidity conditions, thereby producing a metal phosphate hydrogel containing calcium phosphate as a main component. The electrical conductivity of the hydrogel was measured according to the gelation reaction time. The conductivity was measured using the measurement method described later. The above pure calcium phosphate glass prepared for comparison was also gelled by the same method to obtain a calcium phosphate hydrogel, and the electrical conductivity was measured.

図1は、上記の方法で造ったリン酸カルシウムを主成分とする金属リン酸塩ハイドロゲルの導電率をゲル化時間に対してプロットしたものである。また図1には、比較のために造った純粋なリン酸カルシウムハイドロゲルの導電率も同様にプロットした。これによれば本発明によるリン酸カルシウムを主成分とする金属リン酸塩ハイドロゲルの導電率は、純粋なリン酸カルシウムハイドロゲルのそれよりも高いことが分かる。   FIG. 1 is a plot of the electrical conductivity of a metal phosphate hydrogel composed mainly of calcium phosphate produced by the above method against the gelation time. FIG. 1 also plots the conductivity of pure calcium phosphate hydrogel made for comparison. This shows that the conductivity of the metal phosphate hydrogel based on calcium phosphate according to the present invention is higher than that of pure calcium phosphate hydrogel.

次に、上記で得たリン酸カルシウムを主成分とする金属リン酸塩ハイドロゲルを90℃の水蒸気に6時間暴露することにより結晶化させた。得られた結晶化ゲルの導電率を10℃〜70℃の範囲で温度を変えて測定し、導電率に対する温度の影響をみた。比較のために造った純粋なリン酸カルシウムハイドロゲルについても同様の方法で結晶化し導電率を測定した。 Next, the metal phosphate hydrogel mainly composed of calcium phosphate obtained above was crystallized by exposure to water vapor at 90 ° C. for 6 hours. The conductivity of the obtained crystallized gel was measured by changing the temperature in the range of 10 ° C. to 70 ° C., and the influence of the temperature on the conductivity was observed. A pure calcium phosphate hydrogel prepared for comparison was crystallized in the same manner and its conductivity was measured.

図2に、結晶化前後の本発明による金属リン酸塩ハイドロゲルの導電率を温度に対してプロットした。また図2には、比較のために純粋なリン酸カルシウムハイドロゲルについても同様に導電率をプロットした。これによれば、結晶化により電導度は上昇することが分かる。また、温度の上昇に伴って伝導度は指数的に上昇することがわかる。さらに、結晶化後における電導度は、純粋なリン酸カルシウムハイドロゲルの方が高いが、本発明による金属リン酸塩ハイドロゲルも充分実用に耐える電導度を持っていることが分かる。 In FIG. 2, the conductivity of the metal phosphate hydrogel according to the invention before and after crystallization is plotted against temperature. In FIG. 2, the conductivity is also plotted for pure calcium phosphate hydrogel for comparison. According to this, it can be seen that the conductivity increases due to crystallization. It can also be seen that the conductivity increases exponentially with increasing temperature. Furthermore, the conductivity after crystallization is higher in pure calcium phosphate hydrogel, but it can be seen that the metal phosphate hydrogel according to the present invention has sufficient conductivity to be practically used.

以上から、本発明の方法により、一般焼却灰を原料とする高プロトン伝導性材料と、その製造法を提供できることが分かった。   From the above, it was found that the method of the present invention can provide a high proton conductive material made from general incineration ash as a raw material and a method for producing the same.

ゲルの電気的特性は、交流4端子法でインピーダンスを測定することにより評価した。インピーダンスから、下記の式を使って導電率を算出した。なお、インピーダンス測定の際のゲルの含水率は52%、交流周波数は100Hz〜10kHz、印加電圧は1.0Vとした。
σ = L / (Z・A)
σ:導電率 (S/cm)
L :電圧端子間距離 (cm)
Z :インピーダンス値(Ω)
A :試料断面積 (cm2)
The electrical characteristics of the gel were evaluated by measuring the impedance by the AC four-terminal method. From the impedance, the conductivity was calculated using the following formula. Note that the moisture content of the gel in the impedance measurement was 52%, the AC frequency was 100 Hz to 10 kHz, and the applied voltage was 1.0 V.
σ = L / (Z ・ A)
σ: Conductivity (S / cm)
L: Distance between voltage terminals (cm)
Z: Impedance value (Ω)
A: Sample cross-sectional area (cm2)

本発明は、一般焼却灰の有効利用と、安価な高プロトン伝導性材料を提供する重要な技術である。本発明で得られる高プロトン伝導性材料は、燃料電池や電解式オゾン水製造装置の電解膜としての適用の可能性が高く、特に燃料電池の普及促進に寄与することが期待される。また一般焼却灰のリサイクルを促進し、最終処分場の負荷を軽減することができる。 The present invention is an important technique for effectively using general incineration ash and providing an inexpensive high proton conductive material. The high proton conductive material obtained by the present invention has a high possibility of application as an electrolytic membrane of a fuel cell or an electrolytic ozone water production apparatus, and is expected to contribute particularly to the promotion of the spread of fuel cells. Moreover, recycling of general incineration ash can be promoted, and the burden on the final disposal site can be reduced.

本発明によるリン酸カルシウムを主成分とする金属リン酸塩ハイドロゲル、及び純粋なリン酸カルシウムハイドロゲルの、ゲル化反応時間と導電率との関係を示すグラフである。It is a graph which shows the relationship between the gelatinization reaction time and electrical conductivity of the metal phosphate hydrogel which has calcium phosphate as a main component by this invention, and pure calcium phosphate hydrogel. 本発明によるリン酸カルシウムを主成分とする金属リン酸塩ハイドロゲル、及び純粋なリン酸カルシウムハイドロゲルの、結晶化前と結晶化後における、温度と導電率との関係 を示したグラフである。2 is a graph showing the relationship between the temperature and conductivity before and after crystallization of a metal phosphate hydrogel mainly composed of calcium phosphate according to the present invention and a pure calcium phosphate hydrogel.

Claims (5)

主成分としてカルシウムを含有する一般焼却灰リン酸とを混合した混合物を加熱してリン酸カルシウムガラスを主成分とする金属リン酸塩ガラスを生成し、
前記金属リン酸塩ガラスに水を加えてゲル化させ、リン酸カルシウムハイドロゲルを主成分とするプロトン伝導性材料を得ることを特徴とするプロトン伝導性材料の製造方法。
Calcium and heating the mixture obtained by mixing a general ash and phosphoric acid having free to form metallic phosphate glass mainly composed of calcium phosphate glass as a main component,
A method for producing a proton conductive material, characterized in that water is added to the metal phosphate glass to form a gel to obtain a proton conductive material mainly composed of calcium phosphate hydrogel .
前記混合物を800℃以上で加熱することを特徴とする請求項1に記載したプロトン伝導性材料の製造方法。 The method for producing a proton-conductive material according to claim 1, wherein the mixture is heated at 800 ° C. or higher . 前記金属リン酸塩ガラスを粉砕して得られたリン酸塩ガラス粉末に水を加え、加温してゲル化させることを特徴とする請求項1又は請求項2に記載したプロトン伝導性材料の製造方法。 Water phosphate glass powder obtained by pulverizing the metal phosphate glass added, the proton conductive material as set forth in claim 1 or claim 2, characterized in that cause warming gelling Production method. 得られた前記プロトン伝導性材料を更に水蒸気に暴露して結晶化させることを特徴とする、請求項1ないし請求項のいずれか一項に記載したプロトン伝導性材料の製造方法。 The method for producing a proton conductive material according to any one of claims 1 to 3 , wherein the obtained proton conductive material is further crystallized by exposure to water vapor. 請求項1ないし請求項4のいずれか一項に記載したプロトン伝導性材料の製造方法により製造されることを特徴とする、リン酸カルシウムを主成分とするプロトン伝導性材料。 Characterized in that it is produced by the production method of the flop proton conducting material as claimed in any one of claims 1 to 4, the proton conductive material mainly composed of calcium phosphate.
JP2006185160A 2006-07-05 2006-07-05 A proton conductive material using general incineration ash as a raw material and a method for producing the same. Active JP5034038B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006185160A JP5034038B2 (en) 2006-07-05 2006-07-05 A proton conductive material using general incineration ash as a raw material and a method for producing the same.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006185160A JP5034038B2 (en) 2006-07-05 2006-07-05 A proton conductive material using general incineration ash as a raw material and a method for producing the same.

Publications (2)

Publication Number Publication Date
JP2008016273A JP2008016273A (en) 2008-01-24
JP5034038B2 true JP5034038B2 (en) 2012-09-26

Family

ID=39073096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006185160A Active JP5034038B2 (en) 2006-07-05 2006-07-05 A proton conductive material using general incineration ash as a raw material and a method for producing the same.

Country Status (1)

Country Link
JP (1) JP5034038B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2912396B1 (en) * 2007-02-09 2011-08-26 Solvay PROCESS FOR PRODUCING A PHOSPHOCALCIUM REAGENT, REAGENT OBTAINED AND USE THEREOF
WO2011110931A1 (en) * 2010-03-12 2011-09-15 Council Of Scientific & Industrial Research A process for the preparation of inorganic hydrogels with alkali halides

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10279301A (en) * 1997-03-31 1998-10-20 Tsukishima Kikai Co Ltd Separation of phosphorus component
JP3687038B2 (en) * 2002-01-16 2005-08-24 財団法人名古屋産業科学研究所 Proton conducting gel, proton conductor, and production method thereof
JP4243649B2 (en) * 2002-12-24 2009-03-25 川崎市 Method for producing calcium phosphate and aluminum hydroxide from sludge incineration ash
JP2006164644A (en) * 2004-12-03 2006-06-22 Techno Rashi Kogyo Kk Fuel cell
JP5151052B2 (en) * 2006-03-28 2013-02-27 独立行政法人産業技術総合研究所 Proton-conducting crystallized glass solid electrolyte

Also Published As

Publication number Publication date
JP2008016273A (en) 2008-01-24

Similar Documents

Publication Publication Date Title
Chakraborty et al. Novel low cost proton exchange membrane made from sulphonated biochar for application in microbial fuel cells
Tanibata et al. Preparation and characterization of highly sodium ion conducting Na 3 PS 4–Na 4 SiS 4 solid electrolytes
Novais et al. Porous geopolymer spheres as novel pH buffering materials
Thokchom et al. Composite effect in superionically conducting lithium aluminium germanium phosphate based glass-ceramic
Nalini et al. High-temperature proton conductivity and defect structure of TiP2O7
JP6887124B2 (en) Membrane electrode assembly of electrochemical devices, fuel cells, electrochemical hydrogen pumps, and hydrogen sensors
CN104064774B (en) Solid lithium-ion conductor and electrochemical element
JP5034038B2 (en) A proton conductive material using general incineration ash as a raw material and a method for producing the same.
Hao et al. Utilization of solar panel waste glass for metakaolinite‐based geopolymer synthesis
Ni et al. A fluorophosphate glass–ceramic electrolyte with superior ionic conductivity and stability for Na-ion batteries
Wang et al. Superior and safer lithium sulfur batteries realized by robust polysulfides-retarding dam with high flame retardance
Yue et al. A novel method for multi-doped LiFePO4/C preparation with phosphating sludge
JP2003217339A (en) Proton conductive gel, proton conductor and method for manufacturing these
JPWO2013146349A1 (en) Method for producing lithium ion conductor
WO2019182088A1 (en) Method for producing low-valence titanium oxide powder
CN105845890A (en) Negative electrode material for lithium battery and preparation method of negative electrode material
Li et al. An approach for restoring the proton conductivity of sintered tin pyrophosphate membranes for intermediate temperature fuel cells
Li et al. Effect of pH value on the growth and properties of magnesium phosphate cement paste with a large water-to-solid fraction
Zhou et al. Recycling Bacteria for the Synthesis of LiMPO4 (M= Fe, Mn) Nanostructures for High‐Power Lithium Batteries
KR20120003452A (en) Method of making active materials for use in secondary electrochemical cells
CN111763081B (en) Pyrophosphate composite electrolyte and preparation method thereof
Hsiang et al. Preparation and electrochemical properties of Li3V2 (PO4) 3 glass-ceramic materials
Singh et al. Synthesis and characterization of MnO-doped titanium pyrophosphates (Ti 1-x Mn x P 2 O 7; x= 0–0.2) for intermediate-temperature proton-conducting ceramic-electrolyte fuel cells
Milović et al. Towards a green and cost-effective synthesis of polyanionic cathodes: comparative electrochemical behaviour of LiFePO4/C, Li2FeP2O7/C and Li2FeSiO4/C synthesized using methylcellulose matrix
JP5849382B2 (en) Sulfide solid electrolyte material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090310

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090325

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120321

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120605

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150