JP5027005B2 - Method for adjusting assembled battery and method for adjusting assembled battery with controller - Google Patents

Method for adjusting assembled battery and method for adjusting assembled battery with controller Download PDF

Info

Publication number
JP5027005B2
JP5027005B2 JP2008042170A JP2008042170A JP5027005B2 JP 5027005 B2 JP5027005 B2 JP 5027005B2 JP 2008042170 A JP2008042170 A JP 2008042170A JP 2008042170 A JP2008042170 A JP 2008042170A JP 5027005 B2 JP5027005 B2 JP 5027005B2
Authority
JP
Japan
Prior art keywords
battery
charge amount
adjustment
batteries
secondary batteries
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008042170A
Other languages
Japanese (ja)
Other versions
JP2008311213A5 (en
JP2008311213A (en
Inventor
活徳 前川
素宜 奥村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Primearth EV Energy Co Ltd
Original Assignee
Primearth EV Energy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Primearth EV Energy Co Ltd filed Critical Primearth EV Energy Co Ltd
Priority to JP2008042170A priority Critical patent/JP5027005B2/en
Priority to US12/149,161 priority patent/US8143854B2/en
Publication of JP2008311213A publication Critical patent/JP2008311213A/en
Publication of JP2008311213A5 publication Critical patent/JP2008311213A5/ja
Application granted granted Critical
Publication of JP5027005B2 publication Critical patent/JP5027005B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)

Description

本発明は、組電池の調整方法、及びコントローラ付き組電池の調整方法に関する。   The present invention relates to a method for adjusting an assembled battery and a method for adjusting an assembled battery with a controller.

近年、ポータブル機器や携帯機器などの電源として、また、電気自動車やハイブリッド自動車などの電源として、様々な二次電池が提案されている。この二次電池を、電気自動車やハイブリッド自動車などの電源として用いる場合には、高出力が要求されるため、複数の二次電池を電気的に直列に接続して組電池を構成して用いている。   In recent years, various secondary batteries have been proposed as power sources for portable devices and portable devices, and as power sources for electric vehicles and hybrid vehicles. When this secondary battery is used as a power source for an electric vehicle or a hybrid vehicle, a high output is required. Therefore, a plurality of secondary batteries are electrically connected in series to form an assembled battery. Yes.

ところで、電気自動車やハイブリッド自動車などの電源として用いられる組電池は、その使用環境や、組電池を構成しているそれぞれの二次電池の特性差や、二次電池の構成部品の不具合等により、組電池を構成する二次電池の一部が、他の電池に比べて早期に寿命や故障に至ることがある。すると、組電池本来の性能を発揮することができなくなり、これにより、システム全体に異常が生じる虞もあった。このような不具合を解消すべく、他の電池に比べて早期に寿命や故障に至った二次電池を、正常な二次電池に交換することがある。この二次電池の交換方法に関しては、様々な方法が提案されている(例えば、特許文献1参照)。
特開2004−185915号
By the way, an assembled battery used as a power source of an electric vehicle, a hybrid vehicle, etc., due to its usage environment, a difference in characteristics of each secondary battery constituting the assembled battery, a defect in a component of the secondary battery, etc. A part of the secondary battery constituting the assembled battery may reach a life or failure earlier than other batteries. As a result, the original performance of the assembled battery cannot be exhibited, which may cause an abnormality in the entire system. In order to solve such a problem, a secondary battery that has reached the end of its life or failure earlier than other batteries may be replaced with a normal secondary battery. Various methods for replacing the secondary battery have been proposed (see, for example, Patent Document 1).
JP 2004-185915 A

特許文献1は、複数の二次電池を電気的に直列または並列に接続した組電池について、その一部の交換対象の二次電池を、交換用の新しい二次電池と交換する場合に、交換用の新しい二次電池の充電量を、交換対象でない他の電池(組電池を構成している正常な二次電池)の充電量よりも小さくして交換する方法が開示されている。具体的には、交換用の新しい二次電池の充電量が、交換対象でない他の電池の充電量よりも5〜20%小さくなるように、交換用の新しい二次電池を充電しておく。これにより、組電池の使用により充放電が繰り返し行われると、交換した新しい二次電池と他の電池との充電量(充電されている電気量)の差が小さくなるので、組電池を構成する二次電池の充電量を同等にできると記載されている。従って、組電池の性能を最大限に発揮させることができると記載されている。   Japanese Patent Laid-Open No. 2004-133867 discusses a battery pack in which a plurality of secondary batteries are electrically connected in series or in parallel when a part of replacement secondary batteries is replaced with a new secondary battery for replacement. A method for replacing a new secondary battery with a smaller charge amount than another battery (a normal secondary battery constituting the assembled battery) that is not a replacement object is disclosed. Specifically, the new secondary battery for replacement is charged so that the charge amount of the new secondary battery for replacement is 5 to 20% smaller than the charge amount of other batteries not to be replaced. As a result, when charging / discharging is repeatedly performed by using the assembled battery, the difference in the charged amount (charged amount of electricity) between the replaced new secondary battery and another battery is reduced, so that the assembled battery is configured. It is described that the charge amount of the secondary battery can be made equal. Therefore, it is described that the performance of the assembled battery can be maximized.

ところで、組電池を電気自動車やハイブリッド自動車などに搭載する場合、組電池を構成する各二次電池の電池電圧(起電力)や温度などを検知し、これらの値に基づいて充電量(充電されている電気量)を推定し、充電量が異常な二次電池の存在を監視する電池コントローラと組み合わせた、コントローラ付き組電池として搭載することがある。このコントローラ付き組電池に使用する組電池として、特許文献1の方法に基づいて二次電池を交換した組電池を用いると、電池コントローラにおいて、二次電池の充電量の異常が検出されてしまう虞があった。   By the way, when an assembled battery is mounted on an electric vehicle or a hybrid vehicle, the battery voltage (electromotive force) or temperature of each secondary battery constituting the assembled battery is detected, and the amount of charge (charged) is based on these values. It is sometimes installed as a battery pack with a controller in combination with a battery controller that estimates the presence of a secondary battery with an abnormal charge amount. When an assembled battery in which a secondary battery is replaced based on the method of Patent Document 1 is used as the assembled battery used for this assembled battery with a controller, the battery controller may detect an abnormality in the charge amount of the secondary battery. was there.

例えば、電池交換した時点で、交換した新しい二次電池の充電量が、他の電池の充電量に比べて小さ過ぎると、コントローラ付き組電池をハイブリッド自動車等に搭載した時点で、充電量の異常が検出されてしまう虞がある。これは、交換した新しい二次電池が、他の電池に比べて最大で20%も充電量が小さくされているため、他の電池に比べて電池電圧が小さくなりすぎている場合があるからである。   For example, if the charge amount of the new secondary battery is too small compared to the charge amount of other batteries at the time of battery replacement, the charge amount is abnormal when the assembled battery with a controller is mounted on a hybrid vehicle etc. May be detected. This is because the new secondary battery that has been replaced has a charge amount that is 20% lower than that of other batteries, so the battery voltage may be too low compared to other batteries. is there.

また、交換した新しい二次電池は、交換対象でない他の古い二次電池に比べて、充放電
特性が良好であるため、長期にわたる組電池の使用により充放電が繰り返し行われると、交換した新しい二次電池の充電量が他の二次電池の充電量に比べて大きくなることがある。すると、電池コントローラにおいて、交換した新しい二次電池の充電量が、他の電池の充電量に比べて大きくなりすぎていると判断され、充電量の異常が検出されてしまう場合がある。
In addition, the new secondary battery that has been replaced has better charge / discharge characteristics than other old secondary batteries that are not to be replaced. The charge amount of the secondary battery may be larger than the charge amount of other secondary batteries. Then, in the battery controller, it may be determined that the charged amount of the replaced new secondary battery is too large compared to the charged amount of the other batteries, and an abnormality in the charged amount may be detected.

このように、組電池を構成する二次電池の一部に、他の二次電池に比べて充電量が大きくなり過ぎた二次電池が含まれている場合には、例えば、この二次電池を放電させて、その充電量を他の二次電池の充電量に近づけるのが好ましい。これにより、組電池の性能を十分に発揮させることが可能となるからである。しかしながら、このようにして充電量を調整すると、充電量では問題なくなるが、今度は、放電させた二次電池の電池電圧の大きさが、他の二次電池の電池電圧に比べて小さくなりすぎてしまい(電池電圧差が正常範囲を超えてしまい)、電池コントローラにおいて、電池電圧が異常と判断されたり、電池電圧に基づいて推定された充電量が異常と判断されてしまう虞があった。   Thus, when a secondary battery whose charge amount is too large compared to other secondary batteries is included in a part of the secondary batteries constituting the assembled battery, for example, this secondary battery Is preferably discharged so that the amount of charge approaches that of other secondary batteries. This is because the performance of the assembled battery can be sufficiently exhibited. However, when the charge amount is adjusted in this way, there is no problem with the charge amount, but this time, the battery voltage of the discharged secondary battery becomes too small compared to the battery voltages of the other secondary batteries. (The battery voltage difference exceeds the normal range), the battery controller may determine that the battery voltage is abnormal, or the amount of charge estimated based on the battery voltage may be determined to be abnormal.

本発明は、かかる現状に鑑みてなされたものであって、組電池を構成する複数の二次電池の充電量の差を小さくすることができ、且つ、充電量の調整に伴う組電池を構成する二次電池の電池電圧差の拡大を抑制できる組電池の調整方法を提供することを目的とする。   The present invention has been made in view of the current situation, and can reduce the difference in the charge amount of a plurality of secondary batteries constituting the assembled battery, and constitutes an assembled battery accompanying adjustment of the charge amount It aims at providing the adjustment method of an assembled battery which can suppress the expansion of the battery voltage difference of the secondary battery to do.

その解決手段は、組電池をなす複数の二次電池を、調整前の充電量をもとに、充電量が大きい、1または複数の第1電池と、上記第1電池よりも充電量が小さい、残る1または複数の第2電池と、に分けたとき、上記組電池をなす上記第1電池と上記第2電池との充電量の差を小さくする組電池の調整方法であって、上記1または複数の第1電池をいずれも放電させて、それぞれの上記第1電池の充電量を、上記第2電池の充電量から定められる充電量範囲の範囲内にする、または、上記1または複数の上記第2電池を互いに等しい電気量だけ充電して、それぞれの上記第1電池の充電量を、充電後の上記第2電池の充電量から定められる充電量範囲の範囲内とする第1調整工程と、上記第1調整工程に続いて、上記第1電池及び上記第2電池のいずれをも、等しい電気量だけ放電または充電する第2調整工程と、を備える組電池の調整方法である。   The solution is that a plurality of secondary batteries forming an assembled battery are charged based on a charge amount before adjustment, one or a plurality of first batteries having a large charge amount, and a charge amount smaller than that of the first battery. When the battery is divided into one or a plurality of remaining second batteries, the battery pack adjustment method reduces the difference in charge between the first battery and the second battery forming the battery pack. Alternatively, the plurality of first batteries are all discharged so that the charge amount of each of the first batteries is within a charge amount range determined from the charge amount of the second battery, or the one or more A first adjustment step in which the second batteries are charged by an equal amount of electricity and the charge amount of each of the first batteries is within a charge amount range determined from the charge amount of the second battery after charging. And following the first adjustment step, the first battery and the second battery. Any also is an adjustment method of an assembled battery comprising a second adjusting step for discharging or charging by an equal quantity of electricity, the.

本発明の調整方法では、第1調整工程において、1または複数の第1電池をいずれも放電させて、それぞれの第1電池の充電量を、第2電池の充電量から定められる充電量範囲の範囲内とする。または、1または複数の第2電池を互いに等しい電気量だけ充電することで、第1電池の充電量をそれぞれ、充電後の第2電池の充電量から定められる充電量範囲の範囲内とする。   In the adjustment method of the present invention, in the first adjustment step, one or a plurality of first batteries are discharged, and the charge amount of each first battery is within a charge amount range determined from the charge amount of the second battery. Within range. Alternatively, the charge amount of the first battery is set within the charge amount range determined from the charge amount of the second battery after charging by charging one or more second batteries by the same amount of electricity.

ここで、第2電池の充電量から定められる充電量範囲としては、例えば、調整前のあるいは調整後の各第2電池の充電量のうち、最も小さい充電量から最も大きい充電量までの範囲が挙げられる。また、調整前のあるいは調整後の各第2電池の充電量の平均値(中央値、最頻値など)を中心として、その上下所定の幅を有する範囲が挙げられる。また、調整前あるいは調整後の第2電池の充電量の最小値を下限とした、または最大値を上限とした、所定の幅を有する範囲も挙げられる。なお、所定の幅の範囲を設定する場合、この組電池を用いたコントローラ付き組電池において、組電池を構成する各二次電池に許容される充電量の最大差(最も小さい充電量と最も大きい充電量との差の許容範囲)と同じ大きさ、または、これより小さな範囲とするのが好ましい。
従って、本発明の第1調整工程を行えば、組電池をなす第1電池と第2電池との充電量の差を小さくする調整ができる。
Here, the charge amount range determined from the charge amount of the second battery is, for example, a range from the smallest charge amount to the largest charge amount among the charge amounts of the respective second batteries before or after adjustment. Can be mentioned. Further, there is a range having a predetermined width above and below the average value (median value, mode value, etc.) of the charge amount of each second battery before or after adjustment. Moreover, the range which has the predetermined | prescribed width | variety which made the minimum value of the charge amount of the 2nd battery before adjustment after adjustment or the maximum value the upper limit was mentioned. In addition, when setting the range of the predetermined width, in the assembled battery with a controller using the assembled battery, the maximum difference in charge amount allowed for each secondary battery constituting the assembled battery (the smallest charge amount and the largest charge amount) It is preferable that the size is equal to or smaller than the allowable range of the difference from the charged amount.
Therefore, if the 1st adjustment process of this invention is performed, the adjustment which makes small the difference in the charge amount of the 1st battery which comprises an assembled battery, and a 2nd battery can be performed.

ところが、第1調整工程において、第1電池を放電させることにより、または、第2電池を充電することにより、第1電池と第2電池との電池電圧の差が拡大してしまう。これは、一般に、二次電池は、急速に放電または充電をすると、電池電圧が一時的に大きく低下または上昇し、その後徐々に戻る性質を有しているためである。
このため、第1調整工程のみを行った直後の組電池を、例えば、組電池を構成するそれぞれの二次電池の電池電圧を検知して、電池電圧に基づく特性値(電池電圧等から推定した充電量など)の異常を検出する電池コントローラを有するコントローラ付き組電池に用いた場合には、電池電圧の差が大きいために特性値(充電量など)が異常と判断されてしまうことがある。すなわち、上述の第1調整工程で、充電量を調整してもなお、当該組電池を適切に使用することができない場合がある。
However, in the first adjustment step, the battery voltage difference between the first battery and the second battery is increased by discharging the first battery or charging the second battery. This is because, in general, when a secondary battery is discharged or charged rapidly, the battery voltage temporarily decreases or increases temporarily and then gradually returns.
For this reason, the assembled battery immediately after performing only the 1st adjustment process detects the battery voltage of each secondary battery which comprises an assembled battery, for example, and estimated from the characteristic value (battery voltage etc. based on a battery voltage) When used in an assembled battery with a controller having a battery controller that detects an abnormality in charge amount or the like, a characteristic value (charge amount or the like) may be determined to be abnormal because of a large difference in battery voltage. That is, in some cases, the assembled battery cannot be used properly even if the charge amount is adjusted in the first adjustment step.

なお、急速な放電または充電により一時的に大きく低下または上昇した電池電圧は、その後、徐々に戻ってゆく。このため、第1電池を放電した後、または、第2電池を充電した後、これらの電池を数時間乃至数日間放置すれば、電池電圧の差が低減するので、上述の不具合を防止できるが、これでは作業効率が悪い。また、組電池(コントローラ付き組電池)、及びこれを搭載した車両等を速やかに使用したい場合に、その要求に応えることができない。   Note that the battery voltage that has temporarily decreased or increased temporarily due to rapid discharge or charging gradually returns thereafter. For this reason, after discharging the first battery or charging the second battery, if these batteries are left for several hours to several days, the difference in battery voltage is reduced, so that the above-mentioned problems can be prevented. This is a poor work efficiency. Further, when it is desired to quickly use an assembled battery (an assembled battery with a controller), a vehicle equipped with the assembled battery, and the like, the request cannot be met.

しかしながら、本発明の調整方法では、第1調整工程に続いて、第2調整工程において、第1電池及び第2電池のいずれをも、すなわち、組電池を構成する全ての二次電池を、等しい電気量だけ放電または充電する。これにより、第1電池と第2電池との電池電圧差を小さくすることができる。   However, in the adjustment method of the present invention, following the first adjustment step, in the second adjustment step, both the first battery and the second battery, that is, all the secondary batteries constituting the assembled battery are equal. Discharge or charge by the amount of electricity. Thereby, the battery voltage difference between the first battery and the second battery can be reduced.

これは、第1調整工程で放電させていない第2電池は、第2調整工程での放電により大幅に電池電圧が低下する一方、第1調整工程で既に放電させている第1電池は、第2調整工程で再び放電させても、第2電池に比べて電圧の低下量が小さいからである。
あるいは、これとは反対に、第1調整工程で充電を行っていない第1電池は、第2調整工程での充電により大幅に電池電圧が上昇する一方、第1調整工程で既に充電している第2電池は、第2調整工程において再び充電しても、第1電池に比べて電圧の上昇量が小さいからである。
This is because the battery voltage of the second battery not discharged in the first adjustment step is greatly reduced by the discharge in the second adjustment step, while the first battery already discharged in the first adjustment step is This is because the amount of decrease in voltage is smaller than that of the second battery even if the discharge is performed again in the second adjustment step.
Alternatively, on the contrary, the first battery that has not been charged in the first adjustment step has already been charged in the first adjustment step, while the battery voltage is significantly increased by charging in the second adjustment step. This is because even if the second battery is charged again in the second adjustment step, the amount of voltage increase is smaller than that of the first battery.

しかも、第2調整工程においては、第1電池及び第2電池のいずれをも等しい電気量だけ放電または充電するので、第1調整工程において調整した第1電池と第2電池との充電量の差異を、この第2調整工程で拡げてしまうことがない。   In addition, in the second adjustment step, both the first battery and the second battery are discharged or charged by the same amount of electricity, so the difference in charge amount between the first battery and the second battery adjusted in the first adjustment step. Is not expanded in the second adjustment step.

このように、本発明の調整方法によれば、第1調整工程において第1電池と第2電池との充電量の差を小さくし、第2調整工程において第1電池と第2電池との電池電圧差を小さくすることができる。従って、その後、当該組電池を上述の電池コントローラと組み合わせてコントローラ付き組電池とした場合に、電池電圧に基づく特性値(充電量など)の異常が検出されるがことなく、当該組電池を適切に使用することができるようになる。しかも、本発明の調整方法によれば、二次電池の電池電圧差を低減するために長時間放置する必要がないため、短時間で組電池の調整を完了させることができる。   As described above, according to the adjustment method of the present invention, the difference in the charge amount between the first battery and the second battery is reduced in the first adjustment step, and the battery between the first battery and the second battery in the second adjustment step. The voltage difference can be reduced. Therefore, after that, when the assembled battery is combined with the battery controller described above to form an assembled battery with a controller, the assembled battery is appropriately detected without detecting any abnormality in the characteristic value (charge amount, etc.) based on the battery voltage. Will be able to be used. Moreover, according to the adjustment method of the present invention, it is not necessary to leave the battery for a long time in order to reduce the battery voltage difference between the secondary batteries, so that the adjustment of the assembled battery can be completed in a short time.

なお、調整前の組電池を構成する各二次電池の充電量は、例えば、この組電池が組み付けられて使用されていたコントローラ付き組電池の電池コントローラで算出(推定)された充電量のデータを取得することで、把握することができる。
また、第1電池としては、例えば、過去に交換されたことにより、他の電池(第2電池)に比べて使用期間の短い(新しい)二次電池であって、充放電の繰り返しに伴い、他の電池に比べて充電量が大きくなっている二次電池を挙げることができる。また、他の電池(第2電池)に比べて使用中に晒される環境温度が低いなどために、他の電池に比べて劣化が小さく、充電量が大きくなっている二次電池(例えば、複数の二次電池を列置してなる組電池のうち、冷却されやすい両端付近に位置する二次電池)を挙げることもできる。
The charge amount of each secondary battery constituting the assembled battery before adjustment is, for example, the charge amount data calculated (estimated) by the battery controller of the assembled battery with a controller that has been assembled and used. Can be grasped by acquiring.
Moreover, as a 1st battery, it is a secondary battery with a short use period compared with another battery (2nd battery), for example by having exchanged in the past, and with repetition of charging / discharging, A secondary battery having a larger charge amount than other batteries can be given. In addition, secondary batteries (for example, a plurality of batteries) that are less deteriorated and have a larger charge amount than other batteries due to a lower environmental temperature during use than other batteries (second batteries). Among the assembled batteries formed by arranging the secondary batteries, the secondary batteries located near both ends that are easily cooled can be cited.

また、第1調整工程では、第1電池が複数ある場合には、これらを一斉に等しい電気量だけ放電させても良いし、それぞれを個別に(等しい電気量または異なる電気量)放電させても良い。また、複数の第1電池の一部を個別に、他を一斉に(等しい電気量または異なる電気量)放電させても良い。
同様に、第2電池が複数ある場合には、これらの充電についても、それぞれを等しい電気量だけ充電すれば良く、一斉に充電しても良いし、それぞれを個別に充電しても良い。また、複数の第2電池の一部を個別に、他を一斉に充電しても良い。
In the first adjustment step, when there are a plurality of first batteries, they may be discharged by the same amount of electricity all at once, or may be discharged individually (equal amount of electricity or different amounts of electricity). good. Alternatively, some of the plurality of first batteries may be discharged individually and others may be discharged simultaneously (equal amount of electricity or different amounts of electricity).
Similarly, when there are a plurality of second batteries, these charges may be charged by an equal amount of electricity, may be charged all at once, or may be charged individually. Moreover, you may charge a part of several 2nd battery separately, and others simultaneously.

さらに、上記の組電池の調整方法であって、前記第1調整工程は、前記1または複数の第1電池のうち少なくともいずれかの充電量と、前記第2電池のうち最も充電量の小さなものの充電量とを等しくする組電池の調整方法とすると良い。   Furthermore, in the adjustment method of the assembled battery described above, the first adjustment step includes a charge amount of at least one of the one or the plurality of first batteries and a charge amount of the smallest of the second batteries. It is preferable to use a method for adjusting the assembled battery so that the amount of charge is equal.

充電量が大きくなっていた第1電池は、第2電池に比べて、使用期間が短く劣化の程度が小さい等の性質を有しているため、上述のようにして充電量を調整しても、その後の使用(充放電)により、再び第2電池よりも充電量が大きくなることが多い。そこで、本発明の調整方法では、第1調整工程において、第1電池のうち少なくともいずれかの充電量と、第2電池のうち最も充電量の小さな二次電池の充電量とを等しくすることにした。これにより、少なくともその第1電池については、その後の使用(充放電)により、再びいずれの第2電池よりも充電量が大きくなってしまうまでの時間を、長く稼ぐことができる。これによって、より長期間にわたり、組電池を適正に使用することができる。   The first battery, which had a large amount of charge, has properties such as a shorter use period and less deterioration compared to the second battery, so even if the charge amount is adjusted as described above, In many cases, the amount of charge again becomes larger than that of the second battery due to subsequent use (charging and discharging). Therefore, in the adjustment method of the present invention, in the first adjustment step, the charge amount of at least one of the first batteries is made equal to the charge amount of the secondary battery having the smallest charge amount of the second batteries. did. Thereby, about at least the 1st battery, by subsequent use (charging / discharging), time until charge amount becomes larger than any 2nd battery again can be earned long. As a result, the assembled battery can be used properly over a longer period of time.

他の解決手段は、組電池をなす複数の二次電池を、調整前の充電量をもとに、充電量が大きい、1または複数の第1電池と、上記第1電池よりも充電量が小さい、残る1または複数の第2電池と、に分けたとき、上記組電池をなす上記第1電池と上記第2電池との充電量の差を小さくする組電池の調整方法であって、上記1または複数の第2電池をいずれも充電して、それぞれの上記第2電池の充電量を、上記第1電池の充電量から定められる充電量範囲の範囲内にする、または、上記1または複数の上記第1電池を互いに等しい電気量だけ放電させて、それぞれの上記第2電池の充電量を、放電後の上記第1電池の充電量から定められる充電量範囲の範囲内とする第1調整工程と、上記第1調整工程に続いて、上記第1電池及び上記第2電池のいずれをも、等しい電気量だけ放電または充電する第2調整工程と、を備える組電池の調整方法である。   In another solution, a plurality of secondary batteries constituting an assembled battery are charged based on a charge amount before adjustment, one or a plurality of first batteries having a large charge amount, and a charge amount larger than that of the first battery. An assembled battery adjustment method for reducing a difference in charge amount between the first battery and the second battery constituting the assembled battery when divided into a small remaining one or a plurality of second batteries, Either one or a plurality of second batteries are charged, and the charge amount of each of the second batteries is set within a charge amount range determined from the charge amount of the first battery, or one or more of the above-described one or more The first battery is discharged by an equal amount of electricity, and the charge amount of each of the second batteries is set within a charge amount range determined from the charge amount of the first battery after discharge. Following the process and the first adjusting process, the first battery and the second battery. Any also is an adjustment method of an assembled battery comprising a second adjusting step for discharging or charging by an equal quantity of electricity, the.

本発明の調整方法では、第1調整工程において、1または複数の第2電池をいずれも充電して、それぞれの第2電池の充電量を、第1電池の充電量から定められる充電量範囲の範囲内にする。または、1または複数の第1電池を互いに等しい電気量だけ放電させて、それぞれの第2電池の充電量を、放電後の第1電池の充電量から定められる充電量範囲の範囲内にする。   In the adjustment method of the present invention, in the first adjustment step, one or a plurality of second batteries are charged, and the charge amount of each second battery is within a charge amount range determined from the charge amount of the first battery. Within range. Alternatively, one or a plurality of first batteries are discharged by an equal amount of electricity, and the charge amount of each second battery is set within a charge amount range determined from the charge amount of the first battery after discharge.

ここで、第1電池の充電量から定められる充電量範囲としては、例えば、調整前のあるいは調整後の各第1電池の充電量のうち、最も小さい充電量から最も大きい充電量までの範囲が挙げられる。また、調整前のあるいは調整後の各第1電池の充電量の平均値(中央値、最頻値など)を中心として、その上下所定の幅を有する範囲が挙げられる。また、調整前あるいは調整後の第1電池の充電量の最小値を下限とした、または最大値を上限とした、所定の幅を有する範囲も挙げられる。なお、所定の幅の範囲を設定する場合、この組電池を用いたコントローラ付き組電池において、組電池を構成する各二次電池に許容される充電量の最大差(最も小さい充電量と最も大きい充電量との差の許容範囲)と同じ大きさ、または、これより小さな範囲とするのが好ましい。
従って、本発明の第1調整工程を行えば、組電池をなす第1電池と第2電池との充電量の差を小さくする調整ができる。
Here, the charge amount range determined from the charge amount of the first battery is, for example, a range from the smallest charge amount to the largest charge amount among the charge amounts of the first batteries before or after adjustment. Can be mentioned. Further, there is a range having a predetermined width above and below the average value (median value, mode value, etc.) of the charge amount of each first battery before or after adjustment. Moreover, the range which has the predetermined | prescribed width | variety which made the minimum value of the charge amount of the 1st battery before adjustment after adjustment or the maximum value the upper limit was mentioned. In addition, when setting the range of the predetermined width, in the assembled battery with a controller using the assembled battery, the maximum difference in charge amount allowed for each secondary battery constituting the assembled battery (the smallest charge amount and the largest charge amount) It is preferable that the size is equal to or smaller than the allowable range of the difference from the charged amount.
Therefore, if the 1st adjustment process of this invention is performed, the adjustment which makes small the difference in the charge amount of the 1st battery which comprises an assembled battery, and a 2nd battery can be performed.

ところが、第1調整工程において、第2電池を充電することにより、または、第1電池を放電させることにより、第1電池と第2電池との電池電圧の差がむしろ拡大してしまう。
これに対し、本発明の調整方法では、第1調整工程に続いて、第2調整工程において、第1電池及び第2電池のいずれをも、すなわち、組電池を構成する全ての二次電池を、等しい電気量だけ放電または充電する。これにより、第1電池と第2電池との電池電圧の差を小さくすることができる。しかも、第2調整工程においては、第1電池及び第2電池のいずれをも等しい電気量だけ放電または充電するので、第1調整工程において調整した第1電池と第2電池との充電量の差異を、この第2調整工程で拡げてしまうことがない。
However, in the first adjustment step, charging the second battery or discharging the first battery rather increases the difference in battery voltage between the first battery and the second battery.
On the other hand, in the adjustment method of the present invention, following the first adjustment step, in the second adjustment step, both the first battery and the second battery, that is, all the secondary batteries constituting the assembled battery are treated. Discharge or charge by an equal amount of electricity. Thereby, the difference of the battery voltage of a 1st battery and a 2nd battery can be made small. In addition, in the second adjustment step, both the first battery and the second battery are discharged or charged by the same amount of electricity, so the difference in charge amount between the first battery and the second battery adjusted in the first adjustment step. Is not expanded in the second adjustment step.

このように、本発明の調整方法によれば、第1調整工程において第1電池と第2電池との充電量の差を小さくし、第2調整工程において第1電池と第2電池との電池電圧差を小さくすることができる。従って、その後、当該組電池を前述の電池コントローラと組み合わせてコントローラ付き組電池とした場合に、電池電圧に基づく特性値(充電量など)の異常が検出されることがなく、当該組電池を適切に使用することができるようになる。しかも、本発明の調整方法によれば、二次電池の電池電圧差を低減するために長時間放置する必要がないため、短時間で組電池の調整を完了させることができる。   As described above, according to the adjustment method of the present invention, the difference in the charge amount between the first battery and the second battery is reduced in the first adjustment step, and the battery between the first battery and the second battery in the second adjustment step. The voltage difference can be reduced. Therefore, after that, when the assembled battery is combined with the battery controller described above to form an assembled battery with a controller, an abnormality in a characteristic value (charge amount, etc.) based on the battery voltage is not detected, and the assembled battery is appropriately Will be able to be used. Moreover, according to the adjustment method of the present invention, it is not necessary to leave the battery for a long time in order to reduce the battery voltage difference between the secondary batteries, so that the adjustment of the assembled battery can be completed in a short time.

なお、第1調整工程では、第2電池が複数ある場合、これを一斉に等しい電気量だけ充電しても良いし、それぞれを個別に(等しい電気量または異なる電気量)充電しても良いし、一部を個別に他を一斉に(等しい電気量または異なる電気量)充電しても良い。同様に、複数の第1電池の放電については、それぞれを等しい電気量だけ放電させれば良く、これらを一斉に放電させても良いし、それぞれを個別に放電させても良いし、一部を個別に他を一斉に放電させても良い。   In the first adjustment step, when there are a plurality of second batteries, they may be charged by the same amount of electricity all at once, or may be charged individually (equal amount of electricity or different amounts of electricity). , Some of them may be charged individually (the same amount of electricity or different amounts of electricity). Similarly, as for the discharge of the plurality of first batteries, each may be discharged by an equal amount of electricity, these may be discharged all at once, each may be discharged individually, or some of them may be discharged. Others may be discharged simultaneously.

さらに、上記の組電池の調整方法であって、前記第1調整工程は、前記1または複数の第2電池のうち少なくともいずれかの充電量と、前記第1電池のうち最も充電量の大きなものの充電量とを等しくする組電池の調整方法とすると良い。   Furthermore, in the battery pack adjustment method described above, the first adjustment step includes a charge amount of at least one of the one or the plurality of second batteries and a charge amount of the largest of the first batteries. It is preferable to use a method for adjusting the assembled battery so that the amount of charge is equal.

充電量が小さくなっていた第2電池は、第1電池に比べて、劣化の程度が大きい等の性質を有しているため、充電量を調整しても、その後の使用(充放電)により、再び第1電池よりも充電量が小さくなることが多い。そこで、本発明の調整方法では、第1調整工程において、第2電池のうち少なくともいずれかの充電量と、第1電池のうち最も充電量の大きなものの充電量とを等しくすることにした。これにより、少なくともその第2電池については、その後の使用(充放電)により、再び他の二次電池(第2電池)のいずれもより充電量が小さくなってしまうまでの時間を、長く稼ぐことができる。これによって、より長期間にわたり、組電池を適正に使用することができる。   The second battery, which had a small amount of charge, has properties such as a greater degree of deterioration than the first battery. Therefore, even after adjusting the charge amount, In many cases, the charge amount is smaller than that of the first battery again. Therefore, in the adjustment method of the present invention, in the first adjustment step, the charge amount of at least one of the second batteries is made equal to the charge amount of the first battery having the largest charge amount. As a result, at least for the second battery, the time until the charge amount of any other secondary battery (second battery) becomes smaller again is increased by subsequent use (charge / discharge). Can do. As a result, the assembled battery can be used properly over a longer period of time.

他の解決手段は、組電池をなす複数の二次電池を、調整前の充電量をもとに、充電量が大きい、1または複数の第1電池と、上記第1電池よりも充電量が小さい、残る1または複数の第2電池と、に分けたとき、上記組電池をなす上記第1電池と上記第2電池との充電量の差を小さくする組電池の調整方法であって、上記1または複数の第2電池を互いに等しい電気量だけ放電させる第2電池の調整工程と、上記1または複数の第1電池を、いずれも放電させる第1電池の調整工程であって、上記第1電池の充電量を、それぞれ上記第2電池の調整工程で放電させた後の上記第2電池の充電量から定められる充電量範囲の範囲内とする第1電池の調整工程と、を備える組電池の調整方法である。   In another solution, a plurality of secondary batteries constituting an assembled battery are charged based on a charge amount before adjustment, one or a plurality of first batteries having a large charge amount, and a charge amount larger than that of the first battery. An assembled battery adjustment method for reducing a difference in charge amount between the first battery and the second battery constituting the assembled battery when divided into a small remaining one or a plurality of second batteries, A step of adjusting a second battery that discharges one or a plurality of second batteries by an equal amount of electricity, and a step of adjusting a first battery that discharges all of the one or more first batteries. An assembled battery comprising: a first battery adjustment step in which a charge amount of the battery is within a charge amount range determined from a charge amount of the second battery after being discharged in the adjustment step of the second battery, respectively. This is the adjustment method.

本発明の調整方法は、1または複数の第2電池を互いに等しい電気量だけ放電させる第2電池の調整工程と、1または複数の第1電池をいずれも放電させて、第1電池の充電量を、それぞれ第2電池の調整工程で放電させた後の第2電池の充電量から定められる充電量範囲の範囲内とする第1電池の調整工程と、を備えている。このように、第1電池及び第2電池(組電池を構成する全ての二次電池)のいずれについても放電させると共に、第1電池の充電量を所定の充電量範囲内に収めることで、第1電池と第2電池との充電量の差を小さくすることができ、且つ、充電量の調整に伴う第1電池と第2電池との電池電圧差の拡大を抑制することができる。   The adjustment method of the present invention includes a second battery adjustment step of discharging one or a plurality of second batteries by an equal amount of electricity to each other, and discharging one or a plurality of first batteries to charge the first battery. Are adjusted in the range of the charge amount determined from the charge amount of the second battery after being discharged in the adjustment step of the second battery, respectively. As described above, by discharging both the first battery and the second battery (all the secondary batteries constituting the assembled battery) and keeping the charge amount of the first battery within a predetermined charge amount range, The difference in the charge amount between the first battery and the second battery can be reduced, and the increase in the battery voltage difference between the first battery and the second battery accompanying the adjustment of the charge amount can be suppressed.

なお、第1電池の調整工程と第2電池の調整工程とは、この順序で行っても良いし、逆の順序で行っても良いし、同時に独立して別々に行っても良い。
但し、第1電池の調整工程を、第2電池の調整工程よりも先に、または同時に行う場合には、第2電池の調整工程で予定している第2電池の放電の電気量を考慮して、それぞれの第1電池の放電電気量(目標とする充電量)を設定すると良い。
The first battery adjustment step and the second battery adjustment step may be performed in this order, may be performed in the reverse order, or may be performed independently and separately.
However, when the adjustment process of the first battery is performed prior to or simultaneously with the adjustment process of the second battery, the amount of electric discharge of the second battery scheduled in the adjustment process of the second battery is taken into consideration. Thus, it is preferable to set the discharge electricity amount (target charge amount) of each first battery.

他の解決手段は、組電池をなす複数の二次電池を、調整前の充電量をもとに、充電量が大きい、1または複数の第1電池と、上記第1電池よりも充電量が小さい、残る1または複数の第2電池と、に分けたとき、上記組電池をなす上記第1電池と上記第2電池との充電量の差を小さくする組電池の調整方法であって、上記1または複数の第2電池を互いに等しい電気量だけ充電する第2電池の調整工程と、上記1または複数の第1電池を、いずれも充電する第1電池の調整工程であって、上記第1電池の充電量を、それぞれ上記第2電池の調整工程で充電した後の上記第2電池の充電量から定められる充電量範囲の範囲内とする第1電池の調整工程と、を備える組電池の調整方法である。   In another solution, a plurality of secondary batteries constituting an assembled battery are charged based on a charge amount before adjustment, one or a plurality of first batteries having a large charge amount, and a charge amount larger than that of the first battery. An assembled battery adjustment method for reducing a difference in charge amount between the first battery and the second battery constituting the assembled battery when divided into a small remaining one or a plurality of second batteries, A step of adjusting a second battery for charging one or a plurality of second batteries by an equal amount of electricity, and a step of adjusting a first battery for charging all of the one or a plurality of first batteries, wherein the first An adjustment step of the first battery, wherein the charge amount of the battery is within a charge amount range determined from the charge amount of the second battery after charging in the adjustment step of the second battery, respectively. It is an adjustment method.

本発明の調整方法は、1または複数の第2電池を互いに等しい電気量だけ充電する第2電池の調整工程と、1または複数の第1電池をいずれも充電して、第1電池の充電量を、それぞれ、第2電池の調整工程で充電した後の第2電池の充電量から定められる充電量範囲の範囲内とする第1電池の調整工程と、を備えている。このように、第1電池及び第2電池(組電池を構成する全ての二次電池)のいずれについても充電すると共に、第1電池の充電量を所定の充電量範囲内に収めることで、第1電池と第2電池との充電量の差を小さくすることができ、且つ、充電量の調整に伴う第1電池と第2電池との電池電圧差の拡大を抑制することができる。   The adjustment method of the present invention includes a second battery adjustment step of charging one or a plurality of second batteries by an equal amount of electricity and a charge amount of the first battery by charging both of the one or more first batteries. Are adjusted in the range of the charge amount determined from the charge amount of the second battery after being charged in the adjustment step of the second battery, respectively. In this way, by charging both the first battery and the second battery (all the secondary batteries constituting the assembled battery) and keeping the charge amount of the first battery within a predetermined charge amount range, The difference in the charge amount between the first battery and the second battery can be reduced, and the increase in the battery voltage difference between the first battery and the second battery accompanying the adjustment of the charge amount can be suppressed.

なお、第1電池の調整工程と第2電池の調整工程とは、この順序で行っても良いし、逆の順序で行っても良いし、同時に独立して別々に行っても良い。
但し、第1電池の調整工程を、第2電池の調整工程よりも先に、または同時に行う場合には、第2電池の調整工程で予定している第2電池の充電電気量を考慮して、それぞれの第1電池の充電電気量(目標とする充電量)を設定すると良い。
The first battery adjustment step and the second battery adjustment step may be performed in this order, may be performed in the reverse order, or may be performed independently and separately.
However, when the adjustment process of the first battery is performed prior to or simultaneously with the adjustment process of the second battery, the charge amount of the second battery scheduled in the adjustment process of the second battery is taken into consideration. It is good to set the charge amount (target charge amount) of each first battery.

さらに、上記いずれかの組電池の調整方法であって、前記第1電池の調整工程は、前記第1電池のうち少なくともいずれかの充電量を、前記第2電池の調整工程で放電させた後または充電した後の前記第2電池のうち、最も充電量の小さなものの充電量と等しくする組電池の調整方法とすると良い。   Further, in any one of the battery pack adjustment methods described above, the first battery adjustment step includes discharging at least one of the first battery charge amount in the second battery adjustment step. Or it is good to set it as the adjustment method of an assembled battery which makes it equal to the charge amount of the said 2nd battery after charge with the smallest charge amount.

充電量が大きくなっていた第1電池は、第2電池に比べて、使用期間が短く劣化の程度が小さい等の性質を有しているため、上述のようにして充電量を調整しても、その後の使用(充放電)により、再び第2電池よりも充電量が大きくなることが多い。そこで、本発明の調整方法では、第1電池の調整工程において、第1電池のうち少なくともいずれかの充電量を、第2電池の調整工程で放電させた後または充電した後の第2電池のうち、最も充電量の小さなものの充電量と等しくすることにした。これにより、少なくともその第1電池については、その後の使用(充放電)により、再び第2電池のいずれもより充電量が大きくなってしまうまでの時間を、長く稼ぐことができる。これによって、より長期間にわたり、組電池を適正に使用することができる。   The first battery, which had a large amount of charge, has properties such as a shorter use period and less deterioration compared to the second battery, so even if the charge amount is adjusted as described above, In many cases, the amount of charge again becomes larger than that of the second battery due to subsequent use (charging and discharging). Therefore, in the adjustment method of the present invention, in the adjustment process of the first battery, the charge amount of at least one of the first batteries is discharged in the adjustment process of the second battery or the second battery after being charged. We decided to make it equal to the charge amount of the smallest charge amount. Thereby, about at least the 1st battery, by subsequent use (charging / discharging), the time until charge amount of all of the 2nd battery becomes larger again can be earned long. As a result, the assembled battery can be used properly over a longer period of time.

また、組電池をなす複数の二次電池を、調整前の充電量をもとに、充電量が大きい、1または複数の第1電池と、上記第1電池よりも充電量が小さい、残る1または複数の第2電池と、に分けたとき、上記組電池をなす上記第1電池と上記第2電池との充電量の差を小さくする組電池の調整方法であって、上記1または複数の第1電池を互いに等しい電気量だけ放電させる第1電池の調整工程と、上記1または複数の第2電池を、いずれも放電させる第2電池の調整工程であって、上記第2電池の充電量を、上記第1電池の調整工程での放電後の上記第1電池の充電量から定められる充電量範囲の範囲内とする第2電池の調整工程と、を備える組電池の調整方法が好ましい。   In addition, a plurality of secondary batteries constituting the assembled battery are left with one or more first batteries having a large charge amount based on the charge amount before adjustment and a charge amount smaller than that of the first battery. Or an assembled battery adjustment method for reducing a difference in charge amount between the first battery and the second battery forming the assembled battery when the battery is divided into a plurality of second batteries, A first battery adjustment step of discharging the first battery by an equal amount of electricity; and a second battery adjustment step of discharging the one or more second batteries, wherein the charge amount of the second battery The adjustment method of the assembled battery is preferably provided with the adjustment step of the second battery in which the charge amount is within the range of the charge amount determined from the charge amount of the first battery after discharging in the adjustment step of the first battery.

この調整方法は、1または複数の第1電池を互いに等しい電気量だけ放電させる第1電池の調整工程と、1または複数の第2電池をいずれも放電させて、第2電池の充電量を、第1電池の調整工程での放電後の第1電池の充電量から定められる充電量範囲の範囲内とする第2電池の調整工程と、を備えている。このように、第1電池及び第2電池(組電池を構成する全ての二次電池)のいずれについても放電させると共に、第2電池の充電量を所定の充電量範囲内に収めることで、第1電池と第2電池との充電量の差を小さくすることができ、且つ、充電量の調整に伴う第1電池と第2電池との電池電圧差の拡大を抑制することができる。   In this adjustment method, the adjustment step of the first battery that discharges one or a plurality of first batteries by an equal amount of electricity, and the discharge of both the one or a plurality of second batteries, the charge amount of the second battery, And a second battery adjustment step that is within a charge amount range determined from the charge amount of the first battery after discharging in the first battery adjustment step. As described above, both the first battery and the second battery (all the secondary batteries constituting the assembled battery) are discharged, and the charge amount of the second battery is kept within a predetermined charge amount range. The difference in the charge amount between the first battery and the second battery can be reduced, and the increase in the battery voltage difference between the first battery and the second battery accompanying the adjustment of the charge amount can be suppressed.

なお、第1電池の調整工程と第2電池の調整工程とは、この順序で行っても良いし、逆の順序で行っても良いし、同時に独立して別々に行っても良い。
但し、第2電池の調整工程を、第1電池の調整工程よりも先に、または同時に行う場合には、第1電池の調整工程で予定している第1電池の放電電気量を考慮して、それぞれの第2電池の放電電気量(目標とする充電量)を設定すると良い。
The first battery adjustment step and the second battery adjustment step may be performed in this order, may be performed in the reverse order, or may be performed independently and separately.
However, when the adjustment process of the second battery is performed prior to or simultaneously with the adjustment process of the first battery, the amount of discharge electricity of the first battery scheduled in the adjustment process of the first battery is taken into consideration. The amount of discharge electricity (target charge amount) of each second battery may be set.

また、組電池をなす複数の二次電池を、調整前の充電量をもとに、充電量が大きい、1または複数の第1電池と、上記第1電池よりも充電量が小さい、残る1または複数の第2電池と、に分けたとき、上記組電池をなす上記第1電池と上記第2電池との充電量の差を小さくする組電池の調整方法であって、上記1または複数の第1電池を互いに等しい電気量だけ充電する第1電池の調整工程と、上記1または複数の第2電池を、いずれも充電する第2電池の調整工程であって、上記第2電池の充電量を、上記第1電池の調整工程での充電後の上記第1電池の充電量から定められる充電量範囲の範囲内とする第2電池の調整工程と、を備える組電池の調整方法が好ましい。   In addition, a plurality of secondary batteries constituting the assembled battery are left with one or more first batteries having a large charge amount based on the charge amount before adjustment and a charge amount smaller than that of the first battery. Or an assembled battery adjustment method for reducing a difference in charge amount between the first battery and the second battery forming the assembled battery when the battery is divided into a plurality of second batteries, A first battery adjustment step of charging the first battery with an equal amount of electricity, and a second battery adjustment step of charging the one or more second batteries, wherein the charge amount of the second battery The adjustment method of the assembled battery is preferably provided with the adjustment step of the second battery, which is set within the range of the charge amount determined from the charge amount of the first battery after charging in the adjustment step of the first battery.

この調整方法は、1または複数の第1電池を互いに等しい電気量だけ充電する第1電池の調整工程と、1または複数の第2電池をいずれも充電して、第2電池の充電量を、第1電池の調整工程での充電後の第1電池の充電量から定められる充電量範囲の範囲内とする第2電池の調整工程と、を備えている。このように、第1電池及び第2電池(組電池を構成する全ての二次電池)のいずれについても充電すると共に、第2電池の充電量を所定の充電量範囲内に収めることで、第1電池と第2電池との充電量の差を小さくすることができ、且つ、充電量の調整に伴う第1電池と第2電池との電池電圧差の拡大を抑制することができる。   In this adjustment method, the adjustment step of the first battery that charges the one or more first batteries by an equal amount of electricity, and the charge amount of the second battery by charging both the one or more second batteries, A second battery adjustment step that is within a charge amount range determined from the charge amount of the first battery after charging in the first battery adjustment step. As described above, by charging both the first battery and the second battery (all the secondary batteries constituting the assembled battery) and keeping the charge amount of the second battery within a predetermined charge amount range, The difference in the charge amount between the first battery and the second battery can be reduced, and the increase in the battery voltage difference between the first battery and the second battery accompanying the adjustment of the charge amount can be suppressed.

なお、第1電池の調整工程と第2電池の調整工程とは、この順序で行っても良いし、逆の順序で行っても良いし、同時に独立して別々に行っても良い。
但し、第2電池の調整工程を、第1電池の調整工程よりも先に、または同時に行う場合は、第1電池の調整工程で予定している第1電池の充電電気量を考慮して、それぞれの第2電池の充電電気量(目標とする充電量)を設定すると良い。
The first battery adjustment step and the second battery adjustment step may be performed in this order, may be performed in the reverse order, or may be performed independently and separately.
However, when the adjustment process of the second battery is performed prior to or simultaneously with the adjustment process of the first battery, the charge amount of the first battery scheduled in the adjustment process of the first battery is considered, It is good to set the charge amount (target charge amount) of each second battery.

さらに、上記いずれかの組電池の調整方法であって、前記第2電池の調整工程は、前記第2電池のうち少なくともいずれかの充電量を、前記第1電池の調整工程で放電させた後または充電した後の前記第1電池のうち、最も充電量の大きなものの充電量と等しくする組電池の調整方法とするのが好ましい。   Further, in any one of the battery pack adjustment methods described above, the second battery adjustment step includes discharging at least one charge amount of the second battery in the first battery adjustment step. Alternatively, it is preferable that the assembled battery is adjusted to be equal to the charge amount of the first battery having the largest charge amount among the first batteries after being charged.

充電量が小さくなっていた第2電池は、前述のように充電量を調整しても、その後の使用(充放電)により、再び第1電池よりも充電量が小さくなることが多い。そこで、本発明の調整方法では、第2電池の調整工程において、第2電池のうち少なくともいずれかの充電量を、第1電池の調整工程で放電させた後または充電した後の第1電池のうち、最も充電量の大きなものの充電量と等しくすることにした。これにより、少なくともその第2電池については、その後の使用(充放電)により、再びいずれの第1電池よりも充電量が大きくなってしまうまでの時間を、長く稼ぐことができる。これによって、より長期間にわたり、組電池を適正に使用することができる。   Even if the charge amount of the second battery, which has been reduced, is adjusted as described above, the charge amount is often smaller than that of the first battery again due to subsequent use (charge / discharge). Therefore, in the adjustment method of the present invention, in the adjustment step of the second battery, the charge amount of at least one of the second batteries is discharged in the adjustment step of the first battery or the first battery after being charged. We decided to make it equal to the charge amount of the one with the largest charge amount. Thereby, about at least the 2nd battery, the time until charge amount will become larger than any 1st battery again by subsequent use (charge / discharge) can be earned long. As a result, the assembled battery can be used properly over a longer period of time.

他の解決手段は、複数の二次電池を電気的に接続してなる組電池と、上記複数の二次電池の各電池電圧に基づいて各充電量を推定し、この推定された各充電量に基づいて、上記複数の二次電池の異常を検出する電池コントローラと、を備えるコントローラ付き組電池の調整方法であって、上記電池コントローラで推定された上記複数の二次電池の各充電量を、前記調整前の充電量とし、上記複数の二次電池を前記第1電池と前記第2電池とに分けて、請求項1〜請求項7のいずれか一項に記載の調整方法により、上記組電池をなす上記第1電池と上記第2電池との充電量の差を小さくするコントローラ付き組電池の調整方法である。   The other solution is to estimate each charge amount based on the assembled battery formed by electrically connecting a plurality of secondary batteries and each battery voltage of the plurality of secondary batteries, and each estimated charge amount And a battery controller for detecting an abnormality of the plurality of secondary batteries, and a method for adjusting the assembled battery with a controller, wherein the charge amounts of the plurality of secondary batteries estimated by the battery controller are calculated. The charge amount before the adjustment, the plurality of secondary batteries are divided into the first battery and the second battery, and the adjustment method according to any one of claims 1 to 7, It is an adjustment method of an assembled battery with a controller that reduces a difference in charge amount between the first battery and the second battery constituting the assembled battery.

本発明のコントローラ付き組電池の調整方法では、電池コントローラで推定された組電池を構成する複数の二次電池の各充電量を、調整前の充電量とし、組電池を構成する複数の二次電池を、第1電池と第2電池とに分ける。そして、前述のいずれかの調整方法により、組電池をなす第1電池と第2電池との充電量の差を小さくする。すなわち、前述のいずれかの第1調整工程及び第2調整工程を行う、または、前述のいずれかの第1電池の調整工程及び第2電池の調整工程を行う。これにより、第1電池と第2電池との充電量の差を小さくすることができる上、充電量の調整に伴う第1電池と第2電池との電池電圧差の拡大を抑制することができる。従って、調整直後にコントローラ付き組電池を使用しても、電池コントローラで推定される各二次電池の充電量に大きな差が生じることがないので、充電量の異常が検出されることなく、適切に使用することができる。   In the method for adjusting an assembled battery with a controller according to the present invention, the charge amounts of the plurality of secondary batteries constituting the assembled battery estimated by the battery controller are set as the charge amounts before adjustment, and the plurality of secondary batteries constituting the assembled battery are configured. The battery is divided into a first battery and a second battery. And the difference of the charge amount of the 1st battery which makes an assembled battery, and a 2nd battery is made small by one of the adjustment methods mentioned above. That is, any one of the first adjustment process and the second adjustment process described above is performed, or any one of the above-described first battery adjustment process and the second battery adjustment process is performed. Thereby, the difference in the charge amount between the first battery and the second battery can be reduced, and the expansion of the battery voltage difference between the first battery and the second battery accompanying the adjustment of the charge amount can be suppressed. . Therefore, even if an assembled battery with a controller is used immediately after adjustment, there is no significant difference in the charge amount of each secondary battery estimated by the battery controller. Can be used for

(実施例1)
次に、本発明の実施例1について、図面を参照しつつ説明する。
まず、本実施例1にかかるコントローラ付き組電池50について説明する。コントローラ付き組電池50は、図1に示すように、組電池20と、電池コントローラ30とを有している。このうち、組電池20は、10ヶの二次電池(二次電池1〜10、図2参照)が、図示しない接続部材により、電気的に直列に接続されてなる。なお、二次電池1〜10は、図示していないが、それぞれ、6つの単電池が直列に接続された電池モジュールを構成している。
Example 1
Next, Example 1 of the present invention will be described with reference to the drawings.
First, the assembled battery 50 with a controller according to the first embodiment will be described. As shown in FIG. 1, the assembled battery 50 with a controller includes an assembled battery 20 and a battery controller 30. Among these, the assembled battery 20 includes 10 secondary batteries (secondary batteries 1 to 10, see FIG. 2) electrically connected in series by a connection member (not shown). In addition, although not shown in figure, the secondary batteries 1-10 each comprise a battery module in which six single cells are connected in series.

また、電池コントローラ30は、公知の電池コントローラ(例えば、特開2006−79961参照)であり、ROM31、CPU32、RAM33等を有している。この電池コントローラ30は、図1に示すように、組電池20を構成する二次電池1〜10の電池電圧V1〜V10、電池温度T1〜T10、電流値I(本実施例1では、二次電池1〜10が直列接続されているため、各二次電池を流れる電流値は等しい)等を検知する。さらに、これらの値に基づいて、二次電池1〜10のそれぞれの充電量(充電されている電気量)を推定し、この推定された充電量(以下、推定充電量ともいう)に基づいて、充電量の異常を検出する。具体的には、例えば、二次電池1〜10にかかる推定充電量のうち、最も小さい充電量と最も大きい充電量との最大差が許容範囲(例えば、0.2Ah)を超えている場合に、充電量の異常と判定する。   The battery controller 30 is a known battery controller (see, for example, JP-A-2006-79961), and includes a ROM 31, a CPU 32, a RAM 33, and the like. As shown in FIG. 1, the battery controller 30 includes battery voltages V1 to V10, battery temperatures T1 to T10, and current values I (secondary batteries in the first embodiment) that constitute the assembled battery 20. Since the batteries 1 to 10 are connected in series, the current values flowing through the secondary batteries are equal). Furthermore, based on these values, the amount of charge (the amount of electricity charged) of each of the secondary batteries 1 to 10 is estimated, and based on the estimated amount of charge (hereinafter also referred to as the estimated amount of charge). , To detect abnormalities in charge. Specifically, for example, when the maximum difference between the smallest charge amount and the largest charge amount among the estimated charge amounts applied to the secondary batteries 1 to 10 exceeds an allowable range (for example, 0.2 Ah). It is determined that the charging amount is abnormal.

なお、電池コントローラ30で推定された二次電池1〜10の推定充電量のデータは、例えば、図1に示すように、公知のデータモニタ60を用いて、電池コントローラ30から取得することにより、外部からも把握することができる。
また、本実施例1のコントローラ付き組電池50は、例えば、電気自動車やハイブリッド自動車などに搭載され、これらの電源として利用される。
Note that the estimated charge amount data of the secondary batteries 1 to 10 estimated by the battery controller 30 is obtained from the battery controller 30 using a known data monitor 60 as shown in FIG. It can be grasped from the outside.
Moreover, the assembled battery 50 with a controller of the first embodiment is mounted on, for example, an electric vehicle or a hybrid vehicle and used as a power source thereof.

本実施例1では、組電池20を構成する二次電池1〜10のうち、二次電池8のみが、他の二次電池に比べて新しいため、劣化の程度が小さくなっているものを例示している。このような組電池20では、使用により充放電を繰り返す間に、図4に示すように、二次電池8の充電量が、他の二次電池の充電量に比べて大きくなりすぎて、充電量の異常と判定されてしまうことがある。   In the first embodiment, among the secondary batteries 1 to 10 constituting the assembled battery 20, only the secondary battery 8 is newer than the other secondary batteries, so that the degree of deterioration is small. is doing. In such an assembled battery 20, the charge amount of the secondary battery 8 becomes too large compared with the charge amount of other secondary batteries as shown in FIG. It may be determined that the amount is abnormal.

なお、図4は、二次電池1〜10の電池電圧V1〜V10に基づいて、電池コントローラ30で推定された二次電池1〜10の推定充電量を示したグラフである。また、図3は、電池コントローラ30で検知された、二次電池1〜10の電池電圧V1〜V10をそれぞれ示したグラフである。なお、図3及び図4に示すグラフの横軸に記載している数字1〜10は、ぞれぞれ、二次電池1〜10を表している。   FIG. 4 is a graph showing the estimated charge amount of the secondary batteries 1 to 10 estimated by the battery controller 30 based on the battery voltages V1 to V10 of the secondary batteries 1 to 10. FIG. 3 is a graph showing battery voltages V <b> 1 to V <b> 10 of the secondary batteries 1 to 10 detected by the battery controller 30. In addition, the numbers 1-10 described on the horizontal axis of the graph shown in FIG.3 and FIG.4 represent the secondary batteries 1-10, respectively.

電池コントローラ30は、二次電池1〜10の推定充電量Qのうち、最も大きな最大推定充電量Qmax(本実施例1では、二次電池8の充電量)と最も小さな最小推定充電量Qmin(本実施例1では、二次電池5,6の充電量)との差(最大差)ΔQを算出する。そして、最大差ΔQが許容範囲を超えている場合には、充電量が異常であると判定し、図1に示すように、異常信号ESを、ハイブリッド自動車等の各種制御を行うコントロールユニット70に向けて送信する。これを受け、コントロールユニット70は、運転者等に向けて警報等を発する。   The battery controller 30 has the largest maximum estimated charge amount Qmax (in the first embodiment, the charge amount of the secondary battery 8) and the smallest minimum estimated charge amount Qmin (of the estimated charge amount Q of the secondary batteries 1 to 10). In the first embodiment, the difference (maximum difference) ΔQ from the charge amount of the secondary batteries 5 and 6 is calculated. When the maximum difference ΔQ exceeds the allowable range, it is determined that the charging amount is abnormal, and as shown in FIG. 1, the abnormality signal ES is sent to the control unit 70 that performs various controls of the hybrid vehicle or the like. Send to. In response to this, the control unit 70 issues an alarm or the like to the driver or the like.

このように、充電量の異常が検出された場合、本実施例1では、次のようにして、充電量を調整する。図5は、実施例1にかかる組電池20の調整工程の流れを示すフローチャートである。
まず、ステップS1において、図1に示すように、データモニタ60を用いて、電池コントローラ30から、組電池20を構成する二次電池1〜10の推定充電量Q(図4参照)をそれぞれ取得する。次いで、ステップS2に進み、取得した二次電池1〜10の推定充電量Qの大小に応じて、二次電池1〜10を、第1電池Aと第2電池Bの群に分ける。本実施例1では、相対的に充電量が大きい二次電池8を第1電池A、これよりも充電量が小さい二次電池1〜7,9,10を第2電池Bとしている。
As described above, when an abnormality in the charge amount is detected, in the first embodiment, the charge amount is adjusted as follows. FIG. 5 is a flowchart illustrating the flow of the adjustment process of the assembled battery 20 according to the first embodiment.
First, in step S1, as shown in FIG. 1, the estimated charge amounts Q (see FIG. 4) of the secondary batteries 1 to 10 constituting the assembled battery 20 are obtained from the battery controller 30 using the data monitor 60, respectively. To do. Subsequently, it progresses to step S2 and the secondary batteries 1-10 are divided into the group of the 1st battery A and the 2nd battery B according to the magnitude of the estimated charge amount Q of the acquired secondary batteries 1-10. In the first embodiment, the secondary battery 8 having a relatively large charge amount is referred to as a first battery A, and the secondary batteries 1 to 7, 9, and 10 having a smaller charge amount are referred to as second batteries B.

(第1調整工程)
次に、ステップS3(図5参照)に進み、第1電池A(二次電池8)を放電させて、第1電池Aの充電量を、第2電池B(二次電池1〜7,9,10)の充電量から定められる充電量範囲X(本実施例1では、第2電池Bの充電量のうち、最も小さい充電量から最も大きい充電量までの範囲とした、図6参照)の範囲内にする。本実施例1では、図6に示すように、第1電池A(二次電池8)をΔQだけ放電させて、第1調整工程後の第1電池Aの充電量を、第2電池Bのうち最も充電量の小さい二次電池5,6の充電量QFmin(=Qmin)と等しくした。なお、充電量範囲Xは、電池コントローラ30において許容される充電量の許容範囲(例えば、0.2Ah)を満たすように設定している。
(First adjustment process)
Next, it progresses to step S3 (refer FIG. 5), the 1st battery A (secondary battery 8) is discharged, and the charge amount of the 1st battery A is set to the 2nd battery B (secondary batteries 1-7, 9). , 10) of the charge amount range X determined from the charge amount (in the first embodiment, of the charge amount of the second battery B, the range from the smallest charge amount to the largest charge amount is shown in FIG. 6). Within range. In the first embodiment, as shown in FIG. 6, the first battery A (secondary battery 8) is discharged by ΔQ, and the charge amount of the first battery A after the first adjustment step is set to the second battery B. Among them, the charge amount QFmin (= Qmin) of the secondary batteries 5 and 6 having the smallest charge amount was made equal. The charge amount range X is set so as to satisfy an allowable range (for example, 0.2 Ah) of the charge amount allowed in the battery controller 30.

具体的には、図2に示すように、公知の定電流充放電装置80を用意し、その第1端子81を第1電池A(二次電池8)の正極端子8bに接続し、第2端子82を第1電池A(二次電池8)の負極端子8cに接続した状態で、定電流放電を行った。前述のように、放電量は、第1調整工程前の第1電池Aの充電量Qmaxから、第2電池Bのうち最も充電量の小さい二次電池5,6の充電量Qminを差し引いたΔQ(図6参照)とした。これにより、第1調整工程後の二次電池1〜10について見ると、図6に示すように、充電量QFの最大差ΔQFは、第1調整工程前にかかる第2電池Bの充電量の最大差と等しくなり、第1調整工程前のΔQに比べて小さくすることができる。すなわち、第1電池A(二次電池8)と第2電池B(二次電池1〜7,9,10)との充電量の差を小さくすることができる。   Specifically, as shown in FIG. 2, a known constant current charging / discharging device 80 is prepared, and the first terminal 81 is connected to the positive electrode terminal 8 b of the first battery A (secondary battery 8). Constant current discharge was performed in a state where the terminal 82 was connected to the negative electrode terminal 8c of the first battery A (secondary battery 8). As described above, the discharge amount is ΔQ obtained by subtracting the charge amount Qmin of the secondary battery 5 or 6 having the smallest charge amount from the second battery B from the charge amount Qmax of the first battery A before the first adjustment step. (See FIG. 6). Thereby, when it sees about the secondary batteries 1-10 after a 1st adjustment process, as shown in FIG. 6, the largest difference (DELTA) QF of charge amount QF is the charge amount of the 2nd battery B concerning a 1st adjustment process. It becomes equal to the maximum difference and can be made smaller than ΔQ before the first adjustment step. That is, the difference in charge amount between the first battery A (secondary battery 8) and the second battery B (secondary batteries 1 to 7, 9, 10) can be reduced.

ところが、上述の第1調整工程によって第1電池A(二次電池8)のみを放電させると、第1電池A(二次電池8)の電池電圧V8が一時的に大きく低下する。このため、図7に示すように、第1調整工程後の二次電池1〜10の最大電池電圧差ΔVJ(第1電池Aである二次電池8と、第2電池Bのうち最も電池電圧の高い二次電池1,10との電池電圧差)が、第1調整工程前の最大電池電圧差ΔVよりも大きくなってしまうことがある。   However, when only the first battery A (secondary battery 8) is discharged in the first adjustment step described above, the battery voltage V8 of the first battery A (secondary battery 8) temporarily decreases significantly. Therefore, as shown in FIG. 7, the maximum battery voltage difference ΔVJ between the secondary batteries 1 to 10 after the first adjustment step (secondary battery 8 as the first battery A and the battery voltage among the second batteries B). Battery voltage difference between the secondary batteries 1 and 10 having a high value) may be larger than the maximum battery voltage difference ΔV before the first adjustment step.

このため、第1調整工程のみを終えた組電池20を備えたコントローラ付き組電池50を、ハイブリッド自動車等に搭載するなどして使用すると、電池コントローラ30では、これらの電池電圧V1〜V10(図7参照)に基づいて、推定充電量QJを算出する。すると、電池コントローラ30では、図8に示すように、第1調整工程後の第1電池A(二次電池8)の推定充電量QJを、第1電池A(二次電池8)の充電量QFmin(図6参照)よりもはるかに小さな値QJminと推定してしまう。   For this reason, when the assembled battery 50 with a controller including the assembled battery 20 that has completed only the first adjustment step is used by being mounted on a hybrid vehicle or the like, the battery controller 30 uses these battery voltages V1 to V10 (FIG. 7), the estimated charge amount QJ is calculated. Then, in the battery controller 30, as shown in FIG. 8, the estimated charge amount QJ of the first battery A (secondary battery 8) after the first adjustment step is used as the charge amount of the first battery A (secondary battery 8). A value QJmin much smaller than QFmin (see FIG. 6) is estimated.

すると、電池コントローラ30では、第1調整工程後の二次電池1〜10の推定充電量QJのうち、最大推定充電量QJmax(二次電池1,10の充電量)と最小推定充電量QJmin(二次電池8の充電量)との差(最大差)ΔQJを算出し、この最大差ΔQJが許容範囲を超えているとして、充電量の異常と判定してしまう。このため、第1調整工程により、二次電池1〜10の充電量QFの最大差ΔQF(図6参照)を、電池コントローラ30の許容範囲内(例えば0.2Ah以内)に収めたにも拘わらず、コントローラ付き組電池50を適正に使用することができないことになる。   Then, in the battery controller 30, among the estimated charge amounts QJ of the secondary batteries 1 to 10 after the first adjustment step, the maximum estimated charge amount QJmax (charge amount of the secondary batteries 1 and 10) and the minimum estimated charge amount QJmin ( The difference (maximum difference) ΔQJ from the charge amount of the secondary battery 8 is calculated, and if the maximum difference ΔQJ exceeds the allowable range, it is determined that the charge amount is abnormal. For this reason, even though the maximum difference ΔQF (see FIG. 6) of the charge amount QF of the secondary batteries 1 to 10 is within the allowable range of the battery controller 30 (for example, within 0.2 Ah) by the first adjustment step. Therefore, the assembled battery 50 with a controller cannot be used properly.

但し、第1調整工程で第1電池A(二次電池8)を放電させた後、長時間(例えば、数日間)放置すれば、一時的に低下した第1電池A(二次電池8)の電池電圧V8は回復する。従って、その後に、コントローラ付き組電池50を、ハイブリッド自動車等に搭載するなどして使用すれば、電池コントローラ30で異常判定されることはない。しかしながら、これでは作業効率が悪く、また、コントローラ付き組電池50をできる限り早く使用したい場合に、その要求に応えることができない。
これに対し、本実施例1では、第1調整工程に続いて、次述する第2調整工程を行うことで、速やかに、コントローラ付き組電池50を使用することを可能としている。
However, if the first battery A (secondary battery 8) is discharged in the first adjustment step and then left for a long time (for example, several days), the first battery A (secondary battery 8) temporarily lowered. The battery voltage V8 is recovered. Therefore, if the assembled battery 50 with a controller is used after being mounted on a hybrid vehicle or the like, the battery controller 30 will not determine abnormality. However, in this case, work efficiency is poor, and when it is desired to use the assembled battery 50 with a controller as soon as possible, the request cannot be met.
On the other hand, in the present Example 1, the assembled battery 50 with a controller can be used promptly by performing the 2nd adjustment process described below following a 1st adjustment process.

(第2調整工程)
すなわち、ステップS3に続き、ステップS4(図5参照)に進み、第1電池A及び第2電池Bのいずれも(すなわち、組電池20を構成するすべての二次電池1〜10)を、図9に示すように、等しい電気量ΔQHだけ放電させる。具体的には、例えば、二次電池1〜10を互いに直列に接続した状態で、定電流充放電装置80(図2参照)を用いて、二次電池1〜10を一斉に放電させる。
(Second adjustment step)
That is, following step S3, the process proceeds to step S4 (see FIG. 5), and both the first battery A and the second battery B (that is, all the secondary batteries 1 to 10 constituting the assembled battery 20) are As shown in FIG. 9, discharge is performed by an equal amount of electricity ΔQH. Specifically, for example, the secondary batteries 1 to 10 are simultaneously discharged using the constant current charging / discharging device 80 (see FIG. 2) in a state where the secondary batteries 1 to 10 are connected in series.

これにより、二次電池1〜10の充電量は、それぞれΔQHだけ低下するが、第2調整工程後の二次電池1〜10の充電量QGの最大差ΔQG(最大充電量QGmaxと最小充電量QGminとの充電量差)は、第2調整工程前の充電量QFの最大差ΔQFから変動することがない(図9参照)。   As a result, the charge amounts of the secondary batteries 1 to 10 are decreased by ΔQH, respectively, but the maximum difference ΔQG (the maximum charge amount QGmax and the minimum charge amount) of the charge amounts QG of the secondary batteries 1 to 10 after the second adjustment step. The difference in charge amount from QGmin does not vary from the maximum difference ΔQF in the charge amount QF before the second adjustment step (see FIG. 9).

一方、図10に示すように、第2調整工程後の二次電池1〜10の最大電池電圧差を、ΔVJからΔVKにまで小さくすることができる。これは、第2調整工程における放電により、第2電池B(二次電池1〜7,9,10)の電池電圧(V1〜V7,V9,V10)は大きく低下するが、第1調整工程で既に放電させた第1電池A(二次電池8)は、第2調整工程において再び放電させても、第2電池B(二次電池1〜7,9,10)に比べて電池電圧の低下量が小さくなるからである。   On the other hand, as shown in FIG. 10, the maximum battery voltage difference between the secondary batteries 1 to 10 after the second adjustment step can be reduced from ΔVJ to ΔVK. This is because the battery voltage (V1 to V7, V9, V10) of the second battery B (secondary batteries 1 to 7, 9, 10) greatly decreases due to the discharge in the second adjustment process, but in the first adjustment process. Even if the first battery A (secondary battery 8) that has already been discharged is discharged again in the second adjustment step, the battery voltage is reduced compared to the second battery B (secondary batteries 1 to 7, 9, 10). This is because the amount is small.

従って、第1,第2調整工程を終えた組電池20を備えたコントローラ付き組電池50を、ハイブリッド自動車等に搭載するなどして使用すると、電池コントローラ30において、最大電池電圧差がΔVKに縮小した電池電圧V1〜V10(図10参照)に基づいて、二次電池1〜10の推定充電量QKが算出される(図11参照)。
この推定充電量QKについて見ると、最大推定充電量QKmax(二次電池1,10の推定充電量)と、最小推定充電量QKmin(二次電池8の推定充電量)との最大差ΔQKを、第2調整工程前の推定充電量QJの最大差ΔQJ(図8参照)に比べて小さくできる。しかも、調整前の推定充電量Qの最大差ΔQ(図4参照)よりも小さくできるので、電池コントローラ30における許容範囲(例えば、0.2Ah)内とすることができる。
Therefore, when the assembled battery 50 with a controller including the assembled battery 20 that has finished the first and second adjustment steps is used in a hybrid vehicle or the like, the maximum battery voltage difference is reduced to ΔVK in the battery controller 30. Based on the battery voltages V1 to V10 (see FIG. 10), the estimated charge amount QK of the secondary batteries 1 to 10 is calculated (see FIG. 11).
Looking at the estimated charge amount QK, the maximum difference ΔQK between the maximum estimated charge amount QKmax (the estimated charge amount of the secondary batteries 1 and 10) and the minimum estimated charge amount QKmin (the estimated charge amount of the secondary battery 8) is This can be made smaller than the maximum difference ΔQJ (see FIG. 8) of the estimated charge amount QJ before the second adjustment step. Moreover, since it can be smaller than the maximum difference ΔQ (see FIG. 4) of the estimated charge amount Q before adjustment, it can be within an allowable range (for example, 0.2 Ah) in the battery controller 30.

従って、第2調整後の組電池20を備えたコントローラ付き組電池50を、ハイブリッド自動車等に搭載するなどして使用しても、電池コントローラ30で、充電量の異常が検出されることがないので、組電池20を適切に使用することができるようになる。
しかも、本実施例1の調整方法では、第1調整工程後の二次電池1〜10の電池電圧差ΔVJを低減するために、長時間放置する必要がないため、短時間で組電池20の調整を完了させることができる。
Therefore, even if the assembled battery 50 with a controller including the assembled battery 20 after the second adjustment is used by being mounted on a hybrid vehicle or the like, the battery controller 30 does not detect an abnormality in the charge amount. Therefore, the assembled battery 20 can be used appropriately.
Moreover, in the adjustment method of the first embodiment, in order to reduce the battery voltage difference ΔVJ of the secondary batteries 1 to 10 after the first adjustment step, it is not necessary to leave for a long time. Adjustment can be completed.

ところで、第1電池A(二次電池8)は、第2電池B(二次電池1〜7,9,10)との特性の違いから、上述のようにして充電量を調整しても、その後の使用(充放電)により、第2電池に比べて充電量が徐々に増加する傾向にあるので、再び第2電池Bよりも充電量が大きくなる場合がある。   By the way, the first battery A (secondary battery 8) has a characteristic different from that of the second battery B (secondary batteries 1 to 7, 9, 10). Subsequent use (charging / discharging) tends to gradually increase the amount of charge compared to the second battery, so the amount of charge may be larger than that of the second battery B again.

そこで、本実施例1の調整方法では、第1調整工程において、第1電池A(二次電池8)の充電量を、第2電池B(二次電池1〜7,9,10)のうち最も充電量の小さな二次電池5,6の充電量QFminと等しくした(図6参照)。このようにすることで、第1電池A(二次電池8)が、その後の使用(充放電)により、再びいずれの第2電池B(二次電池1〜7,9,10)よりも充電量が大きくなるまで、すなわち、推定充電量Qが再び図4に示す状態になるまでの時間を、より長く稼ぐことができる。これによって、より長期間にわたり、組電池20を適正に使用することができる。   Therefore, in the adjustment method of the first embodiment, in the first adjustment step, the charge amount of the first battery A (secondary battery 8) is set to the second battery B (secondary batteries 1 to 7, 9, 10). It was made equal to the charge amount QFmin of the secondary batteries 5 and 6 having the smallest charge amount (see FIG. 6). By doing in this way, the 1st battery A (secondary battery 8) is charged more than any 2nd battery B (secondary batteries 1-7, 9, 10) by subsequent use (charge / discharge). The amount of time until the amount increases, that is, the time until the estimated charge amount Q reaches the state shown in FIG. 4 can be earned longer. Thereby, the assembled battery 20 can be used appropriately over a longer period of time.

(実施例2)
次に、本発明の実施例2について説明する。本実施例2は、実施例1と比較して、組電池の調整方法のみが異なり、その他については同様である。従って、ここでは、実施例1と異なる部分を中心に説明し、その他の部分については説明を省略または簡略化する。
(Example 2)
Next, a second embodiment of the present invention will be described. The second embodiment is different from the first embodiment only in the adjustment method of the assembled battery, and the other is the same. Therefore, here, the description will focus on the parts different from the first embodiment, and the description of other parts will be omitted or simplified.

図12は、実施例2にかかる組電池の調整工程の流れを示すフローチャートである。
まず、実施例1と同様に、ステップS1において、組電池20を構成する二次電池1〜10の推定充電量(図4参照)をそれぞれ取得する。次いで、ステップS2に進み、取得した二次電池1〜10の推定充電量の大小に応じて、二次電池1〜10を、第1電池Aと第2電池Bの群に分ける。本実施例2でも、実施例1と同様に、二次電池8を第1電池A、二次電池1〜7,9,10を第2電池Bとしている。
FIG. 12 is a flowchart illustrating the flow of the adjustment process of the assembled battery according to the second embodiment.
First, similarly to Example 1, in step S1, estimated charge amounts (see FIG. 4) of the secondary batteries 1 to 10 constituting the assembled battery 20 are obtained. Subsequently, it progresses to step S2 and the secondary batteries 1-10 are divided into the group of the 1st battery A and the 2nd battery B according to the magnitude of the estimated charge amount of the acquired secondary batteries 1-10. Also in the second embodiment, similarly to the first embodiment, the secondary battery 8 is the first battery A, and the secondary batteries 1 to 7, 9, and 10 are the second battery B.

(第1電池の調整工程)
次に、ステップT3(図12参照)に進み、第1電池A(二次電池8)を放電させて、第1電池Aの充電量を、後の第2電池の調整工程での放電後の第2電池B(二次電池1〜7,9,10)の充電量から定められる充電量範囲Y(放電後の第2電池Bの充電量のうち、最も小さい充電量から最も大きい充電量までの範囲、図16参照)の範囲内とする。本実施例2では、第2電池の調整工程後の第2電池B(二次電池1〜7,9,10)の充電量QG(図16参照)のうち、最も充電量が小さくなる二次電池5,6の充電量QGmin(図16参照)と等しくなるように、第1電池Aの放電電気量を設定し、図13に示すように、第1電池Aの充電量がQFmin(=QGmin)になるまで放電させた。
なお、充電量範囲Yは、電池コントローラ30において許容される充電量の許容範囲(例えば、0.2Ah)を満たすように設定している。
(First battery adjustment process)
Next, it progresses to step T3 (refer FIG. 12), the 1st battery A (secondary battery 8) is discharged, and the charge amount of the 1st battery A is after the discharge in the adjustment process of the 2nd battery later. Charge amount range Y determined from the charge amount of the second battery B (secondary batteries 1 to 7, 9, 10) (from the smallest charge amount to the largest charge amount among the charge amounts of the second battery B after discharge) Range, see FIG. 16). In the present Example 2, the secondary battery with the smallest charge amount among the charge amount QG (see FIG. 16) of the second battery B (secondary batteries 1 to 7, 9, 10) after the adjustment process of the second battery. The amount of electricity discharged from the first battery A is set so as to be equal to the charge amount QGmin (see FIG. 16) of the batteries 5 and 6, and as shown in FIG. 13, the charge amount of the first battery A is QFmin (= QGmin). The battery was discharged until
Note that the charge amount range Y is set so as to satisfy an allowable range (for example, 0.2 Ah) of the charge amount allowed in the battery controller 30.

このとき、第1電池A(二次電池8)の電池電圧は大きく低下し、図14に示すように、第1電池Aと第2電池Bとの最大電池電圧差ΔVJが、第1電池の調整工程前の最大電池電圧差ΔVよりも大きくなってしまうことがある。このため、第1電池の調整工程のみを終えた組電池20を備えたコントローラ付き組電池50を、ハイブリッド自動車等に搭載するなどして使用すると、電池コントローラ30において、推定充電量QJの最大差ΔQJ(図15参照)が許容範囲を超えているとして、充電量の異常と判定されてしまう。従って、この状態では、コントローラ付き組電池50を適正に使用することができない。しかしながら、第1電池の調整工程に続いて、次述する第2電池の調整工程を行うことで、速やかに、コントローラ付き組電池50を使用することを可能としている。   At this time, the battery voltage of the first battery A (secondary battery 8) greatly decreases, and as shown in FIG. 14, the maximum battery voltage difference ΔVJ between the first battery A and the second battery B is equal to that of the first battery. It may be larger than the maximum battery voltage difference ΔV before the adjustment process. For this reason, when the assembled battery 50 with a controller including the assembled battery 20 that has completed only the adjustment process of the first battery is used in a hybrid vehicle or the like, the battery controller 30 uses the maximum difference in the estimated charge amount QJ. If ΔQJ (see FIG. 15) exceeds the allowable range, it is determined that the charge amount is abnormal. Therefore, in this state, the assembled battery 50 with a controller cannot be used properly. However, the assembled battery 50 with a controller can be used promptly by performing the adjustment process of the second battery described below following the adjustment process of the first battery.

(第2電池の調整工程)
すなわち、ステップT3に続いて、ステップT4(図12参照)に進み、第2電池B(二次電池1〜7,9,10)を、互いに等しい電気量だけ放電させて、図16に示すように、第2電池B(二次電池1〜7,9,10)のうち最も充電量が小さい二次電池5,6の充電量を、第1電池A(二次電池8)の充電量と等しくする。これにより、第2電池の調整工程後の最小充電量QGminを、第2電池の調整工程前の最小充電量QFminから変動させることなく、第2電池の調整工程後の最大充電量QGmaxを、第2電池の調整工程前の最大充電量QFmax(図13参照)よりも小さくすることができる。従って、第2電池の調整工程前の充電量QFの最大差ΔQFよりも、第2電池の調整工程後の充電量QGの最大差ΔQG(最大充電量QGmaxと最小充電量QGminとの差)を小さくすることができる。すなわち、第1電池A(二次電池8)と第2電池B(二次電池1〜7,9,10)との充電量の差を小さくすることができる。
(Second battery adjustment process)
That is, following step T3, the process proceeds to step T4 (see FIG. 12), and the second battery B (secondary batteries 1 to 7, 9, 10) is discharged by the same amount of electricity as shown in FIG. In addition, the charge amount of the secondary batteries 5 and 6 having the smallest charge amount among the second batteries B (secondary batteries 1 to 7, 9, and 10) is set to the charge amount of the first battery A (secondary battery 8). Make equal. Thereby, the maximum charge amount QGmax after the second battery adjustment step is changed without changing the minimum charge amount QGmin after the second battery adjustment step from the minimum charge amount QFmin before the second battery adjustment step. It can be made smaller than the maximum charge amount QFmax (see FIG. 13) before the adjustment process of two batteries. Therefore, the maximum difference ΔQG (the difference between the maximum charge amount QGmax and the minimum charge amount QGmin) of the charge amount QG after the adjustment process of the second battery is larger than the maximum difference ΔQF of the charge amount QF before the adjustment process of the second battery. Can be small. That is, the difference in charge amount between the first battery A (secondary battery 8) and the second battery B (secondary batteries 1 to 7, 9, 10) can be reduced.

しかも、このとき、第1電池A(二次電池8)の電池電圧は変動しないが、第2電池B(二次電池1〜7,9,10)の電池電圧は大きく低下するので、図17に示すように、二次電池1〜10の最大電池電圧差ΔVKを、第2電池の調整工程前の最大電池電圧差ΔVJから大幅に縮小させることができる。
従って、第1電池の調整工程及び第2電池の調整工程を終えた組電池20を備えたコントローラ付き組電池50を、ハイブリッド自動車等に搭載するなどして使用すると、電池コントローラ30において、最大電池電圧差がΔVKに縮小した電池電圧V1〜V10(図17参照)に基づいて、二次電池1〜10の推定充電量QKが算出される(図18参照)。
In addition, at this time, the battery voltage of the first battery A (secondary battery 8) does not fluctuate, but the battery voltage of the second battery B (secondary batteries 1 to 7, 9, 10) greatly decreases. As shown, the maximum battery voltage difference ΔVK of the secondary batteries 1 to 10 can be significantly reduced from the maximum battery voltage difference ΔVJ before the adjustment process of the second battery.
Therefore, when the assembled battery 50 with a controller including the assembled battery 20 that has completed the adjusting process of the first battery and the adjusting process of the second battery is used by being mounted on a hybrid vehicle or the like, the battery controller 30 uses the maximum battery. Based on the battery voltages V1 to V10 (see FIG. 17) in which the voltage difference is reduced to ΔVK, the estimated charge amount QK of the secondary batteries 1 to 10 is calculated (see FIG. 18).

この推定充電量QKについて見ると、図18に示すように、最大推定充電量QKmax(二次電池1,10の推定充電量)と、最小推定充電量QKmin(二次電池8の推定充電量)との最大差ΔQKを、第2電池の調整工程前の推定充電量QJの最大差ΔQJに比べて小さくできる。しかも、調整前の推定充電量Qの最大差ΔQ(図4参照)よりも小さくできるので、電池コントローラ30における許容範囲(例えば、0.2Ah)内とすることができる。従って、第2調整後の組電池20を備えたコントローラ付き組電池50を、ハイブリッド自動車等に搭載するなどして使用しても、電池コントローラ30で、充電量の異常が検出されることがないので、組電池20を適切に使用することができるようになる。   Looking at the estimated charge amount QK, as shown in FIG. 18, the maximum estimated charge amount QKmax (the estimated charge amount of the secondary batteries 1 and 10) and the minimum estimated charge amount QKmin (the estimated charge amount of the secondary battery 8). Can be made smaller than the maximum difference ΔQJ of the estimated charge amount QJ before the adjustment process of the second battery. Moreover, since it can be smaller than the maximum difference ΔQ (see FIG. 4) of the estimated charge amount Q before adjustment, it can be within an allowable range (for example, 0.2 Ah) in the battery controller 30. Therefore, even if the assembled battery 50 with a controller including the assembled battery 20 after the second adjustment is used by being mounted on a hybrid vehicle or the like, the battery controller 30 does not detect an abnormality in the charge amount. Therefore, the assembled battery 20 can be used appropriately.

(実施例3)
次に、本発明の実施例3について説明する。本実施例3は、実施例1と比較して、組電池の調整方法のみが異なり、その他については同様である。従って、ここでは、実施例1と異なる部分を中心に説明し、その他の部分については説明を省略または簡略化する。
(Example 3)
Next, Embodiment 3 of the present invention will be described. The third embodiment is different from the first embodiment only in the adjustment method of the assembled battery, and the other is the same. Therefore, here, the description will focus on the parts different from the first embodiment, and the description of other parts will be omitted or simplified.

図19は、実施例3にかかる組電池の調整工程の流れを示すフローチャートである。
まず、実施例1と同様に、ステップS1において、組電池20を構成する二次電池1〜10の推定充電量(図4参照)をそれぞれ取得する。次いで、ステップS2に進み、取得した二次電池1〜10の推定充電量の大小に応じて、二次電池1〜10を、第1電池Aと第2電池Bの群に分ける。本実施例でも、実施例1と同様に、二次電池8を第1電池A、二次電池1〜7,9,10を第2電池Bとしている。
FIG. 19 is a flowchart illustrating the flow of the adjustment process of the assembled battery according to the third embodiment.
First, similarly to Example 1, in step S1, estimated charge amounts (see FIG. 4) of the secondary batteries 1 to 10 constituting the assembled battery 20 are obtained. Subsequently, it progresses to step S2 and the secondary batteries 1-10 are divided into the group of the 1st battery A and the 2nd battery B according to the magnitude of the estimated charge amount of the acquired secondary batteries 1-10. Also in the third embodiment, as in the first embodiment, the secondary battery 8 is the first battery A, and the secondary batteries 1 to 7, 9, and 10 are the second battery B.

(第2電池の調整工程)
次に、ステップU3(図19参照)に進み、第2電池B(二次電池1〜7,9,10)を互いに等しい電気量だけ充電して、第2電池B(二次電池1〜7,9,10)のうち最も充電量が小さい二次電池5,6の充電量を、第1電池A(二次電池8)の充電量QFmin(図20参照)よりも大きくした。
(Second battery adjustment process)
Next, it progresses to step U3 (refer FIG. 19), the 2nd battery B (secondary batteries 1-7, 9, 10) is charged by the mutually equal electric quantity, and the 2nd battery B (secondary batteries 1-7) is charged. , 9, 10), the charge amount of the secondary batteries 5 and 6 having the smallest charge amount is made larger than the charge amount QFmin (see FIG. 20) of the first battery A (secondary battery 8).

このとき、第2電池B(二次電池1〜7,9,10)の電池電圧はいずれも大きく上昇し、図21に示すように、第1電池Aと第2電池Bとの最大電池電圧差ΔVJが、第2電池の調整工程前の最大電池電圧差ΔVよりも大きくなることがある。このため、第2電池の調整工程のみを終えた組電池20を備えたコントローラ付き組電池50を、ハイブリッド自動車等に搭載するなどして使用すると、電池コントローラ30において、推定充電量QJの最大差ΔQJ(図22参照)が許容範囲を超えているとして、充電量の異常と判定されてしまう。従って、この状態では、コントローラ付き組電池50を適正に使用することができない。しかしながら、第2電池の調整工程に続いて、次述する第1電池の調整工程を行うことで、速やかに、コントローラ付き組電池50を使用することを可能としている。   At this time, the battery voltages of the second battery B (secondary batteries 1 to 7, 9, 10) all greatly increase, and the maximum battery voltage of the first battery A and the second battery B as shown in FIG. The difference ΔVJ may be larger than the maximum battery voltage difference ΔV before the adjustment process of the second battery. For this reason, when the assembled battery 50 with a controller including the assembled battery 20 that has completed only the adjustment process of the second battery is used in a hybrid vehicle or the like, the battery controller 30 uses the maximum difference in the estimated charge amount QJ. If ΔQJ (see FIG. 22) exceeds the allowable range, it is determined that the charge amount is abnormal. Therefore, in this state, the assembled battery 50 with a controller cannot be used properly. However, the assembled battery 50 with a controller can be used promptly by performing the adjustment process of the first battery described below following the adjustment process of the second battery.

(第1電池の調整工程)
すなわち、ステップU3に続いて、ステップU4(図19参照)に進み、第1電池A(二次電池8)を充電して、第1電池Aの充電量を、第2電池の調整工程で充電した後の第2電池Bの充電量QGから定められる充電量範囲Y(充電後の第2電池Bの充電量QGのうち、最も小さい充電量から最も大きい充電量までの範囲、図23参照)の範囲内とする。本実施例3では、図23に示すように、第1電池A(二次電池8)の充電量を、第2電池B(二次電池1〜7,9,10)のうち最も充電量が小さい二次電池5,6の充電量と等しくした。なお、充電量範囲Yは、電池コントローラ30において許容される充電量の許容範囲(例えば、0.2Ah)を満たすように設定している。
(First battery adjustment process)
That is, following step U3, the process proceeds to step U4 (see FIG. 19), where the first battery A (secondary battery 8) is charged and the charge amount of the first battery A is charged in the adjustment process of the second battery. Charge amount range Y determined from the charge amount QG of the second battery B after the charge (the range from the smallest charge amount to the largest charge amount among the charge amounts QG of the second battery B after charge, see FIG. 23) Within the range of In the third embodiment, as shown in FIG. 23, the charge amount of the first battery A (secondary battery 8) is the highest among the second batteries B (secondary batteries 1 to 7, 9, 10). The amount of charge of the small secondary batteries 5 and 6 was made equal. Note that the charge amount range Y is set so as to satisfy an allowable range (for example, 0.2 Ah) of the charge amount allowed in the battery controller 30.

これにより、第1電池の調整工程後の最大充電量QGmaxを、第1電池の調整工程前のQFmaxから変動させることなく、第1電池の調整工程後の最小充電量QGminを、第1電池の調整工程前のQFminより大きくすることができる。従って、第1電池の調整工程前の二次電池1〜10の充電量QFの最大差ΔQFよりも、第1電池の調整工程後の二次電池1〜10の充電量QGの最大差ΔQG(最大充電量QGmaxと最小充電量QGminとの差)を小さくすることができる。すなわち、第1電池A(二次電池8)と第2電池B(二次電池1〜7,9,10)との充電量の差を小さくすることができる。   Thereby, the minimum charge amount QGmin after the adjustment process of the first battery can be reduced by changing the maximum charge amount QGmax after the adjustment process of the first battery from the QFmax before the adjustment process of the first battery. It can be made larger than QFmin before the adjustment step. Therefore, the maximum difference ΔQG () of the charge amount QG of the secondary batteries 1 to 10 after the adjustment process of the first battery is larger than the maximum difference ΔQF of the charge amount QF of the secondary batteries 1 to 10 before the adjustment process of the first battery. The difference between the maximum charge amount QGmax and the minimum charge amount QGmin) can be reduced. That is, the difference in charge amount between the first battery A (secondary battery 8) and the second battery B (secondary batteries 1 to 7, 9, 10) can be reduced.

しかも、このとき、第2電池B(二次電池1〜7,9,10)の電池電圧は変動しないが、第1電池A(二次電池8)の電池電圧は大きく上昇するので、図24に示すように、二次電池1〜10の最大電池電圧差ΔVKを、第1電池の調整工程前の最大電池電圧差ΔVJから大幅に縮小させることができる。
従って、第2電池の調整工程及び第1電池の調整工程を終えた組電池20を備えたコントローラ付き組電池50を、ハイブリッド自動車等に搭載するなどして使用すると、電池コントローラ30において、最大電池電圧差がΔVKに縮小した電池電圧V1〜V10(図24参照)に基づいて、二次電池1〜10の推定充電量QKが算出される(図25参照)。
In addition, at this time, the battery voltage of the second battery B (secondary batteries 1 to 7, 9, 10) does not fluctuate, but the battery voltage of the first battery A (secondary battery 8) greatly increases. As shown, the maximum battery voltage difference ΔVK of the secondary batteries 1 to 10 can be significantly reduced from the maximum battery voltage difference ΔVJ before the adjustment process of the first battery.
Therefore, when the assembled battery 50 with a controller including the assembled battery 20 that has finished the adjusting process of the second battery and the adjusting process of the first battery is used by being mounted on a hybrid vehicle or the like, the battery controller 30 uses the maximum battery. Based on the battery voltages V1 to V10 (see FIG. 24) in which the voltage difference is reduced to ΔVK, the estimated charge amount QK of the secondary batteries 1 to 10 is calculated (see FIG. 25).

この推定充電量QKについて見ると、図25に示すように、最大推定充電量QKmax(二次電池1,10の推定充電量)と、最小推定充電量QKmin(二次電池8の推定充電量)との最大差ΔQKを、第1電池の調整工程前の推定充電量QJの最大差ΔQJに比べて小さくできる。しかも、調整前の推定充電量Qの最大差ΔQ(図4参照)よりも小さくできるので、電池コントローラ30における許容範囲(例えば、0.2Ah)内とすることができる。従って、第1電池の調整工程後の組電池20を備えたコントローラ付き組電池50を、ハイブリッド自動車等に搭載するなどして使用しても、電池コントローラ30で、充電量の異常が検出されることがないので、組電池20を適切に使用することができるようになる。   Looking at the estimated charge amount QK, as shown in FIG. 25, the maximum estimated charge amount QKmax (the estimated charge amount of the secondary batteries 1 and 10) and the minimum estimated charge amount QKmin (the estimated charge amount of the secondary battery 8). Can be made smaller than the maximum difference ΔQJ of the estimated charge amount QJ before the adjustment process of the first battery. Moreover, since it can be smaller than the maximum difference ΔQ (see FIG. 4) of the estimated charge amount Q before adjustment, it can be within an allowable range (for example, 0.2 Ah) in the battery controller 30. Therefore, even if the assembled battery 50 with a controller including the assembled battery 20 after the adjustment process of the first battery is used by being mounted on a hybrid vehicle or the like, the battery controller 30 detects an abnormality in the charge amount. Therefore, the assembled battery 20 can be used appropriately.

(実施例4)
次に、本発明の実施例4について説明する。本実施例4は、実施例1と比較して、組電池を構成する二次電池、及びその調整方法のみが異なり、その他については同様である。従って、ここでは、実施例1と異なる部分を中心に説明し、その他の部分については説明を省略または簡略化する。
Example 4
Next, a fourth embodiment of the present invention will be described. The fourth embodiment is different from the first embodiment only in the secondary battery constituting the assembled battery and the adjustment method thereof, and the other is the same. Therefore, here, the description will focus on the parts different from the first embodiment, and the description of other parts will be omitted or simplified.

本実施例4のコントローラ付き組電池150は、図1に示すように、二次電池101〜110が互いに直列に接続されてなる組電池120と、実施例1と同等の電池コントローラ30とを有している。本実施例4では、使用により充放電を繰り返す間に、図27に示すように、組電池120を構成する二次電池101〜110のうち二次電池108が、他の二次電池に比べて充電量が小さくなりすぎて、電池コントローラ30で充電量の異常と判定されてしまうことがある。
なお、図27は、二次電池101〜110の電池電圧V1〜V10に基づいて、電池コントローラ30で推定された二次電池101〜110の推定充電量を示したグラフである。また、図26は、電池コントローラ30で検知された、二次電池101〜110の電池電圧V1〜V10をそれぞれ示したグラフである。また、本実施例4では、図26〜図34において、二次電池101〜110を、1〜10と省略して記載している。
As shown in FIG. 1, the assembled battery 150 with a controller of the fourth embodiment includes an assembled battery 120 in which secondary batteries 101 to 110 are connected in series with each other, and a battery controller 30 equivalent to the first embodiment. is doing. In Example 4, the secondary battery 108 among the secondary batteries 101 to 110 constituting the assembled battery 120 is compared with other secondary batteries as shown in FIG. The charge amount may become too small, and the battery controller 30 may determine that the charge amount is abnormal.
FIG. 27 is a graph showing the estimated charge amounts of the secondary batteries 101 to 110 estimated by the battery controller 30 based on the battery voltages V1 to V10 of the secondary batteries 101 to 110. FIG. 26 is a graph showing the battery voltages V1 to V10 of the secondary batteries 101 to 110 detected by the battery controller 30, respectively. In the fourth embodiment, the secondary batteries 101 to 110 are abbreviated as 1 to 10 in FIGS.

電池コントローラ30は、二次電池101〜110の推定充電量Qのうち、最も大きな最大推定充電量Qmax(本実施例4では、二次電池101,110の充電量)と最も小さな最小推定充電量Qmin(本実施例4では、二次電池108の充電量)との差(最大差)ΔQを算出する。そして、最大差ΔQが許容範囲を超えている場合には、充電量が異常であると判定し、図1に示すように、異常信号ESを、ハイブリッド自動車等の各種制御を行うコントロールユニット70に向けて送信する。これを受け、コントロールユニット70は、運転者等に向けて警報等を発する。   The battery controller 30 has the largest maximum estimated charge amount Qmax (in the fourth embodiment, the charge amounts of the secondary batteries 101 and 110) and the smallest minimum estimated charge amount among the estimated charge amounts Q of the secondary batteries 101 to 110. A difference (maximum difference) ΔQ from Qmin (in the fourth embodiment, the amount of charge of the secondary battery 108) is calculated. When the maximum difference ΔQ exceeds the allowable range, it is determined that the charging amount is abnormal, and as shown in FIG. 1, the abnormality signal ES is sent to the control unit 70 that performs various controls of the hybrid vehicle or the like. Send to. In response to this, the control unit 70 issues an alarm or the like to the driver or the like.

このように、充電量の異常が検出された場合、本実施例4では、次のようにして、充電量を調整する。図28は、実施例4にかかる組電池の調整工程の流れを示すフローチャートである。
まず、実施例1と同様に、ステップV1において、組電池120を構成する二次電池101〜110の推定充電量(図27参照)を取得する。次いで、ステップV2に進み、取得した二次電池101〜110の推定充電量Qの大小に応じて、二次電池101〜110を、第1電池Aと第2電池Bの群に分ける。本実施例4では、相対的に充電量が大きい二次電池101〜107,109,110を第1電池A、これらよりも充電量が小さい二次電池108を第2電池Bとしている。
As described above, when an abnormality in the charge amount is detected, in the fourth embodiment, the charge amount is adjusted as follows. FIG. 28 is a flowchart illustrating a flow of the adjustment process of the assembled battery according to the fourth embodiment.
First, in the same manner as in the first embodiment, in step V1, estimated charge amounts (see FIG. 27) of the secondary batteries 101 to 110 constituting the assembled battery 120 are acquired. Next, the process proceeds to step V2, and the secondary batteries 101 to 110 are divided into a group of the first battery A and the second battery B according to the obtained estimated charge amount Q of the secondary batteries 101 to 110. In the fourth embodiment, the secondary batteries 101 to 107, 109, and 110 having a relatively large charge amount are referred to as the first battery A, and the secondary battery 108 having a smaller charge amount is referred to as the second battery B.

(第1調整工程)
次に、ステップV3(図28参照)に進み、図29に示すように、第2電池B(二次電池108)を充電して、第2電池Bの充電量を、第1電池A(二次電池101〜107,109,110)の充電量から定められる充電量範囲X(本実施例4では、第1電池Aの充電量のうち、最も小さい充電量から最も大きい充電量までの範囲とした)の範囲内にする。本実施例4では、図29に示すように、第2電池Bの充電量を、第1電池Aのうち最も充電量の大きい二次電池101,110の充電量QFmax(=Qmax)と等しくした。なお、充電量範囲Xは、電池コントローラ30において許容される充電量の許容範囲(例えば、0.2Ah)を満たすように設定している。
(First adjustment process)
Next, the process proceeds to step V3 (see FIG. 28), and as shown in FIG. 29, the second battery B (secondary battery 108) is charged, and the charge amount of the second battery B is set to the first battery A (second battery). Charge amount range X determined from the charge amounts of the secondary batteries 101 to 107, 109, 110) (in the fourth embodiment, among the charge amounts of the first battery A, the range from the smallest charge amount to the largest charge amount) )). In the fourth embodiment, as shown in FIG. 29, the charge amount of the second battery B is made equal to the charge amount QFmax (= Qmax) of the secondary batteries 101 and 110 having the largest charge amount among the first batteries A. . The charge amount range X is set so as to satisfy an allowable range (for example, 0.2 Ah) of the charge amount allowed in the battery controller 30.

具体的には、図2に示すように、定電流充放電装置80を用い、その第1端子81を第2電池B(二次電池108)の正極端子8bに接続し、第2端子82を第2電池B(二次電池108)の負極端子8cに接続した状態で、定電流充電を行った。これにより、第1調整工程後の二次電池101〜110について見ると、図29に示すように、充電量QFの最大差ΔQFは、第1調整工程前にかかる第1電池Aの充電量の最大差と等しくなり、第1調整工程前のΔQに比べて小さくすることができる。すなわち、第2電池B(二次電池108)と第1電池A(二次電池101〜107,109,110)との充電量の差を小さくすることができる。   Specifically, as shown in FIG. 2, a constant current charging / discharging device 80 is used, the first terminal 81 is connected to the positive electrode terminal 8b of the second battery B (secondary battery 108), and the second terminal 82 is connected. The constant current charge was performed in the state connected to the negative electrode terminal 8c of the 2nd battery B (secondary battery 108). Accordingly, when viewing the secondary batteries 101 to 110 after the first adjustment step, as shown in FIG. 29, the maximum difference ΔQF of the charge amount QF is the charge amount of the first battery A applied before the first adjustment step. It becomes equal to the maximum difference and can be made smaller than ΔQ before the first adjustment step. That is, the difference in charge amount between the second battery B (secondary battery 108) and the first battery A (secondary batteries 101 to 107, 109, 110) can be reduced.

ところが、上述の第1調整工程によって第2電池B(二次電池108)のみを充電すると、第2電池Bの電池電圧V8が一時的に大きく上昇する。このため、図30に示すように、第1調整工程後の二次電池101〜110の最大電池電圧差ΔVJ(第2電池Bである二次電池108と、第1電池Aのうち最も電池電圧の低い二次電池105,106との電池電圧差)が、第1調整工程前の最大電池電圧差ΔVよりも大きくなってしまうことがある。   However, when only the second battery B (secondary battery 108) is charged in the first adjustment step described above, the battery voltage V8 of the second battery B temporarily increases significantly. Therefore, as shown in FIG. 30, the maximum battery voltage difference ΔVJ between the secondary batteries 101 to 110 after the first adjustment step (the secondary battery 108 as the second battery B and the battery voltage among the first batteries A). Battery voltage difference between the secondary batteries 105 and 106 having a low value) may be larger than the maximum battery voltage difference ΔV before the first adjustment step.

このため、第1調整工程のみを終えた組電池120を備えたコントローラ付き組電池150を、ハイブリッド自動車等に搭載するなどして使用すると、電池コントローラ30では、これらの電池電圧V1〜V10(図30参照)に基づいて、推定充電量QJを算出する。すると、電池コントローラ30では、図31に示すように、第1調整工程後の第2電池B(二次電池108)の推定充電量QJを、第2電池B(二次電池108)の充電量QFmax(図29参照)よりもはるかに大きな値QJmaxと推定してしまう。   For this reason, when the assembled battery 150 with a controller including the assembled battery 120 that has completed only the first adjustment step is used by being mounted on a hybrid vehicle or the like, the battery controller 30 uses these battery voltages V1 to V10 (see FIG. 30)), the estimated charge amount QJ is calculated. Then, in the battery controller 30, as shown in FIG. 31, the estimated charge amount QJ of the second battery B (secondary battery 108) after the first adjustment step is used as the charge amount of the second battery B (secondary battery 108). The value QJmax is estimated to be much larger than QFmax (see FIG. 29).

すると、電池コントローラ30では、第1調整工程後の二次電池101〜110の推定充電量QJのうち、最大推定充電量QJmax(二次電池108の推定充電量)と最小推定充電量QJmin(二次電池105,106の推定充電量)との差(最大差)ΔQJを算出し、この最大差ΔQJが許容範囲を超えているとして、充電量の異常と判定してしまう。このため、第1調整工程により、二次電池101〜110の充電量QFの最大差ΔQF(図29参照)を、電池コントローラ30の許容範囲内(例えば0.2Ah以内)に収めたにも拘わらず、コントローラ付き組電池50を適正に使用することができないことになる。   Then, in the battery controller 30, among the estimated charge amounts QJ of the secondary batteries 101 to 110 after the first adjustment step, the maximum estimated charge amount QJmax (the estimated charge amount of the secondary battery 108) and the minimum estimated charge amount QJmin (two The difference (maximum difference) ΔQJ from the estimated charge amount of the secondary batteries 105 and 106) is calculated, and it is determined that the charge amount is abnormal if the maximum difference ΔQJ exceeds the allowable range. For this reason, although the maximum difference ΔQF (see FIG. 29) of the charge amount QF of the secondary batteries 101 to 110 is within the allowable range of the battery controller 30 (for example, within 0.2 Ah) by the first adjustment step. Therefore, the assembled battery 50 with a controller cannot be used properly.

但し、第1調整工程で第2電池B(二次電池108)を充電した後、長時間(例えば、数日間)放置すれば、一時的に上昇した第2電池Bの電池電圧V8は回復する。従って、その後に、コントローラ付き組電池150を、ハイブリッド自動車等に搭載するなどして使用すれば、電池コントローラ30で異常判定されることはない。しかしながら、これでは作業効率が悪く、また、コントローラ付き組電池150をできる限り早く使用したい場合に、その要求に応えることができない。
これに対し、本実施例4では、第1調整工程に続いて、次述する第2調整工程を行うことで、速やかに、コントローラ付き組電池150を使用することを可能としている。
However, if the second battery B (secondary battery 108) is charged in the first adjustment step and then left for a long time (for example, several days), the temporarily increased battery voltage V8 of the second battery B is recovered. . Therefore, if the assembled battery 150 with a controller is used after being mounted in a hybrid vehicle or the like, the battery controller 30 will not determine abnormality. However, in this case, the work efficiency is poor, and when it is desired to use the assembled battery 150 with a controller as soon as possible, the request cannot be met.
On the other hand, in the present Example 4, the assembled battery 150 with a controller can be used promptly by performing the second adjustment process described below following the first adjustment process.

(第2調整工程)
すなわち、ステップV3に続き、ステップV4(図28参照)に進み、第1電池A及び第2電池Bのいずれも(すなわち、組電池120を構成する全ての二次電池101〜110)を、図32に示すように、等しい電気量ΔQIだけ充電する。具体的には、例えば、二次電池101〜110を互いに直列に接続した状態で、定電流充放電装置80(図2参照)を用いて、二次電池101〜110を一斉に充電する。
(Second adjustment step)
That is, following step V3, the process proceeds to step V4 (see FIG. 28), and both the first battery A and the second battery B (that is, all the secondary batteries 101 to 110 constituting the assembled battery 120) are As shown at 32, the battery is charged by an equal amount of electricity ΔQI. Specifically, for example, the secondary batteries 101 to 110 are charged all at once using the constant current charging / discharging device 80 (see FIG. 2) in a state where the secondary batteries 101 to 110 are connected in series.

これにより、二次電池101〜110の充電量は、それぞれΔQIだけ上昇するが、第2調整工程後の二次電池101〜110の充電量QGの最大差ΔQG(最大充電量QGmaxと最小充電量QGminとの充電量差)は、第2調整工程前の充電量QFの最大差ΔQFから変動することがない。   As a result, the charge amounts of the secondary batteries 101 to 110 increase by ΔQI, respectively, but the maximum difference ΔQG (the maximum charge amount QGmax and the minimum charge amount) of the charge amounts QG of the secondary batteries 101 to 110 after the second adjustment step. The charge amount difference from QGmin does not vary from the maximum difference ΔQF of the charge amount QF before the second adjustment step.

一方、図33に示すように、第2調整工程後の二次電池101〜110の最大電池電圧差を、ΔVJからΔVKにまで小さくすることができる。これは、第2調整工程における充電により、第1電池A(二次電池101〜107,109,110)の電池電圧(V1〜V7,V9,V10)は大きく上昇するが、第1調整工程で既に充電した第2電池B(二次電池108)は、第2調整工程において再び充電しても、第1電池Aに比べて電池電圧の上昇量が小さくなるからである。   On the other hand, as shown in FIG. 33, the maximum battery voltage difference between the secondary batteries 101 to 110 after the second adjustment step can be reduced from ΔVJ to ΔVK. This is because the battery voltage (V1 to V7, V9, V10) of the first battery A (secondary batteries 101 to 107, 109, 110) greatly increases due to the charging in the second adjustment step, but in the first adjustment step. This is because the second battery B (secondary battery 108) that has already been charged has a smaller increase in battery voltage than the first battery A even if it is charged again in the second adjustment step.

従って、第1,第2調整工程を終えた組電池120を備えたコントローラ付き組電池150を、ハイブリッド自動車等に搭載するなどして使用すると、電池コントローラ30において、最大電池電圧差がΔVKに縮小した電池電圧V1〜V10(図33参照)に基づいて、二次電池101〜110の推定充電量QKが算出される(図34参照)。   Accordingly, when the assembled battery 150 with a controller including the assembled battery 120 after the first and second adjustment steps is used by being mounted on a hybrid vehicle or the like, the maximum battery voltage difference is reduced to ΔVK in the battery controller 30. Based on the battery voltages V1 to V10 (see FIG. 33), the estimated charge amount QK of the secondary batteries 101 to 110 is calculated (see FIG. 34).

この推定充電量QKについて見ると、図34に示すように、最大推定充電量QKmax(二次電池108の推定充電量)と、最小推定充電量QKmin(二次電池105,106の推定充電量)との最大差ΔQKを、第2調整工程前の推定充電量QJの最大差ΔQJに比べて小さくできる。しかも、調整前の推定充電量Qの最大差ΔQ(図27参照)よりも小さくできるので、電池コントローラ30における許容範囲(例えば、0.2Ah)内とすることができる。   Looking at the estimated charge amount QK, as shown in FIG. 34, the maximum estimated charge amount QKmax (the estimated charge amount of the secondary battery 108) and the minimum estimated charge amount QKmin (the estimated charge amounts of the secondary batteries 105 and 106). Can be made smaller than the maximum difference ΔQJ of the estimated charge amount QJ before the second adjustment step. Moreover, since it can be smaller than the maximum difference ΔQ (see FIG. 27) of the estimated charge amount Q before adjustment, it can be within an allowable range (for example, 0.2 Ah) in the battery controller 30.

従って、第2調整工程後の組電池120を備えたコントローラ付き組電池150を、ハイブリッド自動車等に搭載するなどして使用しても、電池コントローラ30で、充電量の異常が検出されることがないので、組電池120を適切に使用することができるようになる。
しかも、本実施例4の調整方法では、第1調整工程後の二次電池101〜110の電池電圧差ΔVJを低減するために、長時間放置する必要がないため、短時間で組電池120の調整を完了させることができる。
Therefore, even if the assembled battery 150 with the controller including the assembled battery 120 after the second adjustment step is used by being mounted on a hybrid vehicle or the like, the battery controller 30 may detect an abnormality in the charge amount. Therefore, the assembled battery 120 can be used appropriately.
In addition, in the adjustment method of the fourth embodiment, it is not necessary to leave the battery pack 120 for a long time in order to reduce the battery voltage difference ΔVJ between the secondary batteries 101 to 110 after the first adjustment step. Adjustment can be completed.

ところで、第2電池B(二次電池108)は、第1電池A(二次電池101〜107,109,110)との特性の違いから、上述のようにして充電量を調整しても、その後の使用(充放電)により、第1電池Aに比べて充電量が徐々に低下する傾向にあるので、再び第1電池Aよりも充電量が小さくなる場合がある。   By the way, the second battery B (secondary battery 108) is different in characteristics from the first battery A (secondary batteries 101 to 107, 109, 110). Subsequent use (charging / discharging) tends to gradually reduce the charge amount as compared to the first battery A, so the charge amount may be smaller than that of the first battery A again.

そこで、本実施例4の調整方法では、第1調整工程において、第2電池B(二次電池108)の充電量を、第1電池A(二次電池101〜107,109,110)のうち最も充電量の大きな二次電池101,110の充電量QFmaxと等しくした(図29参照)。このようにすることで、第2電池Bが、その後の使用(充放電)により、再びいずれの第1電池Aよりも充電量が小さくなるまで、すなわち、推定充電量Qが再び図27に示す状態になるまでの時間を、より長く稼ぐことができる。これによって、より長期間にわたり、組電池120を適正に使用することができる。   Therefore, in the adjustment method of the fourth embodiment, in the first adjustment step, the charge amount of the second battery B (secondary battery 108) is set to the value of the first battery A (secondary batteries 101 to 107, 109, 110). It was made equal to the charge amount QFmax of the secondary batteries 101 and 110 having the largest charge amount (see FIG. 29). By doing in this way, until the charge amount of the second battery B becomes smaller than any of the first batteries A due to subsequent use (charge / discharge), that is, the estimated charge amount Q is again shown in FIG. You can earn longer time to reach the state. Thereby, the assembled battery 120 can be used appropriately over a longer period of time.

(実施例5)
次に、本発明の実施例5について説明する。本実施例5は、実施例1と比較して、組電池を構成する二次電池、及びその調整方法のみが異なり、その他については同様である。従って、ここでは、実施例1と異なる部分を中心に説明し、その他の部分については説明を省略または簡略化する。
(Example 5)
Next, a fifth embodiment of the present invention will be described. The fifth embodiment is different from the first embodiment only in the secondary battery constituting the assembled battery and the adjustment method thereof, and the other is the same. Therefore, here, the description will focus on the parts different from the first embodiment, and the description of other parts will be omitted or simplified.

本実施例5のコントローラ付き組電池250は、図1に示すように、二次電池201〜210が互いに直列に接続されてなる組電池220と、実施例1と同等の電池コントローラ30とを有している。本実施例5では、使用により充放電を繰り返す間に、図36に示すように、組電池220を構成する二次電池201〜210のうち二次電池201,210が、他の二次電池に比べて充電量が大きくなりすぎて、電池コントローラ30で充電量の異常と判定されてしまうことがある。   As shown in FIG. 1, the assembled battery 250 with a controller according to the fifth embodiment includes an assembled battery 220 in which secondary batteries 201 to 210 are connected in series with each other, and a battery controller 30 equivalent to the first embodiment. is doing. In Example 5, the secondary batteries 201 and 210 among the secondary batteries 201 to 210 constituting the assembled battery 220 are replaced with other secondary batteries as shown in FIG. In comparison, the charge amount may be too large, and the battery controller 30 may determine that the charge amount is abnormal.

本実施例5の組電池220としては、例えば、二次電池201〜210が一列に列置されてなり、列の両端に位置する二次電池201,210が、これらに挟まれた他の二次電池202〜209に比べて冷却されやすいものを挙げることができる。このような組電池220では、二次電池201,210が、他の二次電池202〜209に比べて、使用中に晒される環境温度が低いために劣化が小さくなるので、充放電の繰り返しに伴い充電量が徐々に大きくなる傾向にある。
なお、本実施例5では、図35〜図43において、二次電池201〜210を、1〜10と省略して記載している。
As the assembled battery 220 of the fifth embodiment, for example, the secondary batteries 201 to 210 are arranged in a row, and the secondary batteries 201 and 210 located at both ends of the row are connected to the other batteries. The secondary batteries 202 to 209 can be easily cooled. In such an assembled battery 220, the secondary batteries 201 and 210 are less deteriorated because the environmental temperature exposed during use is lower than that of the other secondary batteries 202 to 209. Along with this, the charge amount tends to gradually increase.
In the fifth embodiment, the secondary batteries 201 to 210 are abbreviated as 1 to 10 in FIGS. 35 to 43.

電池コントローラ30は、二次電池201〜210の推定充電量Qのうち、最も大きな最大推定充電量Qmax(本実施例5では、二次電池201,210の充電量)と最も小さな最小推定充電量Qmin(本実施例5では、二次電池205,206の充電量)との差(最大差)ΔQを算出する。そして、最大差ΔQが許容範囲を超えている場合には、充電量が異常であると判定し、図1に示すように、異常信号ESを、ハイブリッド自動車等の各種制御を行うコントロールユニット70に向けて送信する。これを受け、コントロールユニット70は、運転者等に向けて警報等を発する。   The battery controller 30 has the largest maximum estimated charge amount Qmax (in the fifth embodiment, the charge amount of the secondary batteries 201, 210) and the smallest minimum estimated charge amount among the estimated charge amounts Q of the secondary batteries 201-210. A difference (maximum difference) ΔQ from Qmin (charge amount of the secondary batteries 205 and 206 in the fifth embodiment) is calculated. When the maximum difference ΔQ exceeds the allowable range, it is determined that the charging amount is abnormal, and as shown in FIG. 1, the abnormality signal ES is sent to the control unit 70 that performs various controls of the hybrid vehicle or the like. Send to. In response to this, the control unit 70 issues an alarm or the like to the driver or the like.

このように、充電量の異常が検出された場合、本実施例5では、次のようにして、充電量を調整する。図37は、実施例5にかかる組電池の調整工程の流れを示すフローチャートである。
まず、実施例1と同様に、ステップW1において、組電池220を構成する二次電池201〜210の推定充電量(図36参照)を取得する。次いで、ステップW2に進み、取得した二次電池201〜210の推定充電量Qの大小に応じて、二次電池201〜210を、第1電池Aと第2電池Bの群に分ける。本実施例5では、相対的に充電量が大きい二次電池201,210を第1電池A、これらよりも充電量が小さい二次電池202〜209を第2電池Bとしている。
As described above, when an abnormality in the charge amount is detected, in the fifth embodiment, the charge amount is adjusted as follows. FIG. 37 is a flowchart illustrating a flow of the adjustment process of the assembled battery according to the fifth embodiment.
First, in the same manner as in the first embodiment, in step W1, the estimated charge amount (see FIG. 36) of the secondary batteries 201 to 210 constituting the assembled battery 220 is acquired. Next, the process proceeds to Step W2, and the secondary batteries 201 to 210 are divided into a group of the first battery A and the second battery B according to the obtained estimated charge amount Q of the secondary batteries 201 to 210. In the fifth embodiment, the secondary batteries 201 and 210 having relatively large charge amounts are referred to as the first battery A, and the secondary batteries 202 to 209 having smaller charge amounts are referred to as the second battery B.

(第1調整工程)
次に、ステップW3(図37参照)に進み、第1電池A(二次電池201,210)を放電させて、第1電池Aの充電量を、第2電池B(二次電池202〜209)の充電量から定められる充電量範囲X(本実施例5では、第2電池Bの充電量のうち、最も小さい充電量から最も大きい充電量までの範囲とした、図38参照)の範囲内にする。本実施例5では、図38に示すように、第1電池Aの充電量を、第2電池Bのうち最も充電量の小さい二次電池205,206の充電量と等しくしている。なお、充電量範囲Xは、電池コントローラ30において許容される充電量の許容範囲(例えば、0.2Ah)を満たすように設定している。
(First adjustment process)
Next, it progresses to step W3 (refer FIG. 37), the 1st battery A (secondary battery 201,210) is discharged, and the charge amount of the 1st battery A is set to the 2nd battery B (secondary batteries 202-209). ) Within the range of the charge amount range X determined from the charge amount (see FIG. 38, in the fifth embodiment, the range from the smallest charge amount to the largest charge amount among the charge amounts of the second battery B). To. In the fifth embodiment, as shown in FIG. 38, the charge amount of the first battery A is made equal to the charge amount of the secondary batteries 205 and 206 having the smallest charge amount among the second batteries B. The charge amount range X is set so as to satisfy an allowable range (for example, 0.2 Ah) of the charge amount allowed in the battery controller 30.

これにより、第1調整工程後の二次電池201〜210について見ると、図38に示すように、充電量QFの最大差ΔQFは、第1調整工程前にかかる第2電池Bの充電量の最大差と等しくなり、第1調整工程前のΔQに比べて小さくすることができる。すなわち、第1電池A(二次電池201,210)と第2電池B(二次電池202〜209)との充電量の差を小さくすることができる。   Thereby, when looking at the secondary batteries 201 to 210 after the first adjustment step, as shown in FIG. 38, the maximum difference ΔQF of the charge amount QF is the charge amount of the second battery B applied before the first adjustment step. It becomes equal to the maximum difference and can be made smaller than ΔQ before the first adjustment step. That is, the difference in charge amount between the first battery A (secondary batteries 201 and 210) and the second battery B (secondary batteries 202 to 209) can be reduced.

ところが、上述の第1調整工程によって第1電池Aのみを放電させると、第1電池A(二次電池201,210)の電池電圧V1,V10が一時的に大きく低下する。このため、図39に示すように、第1調整工程後の二次電池201〜210の最大電池電圧差ΔVJ(第1電池Aである二次電池201,210と、第2電池Bのうち最も電池電圧の高い二次電池202,209との電池電圧差)が、第1調整工程前の最大電池電圧差ΔVよりも大きくなってしまうことがある。   However, when only the first battery A is discharged in the first adjustment step described above, the battery voltages V1 and V10 of the first battery A (secondary batteries 201 and 210) are temporarily greatly reduced. For this reason, as shown in FIG. 39, the maximum battery voltage difference ΔVJ of the secondary batteries 201 to 210 after the first adjustment step (secondary batteries 201 and 210 as the first battery A and the second battery B most). The battery voltage difference between the secondary batteries 202 and 209 having a high battery voltage) may be larger than the maximum battery voltage difference ΔV before the first adjustment step.

このため、第1調整工程のみを終えた組電池220を備えたコントローラ付き組電池250を、ハイブリッド自動車等に搭載するなどして使用すると、電池コントローラ30では、これらの電池電圧V1〜V10(図39参照)に基づいて、推定充電量QJを算出する。すると、電池コントローラ30では、図40に示すように、第1調整工程後の第1電池A(二次電池201,210)の推定充電量QJを、第1電池Aの充電量QFmin(図38参照)よりもはるかに小さな値QJminと推定してしまう。   For this reason, when the assembled battery 250 with a controller including the assembled battery 220 that has completed only the first adjustment step is used by being mounted on a hybrid vehicle or the like, the battery controller 30 uses these battery voltages V1 to V10 (see FIG. 39)), the estimated charge amount QJ is calculated. Then, in the battery controller 30, as shown in FIG. 40, the estimated charge amount QJ of the first battery A (secondary batteries 201, 210) after the first adjustment step is used as the charge amount QFmin (FIG. 38) of the first battery A. It is estimated that the value QJmin is much smaller than the reference.

すると、電池コントローラ30では、第1調整工程後の二次電池201〜210の推定充電量QJのうち、最大推定充電量QJmax(二次電池202,209の推定充電量)と最小推定充電量QJmin(二次電池201,210の推定充電量)との差(最大差)ΔQJを算出し、この最大差ΔQJが許容範囲を超えているとして、充電量の異常と判定してしまう。このため、第1調整工程により、二次電池201〜210の充電量QFの最大差ΔQF(図38参照)を、電池コントローラ30の許容範囲内(例えば0.2Ah以内)に収めたにも拘わらず、コントローラ付き組電池250を適正に使用することができないことになる。   Then, in the battery controller 30, among the estimated charge amounts QJ of the secondary batteries 201 to 210 after the first adjustment step, the maximum estimated charge amount QJmax (the estimated charge amount of the secondary batteries 202 and 209) and the minimum estimated charge amount QJmin. A difference (maximum difference) ΔQJ from (the estimated charge amount of the secondary batteries 201, 210) is calculated, and it is determined that the charge amount is abnormal if the maximum difference ΔQJ exceeds the allowable range. For this reason, even though the maximum difference ΔQF (see FIG. 38) of the charge amount QF of the secondary batteries 201 to 210 is within the allowable range of the battery controller 30 (for example, within 0.2 Ah) by the first adjustment step. Therefore, the assembled battery 250 with a controller cannot be used properly.

但し、第1調整工程によって、第1電池Aを放電させた後、長時間(例えば、数日間)放置すれば、一時的に低下した第1電池A(二次電池201,210)の電池電圧V1,V10は回復する。従って、その後に、コントローラ付き組電池250を、ハイブリッド自動車等に搭載するなどして使用すれば、電池コントローラ30で異常判定されることはない。しかしながら、これでは作業効率が悪く、また、コントローラ付き組電池250をできる限り早く使用したい場合に、その要求に応えることができない。
これに対し、本実施例5では、第1調整工程に続いて、次述する第2調整工程を行うことで、速やかに、コントローラ付き組電池250を使用することを可能としている。
However, if the first battery A is discharged in the first adjustment step and then left for a long time (for example, for several days), the battery voltage of the first battery A (secondary batteries 201, 210) temporarily decreased. V1 and V10 recover. Therefore, if the assembled battery 250 with a controller is used after being mounted on a hybrid vehicle or the like, the battery controller 30 will not determine an abnormality. However, in this case, the work efficiency is poor, and when it is desired to use the assembled battery 250 with a controller as soon as possible, the request cannot be met.
On the other hand, in the present Example 5, the assembled battery 250 with a controller can be used promptly by performing the 2nd adjustment process described below following a 1st adjustment process.

(第2調整工程)
すなわち、ステップW3に続き、ステップW4(図37参照)に進み、第1電池A及び第2電池Bのいずれも(すなわち、組電池220を構成する全ての二次電池201〜210)を、図41に示すように、等しい電気量だけ放電させる。具体的には、例えば、二次電池201〜210を互いに直列に接続した状態で、定電流充放電装置80(図2参照)を用いて、二次電池201〜210を一斉に放電させる。
(Second adjustment step)
That is, following step W3, the process proceeds to step W4 (see FIG. 37), and both the first battery A and the second battery B (that is, all the secondary batteries 201 to 210 constituting the assembled battery 220) are As shown at 41, the same amount of electricity is discharged. Specifically, for example, the secondary batteries 201 to 210 are discharged all at once using the constant current charging / discharging device 80 (see FIG. 2) in a state where the secondary batteries 201 to 210 are connected in series.

これにより、二次電池201〜210の充電量は、それぞれ等しい電気量だけ減少するが、第2調整工程後の二次電池201〜210の充電量QGの最大差ΔQG(最大充電量QGmaxと最小充電量QGminとの充電量差)は、第2調整工程前の充電量QFの最大差ΔQFから変動することがない。   As a result, the charge amounts of the secondary batteries 201 to 210 are reduced by an equal amount of electricity, respectively, but the maximum difference ΔQG (the maximum charge amount QGmax and the minimum charge amount) of the charge amounts QG of the secondary batteries 201 to 210 after the second adjustment step. The charge amount difference from the charge amount QGmin does not vary from the maximum difference ΔQF of the charge amount QF before the second adjustment step.

一方、図42に示すように、第2調整工程後の二次電池201〜210の最大電池電圧差を、ΔVJからΔVKにまで小さくすることができる。これは、第2調整工程における放電により、第2電池B(二次電池202〜209)の電池電圧(V2〜V9)は大きく低下するが、第1調整工程で既に放電させた第1電池A(二次電池201,210)は、第2調整工程において再び放電させても、第2電池Bに比べて電池電圧の低下量が小さくなるからである。   On the other hand, as shown in FIG. 42, the maximum battery voltage difference of the secondary batteries 201 to 210 after the second adjustment step can be reduced from ΔVJ to ΔVK. This is because the battery voltage (V2 to V9) of the second battery B (secondary batteries 202 to 209) greatly decreases due to the discharge in the second adjustment step, but the first battery A that has already been discharged in the first adjustment step. This is because the amount of decrease in battery voltage is smaller than that of the second battery B even if the (secondary batteries 201, 210) are discharged again in the second adjustment step.

従って、第1,第2調整工程を終えた組電池220を備えたコントローラ付き組電池250を、ハイブリッド自動車等に搭載するなどして使用すると、電池コントローラ30において、最大電池電圧差がΔVKに縮小した電池電圧V1〜V10(図42参照)に基づいて、二次電池201〜210の推定充電量QKが算出される(図43参照)。   Accordingly, when the assembled battery 250 with a controller including the assembled battery 220 after the first and second adjustment steps is used by being mounted on a hybrid vehicle or the like, the maximum battery voltage difference is reduced to ΔVK in the battery controller 30. Based on the battery voltages V1 to V10 (see FIG. 42), the estimated charge amount QK of the secondary batteries 201 to 210 is calculated (see FIG. 43).

この推定充電量QKについて見ると、図43に示すように、最大推定充電量QKmax(二次電池202,209の推定充電量)と、最小推定充電量QKmin(二次電池201,210の推定充電量)との最大差ΔQKを、第2調整工程前の推定充電量QJの最大差ΔQJに比べて小さくできる。しかも、調整前の推定充電量Qの最大差ΔQ(図36参照)よりも小さくできるので、電池コントローラ30における許容範囲(例えば、0.2Ah)内とすることができる。   Looking at the estimated charge amount QK, as shown in FIG. 43, the maximum estimated charge amount QKmax (the estimated charge amount of the secondary batteries 202 and 209) and the minimum estimated charge amount QKmin (the estimated charge of the secondary batteries 201 and 210). The maximum difference ΔQK with respect to the amount) can be made smaller than the maximum difference ΔQJ of the estimated charge amount QJ before the second adjustment step. Moreover, since it can be smaller than the maximum difference ΔQ (see FIG. 36) of the estimated charge amount Q before adjustment, it can be within an allowable range (for example, 0.2 Ah) in the battery controller 30.

従って、第2調整工程後の組電池220を備えたコントローラ付き組電池250を、ハイブリッド自動車等に搭載するなどして使用しても、電池コントローラ30で、充電量の異常が検出されることがないので、組電池220を適切に使用することができるようになる。
しかも、本実施例5の調整方法では、第1調整工程後の二次電池201〜210の電池電圧差ΔVJを低減するために、長時間放置する必要がないため、短時間で組電池220の調整を完了させることができる。
Therefore, even if the assembled battery 250 with a controller including the assembled battery 220 after the second adjustment step is used by being mounted on a hybrid vehicle or the like, the battery controller 30 may detect an abnormality in the charge amount. Therefore, the assembled battery 220 can be used appropriately.
Moreover, in the adjustment method of the fifth embodiment, in order to reduce the battery voltage difference ΔVJ of the secondary batteries 201 to 210 after the first adjustment step, it is not necessary to leave for a long time. Adjustment can be completed.

(実施例6)
次に、本発明の実施例6について説明する。本実施例6は、実施例1と比較して、組電池の調整方法のみが異なり、その他については同様である。従って、ここでは、実施例1と異なる部分を中心に説明し、その他の部分については説明を省略または簡略化する。
(Example 6)
Next, a sixth embodiment of the present invention will be described. The sixth embodiment is different from the first embodiment only in the method of adjusting the assembled battery, and the other is the same. Therefore, here, the description will focus on the parts different from the first embodiment, and the description of other parts will be omitted or simplified.

図44は、実施例6にかかる組電池の調整工程の流れを示すフローチャートである。
まず、実施例1と同様に、ステップS1において、組電池20を構成する二次電池1〜10の推定充電量(図4参照)をそれぞれ取得する。次いで、ステップS2に進み、取得した二次電池1〜10の推定充電量の大小に応じて、二次電池1〜10を、第1電池Aと第2電池Bの群に分ける。本実施例6でも、実施例1と同様に、二次電池8を第1電池A、二次電池1〜7,9,10を第2電池Bとする。
FIG. 44 is a flowchart illustrating a flow of an adjustment process of the assembled battery according to the sixth embodiment.
First, similarly to Example 1, in step S1, estimated charge amounts (see FIG. 4) of the secondary batteries 1 to 10 constituting the assembled battery 20 are obtained. Subsequently, it progresses to step S2 and the secondary batteries 1-10 are divided into the group of the 1st battery A and the 2nd battery B according to the magnitude of the estimated charge amount of the acquired secondary batteries 1-10. Also in the sixth embodiment, similarly to the first embodiment, the secondary battery 8 is the first battery A, and the secondary batteries 1 to 7, 9, and 10 are the second battery B.

(第1調整工程)
次に、ステップM3(図44参照)に進み、第2電池B(二次電池1〜7,9,10)を互いに等しい電気量だけ充電して、第1電池A(二次電池8)の充電量を、充電後の第2電池Bの充電量から定められる充電量範囲X(本実施例6では、第2電池Bの充電量のうち、最も小さい充電量から最も大きい充電量までの範囲とした、図45参照)の範囲内とする。本実施例6では、図45に示すように、全ての第2電池B(二次電池1〜7,9,10)を等しくΔQだけ充電して、第1調整工程後の第2電池Bのうち最も充電量の小さい二次電池5,6の充電量QFminを、第1電池A(二次電池8)の充電量と等しくした。具体的には、第2電池B(二次電池1〜7,9,10)を互いに電気的に直列に接続した状態で、定電流充放電装置80(図2参照)を用いて、第2電池B(二次電池1〜7,9,10)を、ΔQだけ一斉に充電した。
(First adjustment process)
Next, it progresses to step M3 (refer FIG. 44), the 2nd battery B (secondary batteries 1-7, 9, 10) is charged only by the mutually same electric quantity, and 1st battery A (secondary battery 8) of Charge amount range X determined from the charge amount of the second battery B after charging (in the sixth embodiment, the range from the smallest charge amount to the largest charge amount among the charge amounts of the second battery B in the sixth embodiment) And within the range of FIG. In Example 6, as shown in FIG. 45, all the second batteries B (secondary batteries 1 to 7, 9, 10) are equally charged by ΔQ, and the second battery B after the first adjustment process is charged. Among them, the charge amount QFmin of the secondary batteries 5 and 6 having the smallest charge amount was made equal to the charge amount of the first battery A (secondary battery 8). Specifically, the second battery B (secondary batteries 1 to 7, 9, 10) is electrically connected in series with each other using the constant current charging / discharging device 80 (see FIG. 2). Battery B (secondary batteries 1-7, 9, 10) was charged all at once by ΔQ.

なお、充電量範囲Xは、電池コントローラ30において許容される充電量の許容範囲(例えば、0.2Ah)を満たすように設定している。また、ΔQは、前述のように、第1調整工程前の二次電池1〜10の推定充電量Qのうち、最も大きな最大推定充電量Qmax(本実施例6では、二次電池8の充電量)と最も小さな最小推定充電量Qmin(本実施例6では、二次電池5,6の充電量)との差(最大差)である(図4参照)。   The charge amount range X is set so as to satisfy an allowable range (for example, 0.2 Ah) of the charge amount allowed in the battery controller 30. Further, as described above, ΔQ is the largest maximum estimated charge amount Qmax among the estimated charge amounts Q of the secondary batteries 1 to 10 before the first adjustment step (in the sixth embodiment, the charge of the secondary battery 8). Amount) and the smallest minimum estimated charge amount Qmin (the charge amount of the secondary batteries 5 and 6 in the sixth embodiment) (maximum difference) (see FIG. 4).

これにより、第1調整工程後の二次電池1〜10について見ると、図45に示すように、充電量QFの最大差ΔQFは、第1調整工程前にかかる第2電池Bの充電量の最大差と等しくなり、第1調整工程前のΔQに比べて小さくすることができる。すなわち、第1電池A(二次電池8)と第2電池B(二次電池1〜7,9,10)との充電量の差を小さくすることができる。   Thereby, when looking at the secondary batteries 1 to 10 after the first adjustment step, as shown in FIG. 45, the maximum difference ΔQF of the charge amount QF is the charge amount of the second battery B applied before the first adjustment step. It becomes equal to the maximum difference and can be made smaller than ΔQ before the first adjustment step. That is, the difference in charge amount between the first battery A (secondary battery 8) and the second battery B (secondary batteries 1 to 7, 9, 10) can be reduced.

ところが、上述の第1調整工程によって第2電池B(二次電池1〜7,9,10)を充電すると、第2電池B(二次電池1〜7,9,10)の電池電圧V1〜V7,V9,V10が一時的に大きく上昇する。このため、図46に示すように、第1調整工程後の二次電池1〜10の最大電池電圧差ΔVJ(第1電池Aである二次電池8と、第2電池Bのうち最も電池電圧の高い二次電池1,10との電池電圧差)が、第1調整工程前の最大電池電圧差ΔVよりも大きくなってしまうことがある。   However, when the second battery B (secondary batteries 1 to 7, 9, 10) is charged by the first adjustment step described above, the battery voltages V 1 to V2 of the second battery B (secondary batteries 1 to 7, 9, 10) V7, V9, and V10 increase temporarily temporarily. For this reason, as shown in FIG. 46, the maximum battery voltage difference ΔVJ of the secondary batteries 1 to 10 after the first adjustment step (the secondary battery 8 being the first battery A and the battery voltage among the second batteries B is the most). Battery voltage difference between the secondary batteries 1 and 10 having a high value) may be larger than the maximum battery voltage difference ΔV before the first adjustment step.

このため、第1調整工程のみを終えた組電池20を備えたコントローラ付き組電池50を、ハイブリッド自動車等に搭載するなどして使用すると、電池コントローラ30では、これらの電池電圧V1〜V10(図46参照)に基づいて、推定充電量QJを算出する。このため、電池コントローラ30では、図47に示すように、第1調整工程後の第2電池B(二次電池1〜7,9,10)の推定充電量QJを、第2電池B(二次電池1〜7,9,10)の充電量QF(図45参照)よりもはるかに大きな値と推定してしまう。   For this reason, when the assembled battery 50 with a controller including the assembled battery 20 that has completed only the first adjustment step is used by being mounted on a hybrid vehicle or the like, the battery controller 30 uses these battery voltages V1 to V10 (FIG. 46), an estimated charge amount QJ is calculated. Therefore, in the battery controller 30, as shown in FIG. 47, the estimated charge amount QJ of the second battery B (secondary batteries 1 to 7, 9, 10) after the first adjustment step is set to the second battery B (two It is estimated that the value is much larger than the charge amount QF (see FIG. 45) of the secondary batteries 1 to 7, 9, 10).

すると、電池コントローラ30では、第1調整工程後の二次電池1〜10の推定充電量QJのうち、最大推定充電量QJmax(二次電池1,10の充電量)と最小推定充電量QJmin(二次電池8の充電量)との差(最大差)ΔQJを算出し、この最大差ΔQJが許容範囲を超えているとして、充電量の異常と判定してしまう。このため、第1調整工程により、二次電池1〜10の充電量QFの最大差ΔQF(図45参照)を、電池コントローラ30の許容範囲内(例えば0.2Ah以内)に収めたにも拘わらず、コントローラ付き組電池50を適正に使用することができないことになる。   Then, in the battery controller 30, among the estimated charge amounts QJ of the secondary batteries 1 to 10 after the first adjustment step, the maximum estimated charge amount QJmax (charge amount of the secondary batteries 1 and 10) and the minimum estimated charge amount QJmin ( The difference (maximum difference) ΔQJ from the charge amount of the secondary battery 8 is calculated, and if the maximum difference ΔQJ exceeds the allowable range, it is determined that the charge amount is abnormal. For this reason, even though the maximum difference ΔQF (see FIG. 45) of the charge amount QF of the secondary batteries 1 to 10 is within the allowable range (for example, within 0.2 Ah) of the battery controller 30 by the first adjustment step. Therefore, the assembled battery 50 with a controller cannot be used properly.

但し、第1調整工程で第2電池B(二次電池1〜7,9,10)を充電した後、長時間(例えば、数日間)放置すれば、一時的に上昇した第2電池B(二次電池1〜7,9,10)の電池電圧V1〜V7,V9,V10は回復(低下)する。従って、その後に、コントローラ付き組電池50を、ハイブリッド自動車等に搭載するなどして使用すれば、電池コントローラ30で異常判定されることはない。しかしながら、これでは作業効率が悪く、また、コントローラ付き組電池50をできる限り早く使用したい場合に、その要求に応えることができない。
これに対し、本実施例6では、第1調整工程に続いて、次述する第2調整工程を行うことで、速やかに、コントローラ付き組電池50を使用することを可能としている。
However, if the second battery B (secondary batteries 1 to 7, 9, 10) is charged in the first adjustment step and then left for a long time (for example, several days), the second battery B ( The battery voltages V1 to V7, V9, and V10 of the secondary batteries 1 to 7, 9, and 10) recover (decrease). Therefore, if the assembled battery 50 with a controller is used after being mounted on a hybrid vehicle or the like, the battery controller 30 will not determine abnormality. However, in this case, work efficiency is poor, and when it is desired to use the assembled battery 50 with a controller as soon as possible, the request cannot be met.
On the other hand, in the present Example 6, the assembled battery 50 with a controller can be used promptly by performing the 2nd adjustment process described below following a 1st adjustment process.

(第2調整工程)
すなわち、ステップM3に続き、ステップM4(図44参照)に進み、第1電池A及び第2電池Bのいずれも(すなわち、組電池20を構成するすべての二次電池1〜10)を、図48に示すように、等しい電気量ΔQHだけ充電する。具体的には、例えば、二次電池1〜10を互いに直列に接続した状態で、定電流充放電装置80(図2参照)を用いて、二次電池1〜10を一斉に充電する。
(Second adjustment step)
That is, following step M3, the process proceeds to step M4 (see FIG. 44), and both the first battery A and the second battery B (that is, all the secondary batteries 1 to 10 constituting the assembled battery 20) are As shown at 48, the battery is charged by an equal amount of electricity ΔQH. Specifically, for example, the secondary batteries 1 to 10 are charged simultaneously using the constant current charging / discharging device 80 (see FIG. 2) in a state where the secondary batteries 1 to 10 are connected in series.

これにより、二次電池1〜10の充電量は、それぞれΔQHだけ増大するが、第2調整工程後の二次電池1〜10の充電量QGの最大差ΔQG(最大充電量QGmaxと最小充電量QGminとの充電量差)は、第2調整工程前の充電量QFの最大差ΔQFから変動することがない(図48参照)。   Thereby, the charge amounts of the secondary batteries 1 to 10 are increased by ΔQH, respectively, but the maximum difference ΔQG (the maximum charge amount QGmax and the minimum charge amount) of the charge amounts QG of the secondary batteries 1 to 10 after the second adjustment step. The difference in charge amount from QGmin does not vary from the maximum difference ΔQF in the charge amount QF before the second adjustment step (see FIG. 48).

一方、図49に示すように、第2調整工程後の二次電池1〜10の最大電池電圧差を、ΔVJからΔVKにまで小さくすることができる。これは、第2調整工程における充電により、第1電池A(二次電池8)の電池電圧(V8)は大きく上昇するが、第1調整工程で既に充電している第2電池B(二次電池1〜7,9,10)は、第2調整工程において第1電池Aと等しい電気量を充電しても、第1電池A(二次電池8)に比べて電池電圧の上昇量が小さくなるからである。   On the other hand, as shown in FIG. 49, the maximum battery voltage difference between the secondary batteries 1 to 10 after the second adjustment step can be reduced from ΔVJ to ΔVK. This is because the battery voltage (V8) of the first battery A (secondary battery 8) greatly increases due to charging in the second adjustment step, but the second battery B (secondary battery already charged in the first adjustment step (secondary battery). Even if the batteries 1 to 7, 9, 10) are charged with the same amount of electricity as the first battery A in the second adjustment step, the amount of increase in battery voltage is smaller than that of the first battery A (secondary battery 8). Because it becomes.

従って、第1,第2調整工程を終えた組電池20を備えたコントローラ付き組電池50を、ハイブリッド自動車等に搭載するなどして使用すると、電池コントローラ30において、最大電池電圧差がΔVKに縮小した電池電圧V1〜V10(図49参照)に基づいて、二次電池1〜10の推定充電量QKが算出される(図50参照)。
この推定充電量QKについて見ると、最大推定充電量QKmax(二次電池1,10の推定充電量)と、最小推定充電量QKmin(二次電池8の推定充電量)との最大差ΔQKを、第2調整工程前の推定充電量QJの最大差ΔQJ(図47参照)に比べて小さくできる。しかも、調整前の推定充電量Qの最大差ΔQ(図4参照)よりも小さくでき、電池コントローラ30における許容範囲(例えば、0.2Ah)内とすることができる。
Therefore, when the assembled battery 50 with a controller including the assembled battery 20 that has finished the first and second adjustment steps is used in a hybrid vehicle or the like, the maximum battery voltage difference is reduced to ΔVK in the battery controller 30. Based on the battery voltages V1 to V10 (see FIG. 49), the estimated charge amount QK of the secondary batteries 1 to 10 is calculated (see FIG. 50).
Looking at the estimated charge amount QK, the maximum difference ΔQK between the maximum estimated charge amount QKmax (the estimated charge amount of the secondary batteries 1 and 10) and the minimum estimated charge amount QKmin (the estimated charge amount of the secondary battery 8) is This can be made smaller than the maximum difference ΔQJ (see FIG. 47) of the estimated charge amount QJ before the second adjustment step. Moreover, it can be smaller than the maximum difference ΔQ (see FIG. 4) of the estimated charge amount Q before adjustment, and can be within an allowable range (for example, 0.2 Ah) in the battery controller 30.

従って、第2調整後の組電池20を備えたコントローラ付き組電池50を、ハイブリッド自動車等に搭載するなどして使用しても、電池コントローラ30で、充電量の異常が検出されることがないので、組電池20を適切に使用することができるようになる。
しかも、本実施例6の調整方法では、第1調整工程後の二次電池1〜10の電池電圧差ΔVJを低減するために、長時間放置する必要がないため、短時間で組電池20の調整を完了させることができる。
Therefore, even if the assembled battery 50 with a controller including the assembled battery 20 after the second adjustment is used by being mounted on a hybrid vehicle or the like, the battery controller 30 does not detect an abnormality in the charge amount. Therefore, the assembled battery 20 can be used appropriately.
Moreover, in the adjustment method of the sixth embodiment, it is not necessary to leave the battery pack 20 for a long time in order to reduce the battery voltage difference ΔVJ of the secondary batteries 1 to 10 after the first adjustment step. Adjustment can be completed.

ところで、第1電池A(二次電池8)は、第2電池B(二次電池1〜7,9,10)との特性の違いから、上述のようにして充電量を調整しても、その後の使用(充放電)により、第2電池Bに比べて充電量が徐々に増加する傾向にあるので、再び第2電池Bよりも充電量が大きくなる場合がある。   By the way, the first battery A (secondary battery 8) has a characteristic different from that of the second battery B (secondary batteries 1 to 7, 9, 10). Subsequent use (charging / discharging) tends to gradually increase the amount of charge compared to the second battery B, so the amount of charge may be larger than that of the second battery B again.

そこで、本実施例6の調整方法では、前述のように、第1調整工程において、第2電池B(二次電池1〜7,9,10)のうち最も充電量の小さな二次電池5,6の充電量QFminを、第1電池A(二次電池8)の充電量と等しくした(図45参照)。このようにすることで、第1電池A(二次電池8)が、その後の使用(充放電)により、再びいずれの第2電池B(二次電池1〜7,9,10)よりも充電量が大きくなるまで、すなわち、推定充電量Qが再び図4に示す状態になるまでの時間を、より長く稼ぐことができる。これによって、より長期間にわたり、組電池20を適正に使用することができる。   Therefore, in the adjustment method of the sixth embodiment, as described above, in the first adjustment step, the secondary battery 5 having the smallest charge amount among the second batteries B (secondary batteries 1 to 7, 9, 10). The charge amount QFmin of 6 was made equal to the charge amount of the first battery A (secondary battery 8) (see FIG. 45). By doing in this way, the 1st battery A (secondary battery 8) is charged more than any 2nd battery B (secondary batteries 1-7, 9, 10) by subsequent use (charge / discharge). The amount of time until the amount increases, that is, the time until the estimated charge amount Q reaches the state shown in FIG. 4 can be earned longer. Thereby, the assembled battery 20 can be used appropriately over a longer period of time.

(実施例7)
次に、本発明の実施例7について説明する。本実施例7は、実施例4と比較して、組電池の調整方法のみが異なり、その他については同様である。従って、ここでは、実施例4と異なる部分を中心に説明し、その他の部分については説明を省略または簡略化する。
(Example 7)
Next, a seventh embodiment of the present invention will be described. The seventh embodiment is different from the fourth embodiment only in the method of adjusting the assembled battery, and the other is the same. Therefore, here, the description will focus on the parts different from the fourth embodiment, and the description of the other parts will be omitted or simplified.

図51は、実施例7にかかる組電池の調整工程の流れを示すフローチャートである。
まず、実施例4と同様に、ステップV1において、組電池120を構成する二次電池101110の推定充電量(図27参照)をそれぞれ取得する。次いで、ステップV2に進み、取得した二次電池101110の推定充電量の大小に応じて、二次電池101110を、第1電池Aと第2電池Bの群に分ける。本実施例7でも、実施例4と同様に、二次電池101107109110を第1電池A、二次電池108を第2電池Bとする。
FIG. 51 is a flowchart illustrating the flow of the adjustment process of the assembled battery according to the seventh embodiment.
First, similarly to Example 4, in step V1, estimated charge amounts (see FIG. 27) of the secondary batteries 101 to 110 constituting the assembled battery 120 are obtained. Then, the process proceeds to a step V2, depending on the magnitude of the estimated charge amount of the obtained secondary batteries 101-110, secondary batteries 101-110, grouped according to the first battery A and the second battery B. Also in the seventh embodiment, similarly to the fourth embodiment, the secondary batteries 101 to 107 , 109 , and 110 are referred to as the first battery A, and the secondary battery 108 is referred to as the second battery B.

(第1調整工程)
次に、ステップN3(図51参照)に進み、図52に示すように、第1電池A(二次電池101〜107,109,110)を互いに等しい電気量だけ放電させて、第2電池B(二次電池108)の充電量を、放電後の第1電池Aの充電量から定められる充電量範囲X(本実施例7では、第1電池Aの充電量のうち、最も小さい充電量から最も大きい充電量までの範囲とした)の範囲内にする。本実施例7では、図52に示すように、第1電池Aのうち最も充電量の大きい二次電池101,110の充電量QFmaxを、第2電池Bの充電量と等しくした。具体的には、第1電池A(二次電池101〜107,109,110)を互いに電気的に直列に接続した状態で、定電流充放電装置80(図2参照)を用いて、第1電池A(二次電池101〜107,109,110)を、ΔQだけ一斉に放電させた。
(First adjustment process)
Next, the process proceeds to Step N3 (see FIG. 51), and as shown in FIG. 52, the first battery A (secondary batteries 101 to 107, 109, 110) is discharged by an equal amount of electricity to the second battery B. The charge amount of the (secondary battery 108) is determined from the charge amount range X determined from the charge amount of the first battery A after discharge (in the seventh embodiment, from the smallest charge amount among the charge amounts of the first battery A). (Within the range up to the maximum charge amount). In the seventh embodiment, as shown in FIG. 52, the charge amount QFmax of the secondary batteries 101 and 110 having the largest charge amount among the first batteries A is made equal to the charge amount of the second battery B. Specifically, the first battery A (secondary batteries 101 to 107, 109, 110) is electrically connected in series with each other using the constant current charging / discharging device 80 (see FIG. 2). Battery A (secondary batteries 101-107, 109, 110) was discharged simultaneously by ΔQ.

なお、図52〜図57では、二次電池101〜110を、1〜10と省略して記載している。また、充電量範囲Xは、電池コントローラ30において許容される充電量の許容範囲(例えば、0.2Ah)を満たすように設定している。また、ΔQは、前述のように、第1調整工程前の二次電池101〜110の推定充電量Qのうち、最も大きな最大推定充電量Qmax(本実施例7では、二次電池101,110の充電量)と最も小さな最小推定充電量Qmin(本実施例7では、二次電池8の充電量)との差(最大差)である(図27参照)。   52 to 57, the secondary batteries 101 to 110 are abbreviated as 1 to 10. Further, the charge amount range X is set so as to satisfy an allowable range (for example, 0.2 Ah) of the charge amount allowed in the battery controller 30. Further, as described above, ΔQ is the largest maximum estimated charge amount Qmax among the estimated charge amounts Q of the secondary batteries 101 to 110 before the first adjustment step (in the seventh embodiment, the secondary batteries 101 and 110). ) And the smallest minimum estimated charge amount Qmin (in the seventh embodiment, the charge amount of the secondary battery 8) (maximum difference) (see FIG. 27).

これにより、第1調整工程後の二次電池101〜110について見ると、図52に示すように、充電量QFの最大差ΔQFは、第1調整工程前にかかる第1電池Aの充電量の最大差と等しくなり、第1調整工程前のΔQに比べて小さくすることができる。すなわち、第1電池A(二次電池101〜107,109,110)と第2電池B(二次電池108)との充電量の差を小さくすることができる。   Thereby, when looking at the secondary batteries 101 to 110 after the first adjustment step, as shown in FIG. 52, the maximum difference ΔQF of the charge amount QF is the charge amount of the first battery A applied before the first adjustment step. It becomes equal to the maximum difference and can be made smaller than ΔQ before the first adjustment step. That is, the difference in charge amount between the first battery A (secondary batteries 101 to 107, 109, 110) and the second battery B (secondary battery 108) can be reduced.

ところが、上述の第1調整工程によって、第1電池A(二次電池101〜107,109,110)のみを放電させると、第1電池Aの電池電圧V1〜7,9,10が一時的に大きく低下する。このため、図53に示すように、第1調整工程後の二次電池101〜110の最大電池電圧差ΔVJ(第2電池Bである二次電池108と、第1電池Aのうち最も電池電圧の低い二次電池105,106との電池電圧差)が、第1調整工程前の最大電池電圧差ΔVよりも大きくなってしまうことがある。   However, if only the first battery A (secondary batteries 101 to 107, 109, 110) is discharged by the first adjustment step, the battery voltages V1 to 7, 9, 10 of the first battery A are temporarily changed. Decrease significantly. For this reason, as shown in FIG. 53, the maximum battery voltage difference ΔVJ of the secondary batteries 101 to 110 after the first adjustment step (the secondary battery 108 as the second battery B and the battery voltage among the first batteries A). Battery voltage difference between the secondary batteries 105 and 106 having a low value) may be larger than the maximum battery voltage difference ΔV before the first adjustment step.

このため、第1調整工程のみを終えた組電池120を備えたコントローラ付き組電池150を、ハイブリッド自動車等に搭載するなどして使用すると、電池コントローラ30では、これらの電池電圧V1〜V10(図53参照)に基づいて、推定充電量QJを算出する。このため、電池コントローラ30では、図54に示すように、第1調整工程後の第1電池A(二次電池101〜107,109,110)の推定充電量QJを、第1電池Aの充電量QF(図52参照)よりもはるかに小さな値と推定してしまう。   For this reason, when the assembled battery 150 with a controller including the assembled battery 120 that has completed only the first adjustment step is used by being mounted on a hybrid vehicle or the like, the battery controller 30 uses these battery voltages V1 to V10 (see FIG. 53), the estimated charge amount QJ is calculated. Therefore, in the battery controller 30, as shown in FIG. 54, the estimated charge amount QJ of the first battery A (secondary batteries 101 to 107, 109, 110) after the first adjustment step is used to charge the first battery A. The value is estimated to be much smaller than the quantity QF (see FIG. 52).

すると、電池コントローラ30では、第1調整工程後の二次電池101〜110の推定充電量QJのうち、最大推定充電量QJmax(二次電池108の推定充電量)と最小推定充電量QJmin(二次電池105,106の推定充電量)との差(最大差)ΔQJを算出し、この最大差ΔQJが許容範囲を超えているとして、充電量の異常と判定してしまう。このため、第1調整工程により、二次電池101〜110の充電量QFの最大差ΔQF(図52参照)を、電池コントローラ30の許容範囲内(例えば0.2Ah以内)に収めたにも拘わらず、コントローラ付き組電池50を適正に使用することができないことになる。   Then, in the battery controller 30, among the estimated charge amounts QJ of the secondary batteries 101 to 110 after the first adjustment step, the maximum estimated charge amount QJmax (the estimated charge amount of the secondary battery 108) and the minimum estimated charge amount QJmin (two The difference (maximum difference) ΔQJ from the estimated charge amount of the secondary batteries 105 and 106) is calculated, and it is determined that the charge amount is abnormal if the maximum difference ΔQJ exceeds the allowable range. For this reason, even though the maximum difference ΔQF (see FIG. 52) of the charge amount QF of the secondary batteries 101 to 110 is within the allowable range of the battery controller 30 (for example, within 0.2 Ah) by the first adjustment step. Therefore, the assembled battery 50 with a controller cannot be used properly.

但し、第1調整工程で第1電池A(二次電池101〜107,109,110)を放電させた後、長時間(例えば、数日間)放置すれば、一時的に低下した第1電池Aの電池電圧V1〜7,9,10は回復する。従って、その後に、コントローラ付き組電池150を、ハイブリッド自動車等に搭載するなどして使用すれば、電池コントローラ30で異常判定されることはない。しかしながら、これでは作業効率が悪く、また、コントローラ付き組電池150をできる限り早く使用したい場合に、その要求に応えることができない。
これに対し、本実施例7では、第1調整工程に続いて、次述する第2調整工程を行うことで、速やかに、コントローラ付き組電池150を使用することを可能としている。
However, if the first battery A (secondary batteries 101 to 107, 109, 110) is discharged in the first adjustment step and then left for a long time (for example, several days), the first battery A that has temporarily decreased The battery voltages V1 to 7, 9, 10 are recovered. Therefore, if the assembled battery 150 with a controller is used after being mounted in a hybrid vehicle or the like, the battery controller 30 will not determine abnormality. However, in this case, the work efficiency is poor, and when it is desired to use the assembled battery 150 with a controller as soon as possible, the request cannot be met.
On the other hand, in the present Example 7, the assembled battery 150 with a controller can be used promptly by performing the 2nd adjustment process described below following a 1st adjustment process.

(第2調整工程)
すなわち、ステップN3に続き、ステップN4(図51参照)に進み、第1電池A及び第2電池Bのいずれも(すなわち、組電池120を構成する全ての二次電池101〜110)を、図55に示すように、等しい電気量ΔQIだけ放電させる。具体的には、例えば、二次電池101〜110を互いに直列に接続した状態で、定電流充放電装置80(図2参照)を用いて、二次電池101〜110をΔQIだけ一斉に放電させる。
(Second adjustment step)
That is, following step N3, the process proceeds to step N4 (see FIG. 51), and both the first battery A and the second battery B (that is, all the secondary batteries 101 to 110 constituting the assembled battery 120) are As shown at 55, the same amount of electricity ΔQI is discharged. Specifically, for example, the secondary batteries 101 to 110 are simultaneously discharged by ΔQI using the constant current charging / discharging device 80 (see FIG. 2) in a state where the secondary batteries 101 to 110 are connected in series. .

これにより、二次電池101〜110の充電量は、それぞれΔQIだけ減少するが、第2調整工程後の二次電池101〜110の充電量QGの最大差ΔQG(最大充電量QGmaxと最小充電量QGminとの充電量差)は、第2調整工程前の充電量QFの最大差ΔQFから変動することがない。   Accordingly, the charge amounts of the secondary batteries 101 to 110 are decreased by ΔQI, respectively, but the maximum difference ΔQG (the maximum charge amount QGmax and the minimum charge amount) of the charge amounts QG of the secondary batteries 101 to 110 after the second adjustment step. The charge amount difference from QGmin does not vary from the maximum difference ΔQF of the charge amount QF before the second adjustment step.

一方、図56に示すように、第2調整工程後の二次電池101〜110の最大電池電圧差を、ΔVJからΔVKにまで小さくすることができる。これは、第2調整工程における放電により、第2電池B(二次電池108)の電池電圧(V8)は大きく低下するが、第1調整工程で既に放電させた第1電池A(二次電池101〜107,109,110)は、第2調整工程において第2電池Bと等しい電気量を放電させても、第2電池Bに比べて電池電圧の低下量が小さくなるからである。   On the other hand, as shown in FIG. 56, the maximum battery voltage difference between the secondary batteries 101 to 110 after the second adjustment step can be reduced from ΔVJ to ΔVK. This is because the battery voltage (V8) of the second battery B (secondary battery 108) is greatly reduced by the discharge in the second adjustment step, but the first battery A (secondary battery) already discharged in the first adjustment step. 101 to 107, 109, 110) is because the amount of decrease in battery voltage is smaller than that of the second battery B even if the same amount of electricity as that of the second battery B is discharged in the second adjustment step.

従って、第1,第2調整工程を終えた組電池120を備えたコントローラ付き組電池150を、ハイブリッド自動車等に搭載するなどして使用すると、電池コントローラ30において、最大電池電圧差がΔVKに縮小した電池電圧V1〜V10(図56参照)に基づいて、二次電池101〜110の推定充電量QKが算出される(図57参照)。   Accordingly, when the assembled battery 150 with a controller including the assembled battery 120 after the first and second adjustment steps is used by being mounted on a hybrid vehicle or the like, the maximum battery voltage difference is reduced to ΔVK in the battery controller 30. Based on the battery voltages V1 to V10 (see FIG. 56), the estimated charge amount QK of the secondary batteries 101 to 110 is calculated (see FIG. 57).

この推定充電量QKについて見ると、図57に示すように、最大推定充電量QKmax(二次電池108の推定充電量)と、最小推定充電量QKmin(二次電池105,106の推定充電量)との最大差ΔQKを、第2調整工程前の推定充電量QJの最大差ΔQJに比べて小さくできる。しかも、調整前の推定充電量Qの最大差ΔQ(図27参照)よりも小さくでき、電池コントローラ30における許容範囲(例えば、0.2Ah)内とすることができる。   Looking at the estimated charge amount QK, as shown in FIG. 57, the maximum estimated charge amount QKmax (estimated charge amount of the secondary battery 108) and the minimum estimated charge amount QKmin (estimated charge amount of the secondary batteries 105 and 106). Can be made smaller than the maximum difference ΔQJ of the estimated charge amount QJ before the second adjustment step. Moreover, it can be smaller than the maximum difference ΔQ (see FIG. 27) of the estimated charge amount Q before adjustment, and can be within an allowable range (for example, 0.2 Ah) in the battery controller 30.

従って、第2調整工程後の組電池120を備えたコントローラ付き組電池150を、ハイブリッド自動車等に搭載するなどして使用しても、電池コントローラ30で、充電量の異常が検出されることがないので、組電池120を適切に使用することができるようになる。
しかも、本実施例7の調整方法では、第1調整工程後の二次電池101〜110の電池電圧差ΔVJを低減するために、長時間放置する必要がないため、短時間で組電池120の調整を完了させることができる。
Therefore, even if the assembled battery 150 with the controller including the assembled battery 120 after the second adjustment step is used by being mounted on a hybrid vehicle or the like, the battery controller 30 may detect an abnormality in the charge amount. Therefore, the assembled battery 120 can be used appropriately.
Moreover, in the adjustment method of the seventh embodiment, in order to reduce the battery voltage difference ΔVJ between the secondary batteries 101 to 110 after the first adjustment step, it is not necessary to leave the battery pack 120 for a long time. Adjustment can be completed.

ところで、第2電池B(二次電池108)は、第1電池A(二次電池101〜107,109,110)との特性の違いから、上述のようにして充電量を調整しても、その後の使用(充放電)により、第1電池Aに比べて充電量が徐々に小さくなる傾向にあるので、再び第1電池Aよりも充電量が小さくなる場合がある。   By the way, the second battery B (secondary battery 108) is different in characteristics from the first battery A (secondary batteries 101 to 107, 109, 110). Since the amount of charge tends to be gradually smaller than that of the first battery A due to subsequent use (charge / discharge), the amount of charge may be smaller than that of the first battery A again.

そこで、本実施例7の調整方法では、第1調整工程において、第2電池B(二次電池108)の充電量を、第1電池A(二次電池101〜107,109,110)のうち最も充電量の大きな二次電池101,110の充電量QFmaxと等しくした(図52参照)。このようにすることで、その後の使用(充放電)により、第2電池Bが、再びいずれの第1電池Aよりも充電量が小さくなるまで、すなわち、推定充電量Qが再び図27に示す状態になるまでの時間を、より長く稼ぐことができる。これによって、より長期間にわたり、組電池120を適正に使用することができる。   Therefore, in the adjustment method of the seventh embodiment, in the first adjustment step, the charge amount of the second battery B (secondary battery 108) is set to the value of the first battery A (secondary batteries 101 to 107, 109, 110). The charge amount QFmax of the secondary batteries 101 and 110 having the largest charge amount was made equal (see FIG. 52). By doing so, until the second battery B again has a smaller charge amount than any of the first batteries A by subsequent use (charge / discharge), that is, the estimated charge amount Q is again shown in FIG. You can earn longer time to reach the state. Thereby, the assembled battery 120 can be used appropriately over a longer period of time.

以上において、本発明を実施例1〜7に即して説明したが、本発明は上記実施例に限定されるものではなく、その要旨を逸脱しない範囲で、適宜変更して適用できることはいうまでもない。
例えば、実施例1では、ステップS3(第1調整工程)において、第1電池A(二次電池8)を放電させたが、第2電池B(二次電池1〜7,9,10)を等しい電気量だけ充電して、第2電池Bのうち最も充電量の小さい二次電池5,6の充電量を、第1電池A(二次電池8)の充電量と等しくするようにしても良い。
また、実施例1では、ステップS4(第2調整工程)において、第1電池A及び第2電池Bを放電させたが、これらを等しい電気量だけ充電するようにしても良い。
In the above, the present invention has been described with reference to the first to seventh embodiments. However, the present invention is not limited to the above-described embodiments, and it can be applied as appropriate without departing from the scope of the present invention. Nor.
For example, in Example 1, the first battery A (secondary battery 8) was discharged in step S3 (first adjustment step), but the second battery B (secondary batteries 1 to 7, 9, 10) was discharged. By charging the same amount of electricity, the amount of charge of the secondary batteries 5 and 6 with the smallest amount of charge among the second batteries B is made equal to the amount of charge of the first battery A (secondary battery 8). good.
In the first embodiment, the first battery A and the second battery B are discharged in step S4 (second adjustment step), but they may be charged by an equal amount of electricity.

また、実施例2では、ステップT3(第1電池の調整工程)に続いて、ステップT4(第2電池の調整工程)を行ったが、ステップT3(第1電池の調整工程)に先立って、ステップT4(第2電池の調整工程)を行うようにしても良い。
また、実施例3では、ステップU3(第2電池の調整工程)に続いて、ステップU4(第1電池の調整工程)を行ったが、ステップU3(第2電池の調整工程)に先立って、ステップU4(第1電池の調整工程)を行うようにしても良い。
In Example 2, step T4 (second battery adjustment step) was performed following step T3 (first battery adjustment step). Prior to step T3 (first battery adjustment step), Step T4 (second battery adjustment step) may be performed.
In Example 3, step U4 (first battery adjustment process) was performed following step U3 (second battery adjustment process). Prior to step U3 (second battery adjustment process), You may make it perform step U4 (adjustment process of a 1st battery).

また、実施例4では、ステップV3(第1調整工程)において、第2電池B(二次電池108)を充電したが、第1電池A(二次電池101〜107,109,110)を等しい電気量だけ放電させて、第2電池Bの充電量と、第1電池Aのうち最も充電量の大きい二次電池101,110の充電量とを等しくするようにしても良い。
また、実施例4では、ステップV4(第2調整工程)において、第1電池A及び第2電池Bを充電したが、これらを等しい電気量だけ放電するようにしても良い。
In Example 4, the second battery B (secondary battery 108) was charged in step V3 (first adjustment step), but the first battery A (secondary batteries 101 to 107, 109, 110) was equal. The amount of electricity may be discharged so that the amount of charge of the second battery B is equal to the amount of charge of the secondary batteries 101 and 110 having the largest amount of charge among the first batteries A.
In the fourth embodiment, the first battery A and the second battery B are charged in step V4 (second adjustment step), but they may be discharged by an equal amount of electricity.

また、実施例5では、ステップW3(第1調整工程)において、第1電池A(二次電池201,210)を放電させたが、第2電池B(二次電池202〜209)を等しい電気量だけ充電して、第1電池Aの充電量と、第2電池Bのうち最も充電量の小さい二次電池205,206の充電量とを等しくするようにしても良い。
また、実施例5では、ステップW4(第2調整工程)において、第1電池A及び第2電池Bを放電させたが、これらを等しい電気量だけ充電するようにしても良い。
Further, in Example 5, the first battery A (secondary batteries 201 and 210) was discharged in step W3 (first adjustment step), but the second battery B (secondary batteries 202 to 209) was equalized. The amount of charge of the first battery A may be equal to the amount of charge of the secondary batteries 205 and 206 having the smallest charge amount of the second battery B.
In the fifth embodiment, the first battery A and the second battery B are discharged in step W4 (second adjustment process), but they may be charged by an equal amount of electricity.

また、実施例1〜7では、電池コントローラ30で充電量の異常が検出された後に、組電池の充電量の調整(第1調整工程及び第2調整工程、または、第1電池の調整工程及び第2電池の調整工程)を行ったが、充電量の異常が検出される前に、調整を行うようにしても良い。例えば、自動車等の定期点検毎に、データモニタ60を用いて、組電池を構成する二次電池の推定充電量Qを点検調査し、推定充電量Qの最大差ΔQが許容範囲内(例えば、0.2Ah以下)であっても、所定値(例えば、0.1Ah)以上である場合には、充電量の調整を行うようにしても良い。このようにすれば、自動車の運転中などに充電量の異常が検出されて、警報等が発せられるのを防止できるので好ましい。   Moreover, in Examples 1-7, after abnormality of charge amount is detected by the battery controller 30, adjustment of the charge amount of an assembled battery (a 1st adjustment process and a 2nd adjustment process, or a 1st battery adjustment process and Although the adjustment process of the second battery is performed, the adjustment may be performed before the abnormality of the charge amount is detected. For example, for each periodic inspection of an automobile or the like, the estimated charge amount Q of the secondary battery constituting the assembled battery is inspected using the data monitor 60, and the maximum difference ΔQ of the estimated charge amount Q is within an allowable range (for example, Even if it is 0.2 Ah or less), if it is a predetermined value (for example, 0.1 Ah) or more, the amount of charge may be adjusted. This is preferable because it is possible to prevent an alarm or the like from being detected due to an abnormality in the charge amount during driving of the automobile.

実施例1〜7にかかるコントローラ付き組電池50,150,250のブロック図である。It is a block diagram of assembled batteries 50, 150, 250 with a controller concerning Examples 1-7. 実施例1〜5にかかる組電池の調整工程を説明する説明図である。It is explanatory drawing explaining the adjustment process of the assembled battery concerning Examples 1-5. 実施例1にかかる調整前の二次電池1〜10(第1電池A及び第2電池B)の電池電圧を示すグラフである。It is a graph which shows the battery voltage of the secondary batteries 1-10 (1st battery A and 2nd battery B) before the adjustment concerning Example 1. FIG. 実施例1にかかる調整前の二次電池1〜10(第1電池A及び第2電池B)の推定充電量を示すグラフである。It is a graph which shows the estimated charge amount of the secondary batteries 1-10 (1st battery A and 2nd battery B) before the adjustment concerning Example 1. FIG. 実施例1にかかる組電池の調整工程の流れを示すフローチャートである。3 is a flowchart showing a flow of an adjustment process of an assembled battery according to Example 1; 実施例1にかかる第1調整工程後の二次電池1〜10(第1電池A及び第2電池B)の充電量を示すグラフである。It is a graph which shows the charge amount of the secondary batteries 1-10 (1st battery A and 2nd battery B) after the 1st adjustment process concerning Example 1. FIG. 実施例1にかかる第1調整工程後の二次電池1〜10(第1電池A及び第2電池B)の電池電圧を示すグラフである。It is a graph which shows the battery voltage of the secondary batteries 1-10 (1st battery A and 2nd battery B) after the 1st adjustment process concerning Example 1. FIG. 実施例1にかかる第1調整工程後の二次電池1〜10(第1電池A及び第2電池B)の推定充電量を示すグラフである。It is a graph which shows the estimated charge amount of the secondary batteries 1-10 (1st battery A and 2nd battery B) after the 1st adjustment process concerning Example 1. FIG. 実施例1にかかる第2調整工程後の二次電池1〜10(第1電池A及び第2電池B)の充電量を示すグラフである。It is a graph which shows the charge amount of the secondary batteries 1-10 (1st battery A and 2nd battery B) after the 2nd adjustment process concerning Example 1. FIG. 実施例1にかかる第2調整工程後の二次電池1〜10(第1電池A及び第2電池B)の電池電圧を示すグラフである。It is a graph which shows the battery voltage of the secondary batteries 1-10 (1st battery A and 2nd battery B) after the 2nd adjustment process concerning Example 1. FIG. 実施例1にかかる第2調整工程後の二次電池1〜10(第1電池A及び第2電池B)の推定充電量を示すグラフである。It is a graph which shows the estimated charge amount of the secondary batteries 1-10 (1st battery A and 2nd battery B) after the 2nd adjustment process concerning Example 1. FIG. 実施例2にかかる組電池の調整工程の流れを示すフローチャートである。6 is a flowchart showing a flow of an adjustment process of an assembled battery according to Example 2; 実施例2にかかる第1電池の調整工程後の二次電池1〜10(第1電池A及び第2電池B)の充電量を示すグラフである。It is a graph which shows the charge amount of the secondary batteries 1-10 (1st battery A and 2nd battery B) after the adjustment process of the 1st battery concerning Example 2. FIG. 実施例2にかかる第1電池の調整工程後の二次電池1〜10(第1電池A及び第2電池B)の電池電圧を示すグラフである。It is a graph which shows the battery voltage of the secondary batteries 1-10 (1st battery A and 2nd battery B) after the adjustment process of the 1st battery concerning Example 2. FIG. 実施例2にかかる第1電池の調整工程後の二次電池1〜10(第1電池A及び第2電池B)の推定充電量を示すグラフである。It is a graph which shows the estimated charge amount of the secondary batteries 1-10 (1st battery A and 2nd battery B) after the adjustment process of the 1st battery concerning Example 2. FIG. 実施例2にかかる第2電池の調整工程後の二次電池1〜10(第1電池A及び第2電池B)の充電量を示すグラフである。It is a graph which shows the charge amount of the secondary batteries 1-10 (1st battery A and 2nd battery B) after the adjustment process of the 2nd battery concerning Example 2. FIG. 実施例2にかかる第2電池の調整工程後の二次電池1〜10(第1電池A及び第2電池B)の電池電圧を示すグラフである。It is a graph which shows the battery voltage of the secondary batteries 1-10 (1st battery A and 2nd battery B) after the adjustment process of the 2nd battery concerning Example 2. FIG. 実施例2にかかる第2電池の調整工程後の二次電池1〜10(第1電池A及び第2電池B)の推定充電量を示すグラフである。It is a graph which shows the estimated charge amount of the secondary batteries 1-10 (1st battery A and 2nd battery B) after the adjustment process of the 2nd battery concerning Example 2. FIG. 実施例3にかかる組電池の調整工程の流れを示すフローチャートである。10 is a flowchart showing a flow of an adjustment process of an assembled battery according to Example 3; 実施例3にかかる第2電池の調整工程後の二次電池1〜10(第1電池A及び第2電池B)の充電量を示すグラフである。It is a graph which shows the charge amount of the secondary batteries 1-10 (1st battery A and 2nd battery B) after the adjustment process of the 2nd battery concerning Example 3. FIG. 実施例3にかかる第2電池の調整工程後の二次電池1〜10(第1電池A及び第2電池B)の電池電圧を示すグラフである。It is a graph which shows the battery voltage of the secondary batteries 1-10 (1st battery A and 2nd battery B) after the adjustment process of the 2nd battery concerning Example 3. FIG. 実施例3にかかる第2電池の調整工程後の二次電池1〜10(第1電池A及び第2電池B)の推定充電量を示すグラフである。It is a graph which shows the estimated charge amount of the secondary batteries 1-10 (1st battery A and 2nd battery B) after the adjustment process of the 2nd battery concerning Example 3. FIG. 実施例3にかかる第1電池の調整工程後の二次電池1〜10(第1電池A及び第2電池B)の充電量を示すグラフである。It is a graph which shows the charge amount of the secondary batteries 1-10 (1st battery A and 2nd battery B) after the adjustment process of the 1st battery concerning Example 3. FIG. 実施例3にかかる第1電池の調整工程後の二次電池1〜10(第1電池A及び第2電池B)の電池電圧を示すグラフである。It is a graph which shows the battery voltage of the secondary batteries 1-10 (1st battery A and 2nd battery B) after the adjustment process of the 1st battery concerning Example 3. FIG. 実施例3にかかる第1電池の調整工程後の二次電池1〜10(第1電池A及び第2電池B)の推定充電量を示すグラフである。It is a graph which shows the estimated charge amount of the secondary batteries 1-10 (1st battery A and 2nd battery B) after the adjustment process of the 1st battery concerning Example 3. FIG. 実施例4にかかる調整前の二次電池101〜110(第1電池A及び第2電池B)の電池電圧を示すグラフである。It is a graph which shows the battery voltage of the secondary batteries 101-110 (1st battery A and 2nd battery B) before the adjustment concerning Example 4. FIG. 実施例4にかかる調整前の二次電池101〜110(第1電池A及び第2電池B)の推定充電量を示すグラフである。It is a graph which shows the estimated charge amount of the secondary batteries 101-110 (1st battery A and 2nd battery B) before the adjustment concerning Example 4. FIG. 実施例4にかかる組電池の調整工程の流れを示すフローチャートである。12 is a flowchart showing a flow of an adjustment process of an assembled battery according to Example 4; 実施例4にかかる第1調整工程後の二次電池101〜110(第1電池A及び第2電池B)の充電量を示すグラフである。It is a graph which shows the charge amount of the secondary batteries 101-110 (1st battery A and 2nd battery B) after the 1st adjustment process concerning Example 4. FIG. 実施例4にかかる第1調整工程後の二次電池101〜110(第1電池A及び第2電池B)の電池電圧を示すグラフである。It is a graph which shows the battery voltage of the secondary batteries 101-110 (1st battery A and 2nd battery B) after the 1st adjustment process concerning Example 4. FIG. 実施例4にかかる第1調整工程後の二次電池101〜110(第1電池A及び第2電池B)の推定充電量を示すグラフである。It is a graph which shows the estimated charge amount of the secondary batteries 101-110 (1st battery A and 2nd battery B) after the 1st adjustment process concerning Example 4. FIG. 実施例4にかかる第2調整工程後の二次電池101〜110(第1電池A及び第2電池B)の充電量を示すグラフである。It is a graph which shows the charge amount of the secondary batteries 101-110 (1st battery A and 2nd battery B) after the 2nd adjustment process concerning Example 4. FIG. 実施例4にかかる第2調整工程後の二次電池101〜110(第1電池A及び第2電池B)の電池電圧を示すグラフである。It is a graph which shows the battery voltage of the secondary batteries 101-110 (1st battery A and 2nd battery B) after the 2nd adjustment process concerning Example 4. FIG. 実施例4にかかる第2調整工程後の二次電池101〜110(第1電池A及び第2電池B)の推定充電量を示すグラフである。It is a graph which shows the estimated charge amount of the secondary batteries 101-110 (1st battery A and 2nd battery B) after the 2nd adjustment process concerning Example 4. FIG. 実施例5にかかる調整前の二次電池201〜210(第1電池A及び第2電池B)の電池電圧を示すグラフである。It is a graph which shows the battery voltage of the secondary batteries 201-210 (1st battery A and 2nd battery B) before the adjustment concerning Example 5. FIG. 実施例5にかかる調整前の二次電池201〜210(第1電池A及び第2電池B)の推定充電量を示すグラフである。It is a graph which shows the estimated charge amount of the secondary batteries 201-210 (1st battery A and 2nd battery B) before the adjustment concerning Example 5. FIG. 実施例5にかかる組電池の調整工程の流れを示すフローチャートである。10 is a flowchart showing a flow of an adjustment process of an assembled battery according to Example 5; 実施例5にかかる第1調整工程後の二次電池201〜210(第1電池A及び第2電池B)の充電量を示すグラフである。12 is a graph showing the amount of charge of secondary batteries 201 to 210 (first battery A and second battery B) after the first adjustment step according to Example 5; 実施例5にかかる第1調整工程後の二次電池201〜210(第1電池A及び第2電池B)の電池電圧を示すグラフである。It is a graph which shows the battery voltage of the secondary batteries 201-210 (1st battery A and 2nd battery B) after the 1st adjustment process concerning Example 5. FIG. 実施例5にかかる第1調整工程後の二次電池201〜210(第1電池A及び第2電池B)の推定充電量を示すグラフである。12 is a graph showing an estimated charge amount of secondary batteries 201 to 210 (first battery A and second battery B) after the first adjustment step according to Example 5; 実施例5にかかる第2調整工程後の二次電池201〜210(第1電池A及び第2電池B)の充電量を示すグラフである。12 is a graph showing the amount of charge of secondary batteries 201 to 210 (first battery A and second battery B) after the second adjustment step according to Example 5; 実施例5にかかる第2調整工程後の二次電池201〜210(第1電池A及び第2電池B)の電池電圧を示すグラフである。It is a graph which shows the battery voltage of the secondary batteries 201-210 (1st battery A and 2nd battery B) after the 2nd adjustment process concerning Example 5. FIG. 実施例5にかかる第2調整工程後の二次電池201〜210(第1電池A及び第2電池B)の推定充電量を示すグラフである。It is a graph which shows the estimated charge amount of the secondary batteries 201-210 (1st battery A and 2nd battery B) after the 2nd adjustment process concerning Example 5. FIG. 実施例6にかかる組電池の調整工程の流れを示すフローチャートである。10 is a flowchart showing a flow of an adjustment process of an assembled battery according to Example 6; 実施例6にかかる第1調整工程後の二次電池1〜10(第1電池A及び第2電池B)の充電量を示すグラフである。It is a graph which shows the charge amount of the secondary batteries 1-10 (1st battery A and 2nd battery B) after the 1st adjustment process concerning Example 6. FIG. 実施例6にかかる第1調整工程後の二次電池1〜10(第1電池A及び第2電池B)の電池電圧を示すグラフである。It is a graph which shows the battery voltage of the secondary batteries 1-10 (1st battery A and 2nd battery B) after the 1st adjustment process concerning Example 6. FIG. 実施例6にかかる第1調整工程後の二次電池1〜10(第1電池A及び第2電池B)の推定充電量を示すグラフである。It is a graph which shows the estimated charge amount of the secondary batteries 1-10 (1st battery A and 2nd battery B) after the 1st adjustment process concerning Example 6. FIG. 実施例6にかかる第2調整工程後の二次電池1〜10(第1電池A及び第2電池B)の充電量を示すグラフである。It is a graph which shows the charge amount of the secondary batteries 1-10 (1st battery A and 2nd battery B) after the 2nd adjustment process concerning Example 6. FIG. 実施例6にかかる第2調整工程後の二次電池1〜10(第1電池A及び第2電池B)の電池電圧を示すグラフである。It is a graph which shows the battery voltage of the secondary batteries 1-10 (1st battery A and 2nd battery B) after the 2nd adjustment process concerning Example 6. FIG. 実施例6にかかる第2調整工程後の二次電池1〜10(第1電池A及び第2電池B)の推定充電量を示すグラフである。It is a graph which shows the estimated charge amount of the secondary batteries 1-10 (1st battery A and 2nd battery B) after the 2nd adjustment process concerning Example 6. FIG. 実施例7にかかる組電池の調整工程の流れを示すフローチャートである。10 is a flowchart showing a flow of an adjustment process of an assembled battery according to Example 7. 実施例7にかかる第1調整工程後の二次電池101〜110(第1電池A及び第2電池B)の充電量を示すグラフである。It is a graph which shows the charge amount of the secondary batteries 101-110 (1st battery A and 2nd battery B) after the 1st adjustment process concerning Example 7. FIG. 実施例7にかかる第1調整工程後の二次電池101〜110(第1電池A及び第2電池B)の電池電圧を示すグラフである。It is a graph which shows the battery voltage of the secondary batteries 101-110 (1st battery A and 2nd battery B) after the 1st adjustment process concerning Example 7. FIG. 実施例7にかかる第1調整工程後の二次電池101〜110(第1電池A及び第2電池B)の推定充電量を示すグラフである。It is a graph which shows the estimated charge amount of the secondary batteries 101-110 (1st battery A and 2nd battery B) after the 1st adjustment process concerning Example 7. FIG. 実施例7にかかる第2調整工程後の二次電池101〜110(第1電池A及び第2電池B)の充電量を示すグラフである。It is a graph which shows the charge amount of the secondary batteries 101-110 (1st battery A and 2nd battery B) after the 2nd adjustment process concerning Example 7. FIG. 実施例7にかかる第2調整工程後の二次電池101〜110(第1電池A及び第2電池B)の電池電圧を示すグラフである。It is a graph which shows the battery voltage of the secondary batteries 101-110 (1st battery A and 2nd battery B) after the 2nd adjustment process concerning Example 7. FIG. 実施例7にかかる第2調整工程後の二次電池101〜110(第1電池A及び第2電池B)の推定充電量を示すグラフである。It is a graph which shows the estimated charge amount of the secondary batteries 101-110 (1st battery A and 2nd battery B) after the 2nd adjustment process concerning Example 7. FIG.

符号の説明Explanation of symbols

1〜10,101〜110,201〜210 二次電池
20,120,220 組電池
30 電池コントローラ(電池コントローラ)
50,150,250 コントローラ付き組電池
60 データモニタ
80 定電流充放電装置
A 第1電池
B 第2電池
1 to 10, 101 to 110, 201 to 210 Secondary battery 20, 120, 220 Battery pack 30 Battery controller (battery controller)
50, 150, 250 Battery pack with controller 60 Data monitor 80 Constant current charge / discharge device A First battery B Second battery

Claims (8)

組電池をなす複数の二次電池を、調整前の充電量をもとに、
充電量が大きい、1または複数の第1電池と、
上記第1電池よりも充電量が小さい、残る1または複数の第2電池と、に分けたとき、
上記組電池をなす上記第1電池と上記第2電池との充電量の差を小さくする
組電池の調整方法であって、
上記1または複数の第1電池をいずれも放電させて、それぞれの上記第1電池の充電量を、上記第2電池の充電量から定められる充電量範囲の範囲内にする、または、
上記1または複数の上記第2電池を互いに等しい電気量だけ充電して、それぞれの上記第1電池の充電量を、充電後の上記第2電池の充電量から定められる充電量範囲の範囲内とする
第1調整工程と、
上記第1調整工程に続いて、上記第1電池及び上記第2電池のいずれをも、等しい電気量だけ放電または充電する
第2調整工程と、を備える
組電池の調整方法。
Based on the amount of charge before adjustment, the secondary batteries that make up the assembled battery
One or more first batteries having a large charge amount;
When divided into the remaining one or a plurality of second batteries having a smaller charge amount than the first battery,
An assembled battery adjustment method for reducing a difference in charge between the first battery and the second battery constituting the assembled battery,
Either discharging the one or more first batteries to bring the charge amount of each of the first batteries into a charge amount range determined from the charge amount of the second battery, or
The one or more second batteries are charged by an equal amount of electricity, and the charge amount of each of the first batteries is within a charge amount range determined from the charge amount of the second battery after charging. A first adjustment step,
A method for adjusting an assembled battery, comprising: following the first adjustment step, a second adjustment step of discharging or charging both the first battery and the second battery by an equal amount of electricity.
請求項1に記載の組電池の調整方法であって、
前記第1調整工程は、
前記1または複数の第1電池のうち少なくともいずれかの充電量と、前記第2電池のうち最も充電量の小さなものの充電量とを等しくする
組電池の調整方法。
A method for adjusting an assembled battery according to claim 1,
The first adjustment step includes
A method for adjusting an assembled battery in which a charge amount of at least one of the one or more first batteries is equal to a charge amount of the second battery having the smallest charge amount.
組電池をなす複数の二次電池を、調整前の充電量をもとに、
充電量が大きい、1または複数の第1電池と、
上記第1電池よりも充電量が小さい、残る1または複数の第2電池と、に分けたとき、
上記組電池をなす上記第1電池と上記第2電池との充電量の差を小さくする
組電池の調整方法であって、
上記1または複数の第2電池をいずれも充電して、それぞれの上記第2電池の充電量を、上記第1電池の充電量から定められる充電量範囲の範囲内にする、または、
上記1または複数の上記第1電池を互いに等しい電気量だけ放電させて、それぞれの上記第2電池の充電量を、放電後の上記第1電池の充電量から定められる充電量範囲の範囲内とする
第1調整工程と、
上記第1調整工程に続いて、上記第1電池及び上記第2電池のいずれをも、等しい電気量だけ放電または充電する
第2調整工程と、を備える
組電池の調整方法。
Based on the amount of charge before adjustment, the secondary batteries that make up the assembled battery
One or more first batteries having a large charge amount;
When divided into the remaining one or a plurality of second batteries having a smaller charge amount than the first battery,
An assembled battery adjustment method for reducing a difference in charge between the first battery and the second battery constituting the assembled battery,
Charging all of the one or a plurality of second batteries so that the charge amount of each of the second batteries is within a charge amount range determined from the charge amount of the first battery, or
The one or more first batteries are discharged by an equal amount of electricity, and the charge amount of each of the second batteries is within a charge amount range determined from the charge amount of the first battery after discharge. A first adjustment step,
A method for adjusting an assembled battery, comprising: following the first adjustment step, a second adjustment step of discharging or charging both the first battery and the second battery by an equal amount of electricity.
請求項3に記載の組電池の調整方法であって、
前記第1調整工程は、
前記1または複数の第2電池のうち少なくともいずれかの充電量と、前記第1電池のうち最も充電量の大きなものの充電量とを等しくする
組電池の調整方法。
A method for adjusting an assembled battery according to claim 3,
The first adjustment step includes
A method for adjusting an assembled battery in which a charge amount of at least one of the one or the plurality of second batteries is equal to a charge amount of the largest charge amount of the first batteries.
組電池をなす複数の二次電池を、調整前の充電量をもとに、
充電量が大きい、1または複数の第1電池と、
上記第1電池よりも充電量が小さい、残る1または複数の第2電池と、に分けたとき、
上記組電池をなす上記第1電池と上記第2電池との充電量の差を小さくする
組電池の調整方法であって、
上記1または複数の第2電池を互いに等しい電気量だけ放電させる
第2電池の調整工程と、
上記1または複数の第1電池を、いずれも放電させる第1電池の調整工程であって、
上記第1電池の充電量を、それぞれ上記第2電池の調整工程で放電させた後の上記第2電池の充電量から定められる充電量範囲の範囲内とする
第1電池の調整工程と、を備える
組電池の調整方法。
Based on the amount of charge before adjustment, the secondary batteries that make up the assembled battery
One or more first batteries having a large charge amount;
When divided into the remaining one or a plurality of second batteries having a smaller charge amount than the first battery,
An assembled battery adjustment method for reducing a difference in charge between the first battery and the second battery constituting the assembled battery,
Adjusting the second battery to discharge the one or more second batteries by an equal amount of electricity;
A step of adjusting the first battery for discharging the one or more first batteries,
A first battery adjustment step in which a charge amount of the first battery is within a charge amount range determined from a charge amount of the second battery after being discharged in the adjustment step of the second battery, respectively. A method for adjusting an assembled battery.
組電池をなす複数の二次電池を、調整前の充電量をもとに、
充電量が大きい、1または複数の第1電池と、
上記第1電池よりも充電量が小さい、残る1または複数の第2電池と、に分けたとき、
上記組電池をなす上記第1電池と上記第2電池との充電量の差を小さくする
組電池の調整方法であって、
上記1または複数の第2電池を互いに等しい電気量だけ充電する
第2電池の調整工程と、
上記1または複数の第1電池を、いずれも充電する第1電池の調整工程であって、
上記第1電池の充電量を、それぞれ上記第2電池の調整工程で充電した後の上記第2電池の充電量から定められる充電量範囲の範囲内とする
第1電池の調整工程と、を備える
組電池の調整方法。
Based on the amount of charge before adjustment, the secondary batteries that make up the assembled battery
One or more first batteries having a large charge amount;
When divided into the remaining one or a plurality of second batteries having a smaller charge amount than the first battery,
An assembled battery adjustment method for reducing a difference in charge between the first battery and the second battery constituting the assembled battery,
Adjusting the second battery to charge the one or more second batteries by an equal amount of electricity;
A step of adjusting the first battery for charging the one or more first batteries,
A first battery adjustment step, wherein the charge amount of the first battery is within a charge amount range determined from the charge amount of the second battery after being charged in the adjustment step of the second battery, respectively. Adjustment method of assembled battery.
請求項5または請求項6に記載の組電池の調整方法であって、
前記第1電池の調整工程は、
前記第1電池のうち少なくともいずれかの充電量を、前記第2電池の調整工程で放電させた後または充電した後の前記第2電池のうち、最も充電量の小さなものの充電量と等しくする
組電池の調整方法。
A method for adjusting an assembled battery according to claim 5 or 6,
The adjustment process of the first battery includes:
A set in which the charge amount of at least one of the first batteries is equal to the charge amount of the second battery with the smallest charge amount after being discharged or charged in the adjustment step of the second battery. Battery adjustment method.
複数の二次電池を電気的に接続してなる組電池と、
上記複数の二次電池の各電池電圧に基づいて各充電量を推定し、この推定された各充電量に基づいて、上記複数の二次電池の異常を検出する電池コントローラと、を備える
コントローラ付き組電池の調整方法であって、
上記電池コントローラで推定された上記複数の二次電池の各充電量を、前記調整前の充電量とし、上記複数の二次電池を前記第1電池と前記第2電池とに分けて、
請求項1〜請求項7のいずれか一項に記載の調整方法により、上記組電池をなす上記第1電池と上記第2電池との充電量の差を小さくする
コントローラ付き組電池の調整方法。
An assembled battery formed by electrically connecting a plurality of secondary batteries;
A battery controller that estimates each charge amount based on each battery voltage of the plurality of secondary batteries and detects an abnormality of the plurality of secondary batteries based on each estimated charge amount. A method for adjusting an assembled battery,
Each charge amount of the plurality of secondary batteries estimated by the battery controller is set as the charge amount before the adjustment, and the plurality of secondary batteries are divided into the first battery and the second battery,
The adjustment method of the assembled battery with a controller which makes small the difference of the charge amount of the said 1st battery which makes the said assembled battery, and the said 2nd battery with the adjustment method as described in any one of Claims 1-7.
JP2008042170A 2007-05-11 2008-02-22 Method for adjusting assembled battery and method for adjusting assembled battery with controller Expired - Fee Related JP5027005B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008042170A JP5027005B2 (en) 2007-05-11 2008-02-22 Method for adjusting assembled battery and method for adjusting assembled battery with controller
US12/149,161 US8143854B2 (en) 2007-05-11 2008-04-28 Adjusting method of battery pack and adjusting method of battery pack with controller

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007127200 2007-05-11
JP2007127200 2007-05-11
JP2008042170A JP5027005B2 (en) 2007-05-11 2008-02-22 Method for adjusting assembled battery and method for adjusting assembled battery with controller

Publications (3)

Publication Number Publication Date
JP2008311213A JP2008311213A (en) 2008-12-25
JP2008311213A5 JP2008311213A5 (en) 2010-10-28
JP5027005B2 true JP5027005B2 (en) 2012-09-19

Family

ID=40238613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008042170A Expired - Fee Related JP5027005B2 (en) 2007-05-11 2008-02-22 Method for adjusting assembled battery and method for adjusting assembled battery with controller

Country Status (1)

Country Link
JP (1) JP5027005B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5235959B2 (en) * 2010-09-10 2013-07-10 日立ビークルエナジー株式会社 Battery controller and voltage abnormality detection method
KR101367875B1 (en) * 2011-03-21 2014-02-26 주식회사 엘지화학 Apparatus for controlling connection of battery pack
WO2013008409A1 (en) * 2011-07-08 2013-01-17 Necエナジーデバイス株式会社 Method for manufacturing battery pack and battery pack
US10318656B2 (en) * 2016-04-26 2019-06-11 The Boeing Company Systems and methods for optimizing component placement in a battery design

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4371825A (en) * 1981-06-04 1983-02-01 Energy Development Associates, Inc. Method of minimizing the effects of parasitic currents
FR2684249B1 (en) * 1991-11-25 1994-04-08 Accumulateurs Fixes Et Traction POWER SUPPLY CONTROLLER MODULE FOR BATTERY CONTROL ASSEMBLY OF AN APPARATUS AND BATTERY EQUIPPED WITH SUCH A MODULE.
KR100536589B1 (en) * 1999-07-27 2005-12-14 삼성전자주식회사 battery powered electronic device and power supplying control method thereof
JP4134704B2 (en) * 2002-12-02 2008-08-20 トヨタ自動車株式会社 Replacing the secondary battery
JP2006042555A (en) * 2004-07-29 2006-02-09 Shin Kobe Electric Mach Co Ltd Method to replace module batteries in battery pack, and voltage regulator of module batteries for replacement
US20060091854A1 (en) * 2004-10-29 2006-05-04 Yi-Chang Chen Power monitoring and balancing device
JP4130186B2 (en) * 2004-11-12 2008-08-06 三洋電機株式会社 Pack battery
JP4560501B2 (en) * 2006-08-11 2010-10-13 矢崎総業株式会社 Charge state adjustment device

Also Published As

Publication number Publication date
JP2008311213A (en) 2008-12-25

Similar Documents

Publication Publication Date Title
JP5319081B2 (en) Manufacturing method of battery pack with controller
JP5011007B2 (en) Battery pack and manufacturing method thereof
JP5096817B2 (en) Manufacturing method of reconfigurable battery pack
JP5096806B2 (en) Manufacturing method of battery pack
US8143854B2 (en) Adjusting method of battery pack and adjusting method of battery pack with controller
JP5050325B2 (en) Battery control device
US7629770B2 (en) Device and method for controlling output from a rechargeable battery
EP2506390B1 (en) Battery voltage controller
JP4821363B2 (en) Battery pack control apparatus and battery pack control method
JP7294493B2 (en) Storage device monitoring device, storage device, and storage device monitoring method
EP1150132A1 (en) Method of replacing secondary battery
US20100026244A1 (en) Power source system, power supply control method for the power source system, power supply control program for the power source system, and computer-readable recording medium with the power supply control program recorded thereon
WO2008065910A1 (en) Accumulator failure detecting device, accumulator failure detecting method, accumulator failure detecting program, and computer-readable recording medium containing the accumulator failure detecting program
US7508170B2 (en) Device and method for controlling input to a rechargeable battery
JP2010104175A (en) Fault diagnosis circuit, power supply device, and fault diagnosis method
US20140336964A1 (en) Method for determining remaining lifetime
JP6572823B2 (en) Power system
JP5027005B2 (en) Method for adjusting assembled battery and method for adjusting assembled battery with controller
JP2007018871A (en) Control device of secondary battery and system carrying this device
CN109311396B (en) Method and apparatus for controlling operation of an energy storage system in a vehicle
JP7140082B2 (en) Sensor abnormality determination device
CN105471016A (en) Method for charging the starter battery of a vehicle
JP2009296699A (en) Charging control circuit, power supply, and charging control method
JP2006246645A (en) Equalization method and its device
JP6643923B2 (en) Battery pack replacement method for battery system and battery pack

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100913

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120612

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120621

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150629

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5027005

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees