JP5027624B2 - Image processing method and image processing apparatus - Google Patents

Image processing method and image processing apparatus Download PDF

Info

Publication number
JP5027624B2
JP5027624B2 JP2007297806A JP2007297806A JP5027624B2 JP 5027624 B2 JP5027624 B2 JP 5027624B2 JP 2007297806 A JP2007297806 A JP 2007297806A JP 2007297806 A JP2007297806 A JP 2007297806A JP 5027624 B2 JP5027624 B2 JP 5027624B2
Authority
JP
Japan
Prior art keywords
blood vessel
fundus
image
image processing
center
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007297806A
Other languages
Japanese (ja)
Other versions
JP2009119107A (en
Inventor
孝佳 鈴木
直 市橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kowa Co Ltd
Original Assignee
Kowa Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kowa Co Ltd filed Critical Kowa Co Ltd
Priority to JP2007297806A priority Critical patent/JP5027624B2/en
Publication of JP2009119107A publication Critical patent/JP2009119107A/en
Application granted granted Critical
Publication of JP5027624B2 publication Critical patent/JP5027624B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Eye Examination Apparatus (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)

Description

本発明は、画像処理方法および画像処理装置、特に被検眼眼底を眼底撮影光学系を介して所定の視差でステレオ撮影し、得られた左右の視差画像を用いて眼底血管の3次元形状測定処理を行う画像処理方法および画像処理装置に関するものである。   The present invention relates to an image processing method and an image processing apparatus, in particular, a stereo image of a subject's eye fundus with a predetermined parallax via a fundus imaging optical system, and a three-dimensional shape measurement process of a fundus blood vessel using the obtained parallax images. The present invention relates to an image processing method and an image processing apparatus.

従来より、緑内障の診断などの目的で、被検眼眼底の形状を把握するため、被検眼眼底の立体画像を撮影する眼底カメラなどの画像処理装置が知られている。たとえば、眼底カメラの単一の光学系内の絞りを光軸から左右(あるいは上下)に偏心した異なる位置に移動させ、それぞれの絞り位置で撮影を行うことにより被検眼眼底をステレオ撮影する装置が知られている(下記の特許文献1)。   2. Description of the Related Art Conventionally, for the purpose of diagnosing glaucoma, an image processing apparatus such as a fundus camera that captures a three-dimensional image of the fundus of the eye to be examined is known in order to grasp the shape of the fundus of the eye to be examined. For example, there is a device that stereo-photographs the fundus of the eye to be examined by moving the diaphragm in a single optical system of the fundus camera to different positions that are decentered from the optical axis to the left and right (or up and down). Known (Patent Document 1 below).

眼底を3次元測定する画像処理は、次のように行うことができる。たとえば、ステレオ撮影された左右(あるいは上下)の画像のパターンマッチングを行い、対応する像点、すなわち対応点を探索する。対応点が探索できれば、3角測量の原理を用いて対応点に共役な物点のxy軸(画像平面に平行な直交2軸)、およびz軸(光軸に平行な1軸)に沿う各座標を計算することができる。そして、充分な数の物点の3次元座標値を求めれば、被検眼眼底の3次元モデルを作成することができる。   Image processing for three-dimensional measurement of the fundus can be performed as follows. For example, pattern matching is performed on left and right (or upper and lower) images taken in stereo to search for corresponding image points, that is, corresponding points. If the corresponding points can be searched, each of the object points conjugated with the corresponding points using the principle of triangulation along the xy axes (two orthogonal axes parallel to the image plane) and the z axis (one axis parallel to the optical axis). Coordinates can be calculated. If a three-dimensional coordinate value of a sufficient number of object points is obtained, a three-dimensional model of the fundus of the eye to be examined can be created.

また、撮影した左右の視差画像を、各種方式による3Dモニタなどを用いて3次元表示(3D表示)する、すなわち、撮影した左右の視差画像をそれぞれ独立して観察者(検者)の左右両眼にそれぞれ観察させることにより、撮影した被検眼眼底の状態を立体視で観察させることができる。
特開平10−75932号公報
Further, the captured left and right parallax images are three-dimensionally displayed (3D display) using a 3D monitor or the like using various methods, that is, the captured left and right parallax images are independently displayed on both the left and right sides of the observer (examiner). By observing each of the eyes, the state of the photographed eye fundus can be observed stereoscopically.
JP-A-10-75932

眼底の形状のみならず、眼底血管の3次元形状を把握することは、診断上、有用であると考えられるが、従来の眼底部の3次元測定や立体構築技術では、眼底血管に特化した画像処理、たとえば、実際には管状の器官である眼底血管の形状や位置関係、太さなどといった特性をより際立つように表示したり、測定するのに役立つような特別な画像処理は殆ど行われていない。   It is thought that it is useful for diagnosis to grasp not only the shape of the fundus but also the three-dimensional shape of the fundus blood vessel, but the conventional three-dimensional measurement of the fundus and the three-dimensional construction technique have specialized in the fundus blood vessel. Image processing, for example, special image processing that is useful for displaying and measuring characteristics such as the shape, positional relationship, and thickness of the fundus blood vessels, which are actually tubular organs, is more prominent. Not.

通常ステレオ撮影した眼底画像より立体構築を行なった場合、眼底画像の中で血管部位と網膜部位を区別せずにまとめて立体構築をしているために、網膜の手前にあるはずの眼底血管が網膜に埋もれた状態で構築され、実態とはかなりかけ離れた結果となって検者に知覚される。よって眼底血管は単に眼底にある色の異なる凹凸のように表示されるだけで、複数の血管が前後に入り組んで這っている様子などははっきりと見てとることができない。   When 3D construction is performed from a fundus image that is usually taken in stereo, the 3D construction is performed without distinguishing the vascular part and the retinal part in the fundus image, so the fundus blood vessels that should be in front of the retina It is constructed in a state where it is buried in the retina, and the result is far from the actual situation and is perceived by the examiner. Therefore, the fundus blood vessels are simply displayed as irregularities of different colors on the fundus, and it is not possible to clearly see a state in which a plurality of blood vessels crawling in front and back.

例えば、実際には眼底血管は網膜から手前にあるにも関らず、単にステレオ撮影した眼底画像を立体表示するだけでは、血管が網膜に埋もれた状態で表示され、立体表示した画像を見ても実態とはかなりかけ離れた映像として検者に知覚される。従来の眼底の立体表示では、眼底血管は単に眼底にある色の異なる凹凸のように表示されるだけで、複数の血管が前後に入り組んで這っている様子などははっきりと見てとることができない。   For example, even though the fundus blood vessel is actually in front of the retina, simply displaying a stereoscopic image of the fundus image is displayed in a state in which the blood vessel is buried in the retina. However, it is perceived by the examiner as a video far from the actual situation. In the conventional 3D display of the fundus, the fundus blood vessels are simply displayed as irregularities of different colors on the fundus, and it is not possible to clearly see how the blood vessels are crawling in front and back. .

したがって、血管の3次元構造を誰にでも分かる形で画像化することが望まれているが、通常、この種の撮影に用いられる視差7度程度のステレオ撮影光学系では、血管の裏側は撮影できないため、撮影されたステレオ画像のみから、血管の横や後側までを含めボリュームレンダリングすることは原理的に不可能である、と考えられる。   Therefore, it is desired to image the three-dimensional structure of blood vessels in a form that can be understood by anyone. Usually, in a stereo photographing optical system with a parallax of about 7 degrees used for this kind of photographing, the back side of the blood vessels is photographed. Therefore, it is considered impossible in principle to perform volume rendering from only the captured stereo image to the side and back of the blood vessel.

本発明の課題は、上記の問題に鑑み、眼底部のステレオ撮影画像から、眼底血管の精密な立体モデルを形成し、眼科診断に有用な情報を出力できる画像処理方法および画像処理装置を提供することにある。   In view of the above problems, an object of the present invention is to provide an image processing method and an image processing apparatus capable of forming a precise three-dimensional model of a fundus blood vessel from a stereo photographed image of the fundus and outputting information useful for ophthalmologic diagnosis. There is.

上記課題を解決するため、本発明においては、被検眼眼底を眼底撮影光学系を介して所定の視差でステレオ撮影し、得られた左右の視差画像を用いて眼底血管の3次元形状測定処理を行う画像処理方法および画像処理装置において、
前記左右の視差画像から眼底血管の撮影部位に相当する血管画像を抽出する過程と、
前記左または右の血管画像のいずれかにおいて血管中心およびその血管中心近傍における血管径を測定する過程と、
前記左または右の血管画像における前記血管中心の周囲に血管中心近傍における血管径に応じて定めたブロックサイズを有する関心領域を設定する過程と、
前記右または左の他方の血管画像において、前記関心領域を含み前記関心領域より広い探索領域を設定し、この探索領域内で前記左または右の血管画像における前記血管中心と相関の高い対応点を前記右または左の他方の血管画像から探索する過程と、
前記左および右の血管画像における前記血管中心、およびその対応点から、前記血管中心の3次元座標値を算出する過程と、
前記左および右の血管画像から求めた複数の前記血管中心の3次元座標値、および当該血管中心近傍における血管径の各情報に基づき、眼底血管の3次元モデルをレンダリングする過程と、
を含む構成を採用した。
In order to solve the above problems, in the present invention, the fundus oculi blood vessel is stereo-photographed with a predetermined parallax via the fundus imaging optical system, and the fundus blood vessel three-dimensional shape measurement process is performed using the obtained parallax images. In an image processing method and an image processing apparatus to be performed,
A process of extracting a blood vessel image corresponding to the imaging region of the fundus blood vessel from the left and right parallax images;
A process of measuring a blood vessel center and a blood vessel diameter in the vicinity of the blood vessel center in either the left or right blood vessel image;
Setting a region of interest having a block size determined according to a blood vessel diameter in the vicinity of the blood vessel center around the blood vessel center in the left or right blood vessel image;
In the other right or left blood vessel image, a search region including the region of interest and wider than the region of interest is set, and a corresponding point having a high correlation with the blood vessel center in the left or right blood vessel image is set in the search region. Searching from the right or left other blood vessel image;
Calculating the three-dimensional coordinate value of the blood vessel center from the blood vessel center in the left and right blood vessel images and its corresponding points;
Rendering a three-dimensional model of the fundus blood vessel based on each of the plurality of three-dimensional coordinate values of the blood vessel center obtained from the left and right blood vessel images and information on the blood vessel diameter in the vicinity of the blood vessel center;
The structure including was adopted.

上記構成を採用することにより、本発明では撮影した血管に近似する形状の3次元眼底血管モデルをレンダリングすることができ、眼底部のステレオ撮影画像から、眼底血管の精密な立体モデルを形成し、眼科診断に有用な情報を出力できる、という優れた効果を得られる。   By adopting the above configuration, in the present invention, it is possible to render a three-dimensional fundus blood vessel model having a shape approximating a photographed blood vessel, and form a precise three-dimensional model of the fundus blood vessel from a stereo photographed image of the fundus, It is possible to obtain an excellent effect that information useful for ophthalmic diagnosis can be output.

以下、本発明を実施するための最良の形態の一例として、被検眼眼底をステレオ撮影光学系を介してステレオ撮影し、得られた撮影画像データに対して3次元測定処理、および3次元表示を行う眼科測定装置に関する実施例につき説明する。   Hereinafter, as an example of the best mode for carrying out the present invention, the fundus of the eye to be examined is photographed in stereo via a stereo photographing optical system, and three-dimensional measurement processing and three-dimensional display are performed on the obtained photographed image data. An embodiment relating to the ophthalmic measuring apparatus to be performed will be described.

<眼科測定装置の構成>
図1において、一点鎖線で囲まれて図示された眼底カメラ10には、赤外光の照明光を発光する観察ランプ11が球面ミラー12の曲率中心に配置され、観察ランプ11並びに球面ミラー12からの光は、コンデンサーレンズ14、撮影用光源である可視光のストロボ15、コンデンサーレンズ16を経て、全反射ミラー17に入射する。
<Configuration of ophthalmic measurement device>
In the fundus camera 10 illustrated in FIG. 1 surrounded by an alternate long and short dash line, an observation lamp 11 that emits infrared illumination light is disposed at the center of curvature of the spherical mirror 12. Is incident on the total reflection mirror 17 through the condenser lens 14, the visible light strobe 15 which is a photographing light source, and the condenser lens 16.

全反射ミラー17で反射した照明光は、照明絞り19を経てリレーレンズ22を通過し、穴あき全反射ミラー23で反射され、対物レンズ24を経て被検眼Eの前眼部(瞳)Epに入射する。照明絞り19は、照明光学系内に被検眼の前眼部Ep(瞳)とほぼ共役な位置に配置される。   The illumination light reflected by the total reflection mirror 17 passes through the relay lens 22 through the illumination diaphragm 19, is reflected by the perforated total reflection mirror 23, and passes through the objective lens 24 to the anterior eye part (pupil) Ep of the eye E to be examined. Incident. The illumination stop 19 is disposed in a position substantially conjugate with the anterior segment Ep (pupil) of the eye to be examined in the illumination optical system.

照明光で照明された眼底Erからの反射光は、対物レンズ24、穴あき全反射ミラー23の開口23a、2開口撮影絞り(2孔絞り)28の開口、合焦レンズ35、結像レンズ36、変倍レンズ38aを通過してリターンミラー39に入射する。リターンミラー39が図示の位置では、眼底からの反射光が眼底とほぼ共役な位置にあり赤外光に感度を有するCCD(撮像手段)40に入射し、眼底がCCD40により撮像され、またリターンミラー39が光路から離脱すると、眼底からの反射光が眼底とほぼ共役な位置にあり可視光に感度を有するCCD(撮像手段)41に入射し、眼底がCCD41により撮影される。   The reflected light from the fundus Er illuminated with the illumination light is transmitted through the objective lens 24, the aperture 23a of the perforated total reflection mirror 23, the aperture of the 2 aperture aperture stop (2 aperture aperture) 28, the focusing lens 35, and the imaging lens 36. Then, the light passes through the zoom lens 38a and enters the return mirror 39. When the return mirror 39 is in the position shown in the figure, the reflected light from the fundus is incident on a CCD (imaging means) 40 that is substantially conjugate with the fundus and is sensitive to infrared light, and the fundus is imaged by the CCD 40, and the return mirror. When 39 leaves the optical path, the reflected light from the fundus is incident on a CCD (imaging means) 41 that is at a position almost conjugate with the fundus and is sensitive to visible light, and the fundus is photographed by the CCD 41.

撮影絞り28には、図2(a)、(b)に示すように、矩形の2つの開口28a、28bが設けられている。撮影絞り28は、その開口28a、28bが光軸26に対して偏心し、かつ左右対称となるように、またそれぞれ被検眼前眼部(瞳)とほぼ共役な位置となるように配置される。   As shown in FIGS. 2A and 2B, the photographing aperture 28 is provided with two rectangular openings 28a and 28b. The photographing aperture 28 is disposed such that the openings 28a and 28b are decentered with respect to the optical axis 26 and are symmetric with respect to the optical axis 26, and are substantially conjugate with the anterior eye portion (pupil) of the eye to be examined. .

また、開口28a、28bの位置とその大きさは、穴あき全反射ミラー23の開口23aが、開口28a、28bの全体を含むように設定される。   The positions and sizes of the openings 28a and 28b are set so that the opening 23a of the perforated total reflection mirror 23 includes the entire openings 28a and 28b.

撮影絞り28の開口28a、28bは、それぞれガイド28c、28dに沿って移動されるシャッタ板29、30により開放されるか、あるいは閉じられる。   The apertures 28a and 28b of the photographing aperture 28 are opened or closed by shutter plates 29 and 30 moved along guides 28c and 28d, respectively.

この開閉のためにロータリーソレノイド31、32から構成される切替手段が設けられ、ロータリーソレノイド31、32が通電されない状態では、シャッタ板29、30は、図2(a)の位置にあり、開口28a、28bはそれぞれ開放される。   For this opening and closing, switching means comprising rotary solenoids 31 and 32 is provided. When the rotary solenoids 31 and 32 are not energized, the shutter plates 29 and 30 are at the position of FIG. , 28b are opened.

一方、ロータリーソレノイド31、32が通電されると、ロータリーソレノイド31、32のロッド31a、32aが回動し、ロッド31a、32aの他端がシャッタ板29、30に設けられたピン29a、30aと係合していることによりシャッタ板29、30がそれぞれ内側に移動して開口28a、28bが閉じられる。   On the other hand, when the rotary solenoids 31 and 32 are energized, the rods 31a and 32a of the rotary solenoids 31 and 32 rotate, and the other ends of the rods 31a and 32a are connected to pins 29a and 30a provided on the shutter plates 29 and 30, respectively. Engagement causes the shutter plates 29 and 30 to move inward to close the openings 28a and 28b.

なお、図2(a)、(b)の符号33は、ワーキングディスタンス用の指標(WD指標)を形成するための光ファイバーである。   Note that reference numeral 33 in FIGS. 2A and 2B denotes an optical fiber for forming a working distance index (WD index).

上記構成において、CCD40が撮像した眼底像は、CPUなどで構成される制御演算部60に入力され、その画像がモニタ62に動画像として表示される。検者は、モニタ62に表示される画像を見て、後述するようにアライメントやフォーカス調整などの操作を行うことができる。また、立体視専用ディスプレイとしてステレオモニタ63が設けられ、検者は、このステレオモニタ63を介して左右の画像を観察することにより眼底を立体視することができる。   In the above configuration, the fundus image captured by the CCD 40 is input to the control calculation unit 60 configured by a CPU or the like, and the image is displayed on the monitor 62 as a moving image. The examiner looks at the image displayed on the monitor 62 and can perform operations such as alignment and focus adjustment as will be described later. In addition, a stereo monitor 63 is provided as a stereoscopic display, and the examiner can observe the fundus in a stereoscopic manner by observing the left and right images through the stereo monitor 63.

ステレオモニタ63の表示方式には、偏光方向や表示色を左右のステレオ画像で異ならせる、左右の視野を分離する観察スコープを介して左右のステレオ画像を独立して観察させる、といった種々の方式があるが、本実施例のステレオモニタ63の表示方式は任意であり、左右の視差画像をそれぞれ独立して検者の左右の眼で観察させることができるように構成されたものであれば任意のステレオ表示方式を用いることができる。   The display method of the stereo monitor 63 includes various methods such that the polarization direction and display color are different between the left and right stereo images, and the left and right stereo images are independently observed through an observation scope that separates the left and right visual fields. However, the display method of the stereo monitor 63 according to the present embodiment is arbitrary, and any display device can be used as long as the left and right parallax images can be observed independently by the left and right eyes of the examiner. A stereo display system can be used.

また、CCD41により、シャッタスイッチ66を操作したときストロボ15で照明された眼底を静止画として撮影することができる。この眼底像は一旦高速なメモリ61に格納され、制御演算部60を介して外部記録装置としての低速なハードディスク(HDD)64で実現される記録手段に記録されたり、あるいはモニタ62、ステレオモニタ63に表示される。   Further, the fundus illuminated by the strobe 15 when the shutter switch 66 is operated can be photographed as a still image by the CCD 41. This fundus image is temporarily stored in the high-speed memory 61 and recorded on a recording means realized by a low-speed hard disk (HDD) 64 as an external recording device via the control calculation unit 60, or a monitor 62 and a stereo monitor 63. Is displayed.

また、キーボード67、マウス68などの入力手段が設けられ、これらの入力手段を介して、種々のデータが入力できるようになっている。   Also, input means such as a keyboard 67 and a mouse 68 are provided, and various data can be input via these input means.

また、眼底カメラには、CPUなどからなる制御部65が設けられ、この制御部65は、制御演算部60と接続されて互いに信号を交換するとともに、シャッタスイッチ66が操作されたときに、リターンミラー39を光路から離脱させるとともに、ストロボ15を適量な光量で発光させる。また、制御部65は、変倍レンズ38aなどの光路への挿脱を制御し、上述のロータリーソレノイド31、32の駆動を制御する。   Further, the fundus camera is provided with a control unit 65 composed of a CPU or the like. The control unit 65 is connected to the control calculation unit 60 and exchanges signals with each other. When the shutter switch 66 is operated, the control unit 65 returns. The mirror 39 is removed from the optical path, and the strobe 15 is caused to emit light with an appropriate amount of light. The control unit 65 controls insertion / removal of the variable magnification lens 38a and the like into the optical path, and controls driving of the rotary solenoids 31 and 32 described above.

また、眼底カメラには、操作部(操作パネル)69が設けられ、この操作部69で、撮影モードを選択できる。更に、撮影する被検眼が左眼か右眼かを検知する左右眼検知部70が設けられ、この左右眼検知部70で検知された左眼か右眼かの情報が制御部65に入力される。   In addition, the fundus camera is provided with an operation unit (operation panel) 69, and the operation unit 69 can select a photographing mode. Further, a left / right eye detection unit 70 for detecting whether the subject eye to be photographed is the left eye or the right eye is provided, and information on whether the left eye or the right eye is detected by the left / right eye detection unit 70 is input to the control unit 65. The

ここで、上記構成における被検眼眼底のステレオ撮影の概略につき説明する。   Here, an outline of stereo imaging of the fundus of the eye to be examined in the above configuration will be described.

最初、観察時には、観察ランプ11が点灯され、照明絞り19が光路に挿入される。ロータリーソレノイド31、32は図2(a)に示した位置に駆動され、それにより撮影絞り28の2つの開口28a、28bは開放した位置をとる。照明絞り19を介して赤外光で照射された被検眼眼底からの反射光は、撮影絞り28の開口28a、28bを介して観察用のCCD40に受像され、眼底像がモニタ62に表示される。   First, at the time of observation, the observation lamp 11 is turned on, and the illumination stop 19 is inserted into the optical path. The rotary solenoids 31 and 32 are driven to the positions shown in FIG. 2A, whereby the two openings 28a and 28b of the photographing aperture 28 are in the open positions. Reflected light from the fundus of the subject's eye irradiated with infrared light through the illumination diaphragm 19 is received by the observation CCD 40 through the openings 28a and 28b of the imaging diaphragm 28, and the fundus image is displayed on the monitor 62. .

この状態で、被検眼とのアライメント、ピント合せが行われるが、このとき、不図示の視標投影系などにより検者のアライメント、ピント合せ操作が支援される。   In this state, alignment and focusing with the eye to be examined are performed. At this time, alignment and focusing operations of the examiner are supported by a target projection system (not shown).

アライメント、ピント合せの後、シャッタ操作が完了したら、検者はシャッタスイッチ66を押下する。この操作に応じて制御部65は、ロータリーソレノイド31を駆動してシャッタ板29を右方に移動させ、撮影絞り28の左側の開口28aを閉じる。シャッタスイッチ66の操作と同期してストロボ15が発光し、リターンミラー39が光路から離脱するので、ストロボで照明された眼底からの光束は、撮影絞り28の開放している開口28bを通過してCCD41の受像面に入射し、立体視用の1枚目の眼底画像がCCD41により静止画像として撮像され、メモリ61に格納される。   When the shutter operation is completed after the alignment and focusing, the examiner presses the shutter switch 66. In response to this operation, the control unit 65 drives the rotary solenoid 31 to move the shutter plate 29 to the right, and closes the opening 28a on the left side of the photographing aperture 28. The strobe 15 emits light in synchronization with the operation of the shutter switch 66, and the return mirror 39 leaves the optical path, so that the light flux from the fundus illuminated by the strobe passes through the opening 28b of the photographing aperture 28 that is open. The light enters the image receiving surface of the CCD 41, and the first fundus image for stereoscopic viewing is captured as a still image by the CCD 41 and stored in the memory 61.

続いて、ロータリーソレノイド31、32を制御し、シャッタ板29、30を左方向に移動して、開口28aが開放し、開口28bが閉じたとき、ストロボ15を再度発光させる。このとき、開口28aを通過した立体視用の2枚目の眼底画像がCCD41により静止画像として撮像されて、メモリ61に格納される。   Subsequently, the rotary solenoids 31 and 32 are controlled to move the shutter plates 29 and 30 to the left, and when the opening 28a is opened and the opening 28b is closed, the strobe 15 is caused to emit light again. At this time, the second fundus image for stereoscopic viewing that has passed through the opening 28 a is captured as a still image by the CCD 41 and stored in the memory 61.

このようにして、1回のシャッタ操作で連続して左右2つの視点から撮影、すなわち、ステレオ撮影された2枚の視差画像は、開放している撮影絞りの開口の位置ないし左位置、右位置などの情報(少なくとも左右の視差画像のいずれかであるかを示す情報)を付して、メモリ61からHDD64に保存される。   In this way, two parallax images photographed from two left and right viewpoints in succession by one shutter operation, that is, stereo photography, are the positions of the aperture of the photographing aperture that is open, the left position, and the right position. (Information indicating at least one of the left and right parallax images) is stored in the HDD 64 from the memory 61.

<本実施例の画像処理>
以上のようにして保存された2枚の視差画像は、HDD64から読み出し、ステレオモニタ63を用いて表示し、検者は左右の眼でそれぞれ対応する一方の眼底画像を観察することにより眼底を立体視することができる。ただしこの立体観察画像は観察者の主観に頼る部分が多く、客観的に血管の走向を把握したいという要望には不十分である。
<Image processing in this embodiment>
The two parallax images stored as described above are read from the HDD 64 and displayed using the stereo monitor 63, and the examiner observes the corresponding one of the fundus images with the left and right eyes, thereby three-dimensionalizing the fundus. Can be seen. However, this stereoscopic observation image often depends on the subjectivity of the observer, and is insufficient for the desire to objectively grasp the blood vessel strike.

そこで、本実施例では、眼底を撮影した左右の視差画像から、眼底血管の部位を抽出し、この眼底血管部位の視差画像に基づき3次元の立体画像データとしてレンダリングし、あるいはさらに、この3次元の立体画像データをステレオモニタ63に表示できるようにする。   Therefore, in this embodiment, a portion of the fundus blood vessel is extracted from the left and right parallax images obtained by photographing the fundus, and is rendered as three-dimensional stereoscopic image data based on the parallax image of the fundus blood vessel region. 3D image data can be displayed on the stereo monitor 63.

この3次元の立体画像データのレンダリングにおいては、眼底血管をほぼ円形断面の管と仮定し、部位によってその直径と3次元空間上の座標が変化する立体画像データを生成する。この立体画像データの眼底血管の基本色は、例えば元の血管の視差画像から得た色データに基づいて決定するか、あるいは赤色系統などの適当な決めた色を用いる。もちろん、用いる色は単色ではなく、管としてレンダリングした血管が立体に見えるようにシェーディングなどを適宜施すことができる。   In the rendering of the three-dimensional stereoscopic image data, the fundus blood vessel is assumed to be a tube having a substantially circular cross section, and the stereoscopic image data in which the diameter and coordinates in the three-dimensional space change depending on the part is generated. The basic color of the fundus blood vessel in the stereoscopic image data is determined based on, for example, color data obtained from the original blood vessel parallax image, or an appropriately determined color such as a red color system is used. Of course, the color used is not a single color, and shading or the like can be applied as appropriate so that the blood vessel rendered as a tube looks three-dimensional.

また、3次元の立体画像データのステレオモニタ63に表示する場合には、3次元の立体としてレンダリングした眼底血管をXYZ3軸(3次元表示座標軸)の廻りに任意に回転させて表示できるようにする。このような制御の表示態様は、上記のように眼底血管をほぼ円形断面の管と仮定し、部位によってその直径と3次元空間上の座標が変化する立体画像データとして眼底血管をモデリングすることにより初めて可能となるもので、たとえば、撮影したそのままの眼底の視差画像(あるいは抽出した血管部位の画像)をステレオ表示するだけでは不可能である。   Further, when displaying the three-dimensional stereoscopic image data on the stereo monitor 63, the fundus blood vessel rendered as a three-dimensional solid can be arbitrarily rotated around the XYZ three axes (three-dimensional display coordinate axes). . The display mode of such control is based on the assumption that the fundus blood vessel is a tube having a substantially circular cross section as described above, and the fundus blood vessel is modeled as stereoscopic image data in which the diameter and coordinates in a three-dimensional space change depending on the part. This is possible for the first time. For example, it is impossible to simply display a stereo image of the captured fundus parallax (or the extracted image of the blood vessel site).

以下、本実施例における眼底血管の3次元の立体画像データのレンダリングにつき図3以降を参照して説明する。なお、特に図7は、本実施例における眼底血管の3次元の立体画像データのレンダリング処理の流れを示しており、以下ではこの図7の制御の流れに沿って眼底血管の3次元の立体画像データのレンダリング処理を説明する。なお、図7の制御手順は、例えば制御演算部60の実行するプログラムとして、制御演算部60のROM部や、HDD64に格納しておくことができる。   Hereinafter, rendering of the three-dimensional stereoscopic image data of the fundus blood vessel in the present embodiment will be described with reference to FIG. In particular, FIG. 7 shows the flow of rendering processing of the three-dimensional stereoscopic image data of the fundus blood vessel in the present embodiment, and hereinafter, the three-dimensional stereoscopic image of the fundus blood vessel along the control flow of FIG. Data rendering processing will be described. 7 can be stored in the ROM unit of the control calculation unit 60 or the HDD 64 as a program executed by the control calculation unit 60, for example.

図3の符号301、302は、図1および図2の構成により撮影し、HDD64に格納した被検眼眼底の視差画像(ステレオ眼底画像)を示している。   Reference numerals 301 and 302 in FIG. 3 indicate parallax images (stereo fundus images) of the fundus of the eye to be inspected and stored in the HDD 64 with the configuration in FIGS. 1 and 2.

本実施例では、これら視差画像301、302をHDD64から読み出し(図7ステップS101)、血管部位のみを図4に示すように抽出する(ステップS102)。血管部位の抽出は、たとえば、血管に特有の色特性、例えば明度および彩度が特定の範囲内にある領域を視差画像301、302から切り出すことにより行うことができる。   In this embodiment, these parallax images 301 and 302 are read from the HDD 64 (step S101 in FIG. 7), and only the blood vessel site is extracted as shown in FIG. 4 (step S102). Extraction of a blood vessel part can be performed by, for example, extracting a region having color characteristics peculiar to blood vessels, for example, lightness and saturation within a specific range from the parallax images 301 and 302.

図4の眼底血管の視差画像401、402において、符号403、および404は抽出された血管部位を示している。   In the parallax images 401 and 402 of the fundus blood vessel in FIG. 4, reference numerals 403 and 404 indicate the extracted blood vessel sites.

この段階で、後述の処理、特にステップS104〜S106を容易にするために図4の眼底血管の視差画像(血管画像)401、402を2値化することができる。たとえば、血管が占めている部位(図4の403、404)を「1」、他の部位を「0」とした2値画像データに変換する(ステップS103)。下記のステップS104〜S106の各処理は、このようにして得た2値画像に変換した2値血管画像データに対して行うものとする。   At this stage, the fundus blood vessel parallax images (blood vessel images) 401 and 402 of FIG. 4 can be binarized in order to facilitate the processing described later, particularly steps S104 to S106. For example, the image data is converted into binary image data in which the regions occupied by blood vessels (403 and 404 in FIG. 4) are “1” and the other regions are “0” (step S103). Each processing of the following steps S104 to S106 is performed on the binary blood vessel image data converted into the binary image thus obtained.

続いて、左右の視差画像401、402のいずれかを用いて(本実施例では、以下、左の視差画像402を用いる)、図5に示すように2値化した血管部位402の血管径(直径)を測定する(ステップS104)。図1の構成においては、所定の撮影距離において、所定の倍率で眼底を撮影することにより、画面上の距離を計れば血管径を測定することができる。   Subsequently, using one of the left and right parallax images 401 and 402 (in the present embodiment, the left parallax image 402 is used hereinafter), as shown in FIG. (Diameter) is measured (step S104). In the configuration of FIG. 1, the blood vessel diameter can be measured by measuring the distance on the screen by photographing the fundus at a predetermined magnification at a predetermined imaging distance.

血管径測定は、血管部位402の領域を画面上で所定の密度で順次探索して全ての血管部位の範囲に対して行なう。例えば数ドット(画素)のグリッドで画面全体を区分して得られるブロック内で血管が存在する場合には少なくとも1個所の血管径を測定する、といったアルゴリズムを用いることができる。   The blood vessel diameter measurement is performed on the range of all blood vessel sites by sequentially searching the region of the blood vessel site 402 at a predetermined density on the screen. For example, when a blood vessel exists in a block obtained by dividing the entire screen with a grid of several dots (pixels), an algorithm such as measuring at least one blood vessel diameter can be used.

図5の符号404は2値化された血管部位、その近傍ないし上に示した数字は、測定された血管径(たとえばmm単位)である。この血管径測定処理は左右の画像でそれぞれ独立して行なう。また、この段階で、図5のような様式でモニタ62に測定結果を表示してもよい。   Reference numeral 404 in FIG. 5 denotes a binarized blood vessel site, and its vicinity or the number shown above is a measured blood vessel diameter (for example, in mm). This blood vessel diameter measurement process is performed independently for the left and right images. At this stage, the measurement result may be displayed on the monitor 62 in the manner shown in FIG.

図5のように血管径を測定すると、血管が円形断面の管である、との仮定にたてば、測定した血管径の中心位置(血管点Bc)も特定することができる。したがって、血管径の測定が終了したら、血管の中心位置(血管点Bc)の測定を行う(ステップS105)。   When the blood vessel diameter is measured as shown in FIG. 5, if it is assumed that the blood vessel is a tube having a circular cross section, the center position (blood vessel point Bc) of the measured blood vessel diameter can also be specified. Therefore, when the measurement of the blood vessel diameter is completed, the central position of the blood vessel (blood vessel point Bc) is measured (step S105).

なお、上記の血管中心(血管点Bc)と血管径(Br:後述)の測定処理はあくまでも一例にすぎない。血管中心(血管点Bc)と血管径(Br)のいずれを先に測定してもかまわないし、必ずしも血管径を測定した直線上に血管中心が位置していなくても良く、ある血管中心の近傍の特定の範囲内でその付近の血管径を測定すればよい。   The measurement processing of the blood vessel center (blood vessel point Bc) and the blood vessel diameter (Br: described later) is merely an example. Either the blood vessel center (blood vessel point Bc) or the blood vessel diameter (Br) may be measured first, and the blood vessel center does not necessarily have to be located on the straight line where the blood vessel diameter is measured. The blood vessel diameter in the vicinity of the specific range may be measured.

また、後述のように、各血管中心(血管点Bc)の3次元座標値が測定され、この3次元座標値、血管径(Br)の集合3次元眼底血管モデルの重要な要素を構成することになる。したがって、どれだけの密度で各血管中心(血管点Bc)を画面中から取得しておくかは、レンダリングされる3次元眼底血管モデルの精度を決定する重要な要素となる。上記のように所定密度のグリッドで分割した領域から血管中心(血管点Bc)、ないし血管径(Br)を取得する方法は、血管中心(血管点Bc)の取得密度を容易に制御できる手法の一例である。   Further, as described later, the three-dimensional coordinate value of each blood vessel center (blood vessel point Bc) is measured, and this three-dimensional coordinate value and the blood vessel diameter (Br) constitute an important element of the three-dimensional fundus blood vessel model. become. Therefore, the density at which each blood vessel center (blood vessel point Bc) is acquired from the screen is an important factor that determines the accuracy of the rendered three-dimensional fundus blood vessel model. The method for acquiring the blood vessel center (blood vessel point Bc) or blood vessel diameter (Br) from the region divided by the grid having a predetermined density as described above is a method that can easily control the acquisition density of the blood vessel center (blood vessel point Bc). It is an example.

また、以上では、2値化した血管画像の一方(左視差画像402)のみを用いて血管中心(血管点Bc)、ないし血管径(Br)を取得しているが、特に血管径(Br)については、左右の視差画像(401、402)の両方について求め、算術平均を取るなどの手法も考えられる。これにより血管径の測定精度の向上を期待できる。ただし、その場合、まず、上記のように2値化した血管画像の一方(左視差画像402)のみを用いて血管中心(血管点Bc)とその近傍の血管径(Br)を取得し、各血管中心(血管点Bc)の対応する血管中心を後述の処理によって血管画像の他方(右視差画像401)中で求め、その対応する血管中心ないしその近傍の血管径(Br)を取得する、といった処理が必要になり、多少、処理が複雑化する。この点を考慮すると、血管がほぼ円形断面の管形状であるとの仮定に基づき、一方の視差画像のみから血管中心(血管点Bc)とその近傍の血管径(Br)を取得する上記の手法は、小さな処理負荷で高速に実行でき、しかも充分な測定精度を得られるものと考えられる。   In the above description, the blood vessel center (blood vessel point Bc) or blood vessel diameter (Br) is acquired using only one of the binarized blood vessel images (left parallax image 402). As for, a method of obtaining both the left and right parallax images (401, 402) and taking an arithmetic average is also conceivable. Thereby, the improvement of the measurement accuracy of the blood vessel diameter can be expected. However, in that case, first, the blood vessel center (blood vessel point Bc) and the blood vessel diameter (Br) in the vicinity thereof are obtained using only one of the blood vessel images binarized as described above (left parallax image 402), The blood vessel center corresponding to the blood vessel center (blood vessel point Bc) is obtained in the other blood vessel image (right parallax image 401) by the processing described later, and the corresponding blood vessel center or the blood vessel diameter (Br) in the vicinity thereof is acquired. Processing is required, and the processing is somewhat complicated. In consideration of this point, the above method for acquiring the blood vessel center (blood vessel point Bc) and the blood vessel diameter (Br) in the vicinity thereof from only one parallax image based on the assumption that the blood vessel has a substantially circular cross-sectional tube shape. Can be executed at a high speed with a small processing load, and sufficient measurement accuracy can be obtained.

図6は、撮影絞り28の開口28a、28b、に相当する右瞳位置Pa、左瞳位置Pb、と撮影された血管B1、B2…Bn、および右、左の視差画像の画面a、b上の血管の対応点Ia1、Ib1、Ia2、Ib2…Ian、Ibnの共役関係を示している。なお、図6は、説明を容易にするために、便宜上、物点側の共役面に右、左の視差画像の画面a、bを移動して示している。また、図示の理解を容易にするため、右、左の視差画像の画面a、bを一致させずに表示している。   FIG. 6 shows the right pupil position Pa and the left pupil position Pb corresponding to the apertures 28a and 28b of the imaging aperture 28, and the captured blood vessels B1, B2,... Bn, and the right and left parallax images on the screens a and b. , Corresponding points Ia1, Ib1, Ia2, Ib2,... Ian, Ibn. Note that FIG. 6 shows the screens a and b of the right and left parallax images moved to the conjugate plane on the object point side for the sake of convenience. Further, in order to facilitate understanding of the drawing, the right and left parallax images are displayed without matching the screens a and b.

図6の血管径Brは、図5(図7のステップS104)のようにして測定された血管径(直径)に相当する。この血管径Brが判れば、この部位における(血管を管と仮定した場合の)血管中心(血管点)Bcも計算できる。例えば、血管中心(血管点)Bcは、画面上の血管壁間最短距離の中点として求めることができる。   The blood vessel diameter Br in FIG. 6 corresponds to the blood vessel diameter (diameter) measured as shown in FIG. 5 (step S104 in FIG. 7). If this blood vessel diameter Br is known, the blood vessel center (blood vessel point) Bc (assuming the blood vessel is a tube) at this site can also be calculated. For example, the blood vessel center (blood vessel point) Bc can be obtained as the midpoint of the shortest distance between the blood vessel walls on the screen.

図6では、血管像を図示していないが、右、左の視差画像の画面a、b上において、直径の判明している血管像から、その中心として、対応点Ia1、Ib1、Ia2、Ib2…Ian、Ibnを求めることができる。対応点Ia1、Ib1、Ia2、Ib2…Ian、Ibnはそれぞれ血管B1、B2…Bnの血管中心(血管点)Bcにそれぞれ相当するものである。   In FIG. 6, although the blood vessel image is not shown, the corresponding points Ia1, Ib1, Ia2, Ib2 are used as the centers from the blood vessel images whose diameters are known on the screens a and b of the right and left parallax images. ... Ian and Ibn can be obtained. The corresponding points Ia1, Ib1, Ia2, Ib2,... Ian, Ibn correspond to the blood vessel centers (blood vessel points) Bc of the blood vessels B1, B2,.

以上のようにして、2枚の血管の視差画像に対して、血管径Br、および血管中心の血管点Bcをそれぞれ測定することができる。   As described above, the blood vessel diameter Br and the blood vessel point Bc at the blood vessel center can be measured for the parallax images of the two blood vessels.

さらに、以下のようにして、各血管点Bcにおける血管径Brと、各血管点Bcの3次元測定から求めた3次元座標情報から、眼底血管の3次元の立体画像データのレンダリングを行うことができる(図7のステップS106〜S111)。   Furthermore, rendering of three-dimensional stereoscopic image data of the fundus blood vessel from the blood vessel diameter Br at each blood vessel point Bc and the three-dimensional coordinate information obtained from the three-dimensional measurement of each blood vessel point Bc is performed as follows. (Steps S106 to S111 in FIG. 7).

まず、ステップS106〜S108、S109では、ステレオ撮影された眼底血管の左右の視差画像間の視差量算出、および深さ量(Z座標)算出処理を行う。この視差量算出処理は、次のようなものである。   First, in steps S106 to S108 and S109, a parallax amount calculation and a depth amount (Z coordinate) calculation process between the left and right parallax images of a stereo fundus blood vessel are performed. This parallax amount calculation processing is as follows.

まず、左視差画像中に視差量を求める注目点(上記のようにして求めた血管点Bc)を中心とした縦横n×n画素(図8の例では15×15画素)の関心領域を設定する(ステップS106、図8(a)、(b))。この処理は、上記のようにして2値化された血管画像データを用いて行えばよい。   First, in the left parallax image, a region of interest of vertical and horizontal n × n pixels (15 × 15 pixels in the example of FIG. 8) around the attention point (the blood vessel point Bc obtained as described above) for obtaining the parallax amount is set. (Step S106, FIGS. 8A and 8B). This process may be performed using the blood vessel image data binarized as described above.

ここで、n×n画素の関心領域のブロックサイズ(n)は、実際に撮影されている血管の直径に応じて決定する。たとえば、血管点Bcにおける血管径Brの5倍程度とする。   Here, the block size (n) of the region of interest of n × n pixels is determined according to the diameter of the blood vessel that is actually imaged. For example, it is about 5 times the blood vessel diameter Br at the blood vessel point Bc.

続いて、左視差画像の関心領域(図8(c))と最も相関が高い領域を右視差画像(図8(d))の中から探索する(ステップS107)。この探索処理以降の処理(ステップS107〜S110)は、2値化する前の血管画像データを用いて行う。   Subsequently, a region having the highest correlation with the region of interest (FIG. 8C) of the left parallax image is searched from the right parallax image (FIG. 8D) (step S107). The processes after the search process (steps S107 to S110) are performed using the blood vessel image data before binarization.

その際、画像全面から探索すると計算時間が掛かるので、探索する領域を(n+α)×(n+α)画素の範囲(図8の例ではα=5で20×20画素)に制限する。すなわち、左視差画像の視差量を求める点を中心として右視差画像中の(n+α)×(n+α)画素の範囲(探索領域)で探索を行う。   At that time, since it takes a calculation time to search from the entire image, the search area is limited to a range of (n + α) × (n + α) pixels (in the example of FIG. 8, α = 5 and 20 × 20 pixels). That is, the search is performed in the range (search area) of (n + α) × (n + α) pixels in the right parallax image with the point at which the parallax amount of the left parallax image is obtained as the center.

なお、眼底全体の3次元モデルを作成するような場合は、画面の端部からあらかじめ固定ブロックサイズの関心領域および探索領域を設定するような処理を行えば良いが、この手法によると、既にこの段階で血管の部位のみを抽出した血管画像を用いている本実施例においては、関心領域および探索領域の中心に血管が存在しなかったり、左右の関心領域および探索領域においてそれぞれ異なる奥行き情報を含む複数の血管がそれぞれ入ってしまう可能性が生じる。   When creating a three-dimensional model of the entire fundus, processing such as setting a fixed block size region of interest and a search region from the edge of the screen may be performed in advance. In this embodiment using a blood vessel image in which only a blood vessel part is extracted in stages, there is no blood vessel at the center of the region of interest and the search region, or different depth information is included in the left and right regions of interest and the search region. There is a possibility that a plurality of blood vessels may enter.

そこで、本実施例では、上記の関心領域および探索領域(図8(a))の選択は、左右いずれかの画像、例えば左画像のある関心点、つまりある血管点Bcを中心にして行うものとする。まず、左視差画像のある血管点Bcを中心に、上記のように血管径に基づきn×n画素の関心領域を設定し、右視差画像の血管点Bcに対応する座標を中心とする(n+α)×(n+α)画素の探索領域を設定し、ここで、左の関心領域および右の探索領域において血管が1本だけ含まれるかどうかを確認した上、もし2本以上の血管が左の関心領域および右の探索領域に含まれている場合には、n、あるいはさらにαの値を補正して関心領域および探索領域のブロックサイズを補正し、続いて、探索領域で探索を行う。   Therefore, in the present embodiment, the selection of the region of interest and the search region (FIG. 8A) is performed centering on a certain point of interest in the left or right image, for example, the left image, that is, a certain blood vessel point Bc. And First, a region of interest of n × n pixels is set based on the blood vessel diameter as described above around the blood vessel point Bc in the left parallax image, and the coordinates corresponding to the blood vessel point Bc in the right parallax image are set as the center (n + α ) × (n + α) pixel search area is set, and it is confirmed whether or not only one blood vessel is included in the left region of interest and the right search region, and if two or more blood vessels are in the left region of interest. If it is included in the region and the right search region, the block size of the region of interest and the search region is corrected by correcting the value of n or further α, and then the search is performed in the search region.

視差量を求める注目点は左視差画像の全ての血管点とし、各血管点について右視差画像中で最も相関が高くなる領域を探索する。このとき、1画素ごとに探索を行うのではなく、たとえば4画素程度の間隔を開けて探索を行ってもよい。   The attention points for obtaining the amount of parallax are all blood vessel points in the left parallax image, and the region having the highest correlation in the right parallax image is searched for each blood vessel point. At this time, instead of searching for each pixel, for example, the search may be performed with an interval of about 4 pixels.

そして、左視差画像中の関心領域に対して最も相関が高くなった右視差画像中の領域の位置のずれを視差(視差画素数)として求める。このようにして視差量は、各注目点(血管点)ごとに1つ算出される(ステップS108)。   Then, the position shift of the region in the right parallax image having the highest correlation with the region of interest in the left parallax image is obtained as parallax (number of parallax pixels). In this way, one amount of parallax is calculated for each point of interest (blood vessel point) (step S108).

上記の処理によって、特定の血管点の視差画素数、すなわち、特定の血管点が左右の視差画像で何画素ずれて撮影されているかを求めることができる。   By the above processing, it is possible to obtain the number of parallax pixels of a specific blood vessel point, that is, how many pixels the specific blood vessel point is captured in the left and right parallax images.

そして、光学系の倍率(ないし撮影距離)の条件を記録しておけば、撮影画面上の特定の画素、ないし特定の部位の視差画素数は、網膜(眼底)上における実際の視差量に変換することができる。   If the conditions of the magnification (or shooting distance) of the optical system are recorded, the number of parallax pixels on a specific pixel or specific part on the shooting screen is converted into the actual amount of parallax on the retina (fundus) can do.

特定の画素、ないし特定の部位の網膜(眼底)上における実際の視差量を求めれば、その特定の画素、ないし特定の部位の深さ(あるいは光軸に平行なz軸方向の座標値)を次のようにして求めることができる(ステップS109)。   If the actual amount of parallax on the retina (fundus) of a specific pixel or a specific part is obtained, the depth of the specific pixel or the specific part (or the coordinate value in the z-axis direction parallel to the optical axis) is obtained. It can be obtained as follows (step S109).

ここで、特定の撮影において、撮影距離、および、絞り28a、28bの位置で定まる視差角度が8度であるものとし、ある特定部位の眼底上における視差量が上記の演算(S162)により0.1mmと算出された場合、図9に示すように三角測量の原理を用いてこの視差量から特定部位の深さ量(奥行き、ないしz軸方向の座標)は、
深さ量=(視差量/2)/tan(視差角/2) (式1)
により、0.715mm(視差量0の部位からの相対量)と算出される。
Here, in specific imaging, the parallax angle determined by the imaging distance and the positions of the stops 28a and 28b is 8 degrees, and the parallax amount on the fundus of a specific site is set to 0. 0 by the above calculation (S162). When calculated as 1 mm, the depth of a specific part (depth or coordinates in the z-axis direction) is calculated from this parallax using the principle of triangulation as shown in FIG.
Depth amount = (parallax amount / 2) / tan (parallax angle / 2) (Formula 1)
Is calculated to be 0.715 mm (relative amount from a part having a parallax amount of 0).

なお、眼底カメラの場合、撮影距離は撮影前のアライメントにより、特定のワーキングディスタンスに調整されるため、絞り28a、28bの位置により定まる視差角度(上の例では8度)は一定であるものとして3次元測定処理を行うことができる。   In the case of a fundus camera, since the shooting distance is adjusted to a specific working distance by alignment before shooting, the parallax angle (8 degrees in the above example) determined by the positions of the stops 28a and 28b is assumed to be constant. A three-dimensional measurement process can be performed.

以上のようにして、ある血管点Bcの深さ量(Z座標)を求めることができる。さらに、図6の共役関係から明らかなように、右瞳位置Pa、左瞳位置Pb、被検眼焦点距離fなどが既知であることから、ある血管点Bcの左右の視差画像の画面上の対応点Ibn、Ianから、血管点BcのX座標、さらに同様にしてY座標も求めることができる(ステップS110)。   As described above, the depth amount (Z coordinate) of a certain blood vessel point Bc can be obtained. Further, as is clear from the conjugate relationship of FIG. 6, since the right pupil position Pa, the left pupil position Pb, the focal length f of the eye to be examined, and the like are known, the correspondence on the screen of the left and right parallax images of a certain blood vessel point Bc is known. From the points Ibn and Ian, the X coordinate of the blood vessel point Bc and the Y coordinate can be obtained in the same manner (step S110).

以上のようにして、撮影された血管を構成する多数の血管点Bcに関して、その位置を示す3次元座標値(x,y,z)と、その位置における血管径Brを算出することができる。   As described above, the three-dimensional coordinate values (x, y, z) indicating the positions of the many blood vessel points Bc constituting the photographed blood vessel and the blood vessel diameter Br at the positions can be calculated.

なお、下記の血管モデルのレンダリング処理の構成から明らかなように、血管径、3次元座標を求めるある血管点と、この血管点に隣接して同じ血管上で求める血管点は、その血管の直径Br(好ましくは半径Br/2)以上は離間しないような、または距離範囲内で求めるようにする。たとえば、ある血管点に続いて次の血管点を選択する場合は、その血管点における血管径Br(好ましくは半径Br/2)以内の範囲で次の血管点を選択するようにする。このようにして連続した管形状の3次元物体として眼底血管をレンダリングすることができる。なお、離間した球しか配置できないような密度でしか血管点を得られていない場合には、その間を円柱などの形状を用いて補完するようにしてもよい。   As is clear from the configuration of rendering processing of the following blood vessel model, a blood vessel diameter for obtaining a blood vessel diameter and three-dimensional coordinates and a blood vessel point obtained on the same blood vessel adjacent to the blood vessel point are the diameter of the blood vessel. More than Br (preferably radius Br / 2) is determined so as not to be separated or within a distance range. For example, when the next blood vessel point is selected following a certain blood vessel point, the next blood vessel point is selected within a range within the blood vessel diameter Br (preferably the radius Br / 2) at that blood vessel point. In this way, the fundus blood vessel can be rendered as a continuous tube-shaped three-dimensional object. If blood vessel points are obtained only at a density that allows only spaced spheres to be arranged, the space between them may be complemented using a shape such as a cylinder.

以上のようにして、血管点Bcの位置を示す3次元座標値(x,y,z)と、その位置における血管径Brに関する情報が全て揃えば、眼底血管の3次元モデルを作成することができる(ステップS111)。   As described above, if all of the three-dimensional coordinate value (x, y, z) indicating the position of the blood vessel point Bc and the information regarding the blood vessel diameter Br at the position are prepared, a three-dimensional model of the fundus blood vessel can be created. Yes (step S111).

この眼底血管の3次元モデルの作成においては、たとえば、3次元モデル空間の3次元座標(x,y,z)に、血管点Bcを配置し、血管点Bcを中心とし、血管径Brを直径とする球を配置する。この球を充分な数だけ3次元モデル空間に配置することができれば、撮影した血管に近似する形状の3次元眼底血管モデルをレンダリングすることができる。   In creating the three-dimensional model of the fundus blood vessel, for example, the blood vessel point Bc is arranged at the three-dimensional coordinates (x, y, z) in the three-dimensional model space, the blood vessel point Bc is the center, and the blood vessel diameter Br is the diameter. Place a sphere. If a sufficient number of the spheres can be arranged in the three-dimensional model space, a three-dimensional fundus blood vessel model having a shape approximating the photographed blood vessel can be rendered.

なお、離れた2つの球と球の間を連結して血管モデルをレンダリングする場合は、連結させるためのルールが必要である。このためには、たとえば、注目点の血管点と候補の血管点の間の距離が、血管径より短く、且つ2つの血管点の血管径の差が50%以内の場合には連結させる。この条件を満たさない血管点どうしは1本の血管と見なさずに連結させないようにする。また、血管の交点(分岐点)では、1本の血管の枝分かれの場合と、2本の血管の交差の場合と2種類存在する。したがって、血管画像の明るさ情報を用いて(2値化する前の血管画像(たとえば図4)の明度情報を参照する)、明るさが大きく異なる血管点どうしは連結させず、明るさが近いものを連結させるという条件を用いることで、2本の血管が重なっている場合でも対応することができる。   Note that when rendering a blood vessel model by connecting two spheres separated from each other, a rule for linking is necessary. For this purpose, for example, when the distance between the target blood vessel point and the candidate blood vessel point is shorter than the blood vessel diameter and the difference in blood vessel diameter between the two blood vessel points is 50% or less, the connection is made. Blood vessel points that do not satisfy this condition are not considered as one blood vessel and are not connected. There are two types of blood vessel intersections (branch points): one blood vessel branching and two blood vessel intersections. Therefore, using the brightness information of the blood vessel image (refer to the lightness information of the blood vessel image before binarization (for example, FIG. 4)), the blood vessel points having greatly different brightness are not connected and the brightness is close. By using the condition that the objects are connected, it is possible to cope with the case where two blood vessels overlap.

一旦、このような3次元眼底血管モデルをレンダリングした後は、視点情報を設定すればレイトレーシングなどの手法を用いて、上記光学系で行なった撮影位置に限定されることなく、任意の視点から見た3次元眼底血管モデルの形状をモニタ62に表示することができる。また、トラックボールやマウスなどの操作デバイスを用いて、視点を移動することにより、レンダリングした3次元眼底血管モデルを任意の回転軸で回転させたり、拡大縮小させたりすることができる。   Once such a 3D fundus blood vessel model has been rendered, once the viewpoint information is set, a method such as ray tracing can be used to set the viewpoint information from any viewpoint without being limited to the shooting position performed by the optical system. The shape of the viewed three-dimensional fundus blood vessel model can be displayed on the monitor 62. In addition, by moving the viewpoint using an operation device such as a trackball or a mouse, the rendered three-dimensional fundus blood vessel model can be rotated or enlarged / reduced with an arbitrary rotation axis.

さらに、このような表示は、ステレオモニタ63を用いて行うこともできる。その場合、検者の左眼に視認させる画像と右眼に視認させる画像について、それぞれ異なる視点情報を設定すれば、レイトレーシングなどの手法を用いて、ステレオ画像としてレンダリングした眼底血管モデルを表示することができる。もちろん、このステレオ表示の場合でも、トラックボールやマウスなどの操作デバイスを用いて、視点を移動することにより、レンダリングした3次元眼底血管モデルを任意の回転軸で回転させたり、拡大縮小させたりする表示制御を行うことができる。   Further, such display can be performed using the stereo monitor 63. In that case, if different viewpoint information is set for the image visually recognized by the examiner's left eye and the image visually recognized by the right eye, the fundus blood vessel model rendered as a stereo image is displayed using a method such as ray tracing. be able to. Of course, even in the case of this stereo display, the rendered three-dimensional fundus blood vessel model is rotated or enlarged / reduced by an arbitrary rotation axis by moving the viewpoint using an operation device such as a trackball or a mouse. Display control can be performed.

モニタ62、ステレオモニタ63などに表示するだけでなく、眼底血管モデルの表示情報は(カラー)プリンタなどを用いて記録出力することができる。   In addition to displaying on the monitor 62, the stereo monitor 63, etc., the display information of the fundus blood vessel model can be recorded and output using a (color) printer or the like.

また、レンダリングした眼底血管モデルの情報は、たとえば各血管点Bcの血管径Br、および各血管点Bcの3次元座標情報、あるいはさらに被検者の氏名や撮影日時などの書誌情報などを含むデータベースフォーマットなどのファイル形式でHDD64に格納したり、ネットワークインターフェースなどを介して外部装置(他の眼科測定装置やコンピュータなど)に送信することができる。   The rendered fundus blood vessel model information includes, for example, a blood vessel diameter Br of each blood vessel point Bc, three-dimensional coordinate information of each blood vessel point Bc, or bibliographic information such as a subject's name and photographing date / time. The file can be stored in the HDD 64 in a file format such as a format, or can be transmitted to an external device (such as another ophthalmic measurement device or a computer) via a network interface or the like.

本発明は、被検眼眼底をステレオ撮影光学系を介してステレオ撮影し、得られた撮影画像データに対して3次元測定処理あるいはさらに撮影画像の表示/記録処理を行う眼底カメラのような画像処理装置において実施することができる。   The present invention provides an image processing such as a fundus camera that performs stereo imaging of the fundus of a subject's eye via a stereo imaging optical system and performs three-dimensional measurement processing or further display / recording processing of the captured image on the obtained captured image data. It can be implemented in the device.

本発明を採用した画像処理装置として、眼底カメラの構成を示した説明図である。It is explanatory drawing which showed the structure of the retinal camera as an image processing apparatus which employ | adopted this invention. (a)は撮影絞りを撮影側から見たときの正面図、(b)は(a)のX−X’に沿った断面図である。(A) is a front view when the photographing aperture is viewed from the photographing side, and (b) is a cross-sectional view taken along X-X ′ of (a). 図1の装置で撮影された眼底の視差画像を示した説明図である。It is explanatory drawing which showed the parallax image of the fundus | photograph image | photographed with the apparatus of FIG. 図3の視差画像から抽出した血管画像を示した説明図である。It is explanatory drawing which showed the blood-vessel image extracted from the parallax image of FIG. 図4の血管画像から算出された血管径を示した説明図である。It is explanatory drawing which showed the blood vessel diameter calculated from the blood vessel image of FIG. 眼底血管、右、左の視差画像の画面上の血管の対応点の共役関係を示した説明図である。It is explanatory drawing which showed the conjugate relationship of the corresponding point of the blood vessel on the screen of a fundus blood vessel, and the right and left parallax images. 図1の装置における眼底血管の3次元の立体画像データのレンダリング処理を示したフローチャート図である。FIG. 3 is a flowchart showing rendering processing of three-dimensional stereoscopic image data of a fundus blood vessel in the apparatus of FIG. 1. 図1の装置における視差量測定処理の様子を示した説明図である。It is explanatory drawing which showed the mode of the parallax amount measurement process in the apparatus of FIG. 図1の装置における深さ量(z軸座標)測定の様子を示した説明図である。It is explanatory drawing which showed the mode of depth amount (z-axis coordinate) measurement in the apparatus of FIG.

符号の説明Explanation of symbols

10 眼底カメラ
24 対物レンズ
28 撮影絞り
28a、28b 開口
35 合焦レンズ
36 結像レンズ
62 モニタ
63 ステレオモニタ
Pa、Pb 瞳位置
B1、B2…Bn 血管
Bc 血管点
Br 血管径
DESCRIPTION OF SYMBOLS 10 Fundus camera 24 Objective lens 28 Imaging stop 28a, 28b Aperture 35 Focusing lens 36 Imaging lens 62 Monitor 63 Stereo monitor Pa, Pb Pupil position B1, B2 ... Bn Blood vessel Bc Blood vessel point Br Blood vessel diameter

Claims (4)

被検眼眼底を眼底撮影光学系を介して所定の視差でステレオ撮影し、得られた左右の視差画像を用いて眼底血管の3次元形状測定処理を行う画像処理方法において、
前記左右の視差画像から眼底血管の撮影部位に相当する血管画像を抽出する過程と、
前記左または右の血管画像のいずれかにおいて血管中心およびその血管中心近傍における血管径を測定する過程と、
前記左または右の血管画像における前記血管中心の周囲に血管中心近傍における血管径に応じて定めたブロックサイズを有する関心領域を設定する過程と、
前記右または左の他方の血管画像において、前記関心領域を含み前記関心領域より広い探索領域を設定し、この探索領域内で前記左または右の血管画像における前記血管中心と相関の高い対応点を前記右または左の他方の血管画像から探索する過程と、
前記左および右の血管画像における前記血管中心、およびその対応点から、前記血管中心の3次元座標値を算出する過程と、
前記左および右の血管画像から求めた複数の前記血管中心の3次元座標値、および当該血管中心近傍における血管径の各情報に基づき、眼底血管の3次元モデルをレンダリングする過程と、
を含むことを特徴とする画像処理方法。
In an image processing method of performing stereo imaging of a fundus of a subject's eye with a predetermined parallax via a fundus imaging optical system and performing three-dimensional shape measurement processing of a fundus blood vessel using the obtained left and right parallax images,
A process of extracting a blood vessel image corresponding to the imaging region of the fundus blood vessel from the left and right parallax images;
A process of measuring a blood vessel center and a blood vessel diameter in the vicinity of the blood vessel center in either the left or right blood vessel image;
Setting a region of interest having a block size determined according to a blood vessel diameter in the vicinity of the blood vessel center around the blood vessel center in the left or right blood vessel image;
In the other right or left blood vessel image, a search region including the region of interest and wider than the region of interest is set, and a corresponding point having a high correlation with the blood vessel center in the left or right blood vessel image is set in the search region. Searching from the right or left other blood vessel image;
Calculating the three-dimensional coordinate value of the blood vessel center from the blood vessel center in the left and right blood vessel images and its corresponding points;
Rendering a three-dimensional model of the fundus blood vessel based on each of the plurality of three-dimensional coordinate values of the blood vessel center obtained from the left and right blood vessel images and information on the blood vessel diameter in the vicinity of the blood vessel center;
An image processing method comprising:
請求項1に記載の画像処理方法において、前記探索領域に1本の血管のみが含まれるよう前記探索領域のサイズが決定されることを特徴とする画像処理方法。   The image processing method according to claim 1, wherein the size of the search area is determined so that only one blood vessel is included in the search area. 請求項1に記載の画像処理方法において、前記血管中心の3次元座標値を中心とし、当該血管中心近傍における血管径を直径とする球を3次元モデル空間に複数配置することにより眼底血管の3次元モデルをレンダリングすることを特徴とする画像処理方法。   2. The image processing method according to claim 1, wherein a plurality of spheres having a diameter of a blood vessel diameter in the vicinity of the blood vessel center around the three-dimensional coordinate value of the blood vessel center are arranged in a three-dimensional model space. An image processing method characterized by rendering a dimensional model. 請求項1〜3に記載の画像処理方法を実施するための眼底撮影光学系、および画像処理手段を含むことを特徴とする画像処理装置。   An image processing apparatus comprising: a fundus photographing optical system for performing the image processing method according to claim 1; and image processing means.
JP2007297806A 2007-11-16 2007-11-16 Image processing method and image processing apparatus Expired - Fee Related JP5027624B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007297806A JP5027624B2 (en) 2007-11-16 2007-11-16 Image processing method and image processing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007297806A JP5027624B2 (en) 2007-11-16 2007-11-16 Image processing method and image processing apparatus

Publications (2)

Publication Number Publication Date
JP2009119107A JP2009119107A (en) 2009-06-04
JP5027624B2 true JP5027624B2 (en) 2012-09-19

Family

ID=40811927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007297806A Expired - Fee Related JP5027624B2 (en) 2007-11-16 2007-11-16 Image processing method and image processing apparatus

Country Status (1)

Country Link
JP (1) JP5027624B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4850892B2 (en) * 2008-12-19 2012-01-11 キヤノン株式会社 Fundus image display apparatus, control method therefor, and computer program
JP5754878B2 (en) 2009-07-10 2015-07-29 キヤノン株式会社 Ophthalmic device and method of operating the same
JP7265392B2 (en) * 2019-03-25 2023-04-26 ソニー・オリンパスメディカルソリューションズ株式会社 MEDICAL IMAGE PROCESSING APPARATUS, MEDICAL OBSERVATION SYSTEM, IMAGE PROCESSING METHOD AND PROGRAM

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6104828A (en) * 1994-03-24 2000-08-15 Kabushiki Kaisha Topcon Ophthalmologic image processor
JP3424327B2 (en) * 1994-06-16 2003-07-07 朝日航洋株式会社 Fundus measurement device
JPH1139512A (en) * 1997-07-17 1999-02-12 Matsushita Electric Ind Co Ltd Graphic processing device and method
JP3798161B2 (en) * 1998-10-29 2006-07-19 株式会社ニデック Fundus measurement device and recording medium recording fundus measurement program
JP2000245700A (en) * 1999-03-01 2000-09-12 Nidek Co Ltd Instrument for measuring eyeground and recording medium for recording measurement program
JP2007097635A (en) * 2005-09-30 2007-04-19 Gifu Univ Image analysis system and image analysis program
JP4915737B2 (en) * 2007-03-13 2012-04-11 興和株式会社 Image analysis system and image analysis program

Also Published As

Publication number Publication date
JP2009119107A (en) 2009-06-04

Similar Documents

Publication Publication Date Title
JP4901201B2 (en) Fundus image processing method and apparatus
CN110638527B (en) Operation microscopic imaging system based on optical coherence tomography augmented reality
US7625088B2 (en) Image processing apparatus
EP1333306B1 (en) Method and system for stereoscopic microscopy
US7831136B2 (en) Opthalmic photography apparatus
JP7379704B2 (en) System and method for integrating visualization camera and optical coherence tomography
JP5284731B2 (en) Stereoscopic image display system
JP7404534B2 (en) Surgical applications using integrated visualization camera and optical coherence tomography
JP2014530697A (en) Multi-view fundus camera
CN105395163A (en) Ophthalmologic Apparatus And Ophthalmologic Apparatus Control Method
JP3798161B2 (en) Fundus measurement device and recording medium recording fundus measurement program
JP5027624B2 (en) Image processing method and image processing apparatus
JP2008200378A (en) Image processing system
JP4699064B2 (en) Stereoscopic fundus image processing method and processing apparatus
JP4901620B2 (en) Fundus examination image analysis system and fundus examination image analysis program
JP2023030184A (en) Image processing method, program, image processing device, and ophthalmologic system
JP5108650B2 (en) Image processing method and image processing apparatus
JP5160823B2 (en) Image processing device
JP5054579B2 (en) Image processing method and image processing apparatus
JP5314518B2 (en) Fundus image acquisition and display device
JPH05161607A (en) Stereoscopic measuring retinal camera
JP5754878B2 (en) Ophthalmic device and method of operating the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120612

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120622

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150629

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5027624

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees