JP5033522B2 - Catalyst for producing epoxide and method for producing epoxide - Google Patents

Catalyst for producing epoxide and method for producing epoxide Download PDF

Info

Publication number
JP5033522B2
JP5033522B2 JP2007185954A JP2007185954A JP5033522B2 JP 5033522 B2 JP5033522 B2 JP 5033522B2 JP 2007185954 A JP2007185954 A JP 2007185954A JP 2007185954 A JP2007185954 A JP 2007185954A JP 5033522 B2 JP5033522 B2 JP 5033522B2
Authority
JP
Japan
Prior art keywords
catalyst
carrier
epoxide
production
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007185954A
Other languages
Japanese (ja)
Other versions
JP2009022835A (en
Inventor
弘己 柚木
博之 廣田
雅嗣 三河
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP2007185954A priority Critical patent/JP5033522B2/en
Publication of JP2009022835A publication Critical patent/JP2009022835A/en
Application granted granted Critical
Publication of JP5033522B2 publication Critical patent/JP5033522B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Epoxy Compounds (AREA)
  • Catalysts (AREA)

Description

本発明は、エポキシド製造用触媒およびエポキシドの製造方法に関する。詳細には、本発明は、アルミナ担体に触媒成分(例えば、銀)を担持してなるエポキシド製造用触媒および該触媒の存在下に不飽和炭化水素を分子状酸素により気相接触酸化して対応するエポキシドを製造する方法に関する。   The present invention relates to a catalyst for producing epoxide and a method for producing epoxide. More specifically, the present invention deals with a catalyst for producing an epoxide in which a catalyst component (for example, silver) is supported on an alumina support, and gas phase catalytic oxidation of unsaturated hydrocarbons with molecular oxygen in the presence of the catalyst. The present invention relates to a method for producing an epoxide.

不飽和炭化水素を分子状酸素含有ガスにより気相接触酸化してエポキシドを製造する際に用いられる触媒(エポキシド製造用触媒)については、従来数多くの技術が提案されている。   Many techniques have been proposed for a catalyst (epoxide production catalyst) used in producing an epoxide by vapor-phase catalytic oxidation of an unsaturated hydrocarbon with a molecular oxygen-containing gas.

例えば、特許文献1には、α−アルミナ担体の外表面上および細孔の表面上に非晶質シリカの被覆層を設けた担体に銀を担持した触媒が開示されている。特許文献2には、元素周期律表のIIIa−VIIaおよびIIIb−Vb族の第4、5および6周期の元素(例えばチタン、スズ、ハフニウムなど)からなる群より選ばれた1種あるいは2種以上の化合物を含むα−アルミナ担体に、銀を担持した触媒が開示されている。特許文献3には、高純度α−アルミナ、アルカリ土類金属酸化物、ケイ素酸化物および酸化ジルコニウムを含む担体を用いた触媒が開示されている。特許文献4および特許文献5には、多孔質なα−アルミナ担体に、銀を担持した触媒が開示されている。特許文献6には、ケイ素含有量(SiO2換算)が0.3〜11.5質量%、ナトリウム含有量(Na2O換算)が0.11〜2.5質量%の範囲内であるα−アルミナ担体を用いた触媒が開示されている。
特開平2−194839号公報 特開平4−363139号公報 特開平6−47278号公報 米国特許第5057481号明細書 欧州特許第480538号明細書 特開2001−157839号公報
For example, Patent Document 1 discloses a catalyst in which silver is supported on a support in which a coating layer of amorphous silica is provided on the outer surface of an α-alumina support and on the surface of pores. Patent Document 2 discloses one or two elements selected from the group consisting of elements of the fourth, fifth and sixth periods (for example, titanium, tin, hafnium, etc.) of groups IIIa-VIIa and IIIb-Vb of the periodic table of elements. A catalyst in which silver is supported on an α-alumina carrier containing the above compound is disclosed. Patent Document 3 discloses a catalyst using a support containing high-purity α-alumina, alkaline earth metal oxide, silicon oxide and zirconium oxide. Patent Documents 4 and 5 disclose a catalyst in which silver is supported on a porous α-alumina support. Patent Document 6 discloses that the silicon content (SiO 2 conversion) is in the range of 0.3 to 11.5 mass%, and the sodium content (Na 2 O conversion) is in the range of 0.11 to 2.5 mass%. -A catalyst using an alumina support is disclosed.
Japanese Patent Laid-Open No. 2-194939 JP-A-4-363139 JP-A-6-47278 US Pat. No. 5,057,481 European Patent No. 480538 Japanese Patent Laid-Open No. 2001-157839

特許文献1〜6に記載の触媒は、触媒性能に優れ、工業的に十分満足し得るものである。しかしながら、エポキシドの工業的生産規模は極めて大きく、選択率が僅かに向上するだけでも原料である不飽和炭化水素の使用量が著しく節約される。よって、僅かな選択率の向上がもたらす経済的効果は非常に高いことから、より優れた触媒性能を有するエポキシド製造用触媒の開発が依然として望まれている。   The catalysts described in Patent Documents 1 to 6 are excellent in catalyst performance and can be sufficiently satisfied industrially. However, the industrial production scale of epoxides is extremely large, and the amount of unsaturated hydrocarbon used as a raw material is significantly saved even if the selectivity is slightly improved. Therefore, since the economic effect brought about by a slight increase in selectivity is very high, it is still desired to develop a catalyst for producing an epoxide having better catalytic performance.

一方、エポキシド製造用触媒などの工業用触媒には、優れた触媒性能に加えて、その製造工程において再現性よく、かつ、高い歩留まりで製造可能であることが求められている。例えば、エチレンから酸化エチレンを製造する反応の工業的実施では熱交換型多管式反応器が一般的に用いられるが、前述したように、酸化エチレンの生産規模が非常に大きいことから、反応器も大型のものが採用される。反応器に充填される触媒の量も数トン〜数十トンにも及ぶことから、製造設備において複数回に亘って製造される触媒の活性および選択率は、ばらつきが小さい(再現性がよい)ほど好ましい。また、当該触媒は高価な銀を主成分として用いることから、触媒製造工程においては銀のロスを可能な限り抑制する(歩留まりが高い)ことが求められる。   On the other hand, industrial catalysts such as epoxide production catalysts are required to be capable of being produced with high reproducibility and high yield in the production process in addition to excellent catalyst performance. For example, in an industrial implementation of a reaction for producing ethylene oxide from ethylene, a heat exchange type multitubular reactor is generally used. As described above, since the production scale of ethylene oxide is very large, Larger ones are also used. Since the amount of the catalyst charged in the reactor also ranges from several tons to several tens of tons, the activity and selectivity of the catalyst produced over a plurality of times in the production facility have little variation (good reproducibility). The more preferable. Moreover, since the said catalyst uses expensive silver as a main component, it is calculated | required to suppress the loss of silver as much as possible (a yield is high) in a catalyst manufacturing process.

上記触媒性能の再現性や製造歩留まりを向上させるための手段としては、通常、触媒製造設備の効率化や触媒製造条件の最適化などによる改善が一般的である。しかしながら、大型の触媒製造設備の場合、設備上の制約や製造条件の制御の煩雑さが相まって、容易に達成できる課題ではないのが現状である。   As a means for improving the reproducibility of the catalyst performance and the production yield, improvement by improving the efficiency of the catalyst production facility or optimizing the catalyst production conditions is generally used. However, in the case of a large-scale catalyst manufacturing facility, the current situation is that it is not a problem that can be easily achieved due to a combination of constraints on the facility and complicated control of manufacturing conditions.

従って、本発明の目的は、活性、選択率に優れ、かつ、触媒製造工程において再現性よく高い歩留まりで製造可能な、経済性に優れたエポキシド製造用触媒を提供することである。   Accordingly, an object of the present invention is to provide an economical epoxide production catalyst that is excellent in activity and selectivity, and that can be produced with high reproducibility and high yield in the catalyst production process.

また、本発明の他の目的は、本発明の触媒の存在下で、不飽和炭化水素を分子状酸素含有ガスにより気相酸化して対応するエポキシドを製造する方法を提供することである。   Another object of the present invention is to provide a method for producing a corresponding epoxide by gas phase oxidation of an unsaturated hydrocarbon with a molecular oxygen-containing gas in the presence of the catalyst of the present invention.

本発明者らは、上記課題を解決すべく、エポキシド製造用触媒に用いられる担体の物性に着目して鋭意検討を行った。その結果、細孔径100μm以上の細孔を多く有する担体を用いてエポキシド製造用触媒を調製すると、得られた触媒の触媒性能が向上することを見出した。さらには、上述した担体を用いることで、触媒製造工程における銀のロスが少なくなり、触媒性能の再現性が向上することを見出した。そしてこれらの知見に基づいて、本発明を完成するに至った。   In order to solve the above-mentioned problems, the present inventors have intensively studied paying attention to the physical properties of a carrier used for a catalyst for producing an epoxide. As a result, it has been found that when a catalyst for producing an epoxide is prepared using a carrier having many pores having a pore diameter of 100 μm or more, the catalyst performance of the obtained catalyst is improved. Furthermore, it has been found that the use of the above-described carrier reduces silver loss in the catalyst production process and improves the reproducibility of the catalyst performance. And based on these knowledge, it came to complete this invention.

すなわち、本発明の第1は、α−アルミナを主成分とし、水銀圧入法により測定される全細孔容積が0.55ml/g以下であり、水銀圧入法により測定される細孔径100μm以上の領域の細孔容積の合計値が0.010ml/g以上である担体と、前記担体に担持されてなる触媒成分とを含む、エポキシド製造用触媒である。   That is, the first of the present invention is mainly composed of α-alumina, the total pore volume measured by mercury porosimetry is 0.55 ml / g or less, and the pore diameter measured by mercury porosimetry is 100 μm or more. An epoxide production catalyst comprising a carrier having a total pore volume of a region of 0.010 ml / g or more and a catalyst component supported on the carrier.

また、本発明の第2は、本発明の触媒の存在下で、炭素数2〜20の不飽和炭化水素を分子状酸素含有ガスにより気相酸化して対応するエポキシドを製造する段階を有する、エポキシドの製造方法である。   The second aspect of the present invention includes a step of producing a corresponding epoxide by gas phase oxidation of an unsaturated hydrocarbon having 2 to 20 carbon atoms with a molecular oxygen-containing gas in the presence of the catalyst of the present invention. It is a manufacturing method of an epoxide.

本発明の第1によれば、活性および選択率に優れ、再現性よくかつ高い歩留まりで製造可能なエポキシド製造用触媒が提供されうる。また、本発明の第2によれば、高い生産性でエポキシドを製造することができる。経済性の面から、その産業上の利用価値は極めて大きい。   According to the first aspect of the present invention, it is possible to provide a catalyst for producing an epoxide which is excellent in activity and selectivity, can be produced with high reproducibility and high yield. According to the second aspect of the present invention, an epoxide can be produced with high productivity. In terms of economy, its industrial utility value is extremely high.

以下、本発明の実施の形態を説明する。   Embodiments of the present invention will be described below.

本発明の第1は、エポキシド製造用触媒に関する。具体的には、本発明の第1は、α−アルミナを主成分とし、水銀圧入法により測定される全細孔容積が0.55ml/g以下であり、水銀圧入法により測定される細孔径100μm以上の領域の細孔容積の合計値(以下、単に「合計値」とも称する)が0.010ml/g以上である担体と、前記担体に担持されてなる触媒成分とを含む、エポキシド製造用触媒である。   The first of the present invention relates to a catalyst for producing an epoxide. Specifically, the first of the present invention is based on α-alumina, the total pore volume measured by mercury porosimetry is 0.55 ml / g or less, and the pore diameter measured by mercury porosimetry. For producing an epoxide, comprising: a support having a total pore volume in a region of 100 μm or more (hereinafter also referred to simply as “total value”) of 0.010 ml / g or more and a catalyst component supported on the support. It is a catalyst.

本発明のエポキシド製造用触媒は、上述した通り、担体の有する細孔の容積(細孔容積)および直径(細孔径)が所定の関係を満たしていれば、その他の形態(担体の形状や触媒成分の具体的な形態など)は特に制限されない。   As described above, the catalyst for producing an epoxide of the present invention has other forms (support shape and catalyst) as long as the pore volume (pore volume) and diameter (pore diameter) of the support satisfy a predetermined relationship. The specific form of the component) is not particularly limited.

本発明の触媒の構成成分としては、まず、担体が挙げられる。この担体は、α−アルミナを主成分とする。担体の表面には多数の細孔(開気孔)が存在し、担体粒子の内部に連通している。なお、本発明における「細孔容積」の値としては、後述する実施例に記載の水銀圧入法により得られる値を採用するものとする。なお、かような水銀圧入法により測定可能な細孔は、担体の表面から外気と接続している細孔(開気孔)のみであり、外部に連通しておらず担体内部に孤立した細孔(閉気孔)は測定されない。従って、厳密に言えば、本発明における「細孔容積」とは、「閉気孔の容積」を含まない「開気孔の容積」である。   As a constituent component of the catalyst of the present invention, first, a carrier is mentioned. This carrier has α-alumina as a main component. Many pores (open pores) exist on the surface of the carrier and communicate with the inside of the carrier particles. In addition, as a value of “pore volume” in the present invention, a value obtained by a mercury intrusion method described in Examples described later is adopted. The only pores that can be measured by the mercury intrusion method are pores (open pores) that are connected to the outside air from the surface of the carrier, and are pores that are not connected to the outside and are isolated inside the carrier. (Closed pores) are not measured. Therefore, strictly speaking, the “pore volume” in the present invention is an “open pore volume” that does not include the “closed pore volume”.

本発明の第1の触媒では、まず、触媒を構成する担体において、水銀圧入法により測定される担体の単位質量あたりの全細孔容積が、0.55ml/g以下である点に特徴がある。担体の全細孔容積が0.55ml/gを超えると、担体の強度が低下するという問題が生じる虞がある。なお、担体の全細孔容積は、好ましくは0.35〜0.53ml/gであり、より好ましくは0.35〜0.50ml/gである。   The first catalyst of the present invention is characterized in that, in the carrier constituting the catalyst, the total pore volume per unit mass of the carrier measured by mercury porosimetry is 0.55 ml / g or less. . When the total pore volume of the carrier exceeds 0.55 ml / g, there is a possibility that a problem that the strength of the carrier is lowered occurs. The total pore volume of the carrier is preferably 0.35 to 0.53 ml / g, more preferably 0.35 to 0.50 ml / g.

次いで、本発明の第1の触媒では、触媒を構成する担体において、水銀圧入法により測定される細孔径100μm以上の領域の細孔容積の合計値が0.010ml/g以上である点にも特徴がある。このように径が比較的大きい細孔の割合が多くなることで、得られる触媒の活性や選択率といった触媒性能が向上しうる。また、かような担体を用いてエポキシド製造用触媒を製造すると、触媒の再現性や製造時の歩留まりも向上しうる。なお、前記合計値は、好ましくは0.012ml/g以上であり、より好ましくは0.014ml/g以上である。ここで、細孔径100μm以上の領域の細孔容積の合計値の上限値については特に制限はないが、担体の強度や得られる触媒使用時の選択率を向上させるという観点からは、前記合計値は、好ましくは0.030ml/g以下であり、より好ましくは0.020ml/g以下である。   Next, in the first catalyst of the present invention, the total pore volume in the region having a pore diameter of 100 μm or more measured by the mercury intrusion method is 0.010 ml / g or more in the carrier constituting the catalyst. There are features. By increasing the proportion of pores having a relatively large diameter in this way, the catalyst performance such as the activity and selectivity of the resulting catalyst can be improved. Further, when a catalyst for producing an epoxide is produced using such a carrier, the reproducibility of the catalyst and the yield during production can be improved. The total value is preferably 0.012 ml / g or more, more preferably 0.014 ml / g or more. Here, there is no particular limitation on the upper limit value of the total pore volume in the region having a pore diameter of 100 μm or more. However, from the viewpoint of improving the strength of the support and the selectivity when using the obtained catalyst, the total value is described above. Is preferably 0.030 ml / g or less, more preferably 0.020 ml / g or less.

本発明のような構成とすることで上述した効果が発揮されるメカニズムは完全に明らかではないが、以下のように推測される。すなわち、酸化エチレン製造用触媒のように、多孔質担体に触媒成分を担持する、いわゆる担持型触媒では、担体の内部に存在する細孔内に触媒成分を付着(担持)させる必要がある。このため、担体の外表面から内部に連通する開気孔の存在が必要となる。換言すれば、理論上は担体の閉気孔に触媒成分は担持されない。上述したように、本発明のエポキシド製造用触媒に用いられる担体は、従来のエポキシド製造用触媒に用いられる担体と比較して、径の比較的大きな開気孔を多数有することから、担体に触媒成分を担持する工程において、担体に添加した触媒成分含有溶液が担体の外表面に存在する開気孔から速やかに侵入し、連通する担体内部の細孔に浸潤すると考えられる。その結果、担体に吸収されずに残存した余分な触媒成分含有溶液が担持装置の壁面に付着したりする量が減少することから、最終的に触媒成分の歩留まりが向上すると考えられる。   The mechanism by which the above-described effect is exhibited by the configuration of the present invention is not completely clear, but is estimated as follows. That is, in the case of a so-called supported catalyst in which a catalyst component is supported on a porous carrier, such as a catalyst for ethylene oxide production, the catalyst component needs to be attached (supported) in pores existing inside the carrier. For this reason, the presence of open pores communicating with the inside from the outer surface of the carrier is necessary. In other words, theoretically, no catalyst component is supported on the closed pores of the support. As described above, the carrier used for the epoxide production catalyst of the present invention has a large number of open pores having a relatively large diameter compared to the carrier used for the conventional epoxide production catalyst. In the step of supporting the catalyst, it is considered that the catalyst component-containing solution added to the carrier quickly enters from the open pores existing on the outer surface of the carrier and infiltrates the pores inside the communicating carrier. As a result, the amount of the excess catalyst component-containing solution that remains without being absorbed by the carrier adheres to the wall surface of the supporting device is reduced, so that it is considered that the yield of the catalyst component is finally improved.

また、適度な孔径の細孔が存在することによって、連通する細孔内に触媒成分含有溶液が毛管現象により満遍なく浸潤し、触媒成分の粒子が担体内部にも高分散して担持される。そしてその結果、銀の偏在が防止され、高い活性および高い選択率を示すとともに、複数回に亘る触媒製造における再現性も向上すると考えられる。なお、これらのメカニズムはあくまでも推測に基づくものであり、実際には他のメカニズムによって上述したような本発明の効果が得られていたとしても、本発明の技術的範囲は何ら影響を受けることはない。   In addition, the presence of pores having an appropriate pore size allows the catalyst component-containing solution to uniformly infiltrate into the communicating pores by capillary action, and the catalyst component particles are also highly dispersed and supported within the support. As a result, it is considered that uneven distribution of silver is prevented, high activity and high selectivity are exhibited, and reproducibility in catalyst production over a plurality of times is improved. It should be noted that these mechanisms are only based on speculation, and even if the effects of the present invention as described above are actually obtained by other mechanisms, the technical scope of the present invention is not affected at all. Absent.

また、本発明の第1のより好ましい形態において、上述した担体の全細孔容積に占める前記合計値の割合については特に制限はないが、触媒使用時の選択率を向上させるという点を考慮すると、当該割合は好ましくは3.0%以上であり、より好ましくは3.2%以上であり、さらに好ましくは3.5%以上である。なお、当該割合の上限値についても特に制限はないが、担体の強度を向上させるという観点からは、当該割合は好ましくは5.0%未満であり、より好ましくは4.5%未満であり、さらに好ましくは4.0%未満である。なお、担体の全細孔容積に占める前記合計値の割合は、下記数式1に従って算出される。   Further, in the first more preferable embodiment of the present invention, the ratio of the total value to the total pore volume of the support is not particularly limited, but in consideration of improving the selectivity when using the catalyst. The ratio is preferably 3.0% or more, more preferably 3.2% or more, and further preferably 3.5% or more. In addition, although there is no restriction | limiting in particular also about the upper limit of the said ratio, From a viewpoint of improving the intensity | strength of a support | carrier, the said ratio becomes like this. Preferably it is less than 5.0%, More preferably, it is less than 4.5%, More preferably, it is less than 4.0%. The ratio of the total value to the total pore volume of the carrier is calculated according to the following formula 1.

Figure 0005033522
Figure 0005033522

担体の組成については、α−アルミナを主成分とすること以外は特に制限されない。ここで、担体が「α−アルミナを主成分とする」とは、担体におけるα−アルミナの含有量が、担体の全質量に対して90質量%以上であることを意味する。担体におけるα−アルミナの含有量は、好ましくは95質量%以上であり、より好ましくは98質量%以上である。α−アルミナを主成分とするものであればその他の組成は特に制限されないが、担体は、例えばアルカリ金属またはアルカリ土類金属の酸化物や遷移金属の酸化物を含有しうる。これらの含有量についても特に制限はないが、アルカリ金属またはアルカリ土類金属の酸化物の含有量は、酸化物換算で好ましくは0〜5質量%であり、より好ましくは0.01〜4質量%である。また、遷移金属の酸化物の含有量は、酸化物換算で好ましくは0〜5質量%であり、より好ましくは0.01〜3質量%である。   The composition of the carrier is not particularly limited except that the main component is α-alumina. Here, the carrier “having α-alumina as a main component” means that the content of α-alumina in the carrier is 90% by mass or more based on the total mass of the carrier. The content of α-alumina in the carrier is preferably 95% by mass or more, more preferably 98% by mass or more. The other composition is not particularly limited as long as it has α-alumina as a main component, but the support can contain, for example, an oxide of an alkali metal or alkaline earth metal or an oxide of a transition metal. Although there is no restriction | limiting in particular also about these content, Preferably content of the oxide of an alkali metal or alkaline-earth metal is 0-5 mass% in conversion of an oxide, More preferably, it is 0.01-4 mass %. The content of the transition metal oxide is preferably 0 to 5% by mass, more preferably 0.01 to 3% by mass in terms of oxide.

担体はまた、シリカ(酸化ケイ素)を通常含有する。担体におけるシリカの含有量についても特に制限はないが、好ましくは0.1〜2質量%であり、より好ましくは0.3〜1.5質量%であり、さらに好ましくは0.5〜1.0質量%である。   The support also usually contains silica (silicon oxide). Although there is no restriction | limiting in particular also about the content of the silica in a support | carrier, Preferably it is 0.1-2 mass%, More preferably, it is 0.3-1.5 mass%, More preferably, 0.5-1. 0% by mass.

なお、上述した担体の組成や各成分の含有量は、蛍光X線分析法を用いて決定されうる。   The composition of the carrier and the content of each component described above can be determined using a fluorescent X-ray analysis method.

担体の形状は特に制限されず、リング状、球状、円柱状、ペレット状のほか、従来公知の知見が適宜参照されうる。また、担体のサイズ(平均直径)についても特に制限はなく、好ましくは3〜20mmであり、より好ましくは5〜10mmである。   The shape of the carrier is not particularly limited, and conventionally known knowledge can be appropriately referred to in addition to a ring shape, a spherical shape, a cylindrical shape, and a pellet shape. Moreover, there is no restriction | limiting in particular also about the size (average diameter) of a support | carrier, Preferably it is 3-20 mm, More preferably, it is 5-10 mm.

担体のBET比表面積についても特に制限はないが、好ましくは0.03〜10m/gであり、より好ましくは0.5〜5.0m/gであり、さらに好ましくは1.0〜2.5m/gである。担体のBET比表面積が0.03m/g以上であれば、触媒成分を担持するための十分な細孔が確保され、触媒性能に優れる触媒が得られる。一方、担体のBET比表面積が10m/g以下であれば、担体の細孔径がある程度大きい値に維持され、製造された触媒を用いたエポキシド製造時のエポキシドの逐次酸化が抑制されうる。なお、担体のBET比表面積は、物質の比表面積を測定する際に一般的に用いられている装置により求めることができる。 There is no particular restriction on the BET specific surface area of the support is preferably 0.03~10m 2 / g, more preferably 0.5~5.0m 2 / g, more preferably 1.0 to 2 0.5 m 2 / g. When the BET specific surface area of the support is 0.03 m 2 / g or more, sufficient pores for supporting the catalyst component are secured, and a catalyst having excellent catalyst performance can be obtained. On the other hand, when the BET specific surface area of the support is 10 m 2 / g or less, the pore diameter of the support is maintained at a certain large value, and the sequential oxidation of the epoxide during epoxide production using the produced catalyst can be suppressed. The BET specific surface area of the carrier can be determined by an apparatus generally used for measuring the specific surface area of the substance.

担体は、KBr錠剤法により測定される赤外吸収スペクトルにおいて、波数3,150〜3,800cm−1の領域における赤外吸収スペクトルが、実質的にゼロであることが好ましい。赤外吸収スペクトルが「実質的にゼロ」とは、KBr錠剤法で測定された担体の赤外吸収スペクトルにおいて、波数3,150〜3,800cm−1の領域において赤外吸収ピークを実質的に認めることができないこと、すなわち、当該スペクトル領域において明確な赤外吸収ピークが存在しないことを意味する。詳細には、当該スペクトル領域における吸光度のピーク面積が実質上ゼロであることを意味する。さらに詳細には、測定された赤外吸収スペクトルにおいて、波数3,150cm−1における吸光度および3,800cm−1における吸光度を結んだ直線と、波数3,150〜3,800cm−1の領域の赤外吸収スペクトルの線とが実質的に重なることを意味する。 In the infrared absorption spectrum measured by the KBr tablet method, the carrier preferably has substantially no infrared absorption spectrum in the region of wave numbers of 3,150 to 3,800 cm −1 . The infrared absorption spectrum of “substantially zero” means that the infrared absorption peak in the region of wave numbers 3,150 to 3,800 cm −1 is substantially in the infrared absorption spectrum of the carrier measured by the KBr tablet method. This means that it cannot be recognized, that is, there is no clear infrared absorption peak in the spectral region. Specifically, it means that the peak area of absorbance in the spectral region is substantially zero. More specifically, in the measured infrared absorption spectrum, the straight line connecting the absorbance at the absorbance and 3,800Cm -1 in wavenumber 3,150Cm -1, the wave number region of 3,150~3,800Cm -1 red It means that the line of the outer absorption spectrum substantially overlaps.

担体の赤外吸収スペクトルは、従来公知のKBr錠剤法で測定される。具体的には、担体をすりつぶして粉末状にし、該担体1質量部とKBr75質量部とを均一に混合した後、プレスしたものについて赤外吸収スペクトルを測定する。   The infrared absorption spectrum of the carrier is measured by a conventionally known KBr tablet method. Specifically, the support is ground to a powder form, 1 part by weight of the support and 75 parts by weight of KBr are uniformly mixed, and then the infrared absorption spectrum of the pressed product is measured.

担体の波数3,150〜3,800cm−1の領域の赤外ピークが何に由来するかは正確には不明であるが、SiOHに由来するものと推定される。 It is unclear exactly what the infrared peak in the region of the carrier wavenumber of 3,150 to 3,800 cm −1 is derived from, but it is presumed to be derived from SiOH.

上記赤外吸収ピークの高さは、好ましくは0.1以下であり、より好ましくは0.05以下であり、さらに好ましくは0.03以下である。   The height of the infrared absorption peak is preferably 0.1 or less, more preferably 0.05 or less, and further preferably 0.03 or less.

なお、赤外吸収ピークの高さは、以下の手法により求められる。   The height of the infrared absorption peak is obtained by the following method.

図1は、本発明で使用されるα−アルミナを主成分とする担体の赤外吸収ピーク高さの算出に用いられる赤外吸収スペクトルを表すグラフである。図1に示すグラフには、担体の3,000〜4,000cm−1付近の赤外吸収スペクトルが示されている。図1に示す赤外吸収スペクトル(図中、太い実線)において、波数3,150cm−1における吸光度をX、波数3,800cm−1における吸光度をYとし、XとYとを結んだ直線をベースライン(図中、破線)とする。 FIG. 1 is a graph showing an infrared absorption spectrum used for calculating the infrared absorption peak height of a carrier mainly composed of α-alumina used in the present invention. In the graph shown in FIG. 1, an infrared absorption spectrum in the vicinity of 3,000 to 4,000 cm −1 of the carrier is shown. Based infrared absorption spectrum (in the figure, the thick solid line) shown in FIG. 1 in the absorbance at a wave number 3,150Cm -1 X, the absorbance at a wave number 3,800Cm -1 and Y, a straight line connecting the X and Y Line (broken line in the figure).

波数3,150〜3,800cm−1の吸収スペクトルのうち、最も吸光度の高い部分をAとし、Aからの垂線(図中、細い実線)を下ろしてベースラインと交差する点をBとする。そして、A−Bの値を上述した赤外吸収ピークの高さとする(すなわち、ピーク高さ=点Aの吸光度−点Bの吸光度)。なお、ピーク高さを求める際、吸収スペクトルのバックグラウンド(ベースライン)補正は行わないものとする。 Of the absorption spectrum having a wave number of 3,150 to 3,800 cm −1 , let A be the portion with the highest absorbance, and let B be the point where the perpendicular line from A (the thin solid line in the figure) crosses the base line. Then, the value of AB is set as the height of the infrared absorption peak described above (that is, peak height = absorbance at point A−absorbance at point B). In addition, when calculating | requiring peak height, background (baseline) correction | amendment of an absorption spectrum shall not be performed.

本発明の第1の触媒は、上述した担体に触媒成分が担持されてなる構成を有する。触媒成分の具体的な形態については特に制限されず、従来公知の知見が適宜参照されうるが、触媒成分として銀を必須に含有することが好ましい。また、銀のほかに、一般に反応促進剤として用いられる触媒成分が担体に担持されてもよい。反応促進剤の代表例としては、アルカリ金属、具体的にはリチウム、ナトリウム、カリウム、ルビジウム、セシウムが挙げられる。アルカリ金属のほかには、タリウム、硫黄、クロム、モリブデン、タングステン、レニウムなどもまた、反応促進剤として用いられうる。これらの反応促進剤は、1種のみが単独で用いられてもよいし、2種以上が併用されてもよい。これらのうち、反応促進剤としてはセシウムが好適に用いられる。   The first catalyst of the present invention has a configuration in which a catalyst component is supported on the carrier described above. The specific form of the catalyst component is not particularly limited, and conventionally known knowledge can be referred to as appropriate, but it is preferable that silver is essential as the catalyst component. In addition to silver, a catalyst component generally used as a reaction accelerator may be supported on a carrier. Representative examples of reaction accelerators include alkali metals, specifically lithium, sodium, potassium, rubidium, and cesium. Besides alkali metals, thallium, sulfur, chromium, molybdenum, tungsten, rhenium and the like can also be used as reaction promoters. As for these reaction accelerators, only 1 type may be used independently and 2 or more types may be used together. Of these, cesium is preferably used as the reaction accelerator.

銀や反応促進剤の担持量については特に制限はなく、エポキシドの製造に有効な量を担持すればよい。例えば、銀の場合、その担持量はエポキシド製造用触媒の質量基準で好ましくは1〜30質量%であり、より好ましくは5〜20質量%であり、さらに好ましくは8〜15質量%である。また、反応促進剤の担持量は、エポキシド製造用触媒の質量基準で、通常0.001〜2質量%であり、好ましくは0.01〜1質量%であり、より好ましくは0.1〜0.7質量%である。   There is no restriction | limiting in particular about the load of silver and reaction accelerator, What is necessary is just to carry | support the amount effective for manufacture of an epoxide. For example, in the case of silver, the supported amount is preferably 1 to 30% by mass, more preferably 5 to 20% by mass, and further preferably 8 to 15% by mass based on the mass of the epoxide production catalyst. The amount of the reaction accelerator supported is usually 0.001 to 2% by mass, preferably 0.01 to 1% by mass, and more preferably 0.1 to 0% by mass based on the mass of the epoxide production catalyst. 0.7% by mass.

本発明のエポキシド製造用触媒は、担体として上述した担体を使用する点を除けば、従来公知のエポキシド製造用触媒の製造方法に従って調製されうる。   The epoxide production catalyst of the present invention can be prepared according to a conventionally known production method for an epoxide production catalyst, except that the above-mentioned carrier is used as the carrier.

担体の調製方法としては、次のような調製方法を採用することで、担体の物性が制御されうることが知られている。すなわち、1)α−アルミナを主成分とする母粉体に、所望のサイズおよび量の気孔形成剤を添加する方法、2)物性の異なる少なくとも2種の母粉体を所望の混合比で調合する方法、3)担体を所望の温度にて所望の時間焼成する方法、などが知られており、これらを組み合わせた手法も知られている。これらの調製方法については、例えば、「多孔質体の性質とその応用技術」竹内雍監修、株式会社フジ・テクノシステム発行(1999年)に記載されている。また、特開平5−329368号公報、特開2001−62291号公報、特開2002−136868号公報、特許第2983740号公報、特許第3256237号公報、特許第3295433号公報なども参照されうる。   As a method for preparing the carrier, it is known that the physical properties of the carrier can be controlled by adopting the following method. That is, 1) a method of adding a pore-forming agent having a desired size and amount to a mother powder mainly composed of α-alumina, and 2) preparing at least two kinds of mother powders having different physical properties at a desired mixing ratio. 3) a method of firing the carrier at a desired temperature for a desired time, and the like, and a method combining these methods is also known. These preparation methods are described in, for example, “Characteristics of Porous Materials and Their Application Technologies”, supervised by Satoshi Takeuchi, published by Fuji Techno System Co., Ltd. (1999). Reference can also be made to JP-A-5-329368, JP-A-2001-62291, JP-A-2002-136868, JP-A-2984740, JP-A-3256237, JP-A-3295433, and the like.

なお、上述した方法を適宜、単独でまたは組み合わせて実施することにより、本発明の特徴的な構成である細孔分布を有する担体を調製することが可能となる。具体的には、担体製造時に大きな粒径の気孔形成剤を添加したり、担体の焼成温度を低くしたりすることにより、出来上がりの担体の細孔径を大きくすることができる。一般的には、気孔形成剤の粒径を制御する方法が採用されうる。   In addition, it becomes possible to prepare the support | carrier which has the pore distribution which is the characteristic structure of this invention by implementing the method mentioned above individually or in combination suitably. Specifically, the pore diameter of the finished carrier can be increased by adding a pore-forming agent having a large particle size during the production of the carrier or by lowering the firing temperature of the carrier. In general, a method of controlling the particle size of the pore forming agent can be employed.

以下、上述した担体を用いて本発明の第1のエポキシド製造用触媒を製造する手法の一例を説明するが、本発明の技術的範囲は特許請求の範囲の記載に基づいて定められるべきであり、下記の手法のみに限定されるわけではない。   Hereinafter, an example of a method for producing the first epoxide production catalyst of the present invention using the above-mentioned carrier will be described. However, the technical scope of the present invention should be determined based on the description of the claims. The method is not limited to the following method.

まず、担体を準備する。担体は予め蒸留水やイオン交換水を用いて、任意の回数、煮沸洗浄し、乾燥しておいてもよい。   First, a carrier is prepared. The carrier may be boiled and washed any number of times using distilled water or ion-exchanged water and dried in advance.

一方、担体に銀を担持させるための溶液を調製する。具体的には、銀化合物を単独で、または銀錯体を形成するための錯化剤もしくは必要に応じて反応促進剤を、水などの溶媒に添加する。   On the other hand, a solution for supporting silver on a carrier is prepared. Specifically, a silver compound alone or a complexing agent for forming a silver complex or, if necessary, a reaction accelerator is added to a solvent such as water.

ここで、銀化合物としては、例えば、硝酸銀、炭酸銀、シュウ酸銀、酢酸銀、プロピオン酸銀、乳酸銀、クエン酸銀、ネオデカン酸銀などが挙げられる。また、錯化剤としては、例えば、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、エチレンジアミン、プロピレンジアミンなどが挙げられる。これらの銀化合物や錯化剤は、それぞれ、1種のみが単独で用いられてもよいし、2種以上が併用されてもよい。   Here, examples of the silver compound include silver nitrate, silver carbonate, silver oxalate, silver acetate, silver propionate, silver lactate, silver citrate, and silver neodecanoate. Examples of the complexing agent include monoethanolamine, diethanolamine, triethanolamine, ethylenediamine, and propylenediamine. Each of these silver compounds and complexing agents may be used alone or in combination of two or more.

次いで、上記で得られた溶液を、同じく上記で準備した担体に含浸させる。この際、反応促進剤は、担体に水溶液を含浸させる前段階において銀アンミン錯体水溶液に溶解させて同時に含浸させてもよいし、銀を担持した後に担持してもよい。   Next, the carrier prepared above is impregnated with the solution obtained above. In this case, the reaction accelerator may be dissolved in the silver ammine complex aqueous solution and impregnated at the same time before the support is impregnated with the aqueous solution, or may be supported after supporting the silver.

続いて、上記担体を乾燥し、焼成する。乾燥は、空気、酸素、または不活性ガス(例えば、窒素)の雰囲気中で、80〜120℃の温度で行うことが好ましい。また、焼成は、空気、酸素、または不活性ガス(例えば、窒素)の雰囲気中で、150〜700℃の温度で、好ましくは200〜600℃の温度で行うことが好ましい。なお、焼成は、1段階のみ行われてもよいし、2段階以上行われてもよい。好ましい焼成条件としては、1段階目の焼成を空気雰囲気中で150〜250℃にて0.1〜10時間行い、2段階目の焼成を空気雰囲気中で250〜450℃にて0.1〜10時間行う条件が挙げられる。さらに好ましくは、かような2段階焼成後にさらに、不活性ガス(例えば、窒素、ヘリウム、アルゴンなど)雰囲気中で450〜700℃にて0.1〜10時間、3段階目の焼成を行うとよい。   Subsequently, the carrier is dried and fired. Drying is preferably performed at a temperature of 80 to 120 ° C. in an atmosphere of air, oxygen, or an inert gas (for example, nitrogen). The firing is preferably performed at a temperature of 150 to 700 ° C., preferably 200 to 600 ° C., in an atmosphere of air, oxygen, or an inert gas (for example, nitrogen). In addition, baking may be performed only in one step or may be performed in two or more steps. As preferable firing conditions, the first stage firing is performed in an air atmosphere at 150 to 250 ° C. for 0.1 to 10 hours, and the second stage firing is performed in an air atmosphere at 250 to 450 ° C. for 0.1 to 10 hours. The conditions for 10 hours are mentioned. More preferably, after the two-step baking, the third-step baking is performed at 450 to 700 ° C. for 0.1 to 10 hours in an inert gas (eg, nitrogen, helium, argon, etc.) atmosphere. Good.

本発明の第2は、本発明の第1のエポキシド製造用触媒の存在下で、炭素数2〜20の不飽和炭化水素を分子状酸素含有ガスにより気相酸化して対応するエポキシドを製造する段階を有する、エポキシドの製造方法である。   In the second aspect of the present invention, a corresponding epoxide is produced by gas phase oxidation of an unsaturated hydrocarbon having 2 to 20 carbon atoms with a molecular oxygen-containing gas in the presence of the first epoxide production catalyst of the present invention. A method for producing an epoxide comprising steps.

本発明の第2のエポキシドの製造方法は、触媒として本発明の第1のエポキシド製造用触媒を使用する点を除けば、常法に従って行われうる。   The manufacturing method of the 2nd epoxide of this invention can be performed in accordance with a conventional method except the point which uses the catalyst for 1st epoxide manufacture of this invention as a catalyst.

反応原料は、炭素数2〜20の不飽和炭化水素であり、具体的には、エチレンやプロピレンのほか、炭素数4〜20でありかつアリル水素を有さない化合物であればよい。なお、本発明において、「アリル水素」とは、CH2=CH−CH2−で示されるアリル基の二重結合の隣の炭素に結合する2つの水素を意味し、「アリル水素を有さない」とは、この2つの水素の少なくとも1つを有さないことを意味する。上記「アリル水素を有さない化合物」は、具体的には、下記化学式1で表される化合物である。 The reaction raw material is an unsaturated hydrocarbon having 2 to 20 carbon atoms. Specifically, it may be a compound having 4 to 20 carbon atoms and having no allyl hydrogen in addition to ethylene and propylene. In the present invention, “allyl hydrogen” means two hydrogens bonded to the carbon adjacent to the double bond of the allyl group represented by CH 2 ═CH—CH 2 —. “None” means not having at least one of the two hydrogens. The “compound having no allyl hydrogen” is specifically a compound represented by the following chemical formula 1.

Figure 0005033522
Figure 0005033522

式中、R1は水素原子またはアルキル基であり、R2はアリール基または第3級アルキル基または−C(R3)=CH2であり、R3は、水素原子またはアルキル基である。 In the formula, R 1 is a hydrogen atom or an alkyl group, R 2 is an aryl group, a tertiary alkyl group, or —C (R 3 ) ═CH 2 , and R 3 is a hydrogen atom or an alkyl group.

また、上記「アリル水素を有さない化合物」は、直鎖状化合物であってもよいし、分岐を有していてもよい。さらには、環を含んでもよい。ここで、R1、R3で表されるアルキル基としては、それぞれ独立してメチル基、エチル基、ブチル基、ヘプチル基,オクチル基等が挙げられる。また、R2としては、t−ブチル基、フェニル基などが挙げられる。 Further, the “compound having no allyl hydrogen” may be a linear compound or may have a branch. Furthermore, a ring may be included. Here, as an alkyl group represented by R 1 and R 3 , a methyl group, an ethyl group, a butyl group, a heptyl group, an octyl group and the like can be mentioned independently. Examples of R 2 include a t-butyl group and a phenyl group.

上記「アリル水素を有さない化合物」は、好ましくは炭素数4〜12であり、より好ましくは4〜8である。具体的には、例えば、1,3−ブタジエン、tert−ブチルエチレン、スチレンなどの化合物がある。   The “compound having no allyl hydrogen” preferably has 4 to 12 carbon atoms, more preferably 4 to 8 carbon atoms. Specific examples include compounds such as 1,3-butadiene, tert-butylethylene, and styrene.

以下、説明の便宜を考慮して、エチレンの接触気相酸化による酸化エチレンの製造を例に挙げて、本発明の第2の製造方法を説明する。   Hereinafter, for convenience of explanation, the second production method of the present invention will be described by taking as an example the production of ethylene oxide by catalytic vapor phase oxidation of ethylene.

かような製造方法における反応条件の一例として、例えば、工業的製造規模における一般的な条件、すなわち反応温度150〜300℃、好ましくは180〜280℃、反応圧力2〜40kg/cmG、好ましくは10〜30kg/cmG、空間速度1,000〜30,000hr−1(STP)、好ましくは3,000〜8,000hr−1(STP)が採用される。触媒に接触させる原料ガスとしては、エチレン0.5〜40容量%、酸素3〜10容量%、炭酸ガス1〜30容量%、残部が窒素、アルゴン、水蒸気などの不活性ガス、メタン、エタンなどの低級炭化水素類からなり、さらに反応抑制剤としての二塩化エチレン、塩化ジフェニルなどのハロゲン化物を0.1〜10ppm(容量)含むものが挙げられる。本発明の製造方法において使用される分子状酸素含有ガスとしては、空気、酸素および富化空気が挙げられる。 As an example of reaction conditions in such a production method, for example, general conditions on an industrial production scale, that is, a reaction temperature of 150 to 300 ° C., preferably 180 to 280 ° C., a reaction pressure of 2 to 40 kg / cm 2 G, preferably the 10~30kg / cm 2 G, a space velocity 1,000~30,000hr -1 (STP), preferably 3,000~8,000hr -1 (STP) are adopted. Examples of the raw material gas to be brought into contact with the catalyst include 0.5 to 40% by volume of ethylene, 3 to 10% by volume of oxygen, 1 to 30% by volume of carbon dioxide, the balance being an inert gas such as nitrogen, argon or water vapor, methane, ethane, or the like. And those containing 0.1 to 10 ppm (capacity) of halides such as ethylene dichloride and diphenyl chloride as reaction inhibitors. Examples of the molecular oxygen-containing gas used in the production method of the present invention include air, oxygen, and enriched air.

本発明の効果を、以下の実施例および比較例を用いて説明する。以下の実施例には、具体的には、本発明の触媒を用いて酸化エチレンおよび3,4−エポキシ−1−ブテンを製造する例を挙げる。ただし、本発明の技術的範囲が以下の実施例のみに制限されるわけではない。なお、本実施例において、各種パラメータの測定は以下の手法および条件により行われた。また、以下の説明において、「部」は質量部を意味する。   The effects of the present invention will be described using the following examples and comparative examples. The following examples specifically illustrate examples of producing ethylene oxide and 3,4-epoxy-1-butene using the catalyst of the present invention. However, the technical scope of the present invention is not limited only to the following examples. In this example, various parameters were measured by the following methods and conditions. In the following description, “parts” means parts by mass.

<担体の細孔分布スペクトルおよび細孔容積の測定>
水銀圧入法により測定した。具体的には、200℃にて少なくとも30分間加熱処理(脱気)した担体をサンプルとし、測定装置としてオートポアIII9420W(株式会社島津製作所製)を用い、0.5〜60,000psia(0.0034〜413.7MPa)の圧力範囲、等価時間10秒および60個の測定ポイントで測定し、細孔分布スペクトルおよび細孔容積は、下記数式2で表されるWashburnの式によって算出した。その際、水銀の表面張力は480mN/mとし、水銀の接触角は130deg.とした。
<Measurement of pore distribution spectrum and pore volume of carrier>
Measured by mercury intrusion method. Specifically, a carrier heat treated (degassed) at 200 ° C. for at least 30 minutes is used as a sample, and Autopore III 9420W (manufactured by Shimadzu Corporation) is used as a measuring device, and 0.5 to 60,000 psia (0.0034) is used. ˜413.7 MPa), an equivalent time of 10 seconds, and 60 measurement points, and a pore distribution spectrum and a pore volume were calculated by the Washburn equation represented by the following Equation 2. At that time, the surface tension of mercury is 480 mN / m, and the contact angle of mercury is 130 deg. It was.

Figure 0005033522
Figure 0005033522

<転化率および選択率の算出>
実施例および比較例に記載する転化率および選択率は下記数式3および数式4に従って算出した。
<Calculation of conversion rate and selectivity>
The conversion rate and selectivity described in Examples and Comparative Examples were calculated according to the following Equation 3 and Equation 4.

Figure 0005033522
Figure 0005033522

<銀の担持率および銀の歩留まりの算出>
銀の担持率および触媒製造時の銀の歩留まりは、それぞれ下記数式5および数式6に従って算出した。
<Calculation of silver loading rate and silver yield>
The silver loading rate and the silver yield during catalyst production were calculated according to the following formulas 5 and 6, respectively.

Figure 0005033522
Figure 0005033522

<赤外吸収スペクトルの測定>
本実施例においては、以下の条件にて担体の赤外吸収スペクトルを測定した。
<Measurement of infrared absorption spectrum>
In this example, the infrared absorption spectrum of the carrier was measured under the following conditions.

(1)KBr300mg、測定する担体4mgをメノウ乳鉢で粉砕しながら十分に混合する。   (1) KBr (300 mg) and the carrier to be measured (4 mg) are mixed well while being pulverized in an agate mortar.

(2)混合粉体120mgを秤量し、錠剤成型機にセットし、真空ポンプで3分間脱気する。   (2) 120 mg of the mixed powder is weighed, set in a tablet molding machine, and degassed with a vacuum pump for 3 minutes.

(3)次いで、600kg/cmGの圧力をかけながら3分間脱気する(完成したサンプルの形状は、直径10mmの円盤状)。 (3) Next, deaeration is performed for 3 minutes while applying a pressure of 600 kg / cm 2 G (the shape of the completed sample is a disk having a diameter of 10 mm).

(4)円盤状のサンプルを赤外吸収スペクトル測定装置にセットし、110℃で1時間加熱する。   (4) A disk-shaped sample is set in an infrared absorption spectrum measuring apparatus and heated at 110 ° C. for 1 hour.

(5)サンプルを室温に戻してから積算回数100回、分解能4cm−1でサンプルの赤外吸収スペクトルを測定する(使用した赤外吸収スペクトル測定装置:VARIAN社製EXCALIBUR Series)。 (5) After returning the sample to room temperature, the infrared absorption spectrum of the sample is measured at a resolution of 4 cm −1 after 100 integrations (infrared absorption spectrum measurement apparatus used: EXCALIBUR Series manufactured by VARIAN).

(実施例1)
α−アルミナからなる担体a(外径8mm、内径4mm、長さ8mm)1リットルに蒸留水1リットルを加え、常圧下で30分間煮沸洗浄した後、洗浄液を除去し、蒸留水で洗浄した。さらに、この煮沸洗浄を2回繰り返した後、120℃で3時間乾燥した。
Example 1
1 liter of distilled water was added to 1 liter of carrier a made of α-alumina (outer diameter 8 mm, inner diameter 4 mm, length 8 mm), boiled and washed under normal pressure for 30 minutes, and then the washing solution was removed and washed with distilled water. Furthermore, after this boiling washing was repeated twice, it was dried at 120 ° C. for 3 hours.

シュウ酸銀52.0部、硝酸セシウム0.43部および蒸留水100部を均一に混合してスラリーを調製し、これを水浴中で冷却しながらエチレンジアミン22.5部を加え、銀含有溶液を調製した。   A slurry was prepared by uniformly mixing 52.0 parts of silver oxalate, 0.43 part of cesium nitrate and 100 parts of distilled water. While cooling this in a water bath, 22.5 parts of ethylenediamine was added, and a silver-containing solution was added. Prepared.

予め100℃に加熱した担体a100gを内容量1000mlのナスフラスコに入れ、次いで銀含有溶液を加えた。ここで、銀含有溶液の容量は出来上がりの触媒の銀担持率が15.0質量%になるように調節した。また、添加する銀含有溶液の体積は、担体100gにおける細孔容積と等量になるまで蒸留水を追加し、調節した。なお、添加する銀含有溶液の体積は下記数式7に従って算出した。   100 g of carrier a that had been heated to 100 ° C. in advance was placed in a eggplant flask having an internal volume of 1000 ml, and then a silver-containing solution was added. Here, the volume of the silver-containing solution was adjusted so that the silver loading of the finished catalyst was 15.0% by mass. The volume of the silver-containing solution to be added was adjusted by adding distilled water until the volume of the silver-containing solution was equal to the pore volume in 100 g of the carrier. In addition, the volume of the silver containing solution to add was computed according to following Numerical formula 7.

Figure 0005033522
Figure 0005033522

なお、他の実施例および比較例についても、同様の計算により所望の体積の銀含有溶液を得た。   For other examples and comparative examples, a silver-containing solution having a desired volume was obtained by the same calculation.

担体および銀含有溶液を添加したナスフラスコをロータリーエバポレーターにセットし、沸騰した水浴に漬けて減圧下で攪拌しながら蒸発乾固した。次いで熱風乾燥機を用いて空気気流中、400℃にて20分間加熱処理を行った。さらにこれを窒素雰囲気中、550℃にて3時間加熱処理し、酸化エチレン製造用触媒A1を得た。使用した担体aのBET比表面積、水銀圧入法による全細孔容積、細孔径100μm以上の細孔の容積、赤外吸収スペクトルの測定結果を表1に示す。また、触媒A1製造時の銀の歩留まりを表2に示す。   The eggplant flask to which the carrier and the silver-containing solution were added was set on a rotary evaporator, immersed in a boiling water bath, and evaporated to dryness with stirring under reduced pressure. Next, heat treatment was performed at 400 ° C. for 20 minutes in an air stream using a hot air dryer. Furthermore, this was heat-processed at 550 degreeC for 3 hours in nitrogen atmosphere, and catalyst A1 for ethylene oxide manufacture was obtained. Table 1 shows the measurement results of the BET specific surface area of the carrier a used, the total pore volume by the mercury intrusion method, the volume of pores having a pore diameter of 100 μm or more, and the infrared absorption spectrum. In addition, Table 2 shows the yield of silver during the production of the catalyst A1.

(実施例2〜3)
再現性を確認するために、実施例1と同様にして、担体aを用いた酸化エチレン製造用触媒A2およびA3を得た。触媒A2およびA3製造時の銀の歩留まりを表2に示す。
(Examples 2-3)
In order to confirm the reproducibility, in the same manner as in Example 1, catalysts A2 and A3 for producing ethylene oxide using the carrier a were obtained. Table 2 shows the yield of silver during the production of the catalysts A2 and A3.

(実施例4〜6)
担体aに代えて担体bを用い、硝酸セシウムの添加量を0.37部としたこと以外は、実施例1と同様の手法により、酸化エチレン製造用触媒B1〜B3を得た。使用した担体bのBET比表面積、水銀圧入法による全細孔容積、細孔径100μm以上の細孔の容積、赤外吸収スペクトルの測定結果を表1に示す。また、触媒B1〜B3製造時の銀の歩留まりを表2に示す。
(Examples 4 to 6)
Catalysts B1 to B3 for producing ethylene oxide were obtained in the same manner as in Example 1 except that the carrier b was used in place of the carrier a and the amount of cesium nitrate added was 0.37 parts. Table 1 shows the measurement results of the BET specific surface area of the carrier b used, the total pore volume by the mercury intrusion method, the volume of pores having a pore diameter of 100 μm or more, and the infrared absorption spectrum. Table 2 shows the yield of silver during the production of the catalysts B1 to B3.

(実施例7〜9)
担体aに代えて担体cを用い、硝酸セシウムの添加量を0.67部としたこと以外は、実施例1と同様の手法により、酸化エチレン製造用触媒C1〜C3を得た。使用した担体cのBET比表面積、水銀圧入法による全細孔容積、細孔径100μm以上の細孔の容積、赤外吸収スペクトルの測定結果を表1に示す。また、触媒C1〜C3製造時の銀の歩留まりを表2に示す。
(Examples 7 to 9)
Catalysts C1 to C3 for ethylene oxide production were obtained in the same manner as in Example 1 except that the carrier c was used instead of the carrier a and the addition amount of cesium nitrate was 0.67 parts. Table 1 shows the measurement results of the BET specific surface area of the carrier c used, the total pore volume by the mercury intrusion method, the volume of pores having a pore diameter of 100 μm or more, and the infrared absorption spectrum. Table 2 shows the yield of silver during the production of the catalysts C1 to C3.

(実施例10〜12)
担体aに代えて担体dを用いたこと以外は、実施例1と同様の手法により、酸化エチレン製造用触媒D1〜D3を得た。使用した担体dのBET比表面積、水銀圧入法による全細孔容積、細孔径100μm以上の細孔の容積、赤外吸収スペクトルの測定結果を表1に示す。また、触媒D1〜D3製造時の銀の歩留まりを表2に示す。
(Examples 10 to 12)
Catalysts D1 to D3 for producing ethylene oxide were obtained in the same manner as in Example 1 except that the carrier d was used instead of the carrier a. Table 1 shows the measurement results of the BET specific surface area of the carrier d used, the total pore volume by the mercury intrusion method, the volume of pores having a pore diameter of 100 μm or more, and the infrared absorption spectrum. Further, Table 2 shows the yield of silver during the production of the catalysts D1 to D3.

(比較例1〜3)
担体aに代えて担体eを用い、硝酸セシウムの添加量を0.37部としたこと以外は、実施例1と同様の手法により、酸化エチレン製造用触媒E1〜E3を得た。使用した担体eのBET比表面積、水銀圧入法による全細孔容積、細孔径100μm以上の細孔の容積、赤外吸収スペクトルの測定結果を表1に示す。また、触媒E1〜E3製造時の銀の歩留まりを表2に示す。
(Comparative Examples 1-3)
Catalysts E1 to E3 for producing ethylene oxide were obtained in the same manner as in Example 1 except that the carrier e was used instead of the carrier a and the addition amount of cesium nitrate was 0.37 parts. Table 1 shows the measurement results of the BET specific surface area of the carrier e used, the total pore volume by the mercury intrusion method, the volume of pores having a pore diameter of 100 μm or more, and the infrared absorption spectrum. Table 2 shows the yield of silver during the production of the catalysts E1 to E3.

(比較例4〜6)
担体aに代えて担体fを用い、硝酸セシウムの添加量を0.37部としたこと以外は、実施例1と同様の手法により、酸化エチレン製造用触媒F1〜F3を得た。使用した担体fのBET比表面積、水銀圧入法による全細孔容積、細孔径100μm以上の細孔の容積、赤外吸収スペクトルの測定結果を表1に示す。また、触媒F1〜F3製造時の銀の歩留まりを表2に示す。
(Comparative Examples 4-6)
Catalysts F1 to F3 for ethylene oxide production were obtained in the same manner as in Example 1 except that the carrier f was used instead of the carrier a and the addition amount of cesium nitrate was 0.37 parts. Table 1 shows the measurement results of the BET specific surface area of the carrier f used, the total pore volume by the mercury intrusion method, the volume of pores having a pore diameter of 100 μm or more, and the infrared absorption spectrum. Further, Table 2 shows the yield of silver during the production of the catalysts F1 to F3.

(比較例7〜9)
担体aに代えて担体gを用い、硝酸セシウムの添加量を0.67部としたこと以外は、実施例1と同様にして酸化エチレン製造用触媒G1〜G3を得た。使用した担体gのBET比表面積、水銀圧入法による全細孔容積、細孔径100μm以上の細孔の容積、赤外吸収スペクトルの測定結果を表1に示す。また、触媒G1〜G3製造時の銀の歩留まりを表2に示す。
(Comparative Examples 7-9)
Catalysts G1 to G3 for producing ethylene oxide were obtained in the same manner as in Example 1 except that the carrier g was used instead of the carrier a and the amount of cesium nitrate added was 0.67 parts. Table 1 shows the measurement results of the BET specific surface area of the carrier g used, the total pore volume by the mercury intrusion method, the volume of pores having a pore diameter of 100 μm or more, and the infrared absorption spectrum. Further, Table 2 shows the yield of silver during the production of the catalysts G1 to G3.

(比較例10〜12)
担体aに代えて担体hを用いたこと以外は、実施例1と同様の手法により、酸化エチレン製造用触媒H1〜H3を得た。使用した担体hのBET比表面積、水銀圧入法による全細孔容積、細孔径100μm以上の細孔の容積、赤外吸収スペクトルの測定結果を表1に示す。また、触媒H1〜H3製造時の銀の歩留まりを表2に示す。
(Comparative Examples 10-12)
Catalysts H1 to H3 for producing ethylene oxide were obtained by the same method as in Example 1 except that the carrier h was used instead of the carrier a. Table 1 shows the measurement results of the BET specific surface area of the carrier h used, the total pore volume by the mercury intrusion method, the volume of pores having a pore diameter of 100 μm or more, and the infrared absorption spectrum. Table 2 shows the yield of silver when the catalysts H1 to H3 were produced.

(実施例13)
実施例1〜12および比較例1〜12において得られた触媒A1〜H3をそれぞれ粉砕し、600〜850メッシュに篩い分け、1.2gずつを内径3mm、管長600mmのステンレス鋼製の反応管にそれぞれ充填し、下記条件下にてエチレンの気相酸化反応をそれぞれ行った。エチレン転化率が10%のときの反応温度および酸化エチレンの選択率を表2に示す。
(Example 13)
The catalysts A1 to H3 obtained in Examples 1 to 12 and Comparative Examples 1 to 12 were each pulverized and sieved to 600 to 850 mesh, and 1.2 g each was put into a stainless steel reaction tube having an inner diameter of 3 mm and a tube length of 600 mm. Each was filled, and the gas phase oxidation reaction of ethylene was performed under the following conditions. Table 2 shows the reaction temperature and ethylene oxide selectivity when the ethylene conversion is 10%.

<エチレンの気相酸化反応条件>
空間速度:6,000hr−1
反応圧力:20kg/cm
原料ガス:エチレン23容量%、酸素7.8容量%、二酸化炭素7容量%、エチレンジクロリド2.0容量ppmおよび残部(メタン、窒素、アルゴンおよびエタン)
(実施例14)
硝酸セシウムの添加量を4.25部としたこと以外は、実施例1と同様の手法により、触媒Iを得た。
<Gas oxidation reaction conditions for ethylene>
Space velocity: 6,000 hr -1
Reaction pressure: 20 kg / cm 2
Raw material gas: 23% by volume of ethylene, 7.8% by volume of oxygen, 7% by volume of carbon dioxide, 2.0% by volume of ethylene dichloride and the balance (methane, nitrogen, argon and ethane)
(Example 14)
Catalyst I was obtained in the same manner as in Example 1 except that the amount of cesium nitrate added was 4.25 parts.

触媒Iを粉砕し、10〜18メッシュに篩い分け、その3.0gを内径7.5mm、管長600mmのステンレス鋼製の反応管に充填し、下記条件下にて1,3−ブタジエンの気相酸化反応を行った。反応温度が195℃のときの1,3−ブタジエン転化率および3,4−エポキシ−1−ブテンの選択率を表3に示す。   The catalyst I is pulverized and sieved to 10 to 18 mesh, and 3.0 g of the catalyst I is filled into a stainless steel reaction tube having an inner diameter of 7.5 mm and a tube length of 600 mm. An oxidation reaction was performed. Table 3 shows the 1,3-butadiene conversion rate and 3,4-epoxy-1-butene selectivity when the reaction temperature is 195 ° C.

<1,3−ブタジエンの気相酸化反応条件>
ガス流量:300cm/min
反応圧力:0.3kg/cm
原料ガス:1,3−ブタジエン9容量%、酸素18容量%、クロロブタン3.0容量ppmおよび残部(ヘリウム)
(比較例13)
担体aに代えて担体eを用い、硝酸セシウムの添加量を3.66部としたこと以外は、実施例1と同様の手法により、触媒Jを得た。
<Gas oxidation reaction conditions for 1,3-butadiene>
Gas flow rate: 300cm 3 / min
Reaction pressure: 0.3 kg / cm 2
Source gas: 1,3-butadiene 9% by volume, oxygen 18% by volume, chlorobutane 3.0% by volume, and the balance (helium)
(Comparative Example 13)
Catalyst J was obtained in the same manner as in Example 1, except that the carrier e was used instead of the carrier a and the addition amount of cesium nitrate was 3.66 parts.

触媒Iに代えて触媒Jを用いたこと以外は、実施例14と同様の手法により、1,3−ブタジエンの気相酸化反応を行った。反応温度が195℃のときの1,3−ブタジエン転化率および3,4−エポキシ−1−ブテンの選択率を表3に示す。   A gas phase oxidation reaction of 1,3-butadiene was performed in the same manner as in Example 14 except that the catalyst J was used instead of the catalyst I. Table 3 shows the 1,3-butadiene conversion rate and 3,4-epoxy-1-butene selectivity when the reaction temperature is 195 ° C.

Figure 0005033522
Figure 0005033522

Figure 0005033522
Figure 0005033522

Figure 0005033522
Figure 0005033522

上記表2に示す結果から、本発明によれば、全細孔容積および細孔分布が所定の規定を満足する担体を用いて触媒を構成することにより、製造時の銀の歩留まりに優れ、かつ酸化エチレンなどのエポキシド製造時の選択率にも優れるエポキシド製造用触媒が再現性よく提供されうる。また、上記担体を用いて触媒を構成することで、1,3−ブタジエンを反応原料として用いた場合であっても優れた転化率および選択率を示すエポキシド製造用触媒が提供されうる。   From the results shown in Table 2 above, according to the present invention, the catalyst is formed using a carrier whose total pore volume and pore distribution satisfy the prescribed regulations, and thus the yield of silver during production is excellent, and A catalyst for producing an epoxide having excellent selectivity at the time of producing an epoxide such as ethylene oxide can be provided with good reproducibility. Moreover, the catalyst for epoxide production which shows the outstanding conversion rate and selectivity can be provided even if it is a case where a 1, 3- butadiene is used as a reaction raw material by comprising a catalyst using the said support | carrier.

本発明で使用されるα−アルミナを主成分とする担体の赤外吸収ピーク高さの算出に用いられる赤外吸収スペクトルを表すグラフである。It is a graph showing the infrared absorption spectrum used for calculation of the infrared absorption peak height of the support | carrier which has (alpha) -alumina as a main component used by this invention.

Claims (9)

α−アルミナを主成分とし、水銀圧入法により測定される全細孔容積が0.55ml/g以下であり、水銀圧入法により測定される細孔径100μm以上の領域の細孔容積の合計値が0.010ml/g以上である担体と、
前記担体に担持されてなる触媒成分と、
を含む、エポキシド製造用触媒。
α-alumina as a main component, the total pore volume measured by the mercury intrusion method is 0.55 ml / g or less, and the total pore volume in the region having a pore diameter of 100 μm or more measured by the mercury intrusion method is A carrier that is 0.010 ml / g or more;
A catalyst component supported on the carrier;
A catalyst for producing an epoxide, comprising:
前記合計値が0.010〜0.030ml/gである、請求項1に記載のエポキシド製造用触媒。The catalyst for epoxide production according to claim 1, wherein the total value is from 0.010 to 0.030 ml / g. KBr打錠法により測定される赤外吸収スペクトルにおいて、波数3,150〜3,800cm  In infrared absorption spectrum measured by KBr tableting method, wave number 3,150-3,800 cm −1-1 の領域における赤外吸収スペクトルが実質的にゼロである、請求項1または2に記載のエポキシド製造用触媒。The catalyst for producing an epoxide according to claim 1 or 2, wherein the infrared absorption spectrum in the region of is substantially zero. 前記全細孔容積に占める前記合計値の割合が3.0%以上である、請求項1〜3のいずれか1項に記載のエポキシド製造用触媒。 The catalyst for epoxide production according to any one of claims 1 to 3 , wherein a ratio of the total value to the total pore volume is 3.0% or more. 前記担体のシリカ含有量が0.1〜2質量%である、請求項1〜4のいずれか1項に記載のエポキシド製造用触媒。 The catalyst for producing an epoxide according to any one of claims 1 to 4 , wherein the support has a silica content of 0.1 to 2 mass%. 請求項1〜のいずれか1項に記載の触媒の存在下で、炭素数2〜20の不飽和炭化水素を分子状酸素含有ガスにより気相酸化して対応するエポキシドを製造する段階を有する、エポキシドの製造方法。 In the presence of the catalyst according to any one of claims 1 to 5 , the method comprises a step of producing a corresponding epoxide by gas phase oxidation of an unsaturated hydrocarbon having 2 to 20 carbon atoms with a molecular oxygen-containing gas. The manufacturing method of an epoxide. 前記不飽和炭化水素がエチレンであり、前記エポキシドが酸化エチレンである、請求項に記載の製造方法。 The production method according to claim 6 , wherein the unsaturated hydrocarbon is ethylene and the epoxide is ethylene oxide. 前記不飽和炭化水素が、炭素数4〜20でありかつアリル水素を有さない不飽和炭化水素である、請求項に記載の製造方法。 The production method according to claim 6 , wherein the unsaturated hydrocarbon is an unsaturated hydrocarbon having 4 to 20 carbon atoms and having no allyl hydrogen. 前記不飽和炭化水素が1,3−ブタジエンであり、前記エポキシドが3,4−エポキシ−1−ブテンである、請求項に記載の製造方法 The production method according to claim 8 , wherein the unsaturated hydrocarbon is 1,3-butadiene and the epoxide is 3,4-epoxy-1-butene .
JP2007185954A 2007-07-17 2007-07-17 Catalyst for producing epoxide and method for producing epoxide Active JP5033522B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007185954A JP5033522B2 (en) 2007-07-17 2007-07-17 Catalyst for producing epoxide and method for producing epoxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007185954A JP5033522B2 (en) 2007-07-17 2007-07-17 Catalyst for producing epoxide and method for producing epoxide

Publications (2)

Publication Number Publication Date
JP2009022835A JP2009022835A (en) 2009-02-05
JP5033522B2 true JP5033522B2 (en) 2012-09-26

Family

ID=40395177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007185954A Active JP5033522B2 (en) 2007-07-17 2007-07-17 Catalyst for producing epoxide and method for producing epoxide

Country Status (1)

Country Link
JP (1) JP5033522B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5368868B2 (en) * 2009-04-28 2013-12-18 Jx日鉱日石エネルギー株式会社 Desulfurizer degassing method, desulfurization method and reforming system
JP6174442B2 (en) * 2013-09-30 2017-08-02 株式会社日本触媒 Catalyst for producing alkylene oxide and method for producing alkylene oxide

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2412538A1 (en) * 1977-12-22 1979-07-20 Ugine Kuhlmann SILVER BASED CATALYZERS FOR ETHYLENE OXIDE PRODUCTION
US4419276A (en) * 1981-09-30 1983-12-06 Union Carbide Corporation Silver catalyst for the manufacture of ethylene oxide and a process for preparing the catalyst
US5057481A (en) * 1987-02-20 1991-10-15 Union Carbide Chemicals And Plastics Technology Corporation Catalyst composition for oxidation of ethylene to ethylene oxide
JP3739265B2 (en) * 1999-09-21 2006-01-25 株式会社日本触媒 Catalyst for producing epoxide, method for preparing the same, and method for producing epoxide
JP2003104978A (en) * 2001-09-28 2003-04-09 Tonen Chem Corp Method for producing epoxide

Also Published As

Publication number Publication date
JP2009022835A (en) 2009-02-05

Similar Documents

Publication Publication Date Title
JP4267015B2 (en) Catalyst for producing ethylene oxide and method for producing ethylene oxide
CN1867400B (en) Catalysts having enhanced stability, efficiency and/or activity for alkylene oxide production
JP4172827B2 (en) Method for producing ethylene oxide catalyst
JP4750283B2 (en) Catalyst for the production of vinyl acetate by vapor phase oxidation of ethylene and acetic acid, its production and its use
JP2619660B2 (en) Catalyst for ethylene oxide and method for producing ethylene oxide in contact
US9079154B2 (en) Catalyst for the epoxidation of alkenes
CN104884167B (en) For the method for calcinating of the epoxyethane catalyst of production improvement
US11400437B2 (en) Catalyst for the oxidation of ethylene to ethylene oxide
TW201105641A (en) Improved method of achieving and maintaining a specified alkylene oxide production parameter with a high efficiency catalyst
TWI609861B (en) Method of formulating alkylene oxide catalyst in relation to catalyst reference properties
WO2018056250A1 (en) Method for producing oligosilane
TW201936263A (en) Catalyst effective in the oxidative conversion of ethylene to ethylene oxide
JP5033522B2 (en) Catalyst for producing epoxide and method for producing epoxide
JP5679364B2 (en) Olefin partial oxidation catalyst, method for producing the same, and method for producing alkylene oxide
JP3825797B2 (en) Epoxidation catalyst
JP2548575B2 (en) Method for producing silver-containing catalyst
CN103831106B (en) A kind of preparation method and application of silver catalyst
TWI803550B (en) Process for preparing an epoxidation catalyst
JP2016518968A (en) Catalyst and process for oxychlorination of ethylene to dichloroethane
CN106311233A (en) Method for improving initial-stage selectivity of silver catalyst and olefin epoxidation method
JP2010234264A (en) Catalyst for producing ethylene oxide and method for producing ethylene oxide
JP2001157839A (en) Catalyst for manufacturing epoxide and method for preparation thereof, and method for manufacturing epoxide
JP3233652B2 (en) Silver catalyst for ethylene oxide production
CN106552619A (en) A kind of alpha-alumina supports, the silver catalyst being made from it and application
KR20170023966A (en) Catalyst and process for oxychlorination of ethylene to dichloroethane

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081030

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120321

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120605

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120702

R150 Certificate of patent or registration of utility model

Ref document number: 5033522

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150706

Year of fee payment: 3