JP5027783B2 - Circle detector - Google Patents

Circle detector Download PDF

Info

Publication number
JP5027783B2
JP5027783B2 JP2008300166A JP2008300166A JP5027783B2 JP 5027783 B2 JP5027783 B2 JP 5027783B2 JP 2008300166 A JP2008300166 A JP 2008300166A JP 2008300166 A JP2008300166 A JP 2008300166A JP 5027783 B2 JP5027783 B2 JP 5027783B2
Authority
JP
Japan
Prior art keywords
circle
voting
center position
edge
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008300166A
Other languages
Japanese (ja)
Other versions
JP2010128616A (en
Inventor
秀和 荒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2008300166A priority Critical patent/JP5027783B2/en
Publication of JP2010128616A publication Critical patent/JP2010128616A/en
Application granted granted Critical
Publication of JP5027783B2 publication Critical patent/JP5027783B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Image Analysis (AREA)

Description

本発明は、入力画像から円を検出する円検出装置に関するものである。   The present invention relates to a circle detection device that detects a circle from an input image.

従来、入力画像から円を検出する円検出装置として、例えば特許文献1に開示された円検出装置がある。この円検出装置は、先ず入力線画から直線成分を除去する処理を行った後、直線成分を除去した入力線画とx方向の走査線、及び、y方向の走査線との交点をそれぞれ求め、交点間の中点が描く図形から探索対象の円を抽出するものである。
特許第3694911号公報
Conventionally, as a circle detection device that detects a circle from an input image, for example, there is a circle detection device disclosed in Patent Document 1. The circle detection apparatus first performs a process of removing a linear component from an input line drawing, and then obtains an intersection of the input line drawing from which the linear component has been removed, a scanning line in the x direction, and a scanning line in the y direction. The circle to be searched is extracted from the figure drawn by the midpoint between them.
Japanese Patent No. 3694911

上記特許文献1に開示された円検出装置では、入力線画中の円形図形に途切れがあると、中点を正しく検出できないため、円形図形を正しく抽出できない可能性があった。   In the circle detection device disclosed in Patent Document 1, if there is a break in the circular figure in the input line drawing, the midpoint cannot be detected correctly, and the circular figure may not be extracted correctly.

途切れのある入力線画から図形を抽出する方法としてはハフ変換を用いた抽出方法が従来知られている。ハフ変換処理では、入力線画内の図形上の各点から、図形を表すパラメータで構成されるパラメータ空間に投票し、パラメータ空間で極大値を求めることによって、パラメータを決定して図形を抽出するものである。このようなハフ変換処理を用いて円を検出する場合には、円の中心位置(a,b)と半径rの3つのパラメータを求めるために、abrパラメータ空間(3次元空間)への投票を行い、極大値を求めることで上記3つのパラメータを決定するのであるが、3次元空間への投票や極大値探索の処理が必要になるので、処理時間や使用メモリが大きくなるという問題があった。   As a method for extracting a figure from a discontinuous input line drawing, an extraction method using Hough transform is conventionally known. In the Hough transform process, a point is extracted from each point on the figure in the input line drawing to a parameter space consisting of parameters representing the figure, and the maximum value is obtained in the parameter space to determine the parameter and extract the figure. It is. When a circle is detected using such a Hough transform process, in order to obtain three parameters of the circle center position (a, b) and radius r, voting to the abr parameter space (three-dimensional space) is performed. The above three parameters are determined by determining the maximum value, but there is a problem that the processing time and the memory used increase because the processing of voting to the three-dimensional space and the search for the maximum value is necessary. .

本発明は上記問題点に鑑みて為されたものであり、その目的とするところは、入力画像から円を検出する処理が高速に行えるとともに、メモリの使用量が少なくて済む円検出装置を提供することにある。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a circle detection apparatus that can perform a process of detecting a circle from an input image at a high speed and can use a small amount of memory. There is to do.

上記目的を達成するために、請求項1の発明は、入力画像に対して微分処理を行い、微分強度が所定のしきい値よりも大きいエッジ点を抽出するエッジ画像抽出手段と、抽出されたエッジ点に対して直線検出用のハフ変換処理を行い(ρ,θ)パラメータ空間に投票処理を行う際に、エッジ点におけるエッジ方向を中心とした所定角度範囲のθにのみ投票を行う投票手段と、(ρ,θ)パラメータ空間から投票されたセルを抽出する投票セル抽出手段と、投票セル抽出手段によって抽出されたセル群からθ方向に連続する2本の正弦波状の略平行な曲線を求めるとともに、当該2本の曲線のρ方向間隔から探索対象の円の直径を求める直径検出手段と、2本の曲線から等距離にある中間線の形状から探索対象の円の中心位置を求める中心位置検出手段とを備えたことを特徴とする。ここにおいて、エッジ方向とはエッジの濃淡が変化する方向のことであり、エッジ点における円の接線と直交する方向となる。   In order to achieve the above object, the invention according to claim 1 is characterized in that an edge image extraction means for performing an differentiation process on an input image and extracting an edge point having a differential intensity greater than a predetermined threshold value is extracted. Voting means for performing voting only on θ in a predetermined angle range centering on the edge direction at the edge point when performing Hough transform processing for straight line detection on the edge point and performing voting processing on the parameter space (ρ, θ) Voting cell extracting means for extracting cells voted from the (ρ, θ) parameter space, and two sinusoidal substantially parallel curves continuous in the θ direction from the cell group extracted by the voting cell extracting means. And a center for obtaining the center position of the search target circle from the shape of the intermediate line equidistant from the two curves. Position detection Characterized by comprising a stage. Here, the edge direction is a direction in which the density of the edge changes, and is a direction orthogonal to the tangent of the circle at the edge point.

請求項2の発明は、請求項1の発明において、投票セル抽出手段は、(ρ,θ)パラメータ空間の投票値が所定範囲内にあるセルを抽出することを特徴とする請求項1記載の円検出装置。   According to a second aspect of the invention, in the first aspect of the invention, the voting cell extracting means extracts a cell whose voting value in the (ρ, θ) parameter space is within a predetermined range. Circle detection device.

請求項3の発明は、請求項1又は2の何れか1つの発明において、直径検出手段は、投票セル抽出手段により抽出されたセル群について、同一のθにおけるセル間のρ方向間隔を階級とするヒストグラムを作成し、度数が極大で、且つ、所定のしきい値以上となるρ方向間隔を直径として求めることを特徴とする。   According to a third aspect of the present invention, in the invention according to any one of the first and second aspects, the diameter detecting means uses the ρ direction interval between cells at the same θ as the class for the cell group extracted by the voting cell extracting means. A histogram is created, and the ρ-direction interval at which the frequency is maximal and equal to or greater than a predetermined threshold is obtained as a diameter.

請求項4の発明は、請求項1乃至3の何れか1つの発明において、中心位置検出手段は、θが0度のときの中間線のρ値を中心位置のx座標とし、θが90度のときの中間線のρ値を中心位置のy座標とすることを特徴とする。   According to a fourth aspect of the present invention, in any one of the first to third aspects, the center position detecting means uses the ρ value of the intermediate line when θ is 0 degrees as the x coordinate of the center position, and θ is 90 degrees. In this case, the ρ value of the intermediate line is the y coordinate of the center position.

請求項5の発明は、請求項1乃至3の何れか1つの発明において、中心位置検出手段は、中間線上の各点の座標(ρ,θ)を、点(a,b)を通る直線の式、a・cosθ+b・sinθ=ρに代入し、直線の式を満たすa,bの値を、中心位置の座標(a,b)として求めることを特徴とする。   According to a fifth aspect of the present invention, in any one of the first to third aspects of the present invention, the center position detecting means converts the coordinates (ρ, θ) of each point on the intermediate line to a straight line passing through the point (a, b). Substituting into the equation a · cos θ + b · sin θ = ρ, the values of a and b satisfying the straight line equation are obtained as the coordinates (a, b) of the center position.

請求項1の発明によれば、投票手段が、エッジ点におけるエッジ方向、すなわちエッジ点における円の接線と直交する方向を中心とする所定角度範囲のθにのみ、(ρ,θ)パラメータ空間へ投票を行い、直径検出手段では、投票セル抽出手段によって抽出されたセル群から、θ方向に連続する2本の正弦波状の略平行な曲線を求めている。この2本の曲線の角度θにおけるρ値は、円の接線と直交する垂線(すなわちエッジ方向と平行な直線)の角度がθとなるような2本の接線と原点との間の距離となり、また角度θにおける両曲線のρ値の差の絶対値が円の直径となるので、直径検出手段では、2本の曲線のρ方向間隔から円の直径を求めることができる。さらに、2本の曲線から等距離にある中間線は、円の中心位置を通る全ての直線を(ρ,θ)パラメータ空間に写像した図形となるので、中心位置検出手段では、中間線の形状に基づいて円の中心位置を求めることができる。したがって、従来の円検出方法のように3次元のパラメータ空間への投票を行うことなく、各エッジ点についてエッジ方向を中心とする所定角度範囲のθにのみ(ρ,θ)パラメータ空間へ投票を行うことで円の検出が行えるので、円の探索処理が高速に行え、またメモリの使用量が少なくて済むという効果がある。また直線検出用のハフ変換処理を行うことで求めた2本の曲線から円の直径及び中心位置を求めているので、入力線画において探索対象の円が途切れていても、円を正確に検出することができるという効果がある。   According to the first aspect of the present invention, the voting means enters the (ρ, θ) parameter space only for θ in a predetermined angle range centering on the edge direction at the edge point, that is, the direction orthogonal to the tangent of the circle at the edge point. Voting is performed, and the diameter detection means obtains two sinusoidal substantially parallel curves continuous in the θ direction from the cell group extracted by the voting cell extraction means. The ρ value at the angle θ of these two curves is the distance between the two tangents and the origin such that the angle of a perpendicular (ie, a straight line parallel to the edge direction) perpendicular to the tangent of the circle is θ, In addition, since the absolute value of the difference between the ρ values of the two curves at the angle θ is the diameter of the circle, the diameter detecting means can determine the diameter of the circle from the interval between the two curves in the ρ direction. Further, since the intermediate line equidistant from the two curves becomes a figure in which all straight lines passing through the center position of the circle are mapped to the (ρ, θ) parameter space, the center position detecting means uses the shape of the intermediate line. Based on this, the center position of the circle can be obtained. Therefore, without voting to the three-dimensional parameter space as in the conventional circle detection method, voting to the (ρ, θ) parameter space only for θ in a predetermined angle range centered on the edge direction for each edge point. This makes it possible to detect a circle, so that the circle search process can be performed at a high speed and the amount of memory used can be reduced. In addition, since the diameter and center position of the circle are obtained from the two curves obtained by performing the Hough transform processing for line detection, the circle is accurately detected even if the circle to be searched is interrupted in the input line drawing. There is an effect that can be.

請求項2の発明によれば、投票セル抽出手段は、投票値が所定範囲内にあるセルを抽出しているので、不要なセルを取り除くことで、円の直径や中心位置を検出する処理を高速に行え、効率良く円を検出することができる。また上述した特許文献1の円検出装置では、入力線画から直線成分を除去する処理を行っているが、請求項2の発明によれば、投票値が所定範囲内にあるセルを抽出することで、不要なセルを取り除いているので、入力線画から直線成分を除去する処理が不要になり、円の探索をさらに高速に行うことができる。   According to the invention of claim 2, since the voting cell extracting means extracts cells whose voting value is within a predetermined range, the voting cell extracting means performs processing for detecting the diameter and center position of the circle by removing unnecessary cells. It can be performed at high speed and circles can be detected efficiently. Further, in the circle detection device of Patent Document 1 described above, the process of removing the linear component from the input line drawing is performed. However, according to the invention of claim 2, by extracting the cells whose voting value is within the predetermined range, Since unnecessary cells are removed, processing for removing a straight line component from the input line drawing is not required, and a circle search can be performed at higher speed.

請求項3の発明によれば、直径検出手段は、同一のθにおけるセル間のρ方向間隔を階級としてヒストグラムを作成した結果に基づいて、円の直径を求めているので、セル間のρ方向間隔にばらつきがあったり、探索対象の円や抽出された曲線に途切れが発生していても、円の直径を正確に検出することができる。   According to the invention of claim 3, the diameter detecting means obtains the diameter of the circle based on the result of creating a histogram based on the result of creating a histogram with the ρ direction interval between cells at the same θ as the class. Even if there is a variation in the interval, or there is a break in the search target circle or the extracted curve, the diameter of the circle can be accurately detected.

請求項4の発明によれば、中間線上の2点を求めるだけで、探索対象の円の中心位置が求まるので、中心位置の検出処理を高速に行えるという効果がある。   According to the fourth aspect of the present invention, the center position of the circle to be searched can be obtained only by obtaining two points on the intermediate line, so that the center position can be detected at high speed.

請求項5の発明によれば、点(a,b)を通る直線の式に中間線上の多くの点の座標を代入することで、直線の式を満たすa,bの値、すなわち中心位置の座標を求めているので、探索対象の円や抽出された曲線に途切れがあったとしても、円の中心位置を精度良く求めることができる。   According to the invention of claim 5, by substituting the coordinates of many points on the intermediate line for the straight line expression passing through the point (a, b), the values of a and b satisfying the straight line expression, that is, the center position Since the coordinates are obtained, the center position of the circle can be obtained with high accuracy even if the search target circle or the extracted curve is interrupted.

以下に本発明の実施の形態を図面に基づいて説明する。   Embodiments of the present invention will be described below with reference to the drawings.

本実施形態の円検出装置Aは、例えばCCDカメラのような撮像手段1で撮像された画像から円形の形状を検出するために用いられるものであり、図1のブロック図に示すように、撮像手段1から入力された画像データを画像メモリ(図示せず)に記憶させる画像記憶手段2と、画像メモリに記憶された撮像手段1からの入力画像に対して微分処理を行い、微分強度が所定のしきい値よりも大きいエッジ点を抽出するエッジ画像抽出手段3と、抽出されたエッジ点に対して直線検出用のハフ変換処理を施して(ρ,θ)パラメータ空間に投票処理を行う際に、各エッジ点におけるエッジ方向を中心とした所定角度範囲のθにのみ投票を行う投票手段4と、(ρ,θ)パラメータ空間から投票されたセルを抽出する投票セル抽出手段5と、投票セル抽出手段5により抽出されたセル群からθ方向に連続する2本の正弦波状の略平行な曲線を求めるとともに、当該2本の曲線のρ方向間隔から探索対象の円の直径を求める直径検出手段6と、上記2本の曲線から等距離にある中間線の形状から探索対象の円の中心位置を求める中心位置検出手段7とを備えている。   The circle detection apparatus A of the present embodiment is used for detecting a circular shape from an image captured by the imaging means 1 such as a CCD camera, for example, and as shown in the block diagram of FIG. An image storage means 2 for storing image data input from the means 1 in an image memory (not shown), and an input image from the image pickup means 1 stored in the image memory is subjected to a differentiation process so that the differential intensity is predetermined. Edge image extraction means 3 for extracting edge points larger than the threshold value of the image, and Hough transform processing for line detection is performed on the extracted edge points to perform voting processing on the (ρ, θ) parameter space In addition, voting means 4 for voting only in a predetermined angle range θ centered on the edge direction at each edge point, voting cell extracting means 5 for extracting a voted cell from the (ρ, θ) parameter space, and voting cell Diameter detection means for obtaining two sinusoidal substantially parallel curves continuous in the θ direction from the cell group extracted by the extraction means 5 and obtaining the diameter of the circle to be searched from the interval in the ρ direction of the two curves. 6 and center position detecting means 7 for obtaining the center position of the circle to be searched from the shape of the intermediate line equidistant from the two curves.

この円検出装置Aによる円の検出処理について図2〜図8を参照して説明する。図2(a)は撮像手段1により撮像された白黒濃淡画像F1を示し、撮像手段1から入力された白黒濃淡画像F1の画像データは画像記憶手段2によって画像メモリに記憶される。   A circle detection process by the circle detection apparatus A will be described with reference to FIGS. FIG. 2A shows a monochrome grayscale image F1 captured by the imaging means 1, and the image data of the monochrome grayscale image F1 input from the imaging means 1 is stored in the image memory by the image storage means 2.

エッジ画像抽出手段3は、画像メモリから白黒濃淡画像F1の画像データを読み出し、白黒濃淡画像F1の各画素について、例えば図3(a)(b)に示すソーベルフィルタを用いた微分処理を実行し、得られた微分強度が所定のしきい値以上であるエッジ点を抽出することによって、図2(b)に示すようなエッジ画像F2が作成される。ここで、図3(a)は垂直成分を抽出するためのフィルタ(水平方向微分)、同図(b)は水平成分を抽出するためのフィルタ(垂直方向微分)であり、エッジ画像抽出手段3では、2つのフィルタを用いて水平方向及び垂直方向の微分強度をそれぞれ求め、水平方向及び垂直方向の微分強度から各画素のエッジ方向を算出している。なお図2(b)に示すエッジ画像F2には図形要素として円Cと直線Bとが現れており、本実施形態の円検出装置Aでは以下の処理を実行することによって探索対象である円Cの中心位置及び直径を検出するのである。   The edge image extraction means 3 reads the image data of the black and white grayscale image F1 from the image memory, and executes differential processing using, for example, the Sobel filter shown in FIGS. 3A and 3B for each pixel of the black and white grayscale image F1. Then, by extracting an edge point whose obtained differential intensity is equal to or greater than a predetermined threshold value, an edge image F2 as shown in FIG. 2B is created. 3A is a filter for extracting a vertical component (horizontal differentiation), and FIG. 3B is a filter for extracting a horizontal component (vertical differentiation). Then, the differential intensities in the horizontal direction and the vertical direction are obtained using two filters, and the edge direction of each pixel is calculated from the differential intensities in the horizontal and vertical directions. Note that a circle C and a straight line B appear as graphic elements in the edge image F2 shown in FIG. 2B, and the circle C that is a search target is executed by executing the following processing in the circle detection device A of the present embodiment. The center position and diameter of the are detected.

投票手段4は、図2(b)に示すエッジ画像F2上の各エッジ点に対し、直線検出用のハフ変換処理を施して、(ρ,θ)パラメータ空間に投票処理を行うのであるが、エッジ点におけるエッジ方向ωを中心とした所定角度範囲(ω−Tw<θ<ω+Tw)のθにのみ投票を行う。すなわちエッジ点の座標を(p,q)、エッジ方向をωとすると、以下の式(1)で求まる(ρ,θ)に相当するセルに投票を行う。   The voting means 4 performs a Hough transform process for straight line detection on each edge point on the edge image F2 shown in FIG. 2B, and performs a voting process in the (ρ, θ) parameter space. Voting is performed only on θ within a predetermined angular range (ω−Tw <θ <ω + Tw) centering on the edge direction ω at the edge point. That is, when the coordinates of the edge point are (p, q) and the edge direction is ω, voting is performed on a cell corresponding to (ρ, θ) obtained by the following equation (1).

ρ=p×cosθ+q×sinθ(但し、ω−Tw<θ<ω+Tw) …(1)
ここで、Twとはエッジ方向ωに対する角度許容値であり、エッジ方向ωを中心として(ω−Tw)より大きく且つ(ω+Tw)より小さい角度範囲のθのみに投票を行う。なお、エッジ方向ωとはエッジの濃淡が変化する方向をいい、円上のエッジ点の場合はエッジ点における円の接線と直交する方向となる。また、探索対象の円の半径が小さいほど、1画素当たりの振れ角が大きくなるので、角度許容値Twを大きくとる必要があるが、例えば円の半径が80画素程度であれば、角度許容値Twを5度とし、(ω−5)<θ<(ω+5)の角度範囲内のθにのみ投票を行うのが好ましい。
ρ = p × cos θ + q × sin θ (where ω−Tw <θ <ω + Tw) (1)
Here, Tw is an allowable angle value with respect to the edge direction ω, and voting is performed only on θ in the angle range larger than (ω−Tw) and smaller than (ω + Tw) with the edge direction ω as the center. Note that the edge direction ω is a direction in which the density of an edge changes, and in the case of an edge point on a circle, the direction is perpendicular to the tangent of the circle at the edge point. Also, the smaller the radius of the circle to be searched is, the larger the deflection angle per pixel is, so it is necessary to increase the angle tolerance Tw. For example, if the radius of the circle is about 80 pixels, the angle tolerance It is preferable to vote only for θ within an angular range of (ω−5) <θ <(ω + 5), with Tw being 5 degrees.

図4(b)は投票手段4が上記の投票処理を行った後のハフ投票空間((ρ,θ)パラメータ空間)を示しており、円C上の各エッジ点に対して上述の投票処理を行うことでθ方向に連続する2本の正弦波状の略平行な曲線D1,D2が作成されるとともに、直線B上のエッジ点を投票することによってセル群Eが作成される。尚、図4(b)では図示を簡略化するため、曲線D1,D2及びセル群Eはその濃淡が一様となるように図示されているが、実際には投票数に応じて濃淡が異なり、画素値が大きい(濃い)ほど投票数が多くなっている。   FIG. 4B shows a Hough voting space ((ρ, θ) parameter space) after the voting means 4 performs the above voting process, and the voting process described above for each edge point on the circle C. As a result, two sinusoidal substantially parallel curves D1 and D2 continuous in the θ direction are created, and a cell group E is created by voting the edge points on the straight line B. In FIG. 4 (b), the curves D1 and D2 and the cell group E are shown to be uniform in density for the sake of simplicity, but actually the density varies depending on the number of votes. The number of votes increases as the pixel value increases (darker).

ここで、投票手段4では、エッジ画像F2上の全てのエッジ点について(ρ,θ)パラメータ空間への投票処理を行うのであるが、円C上にあるエッジ点の内、エッジ方向ωがθ1であるエッジ点P11,P12に投票処理を行う場合について図4(a)(b)を参照して説明する。尚、エッジ方向がθ1となる2つのエッジ点P11,P12のうち原点に近い方をP11とする。   Here, the voting means 4 performs a voting process to the (ρ, θ) parameter space for all edge points on the edge image F2. Among the edge points on the circle C, the edge direction ω is θ1. A case where the voting process is performed on the edge points P11 and P12 will be described with reference to FIGS. Of the two edge points P11 and P12 whose edge direction is θ1, the one closer to the origin is defined as P11.

点P11において、投票手段4がエッジ方向θ1を中心とした所定角度範囲のθについて投票を行うと、エッジ点P11において当該エッジ点P11を通る接線L11とこの接線L11をエッジ点P11において上記角度範囲(θ1±Tw)内で傾斜させた直線が(ρ,θ)パラメータ空間へ写像されることになり、接線L11を写像したときのρ値は原点から接線L11までの距離ρ11となる。また点P12において、投票手段4がエッジ方向θ1を中心とした所定角度範囲のθについて投票を行うと、エッジ点P12において当該エッジ点P12を通る接線L12とこの接線L12をエッジ点P12において上記角度範囲(θ1±Tw)内で傾斜させた直線が(ρ,θ)パラメータ空間へ写像されることになり、接線L12を写像したときのρ値は原点から接線L12までの距離ρ12となる。ここで、接線L11までの距離ρ11と接線L12までの距離ρ12との差の絶対値|ρ12−ρ11|は円Cの直径に等しくなるので、角度θ1においてρ値がρ11とρ12の中間値ρ10(=(ρ11+ρ12)/2)となる直線L10は円Cの中心位置P0を通ることになる。   At the point P11, when the voting means 4 votes for θ in a predetermined angle range centered on the edge direction θ1, the tangent line L11 passing through the edge point P11 at the edge point P11 and the tangent line L11 at the edge point P11 are converted into the angular range. A straight line inclined within (θ1 ± Tw) is mapped to the (ρ, θ) parameter space, and the ρ value when mapping the tangent L11 is the distance ρ11 from the origin to the tangent L11. At the point P12, when the voting means 4 votes for θ within a predetermined angle range centered on the edge direction θ1, the tangent line L12 passing through the edge point P12 at the edge point P12 and the tangent line L12 at the edge point P12 are A straight line inclined within the range (θ1 ± Tw) is mapped to the (ρ, θ) parameter space, and the ρ value when the tangent L12 is mapped is the distance ρ12 from the origin to the tangent L12. Here, since the absolute value | ρ12−ρ11 | of the difference between the distance ρ11 to the tangent line L11 and the distance ρ12 to the tangent line L12 is equal to the diameter of the circle C, the ρ value is an intermediate value ρ10 between the ρ11 and ρ12 at the angle θ1. The straight line L10 that becomes (= (ρ11 + ρ12) / 2) passes through the center position P0 of the circle C.

したがって、投票手段4が、円周上の全てのエッジ点に対して上述の投票処理を行うことによって、図4(b)に示すようにθ方向に連続する2本の正弦波状の略平行な曲線D1,D2が(ρ,θ)パラメータ空間に作成されることになり、2本の曲線D1,D2から等距離にある正弦波状の中間線D0(図5(c)参照)は、円Cの中心位置P0を通る全ての直線を(ρ,θ)パラメータ空間に写像したものとなる。   Therefore, when the voting means 4 performs the above voting process on all the edge points on the circumference, as shown in FIG. 4B, two sinusoidal substantially parallel lines continuous in the θ direction. The curves D1 and D2 are created in the (ρ, θ) parameter space, and the sinusoidal intermediate line D0 (see FIG. 5C) that is equidistant from the two curves D1 and D2 is represented by the circle C All straight lines passing through the center position P0 are mapped to the (ρ, θ) parameter space.

次に、投票手段4による投票処理が終了すると、投票セル抽出手段5は、投票値があるセル群、すなわち投票値が1以上のセル群を抽出しており、図5(a)に示すように3つのセル群G1,G2,G3が抽出される。ここで、セル群G1,G2は円C上のエッジ点を(ρ,θ)パラメータ空間に写像してできるセル群であり、セル群G3は直線B上のエッジ点を(ρ,θ)パラメータ空間に写像してできるセル群である。   Next, when the voting process by the voting means 4 is completed, the voting cell extracting means 5 has extracted a cell group having a voting value, that is, a cell group having a voting value of 1 or more, as shown in FIG. Three cell groups G1, G2, G3 are extracted. Here, the cell groups G1 and G2 are cell groups obtained by mapping the edge points on the circle C to the (ρ, θ) parameter space, and the cell group G3 is the edge point on the straight line B with the (ρ, θ) parameter. It is a group of cells created by mapping to space.

直径検出手段6は、図5(b)に示すように、投票セル抽出手段5により抽出されたセル群G1,G2,G3に対してそれぞれ隣接するセル同士に同一のラベルLB1,LB2,LB3を付与した後、各ラベルのセル毎にθの最大値と最小値の差を求め、最大値と最小値の差が所定の閾値(例えば150°)以上であるラベル(図示例ではラベルLB1,LB2)を抽出することにより、円C上のエッジ点を写像してできたセル群G1,G2のみが抽出される。ここで、直線B上の各エッジ点のエッジ方向は略同じ方向となるので、直線上のエッジ点を(ρ,θ)パラメータ空間に写像してできるセル群は、角度θの範囲が円の場合に比べて小さくなると考えられ、θの最大値と最小値の差を上記閾値と比較することで、直線を写像してできるセル群を取り除くことができる。   As shown in FIG. 5 (b), the diameter detecting means 6 applies the same labels LB1, LB2, LB3 to the cells adjacent to the cell groups G1, G2, G3 extracted by the voting cell extracting means 5, respectively. After the application, the difference between the maximum value and the minimum value of θ is obtained for each cell of each label, and the labels (in the example shown, labels LB1, LB2) where the difference between the maximum value and the minimum value is a predetermined threshold (for example, 150 °) or more. ) Is extracted, only the cell groups G1 and G2 formed by mapping the edge points on the circle C are extracted. Here, since the edge directions of the edge points on the straight line B are substantially the same direction, the cell group formed by mapping the edge points on the straight line to the (ρ, θ) parameter space has a range of angles θ of a circle. It is considered that the cell group formed by mapping a straight line can be removed by comparing the difference between the maximum value and the minimum value of θ with the threshold value.

そして、ラベルの抽出が終了すると、直径検出手段6は、抽出された各ラベルLB1,LB2毎に最小二乗法で直線を当てはめ、傾きの差が所定の閾値以内であるラベル同士を略平行な曲線として抽出しており、図5(b)の例ではラベルLB1,LB2のセル群G1,G2が略平行な2本の曲線D1,D2として抽出される(図5(c)参照)。そして、上記の処理により曲線D1,D2に対応するセル群が抽出されると、直径検出手段6は、2本の曲線D1,D2において同一のθ座標におけるρ座標の差の絶対値を直径として求めている。なお直径検出手段6では、2本の曲線D1,D2において複数のθ座標におけるρ座標の差の絶対値をそれぞれ求め、これらの平均値をとることで円の直径を求めても良く、検出誤差を少なくすることができる。   When the label extraction is completed, the diameter detection means 6 applies a straight line to each of the extracted labels LB1 and LB2 by the least square method, and the labels whose inclination difference is within a predetermined threshold are substantially parallel curves. In the example of FIG. 5B, the cell groups G1 and G2 of the labels LB1 and LB2 are extracted as two substantially parallel curves D1 and D2 (see FIG. 5C). When the cell group corresponding to the curves D1 and D2 is extracted by the above processing, the diameter detecting means 6 uses the absolute value of the difference between the ρ coordinates in the same θ coordinate in the two curves D1 and D2 as the diameter. Looking for. In the diameter detection means 6, the absolute value of the difference between the ρ coordinates of the plurality of θ coordinates in the two curves D1 and D2 may be obtained, and the diameter of the circle may be obtained by taking the average of these values. Can be reduced.

上述のように円の直径が検出されると、中心位置検出手段7では、2本の曲線D1,D2から等距離にある中間線D0を求め、この中間線D0の形状から円Cの中心位置を求める。すなわち中心位置検出手段7では、各々の角度θについて、直径検出手段6により抽出された曲線D1,D2のρ値を平均することで中間線D0のρ値を求めており、中間線D0上でρ値が最大となる点Cmaxの座標値(ρ0,θ0)と、ρ値が最小となる点Cminの座標値(ρ1,θ1)を求める。ここで、中間線D0は円の中心P0を通る全ての直線を写像してできる正弦波となるので、中心位置検出手段7では、予め、点Cmax,Cminの座標と円の中心位置とを対応付けた中心算出テーブル(表1参照)を作成して図示しないメモリに記憶させておき、上記の処理で求めた点Cmaxの座標(ρ0,θ0)と点Cminの座標(ρ1,θ1)を検索キーにして、中心算出テーブルを参照することによって、円の中心P0の座標を求めている。   When the diameter of the circle is detected as described above, the center position detection means 7 obtains an intermediate line D0 that is equidistant from the two curves D1, D2, and the center position of the circle C is determined from the shape of the intermediate line D0. Ask for. That is, the center position detecting means 7 obtains the ρ value of the intermediate line D0 by averaging the ρ values of the curves D1 and D2 extracted by the diameter detecting means 6 for each angle θ, and on the intermediate line D0. The coordinate value (ρ0, θ0) of the point Cmax where the ρ value is maximum and the coordinate value (ρ1, θ1) of the point Cmin where the ρ value is minimum are obtained. Here, since the intermediate line D0 is a sine wave formed by mapping all straight lines passing through the center P0 of the circle, the center position detecting means 7 associates the coordinates of the points Cmax and Cmin with the center position of the circle in advance. The attached center calculation table (see Table 1) is created and stored in a memory (not shown), and the coordinates of the point Cmax (ρ0, θ0) and the coordinates of the point Cmin (ρ1, θ1) obtained by the above processing are searched. The coordinates of the center P0 of the circle are obtained by referring to the center calculation table as a key.

Figure 0005027783
Figure 0005027783

以上説明したように本実施形態の円検出装置Aでは、投票手段4が、エッジ画像中のエッジ点におけるエッジ方向、すなわちエッジ点における円の接線と直交する方向を中心とする所定角度範囲のθにのみ、(ρ,θ)パラメータ空間へ投票を行い、直径検出手段6では、投票セル抽出手段5によって抽出されたセル群から、θ方向に連続する2本の正弦波状の略平行な曲線D1,D2を求めている。ここで、角度θにおける2本の曲線D1,D2のρ値は、あるエッジ点における円の接線と直交する垂線(すなわちエッジ方向と平行な直線)の角度がθとなるような2本の接線と原点との間の距離となり、また角度θにおける曲線D1,D2のρ値の差の絶対値が円の直径となるので、直径検出手段6では、2本の曲線D1,D2のρ方向間隔から円の直径を求めることができる。さらに、2本の曲線D1,D2から等距離にある中間線D0は、円Cの中心P0を通る全ての直線を(ρ,θ)パラメータ空間に写像した図形となるので、中心位置検出手段7では、中間線D0の形状に基づいて円Cの中心位置P0を求めることができる。したがって、従来の円検出方法のように3次元のパラメータ空間への投票を行うことなく、各エッジ点についてエッジ方向を中心とする所定角度範囲のθにのみ(ρ,θ)パラメータ空間へ投票を行うことで円の検出が行えるので、円の探索処理が高速に行え、またメモリの使用量が少なくて済むという効果がある。また、各エッジ点についてエッジ方向を中心とした所定角度範囲のθにのみ(ρ,θ)パラメータ空間へ投票を行っており、エッジ方向は接線と直交する方向となるので、エッジ方向を中心とした所定角度範囲のθにのみ(ρ,θ)パラメータ空間への投票を行うことで、接線の存在する可能性が高い角度範囲に限定して(ρ,θ)パラメータ空間への投票処理を行うことによって、円の探索処理をより高速に行うことができる。また更に直線検出用のハフ変換処理を行うことで求めた2本の略平行な曲線D1,D2から円の直径及び中心位置を求めているので、入力線画において探索対象の円が途切れていたり、抽出した2本の曲線が途切れていたとしても、探索対象の円を正確に検出することができる。   As described above, in the circle detection device A of the present embodiment, the voting means 4 has a predetermined angle range θ around the edge direction at the edge point in the edge image, that is, the direction perpendicular to the tangent of the circle at the edge point. Only in the (ρ, θ) parameter space, and the diameter detection means 6 from the cell group extracted by the voting cell extraction means 5, two sinusoidal substantially parallel curves D1 continuous in the θ direction. , D2. Here, the ρ values of the two curves D1 and D2 at the angle θ are two tangents such that the angle of a perpendicular (that is, a straight line parallel to the edge direction) perpendicular to the tangent of the circle at a certain edge point is θ. Since the absolute value of the difference between the ρ values of the curves D1 and D2 at the angle θ is the diameter of the circle, the diameter detection unit 6 uses the interval between the two curves D1 and D2 in the ρ direction. From this, the diameter of the circle can be determined. Further, the intermediate line D0 that is equidistant from the two curves D1 and D2 is a figure in which all straight lines passing through the center P0 of the circle C are mapped to the (ρ, θ) parameter space. Then, the center position P0 of the circle C can be obtained based on the shape of the intermediate line D0. Therefore, without voting to the three-dimensional parameter space as in the conventional circle detection method, voting to the (ρ, θ) parameter space only for θ in a predetermined angle range centered on the edge direction for each edge point. This makes it possible to detect a circle, so that the circle search process can be performed at a high speed and the amount of memory used can be reduced. In addition, for each edge point, voting is performed in the (ρ, θ) parameter space only for θ in a predetermined angle range centered on the edge direction. Since the edge direction is a direction orthogonal to the tangent, the edge direction is the center. By voting to the (ρ, θ) parameter space only for θ in the predetermined angle range, the voting process to the (ρ, θ) parameter space is performed limited to the angle range where there is a high possibility that a tangent exists. Thus, the circle search process can be performed at a higher speed. Furthermore, since the diameter and center position of the circle are obtained from two substantially parallel curves D1 and D2 obtained by performing the Hough transform processing for line detection, the search target circle is interrupted in the input line drawing, Even if the two extracted curves are interrupted, the search target circle can be accurately detected.

ところで、上述の投票セル抽出手段5では、投票手段4による投票後の(ρ,θ)パラメータ空間から投票値があるセル、つまり投票値が1以上のセルを全て抽出しているが、投票値が所定範囲内にあるセルを抽出することも好ましい。図2(b)に示すエッジ画像F2において直線B上のエッジ点を(ρ,θ)パラメータ空間に写像する場合、
直線B上の各エッジ点のエッジ方向は略同じ角度となるため、(ρ,θ)パラメータ空間では大きな投票値が得られるが(例えば50以上)、円Cを(ρ,θ)パラメータ空間に写像する場合はエッジ方向が略同じになるエッジ点が直線に比べて少ないため、投票値も小さくなる(例えば20以下)。したがって、投票セル抽出手段5が、(ρ,θ)パラメータ空間からセルを抽出する際に、投票値が所定範囲内(例えば1以上且つ20以下)であるセルを抽出することによって、図6に示すように円C上のエッジ点を写像して投票されたセル群G1,G2のみを抽出することができ、円上のエッジ点を写像して投票されたセルのみを抽出することで、以後の検出処理を高速に行え、効率良く円を検出することができる。また従来技術で説明した特許文献1の円検出装置のように、入力線画から直線成分を除去する処理を行う必要がないから、円の探索処理を高速に行うことができる。
By the way, in the voting cell extracting means 5 described above, all cells having a voting value, that is, cells having a voting value of 1 or more are extracted from the (ρ, θ) parameter space after voting by the voting means 4. It is also preferable to extract a cell having a value within a predetermined range. When the edge point on the straight line B is mapped to the (ρ, θ) parameter space in the edge image F2 shown in FIG.
Since the edge directions of the edge points on the straight line B are substantially the same angle, a large vote value is obtained in the (ρ, θ) parameter space (for example, 50 or more), but the circle C is changed to the (ρ, θ) parameter space. When mapping, since the number of edge points where the edge directions are substantially the same is smaller than that of a straight line, the vote value is also small (for example, 20 or less). Therefore, when the voting cell extraction unit 5 extracts cells from the (ρ, θ) parameter space, by extracting cells whose voting values are within a predetermined range (for example, 1 or more and 20 or less), FIG. As shown, only the cell groups G1 and G2 voted by mapping the edge points on the circle C can be extracted, and only the voted cells can be extracted by mapping the edge points on the circle. Can be detected at high speed, and a circle can be detected efficiently. In addition, unlike the circle detection apparatus disclosed in Patent Document 1 described in the related art, it is not necessary to perform a process of removing a linear component from an input line drawing, so that a circle search process can be performed at high speed.

また上述の直径検出手段6では、投票セル抽出手段5によって抽出されたセル群からθ方向に連続する正弦波状の2本の略平行な曲線D1,D2を求めた後、同一のθ座標における曲線D1,D2のρ値を求め、その差の絶対値から円の直径を求めているが、直径の算出方法を上記の方法に限定する趣旨のものではなく、以下に説明する方法で直径を求めても良い。すなわち直径検出手段6が、図7(a)に示すように、投票セル抽出手段5によって抽出されたセル群から、あるθ座標上(θ=α)に存在するセルを全て抽出し(θ=αの場合はセルC0,C1,C2)、抽出された複数のセルの内、2つのセルのρ座標の差の絶対値D(すなわちセル間のρ方向間隔)を全ての組み合わせで求める処理を、角度αを0°から180°まで変化させながら行って、上記Dの値を階級とするヒストグラムを作成する(図7(b)参照)。そして、直径検出手段6では、ヒストグラムの結果をもとに、度数が極大で且つ所定のしきい値Th1以上となるρ方向間隔d0を直径として求めており、曲線D1,D2間のρ方向間隔にばらつきがあったり、曲線D1,D2に途切れが発生していても、円の直径を正確に検出することができる。   Further, in the diameter detecting means 6 described above, after obtaining two substantially parallel curves D1 and D2 having a sine wave shape continuous in the θ direction from the cell group extracted by the voting cell extracting means 5, the curve at the same θ coordinate is obtained. The ρ values of D1 and D2 are obtained, and the diameter of the circle is obtained from the absolute value of the difference. However, the diameter calculation method is not limited to the above method, and the diameter is obtained by the method described below. May be. That is, as shown in FIG. 7A, the diameter detection means 6 extracts all cells existing on a certain θ coordinate (θ = α) from the cell group extracted by the voting cell extraction means 5 (θ = α). In the case of α, cells C0, C1, and C2), and among the plurality of extracted cells, processing for obtaining the absolute value D of the difference between the ρ coordinates of two cells (that is, the ρ direction interval between cells) in all combinations Then, the angle α is changed from 0 ° to 180 ° to create a histogram with the value D as a class (see FIG. 7B). Then, the diameter detecting means 6 obtains the ρ direction interval d0 at which the frequency is maximal and equal to or greater than the predetermined threshold Th1 as the diameter based on the result of the histogram, and the ρ direction interval between the curves D1 and D2. Even if there is a variation in the curve D1 and the curves D1 and D2 are interrupted, the diameter of the circle can be accurately detected.

また上述の中心位置検出手段7では、中間線D0上でρ値が最大となる点Cmaxの座標値(ρ0,θ0)と、ρ値が最小となる点Cminの座標値(ρ1,θ1)とをもとに、中心算出テーブルから中心P0の座標を求めているが、中心位置の検出方法を上記の方法に限定する趣旨のものではなく、以下に説明する方法で中心P0の座標を求めても良い。すなわち中心位置検出手段7では、直径検出手段6が2本の略平行な曲線D1,D2のρ値を平均することで中間線D0を求めた後、角度θが0°のときの中間線D0のρ座標値ρ(0°)を中心P0のx座標、角度θが90°のときの中間線D0のρ座標値ρ(90°)を中心P0のy座標として求めても良く、中間線D0上の2点を求めるだけで、探索対象の円の中心位置が求まるので、中心位置の検出処理を高速に行うことができる。   Further, in the above-described center position detecting means 7, the coordinate value (ρ0, θ0) of the point Cmax where the ρ value is maximum on the intermediate line D0 and the coordinate value (ρ1, θ1) of the point Cmin where the ρ value is minimum. The coordinates of the center P0 are obtained from the center calculation table, but the center position detection method is not limited to the above method, and the coordinates of the center P0 are obtained by the method described below. Also good. That is, in the center position detecting means 7, after the diameter detecting means 6 obtains the intermediate line D0 by averaging the ρ values of the two substantially parallel curves D1, D2, the intermediate line D0 when the angle θ is 0 ° is obtained. The ρ coordinate value ρ (0 °) of the center P0 may be obtained as the x coordinate of the center P0, and the ρ coordinate value ρ (90 °) of the intermediate line D0 when the angle θ is 90 ° may be obtained as the y coordinate of the center P0. Since the center position of the circle to be searched can be determined simply by obtaining two points on D0, the center position detection process can be performed at high speed.

また更に中心位置検出手段7では、上述のように中間線D0を求めた後、中間線D0上の全てのセルの座標(ρ,θ)を求め、点(a,b)を通る直線の式(2)に全てのセルの座標(ρ,θ)を代入し、式(2)を満たすa,bの値を最小自乗法により求めることで、中心P0の座標(a,b)を求めてもよい。   Further, in the center position detecting means 7, after obtaining the intermediate line D0 as described above, the coordinates (ρ, θ) of all the cells on the intermediate line D0 are obtained, and a straight line expression passing through the point (a, b). By substituting the coordinates (ρ, θ) of all cells into (2) and obtaining the values of a and b satisfying equation (2) by the method of least squares, the coordinates (a, b) of the center P0 are obtained. Also good.

a・cosθ+b・sinθ=ρ …(2)
このように、中心位置検出手段7では、点(a,b)を通る直線の式(2)に中間線D0上の多くの点の座標を代入することで中心P0の座標を求めているので、曲線D1,D2に途切れがあったとしても、中心位置を精度良く求めることができる。
a · cos θ + b · sin θ = ρ (2)
As described above, the center position detection means 7 obtains the coordinates of the center P0 by substituting the coordinates of many points on the intermediate line D0 into the equation (2) of the straight line passing through the points (a, b). Even if the curves D1 and D2 are interrupted, the center position can be obtained with high accuracy.

本実施形態の円検出装置の構成を示すブロック図である。It is a block diagram which shows the structure of the circle | round | yen detection apparatus of this embodiment. (a)は入力画像の説明図、(b)はエッジ画像の説明図である。(A) is explanatory drawing of an input image, (b) is explanatory drawing of an edge image. (a)(b)はソーベルフィルタの説明図である。(A) and (b) are explanatory drawings of a Sobel filter. (a)は投票手段による投票処理の説明図、(b)は(ρ,θ)パラメータ空間に写像した結果を示す図である。(A) is explanatory drawing of the voting process by a voting means, (b) is a figure which shows the result mapped to the ((rho), (theta)) parameter space. (a)〜(c)は円検出装置による円の検出処理を説明する図である。(A)-(c) is a figure explaining the detection process of the circle | round | yen by a circle | round | yen detection apparatus. 同上の他の検出処理を説明する図である。It is a figure explaining other detection processing same as the above. (a)は同上のまた別の検出処理を説明する図、(b)は作成されたヒストグラムの説明図である。(A) is a figure explaining another detection process same as the above, (b) is explanatory drawing of the produced histogram. 同上のさらに別の検出処理を説明する図である。It is a figure explaining another detection process same as the above.

符号の説明Explanation of symbols

A 円検出装置
1 撮像手段
2 画像記憶手段
3 エッジ画像抽出手段
4 投票手段
5 投票セル抽出手段
6 直径検出手段
7 中心位置検出手段
A circle detection device 1 imaging means 2 image storage means 3 edge image extraction means 4 voting means 5 voting cell extraction means 6 diameter detection means 7 center position detection means

Claims (5)

入力画像に対して微分処理を行い、微分強度が所定のしきい値よりも大きいエッジ点を抽出するエッジ画像抽出手段と、
抽出されたエッジ点に対して直線検出用のハフ変換処理を施して(ρ,θ)パラメータ空間に投票処理を行う際に、エッジ点におけるエッジ方向を中心とした所定角度範囲のθにのみ投票を行う投票手段と、
前記(ρ,θ)パラメータ空間から投票されたセルを抽出する投票セル抽出手段と、
投票セル抽出手段によって抽出されたセル群からθ方向に連続する2本の正弦波状の略平行な曲線を求めるとともに、当該2本の曲線のρ方向間隔から探索対象の円の直径を求める直径検出手段と、
前記2本の曲線から等距離にある中間線の形状から探索対象の円の中心位置を求める中心位置検出手段とを備えたことを特徴とする円検出装置。
Edge image extraction means for performing differential processing on the input image and extracting edge points whose differential intensity is greater than a predetermined threshold;
When the extracted edge point is subjected to Hough transform processing for line detection and voting processing is performed in the (ρ, θ) parameter space, voting is performed only on θ within a predetermined angle range centering on the edge direction at the edge point. Voting means to perform,
Voting cell extracting means for extracting cells voted from the (ρ, θ) parameter space;
Diameter detection that obtains two sinusoidal substantially parallel curves continuous in the θ direction from the cell group extracted by the voting cell extracting means, and obtains the diameter of the circle to be searched from the interval in the ρ direction of the two curves. Means,
A circle detecting device comprising: a center position detecting means for obtaining a center position of a circle to be searched from a shape of an intermediate line equidistant from the two curves.
前記投票セル抽出手段は、前記(ρ,θ)パラメータ空間の投票値が所定範囲内にあるセルを抽出することを特徴とする請求項1記載の円検出装置。   2. The circle detecting device according to claim 1, wherein the voting cell extracting unit extracts a cell having a voting value in the (ρ, θ) parameter space within a predetermined range. 前記直径検出手段は、前記投票セル抽出手段により抽出されたセル群について、同一のθにおけるセル間のρ方向間隔を階級とするヒストグラムを作成し、度数が極大で、且つ、所定のしきい値以上となるρ方向間隔を直径として求めることを特徴とする請求項1又は2の何れか1つに記載の円検出装置。   The diameter detection means creates a histogram with the ρ direction interval between cells at the same θ as a class for the cell group extracted by the voting cell extraction means, and has a maximum frequency and a predetermined threshold value. The circle detection apparatus according to claim 1, wherein the ρ direction interval as described above is obtained as a diameter. 前記中心位置検出手段は、θが0度のときの前記中間線のρ値を前記中心位置のx座標とし、θが90度のときの前記中間線のρ値を前記中心位置のy座標とすることを特徴とする請求項1乃至3の何れか1項に記載の円検出装置。   The center position detecting means sets the ρ value of the intermediate line when θ is 0 degrees as the x coordinate of the center position, and the ρ value of the intermediate line when θ is 90 degrees as the y coordinate of the center position. The circle detection device according to claim 1, wherein: 前記中心位置検出手段は、前記中間線上の各点の座標(ρ,θ)を、点(a,b)を通る直線の式、a・cosθ+b・sinθ=ρに代入し、前記直線の式を満たすa,bの値を、前記中心位置の座標(a,b)として求めることを特徴とする請求項1乃至3の何れか1項に記載の円検出装置。   The center position detecting means substitutes the coordinates (ρ, θ) of each point on the intermediate line into an equation of a straight line passing through the point (a, b), a · cos θ + b · sin θ = ρ, and The circle detection device according to any one of claims 1 to 3, wherein the values of a and b to be satisfied are obtained as coordinates (a, b) of the center position.
JP2008300166A 2008-11-25 2008-11-25 Circle detector Expired - Fee Related JP5027783B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008300166A JP5027783B2 (en) 2008-11-25 2008-11-25 Circle detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008300166A JP5027783B2 (en) 2008-11-25 2008-11-25 Circle detector

Publications (2)

Publication Number Publication Date
JP2010128616A JP2010128616A (en) 2010-06-10
JP5027783B2 true JP5027783B2 (en) 2012-09-19

Family

ID=42328987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008300166A Expired - Fee Related JP5027783B2 (en) 2008-11-25 2008-11-25 Circle detector

Country Status (1)

Country Link
JP (1) JP5027783B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9053389B2 (en) 2012-12-03 2015-06-09 Analog Devices, Inc. Hough transform for circles
CN110414521A (en) * 2019-07-03 2019-11-05 安徽继远软件有限公司 Oil level gauge for transformer registration recognition methods in a kind of substation

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102155919A (en) * 2011-03-22 2011-08-17 黄晓华 Device for detecting cells with Hough transform
JP2012243051A (en) * 2011-05-19 2012-12-10 Fuji Heavy Ind Ltd Environment recognition device and environment recognition method
CN106204542B (en) * 2016-06-29 2019-04-19 上海晨兴希姆通电子科技有限公司 Visual identity method and system
CN108663376B (en) * 2018-07-24 2020-06-30 广西师范大学 Seamless steel tube quality detection device and detection method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2621810B2 (en) * 1994-09-28 1997-06-18 日本電気株式会社 Figure detection method and apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9053389B2 (en) 2012-12-03 2015-06-09 Analog Devices, Inc. Hough transform for circles
CN110414521A (en) * 2019-07-03 2019-11-05 安徽继远软件有限公司 Oil level gauge for transformer registration recognition methods in a kind of substation

Also Published As

Publication number Publication date
JP2010128616A (en) 2010-06-10

Similar Documents

Publication Publication Date Title
CN110210409B (en) Method and system for detecting form frame lines in form document
JP5027783B2 (en) Circle detector
CN106934803B (en) method and device for detecting surface defects of electronic device
CN106407924A (en) Binocular road identifying and detecting method based on pavement characteristics
CN102589435A (en) Efficient and accurate detection method of laser beam center under noise environment
TWI521448B (en) Vehicle identification system and method
CN102750531B (en) Method for detecting handwriting mark symbols for bill document positioning grids
CN115184380B (en) Method for detecting abnormity of welding spots of printed circuit board based on machine vision
CN104463129A (en) Fingerprint registration method and device
CN112750107A (en) Spherical workpiece identification method and system based on contour edge number fitting and convex hull processing
CN103310439A (en) Method for detecting maximally stable extremal region of image based on scale space
Pan et al. An efficient method for skew correction of license plate
CN115953399B (en) Industrial part structural defect detection method based on contour features and SVDD
CN105718929A (en) All-weather unknown environment high precision rapid circular object positioning method and system
CN105930813B (en) A method of detection composes a piece of writing this under any natural scene
JP4991278B2 (en) Image processing device
CN114266719A (en) Hough transform-based product detection method
JPH113421A (en) Method for detecting line segment
JPH11219435A (en) White line detector for automobile
JP2006163662A (en) Device and method for recognizing number of fingers
Shang et al. ROI extraction of palmprint images using modified Harris corner point detection algorithm
CN114708265B (en) High-speed rail motor train unit key part image recognition detection method and system
JP2004151815A (en) Method, device and program for extracting specific area, and recording medium recording this program
CN113706535B (en) Sheet metal part bending notch detection method and system based on image processing
JP2981383B2 (en) Position detection method

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100715

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110617

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120529

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120622

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150629

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees