JP5026906B2 - Ground fault occurrence bank identification method and ground fault occurrence bank identification device - Google Patents

Ground fault occurrence bank identification method and ground fault occurrence bank identification device Download PDF

Info

Publication number
JP5026906B2
JP5026906B2 JP2007261027A JP2007261027A JP5026906B2 JP 5026906 B2 JP5026906 B2 JP 5026906B2 JP 2007261027 A JP2007261027 A JP 2007261027A JP 2007261027 A JP2007261027 A JP 2007261027A JP 5026906 B2 JP5026906 B2 JP 5026906B2
Authority
JP
Japan
Prior art keywords
ground fault
bank
voltage
ground
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007261027A
Other languages
Japanese (ja)
Other versions
JP2009092417A (en
Inventor
詳幸 長井
樹生 松岡
隆雄 大森
正徳 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Hasegawa Electric Co Ltd
Original Assignee
Kansai Electric Power Co Inc
Hasegawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Hasegawa Electric Co Ltd filed Critical Kansai Electric Power Co Inc
Priority to JP2007261027A priority Critical patent/JP5026906B2/en
Publication of JP2009092417A publication Critical patent/JP2009092417A/en
Application granted granted Critical
Publication of JP5026906B2 publication Critical patent/JP5026906B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
    • Y04S10/52Outage or fault management, e.g. fault detection or location

Landscapes

  • Locating Faults (AREA)

Description

本発明は、低圧需要家に電力供給する複数のバンク(柱上変圧器)のB種接地線を共同接地線で並列に連系した多重接地式低圧交流配電線路などの配電系統における地絡発生バンク特定方法および特定装置に関する。   The present invention generates a ground fault in a distribution system such as a multiple grounding type low-voltage AC distribution line in which B-type ground wires of a plurality of banks (post transformers) supplying power to a low-voltage consumer are connected in parallel by a common ground wire. The present invention relates to a bank specifying method and a specifying device.

複数のバンクそれぞれの変圧器B種接地線が単独接地されている場合、バンクの低圧交流配電線路から電力供給される住宅や工場、事務所等の低圧需要家のいずれかで地絡が発生すると、地絡発生の低圧需要家に電力供給するバンクのB種接地線にのみ地絡電流が流れる。複数あるバンクで低圧需要家に地絡が発生した場所のバンクの特定は、別の地絡発生の無いバンクには地絡電流が流れないので、地絡発生のバンクのみについて行い、漏電遮断器がある低圧需要家ではその動作確認で行い、また、漏電遮断器がない低圧需要家については引込線で地絡電流の大きさを測定し、地絡電流の有無で地絡が発生した低圧需要家を特定する。さらに、地絡発生が特定できた低圧需要家の低圧交流配電線路で地絡電流の大きさを測定し、地絡発生場所を特定することが行われている(例えば、特許文献1参照)。
特開2004−101352号公報
If the transformer class B ground wire of each bank is individually grounded, if a ground fault occurs in any of the low-voltage consumers such as houses, factories, and offices that are powered from the bank's low-voltage AC distribution line The ground fault current flows only in the B-type ground line of the bank that supplies electric power to the low-voltage consumer that generates the ground fault. In the bank where there is a ground fault in the low voltage customer in multiple banks, since the ground fault current does not flow in another bank without the ground fault occurrence, it is performed only for the bank where the ground fault occurs, and the earth leakage breaker Check the operation of a low-voltage customer with a low-voltage customer who does not have an earth leakage breaker and measure the magnitude of the ground fault current with a lead-in wire. Is identified. Furthermore, the location of the ground fault is determined by measuring the magnitude of the ground fault current on the low-voltage AC distribution line of the low-voltage customer who has been able to identify the occurrence of the ground fault (see, for example, Patent Document 1).
JP 2004-101352 A

バンクの変圧器二次側の中性線または1端子に施設するB種接地工事は、バンク個々について行う単独接地の他、複数の各バンクのB種接地線を並列に接続して多重化する多重接地がある。B種接地工事が行われる土地の状況によっては、単独接地では接地抵抗を規定の値に保つことが経済的に難しくなる場合がある。このような場合には、複数バンクのB種接地線を共同接地線で並列に連結して合成接地抵抗値を低くし、これを規定値に保つことが行われている。   Class B grounding work on the neutral line or one terminal of the transformer secondary side of the bank is multiplexed by connecting the B grounding lines of each bank in parallel in addition to single grounding for each bank. There is multiple grounding. Depending on the conditions of the land where Class B grounding work is performed, it may be economically difficult to maintain the grounding resistance at a specified value with single grounding. In such a case, the B type grounding wires of a plurality of banks are connected in parallel with a common grounding wire to lower the combined grounding resistance value and keep it at a specified value.

複数のバンクを多重接地した多重接地式(架空共同地線式)の低圧交流配電線路においては、任意の1つのバンクから電力供給される低圧需要家に地絡が発生して地絡電流が流れた場合、地絡発生バンクのB種接地線だけでなく共同接地線を通して連系される他の全てのバンクのB種接地線にもその接地抵抗値に応じた地絡電流が流れる。このため、地絡が発生した低圧需要家を電力供給するバンクの特定ができず、B種接地を共同接地している全てのバンクから電力供給される全ての低圧需要家の引込線や負荷回線で地絡電流を測定する必要があり、特定範囲が広がり過ぎて地絡発生バンクの特定とその作業が困難であった。   In a multiple grounding (overhead joint ground type) low-voltage AC distribution line with multiple banks grounded, a ground fault occurs in a low-voltage customer supplied with power from any one bank, and a ground fault current flows. In such a case, a ground fault current corresponding to the ground resistance value flows not only in the B type ground line of the ground fault occurrence bank but also in the B type ground lines of all other banks connected through the common ground line. For this reason, it is not possible to specify a bank that supplies power to low-voltage consumers in which a ground fault has occurred, and it is not possible to use the service lines or load lines of all low-voltage consumers that are supplied with power from all banks that are jointly grounded with Class B grounding. It was necessary to measure the ground fault current, and the specific range was so wide that it was difficult to identify and work on the ground fault occurrence bank.

また、複数の各バンクのB種接地を切り離して単独接地に戻すことで、地絡発生のバンクを特定することができる。この場合、複数のバンクでのB種接地の切離しの手間と、元の多重接地に戻す手間を要するのみならず、地絡発生が間欠的に行われる間欠地絡では、B種接地切離し後、次の地絡発生までB種接地抵抗値が規定値未満となる状態を招く不具合があり、信頼性に欠ける。   Further, by separating the B-type grounding of each of the plurality of banks and returning to the single grounding, it is possible to identify the bank where the ground fault occurs. In this case, not only the trouble of disconnecting the B type grounding in a plurality of banks and the trouble of returning to the original multiple grounding is required, but also in the intermittent grounding in which the ground fault is generated intermittently, Until the next ground fault occurs, there is a problem that causes the state that the class B ground resistance value is less than the specified value, and the reliability is lacking.

本発明の目的は、地絡発生バンクの特定を作業工数少なく簡易に行うことのできる地絡発生バンク特定方法および特定装置を提供することにある。   An object of the present invention is to provide a ground fault occurrence bank identification method and identification apparatus that can easily identify a ground fault occurrence bank with a small number of work steps.

本発明方法は、複数のバンクの低圧交流配電線路を並列に接続した配電系統におけるいずれかの地絡発生低圧交流配電線路に対応するバンクを特定する方法であって、複数の低圧交流配電線路間の負荷電流が流れていない並列接続箇所それぞれで地絡電流を検出し、検出されたそれぞれの地絡電流の位相を共通の基準時間信号に基づいて測定して、隣接する並列接続箇所での地絡電流の位相が同相または逆相かの判定に基づいて地絡発生低圧交流配電線路に対応するバンクを特定することを特徴とする。   The method of the present invention is a method for identifying a bank corresponding to any ground fault occurrence low voltage AC distribution line in a distribution system in which a plurality of banks of low voltage AC distribution lines are connected in parallel, and between a plurality of low voltage AC distribution lines The ground fault current is detected at each parallel connection location where no load current flows, and the phase of each detected ground fault current is measured based on the common reference time signal, and the ground current at the adjacent parallel connection location is measured. The bank corresponding to the ground fault occurrence low voltage AC distribution line is specified based on the determination of whether the phase of the fault current is the same phase or the opposite phase.

ここで、複数のバンクの低圧交流配電線路は、いずれかの地絡発生の低圧交流配電線路に地絡電流が流れると、この地絡電流が地絡発生していない他の低圧交流配電線路にも流れるように並列に接続された複数の低圧交流配電線路から成る配電系統である。並列に接続された複数の低圧交流配電線路は、単相交流式または三相交流式の低圧配電線路が適用できる。隣接する低圧交流配電線路間の並列接続箇所は、負荷電流が流れない箇所であり、複数の並列接続箇所のいずれか1箇所に地絡発生により地絡電流が流れると、この地絡電流は大地を介して他の地絡発生していない低圧交流配電線路にも流れる。複数の各並列接続箇所それぞれに地絡電流が、地絡発生バンクとの位置関係で決まる大きさ、方向で流れる。この各並列接続箇所における地絡電流の方向を、各並列接続箇所で検出されたそれぞれの地絡電流の位相を共通の基準時間信号に基づいて測定することで検知する。隣接する各並列接続箇所での地絡電流の位相が同相の場合は、各並列接続箇所に流れる地絡電流が同じ方向であると判定できる。また、隣接する各並列接続箇所での地絡電流の位相が逆相の場合は、各並列接続箇所に流れる地絡電流が180°逆方向であると判定でき、隣接する並列接続箇所で挟まれたバンクが地絡発生バンクであると判定できる。各並列接続箇所の地絡電流の方向は、地絡電流と低圧交流配電線路の線間電圧の位相差や、地絡電流と対地電圧の位相差からも検出することができるが、地絡電流検出時の基準時間信号を基準に測定することで、地絡電流検出の作業のみで地絡発生バンクの特定ができ、地絡発生バンク特定の作業性がよくなる。   Here, when a ground fault current flows in one of the low-voltage AC distribution lines of the plurality of banks, the ground fault current flows to one of the low-voltage AC distribution lines in which the ground fault occurs. It is a distribution system consisting of a plurality of low-voltage AC distribution lines connected in parallel so as to flow. A single-phase AC type or a three-phase AC type low-voltage distribution line can be applied to the plurality of low-voltage AC distribution lines connected in parallel. The parallel connection location between adjacent low-voltage AC distribution lines is a location where load current does not flow. When a ground fault current flows due to the occurrence of a ground fault in any one of a plurality of parallel connection locations, this ground fault current is grounded. It also flows through other low-voltage AC distribution lines where no ground fault occurs. A ground fault current flows in each of the plurality of parallel connection locations in a magnitude and direction determined by the positional relationship with the ground fault occurrence bank. The direction of the ground fault current at each parallel connection location is detected by measuring the phase of each ground fault current detected at each parallel connection location based on a common reference time signal. When the phase of the ground fault current in each adjacent parallel connection location is the same phase, it can be determined that the ground fault current flowing in each parallel connection location is in the same direction. In addition, when the phase of the ground fault current at each adjacent parallel connection location is in reverse phase, it can be determined that the ground fault current flowing through each parallel connection location is in the reverse direction of 180 ° and is sandwiched between the adjacent parallel connection locations. It can be determined that the bank is a ground fault occurrence bank. The direction of the ground fault current at each parallel connection point can also be detected from the phase difference between the ground fault current and the line voltage of the low-voltage AC distribution line, or the phase difference between the ground fault current and the ground voltage. By measuring on the basis of the reference time signal at the time of detection, the ground fault occurrence bank can be specified only by the operation of detecting the ground fault current, and the workability of specifying the ground fault occurrence bank is improved.

本発明においては、基準時間信号を、低圧交流配電線路の商用電源と同期したパルス信号に基づいて生成することができる。また、基準時間信号を、低圧交流配電線路の商用周波数を整数で除した周波数でパルス信号を発振するパルス発振回路からのパルス信号に基づいて生成することができる。さらに、基準時間信号を、全地球測位システムのGPS信号に基づいて生成することができる。   In the present invention, the reference time signal can be generated based on a pulse signal synchronized with the commercial power source of the low-voltage AC distribution line. In addition, the reference time signal can be generated based on a pulse signal from a pulse oscillation circuit that oscillates a pulse signal at a frequency obtained by dividing the commercial frequency of the low-voltage AC distribution line by an integer. Furthermore, the reference time signal can be generated based on the GPS signal of the global positioning system.

上述の低圧交流配電線路の商用電源と同期したパルス信号に基づいて生成した基準時間信号は、低圧交流配電線路の商用電源に微少な周波数変動が生じても、この変動に応じて基準時間信号や地絡電流の周波数が変動するので、常に高精度に地絡電流位相測定ができる。また、基準時間信号を、低圧交流配電線路の商用周波数を整数nで除した1/nの周波数のパルス信号を発振するパルス発振回路からのパルス信号に基づいて生成する場合、整数nは1、2、4のいずれかが高精度な地絡電流位相測定をする上で望ましい。また、全地球測位システム(GPS)のGPS信号に同期させて生成した基準時間信号は、誤差のない絶対的な基準時間信号として使用できて、この場合も常に高精度に地絡電流位相測定ができる。   The reference time signal generated based on the pulse signal synchronized with the commercial power source of the above-described low-voltage AC distribution line is used even if a slight frequency fluctuation occurs in the commercial power source of the low-voltage AC distribution line. Since the frequency of the ground fault current fluctuates, the ground fault current phase can always be measured with high accuracy. When the reference time signal is generated based on a pulse signal from a pulse oscillation circuit that oscillates a pulse signal having a frequency of 1 / n obtained by dividing the commercial frequency of the low-voltage AC distribution line by an integer n, the integer n is 1, Either one of 2 and 4 is desirable for measuring the ground fault current phase with high accuracy. In addition, the reference time signal generated in synchronization with the GPS signal of the global positioning system (GPS) can be used as an absolute reference time signal without error. In this case, the ground fault current phase measurement can always be performed with high accuracy. it can.

また、低圧交流配電線路は、複数のバンクのB種接地線を共同接地線で並列に接続した多重接地式低圧交流配電線路で、共同接地線のB種接地線が接続された並列接続箇所両側の各並列接続箇所それぞれで地絡電流を検出して地絡発生バンクを特定することができる。   The low-voltage AC distribution line is a multi-grounding type low-voltage AC distribution line in which multiple B class ground wires are connected in parallel with a common ground line. It is possible to identify a ground fault occurrence bank by detecting a ground fault current at each parallel connection point.

この場合の低圧交流配電線路は、高圧配電線路に柱上変圧器であるバンクで連系される単相交流式または三相交流式の低圧配電線路が適用できる。この低圧交流配電線路における複数のバンクは、住宅や工場などの低圧需要家に電力供給する柱上変圧器系で、各バンクの変圧器B種接地線が共通の共同接地線で連結されて多重接地される。1つのバンクで漏電による地絡が発生すると、地絡発生のバンクを含む全てのバンクのB種接地線、共同接地線に地絡電流が流れる。各バンクでの地絡電流は交流で、その電流方向は地絡発生のバンクに流入する方向と、地絡発生のバンクから流出する方向の繰り返しである。各バンクでの地絡電流方向を、基準時間信号に基づいて測定することで、地絡発生バンクが特定できる。この場合、複数のバンクの全てにおいて地絡電流方向を検知することが望ましいが、地絡発生バンクの位置によっては少数バンクで地絡電流方向を検知すれば地絡発生のバンクが特定できる。このような地絡発生バンクの特定は、多重接地式低圧交流配電線路を多重接地にしたままの状態で行うことができる。従って、地絡発生バンクの特定が、B種単独接地の場合とほとんど変わらない程度の労力と時間で行うことができる。   As the low-voltage AC distribution line in this case, a single-phase AC type or three-phase AC type low-voltage distribution line connected to the high-voltage distribution line by a bank that is a pole transformer can be applied. A plurality of banks in this low-voltage AC distribution line are pole transformer systems that supply power to low-voltage consumers such as houses and factories, and transformer B class ground wires of each bank are connected by a common common ground wire and multiplexed. Grounded. When a ground fault occurs due to leakage in one bank, a ground fault current flows through the B-type ground lines and common ground lines of all banks including the bank where the ground fault occurs. The ground fault current in each bank is an alternating current, and the current direction is a repetition of the direction flowing into the bank where the ground fault occurs and the direction flowing out from the bank where the ground fault occurs. By measuring the ground fault current direction in each bank based on the reference time signal, the ground fault occurrence bank can be specified. In this case, it is desirable to detect the direction of the ground fault current in all of the plurality of banks. However, depending on the position of the ground fault occurrence bank, if the direction of the ground fault current is detected by a small number of banks, the bank in which the ground fault occurs can be specified. Such a ground fault generation bank can be specified while the multiple grounding type low-voltage AC distribution line is kept in multiple grounding. Therefore, it is possible to specify the ground fault occurrence bank with labor and time that are almost the same as in the case of the type B single grounding.

また、多重接地式低圧交流配電線路の複数の各バンク間の共同接地線である並列接続箇所それぞれに地絡電流を検出する変流器を常設して、複数の並列接続箇所で同時に地絡電流を検出し、検出した地絡電流の位相(方向)を基準時間信号に基づいて測定することができる。更には、複数の並列接続箇所での地絡電流の検出と基準時間信号に基づいた位相(方向)測定を順次に行うことができる。この後者の場合、地絡電流を検出する1台の変流器で各並列接続箇所の地絡電流を順に検出し、地絡電流検出毎に位相(方向)のデータを記憶し、必要に応じて表示器に表示させ、遠隔地に送信することができる。   In addition, a current transformer that detects a ground fault current is installed at each parallel connection point that is a joint ground line between multiple banks of the multiple ground type low-voltage AC distribution line, and the ground fault current is simultaneously detected at the multiple parallel connection points. And the phase (direction) of the detected ground fault current can be measured based on the reference time signal. Furthermore, it is possible to sequentially detect the ground fault current at a plurality of parallel connection locations and measure the phase (direction) based on the reference time signal. In this latter case, a single current transformer that detects the ground fault current detects the ground fault current at each parallel connection location in sequence, stores phase (direction) data for each ground fault current detection, and if necessary Can be displayed on the display and sent to a remote location.

本発明装置は、複数のバンクの低圧交流配電線路を並列に接続した配電系統におけるいずれかの地絡発生低圧交流配電線路に対応するバンクを特定する装置であって、低圧交流配電線路間の並列接続箇所それぞれで当該並列接続箇所を流れる地絡電流を検出する地絡電流検出部と、並列接続箇所で検出されたそれぞれの地絡電流の位相を測定するための基準となる共通の基準時間信号を生成する基準時間信号生成部と、隣接する並列接続箇所の地絡電流の位相が同相または互いに逆相かを判別し、逆相と判別された隣接する並列接続箇所に挟まれたバンクを地絡発生バンクと判定する地絡バンク判定部とを具備する。   The device of the present invention is a device for identifying a bank corresponding to any ground fault occurrence low-voltage AC distribution line in a distribution system in which a plurality of banks of low-voltage AC distribution lines are connected in parallel. A ground fault current detector that detects a ground fault current flowing through the parallel connection location at each connection location, and a common reference time signal that serves as a reference for measuring the phase of each ground fault current detected at the parallel connection location The reference time signal generation unit for generating the current and the phase of the ground fault current at the adjacent parallel connection location are determined to be in phase or opposite to each other, and the bank sandwiched between the adjacent parallel connection locations determined to be in reverse phase A ground fault bank determination unit that determines a fault occurrence bank.

ここでの基準時間信号生成部は、低圧交流配電線路の商用電源と同期した高周波パルス電流を並列接続箇所に重畳する重畳変流器を有する構造とすることができる。   Here, the reference time signal generation unit can have a structure including a superposed current transformer that superimposes a high-frequency pulse current synchronized with the commercial power source of the low-voltage AC distribution line on the parallel connection portion.

本発明装置における地絡電流検出部は、低圧交流配電線路間の複数の並列接続箇所に順次に移動して電流検出をする変流器、または、複数の並列接続箇所の全てに1台ずつ常設的に設置される複数の変流器を有する構成にすることができる。また、基準時間信号生成部は、低圧交流配電線路の商用電源電圧の例えばゼロクロスを検出するゼロクロス検出回路、商用電圧のゼロクロスの立ち上がり点に同期したパルスを発生させるパルス発生回路、発生させたパルスを低圧交流配電線路の複数ある並列接続箇所のいずれかに重畳させる重畳変流器で構成することができる。さらに、基準時間信号生成部は、GPS受信機能を備えたものや、専用のパルス発振回路を備えたものが適用できる。また、地絡バンク判定部は、複数の各並列接続箇所での地絡電流の位相と、隣接する二並列接続箇所の地絡電流位相が同相または逆相かを記憶し、表示して、逆相の場合に地絡発生バンクであることを音声表示する機能を備えたものが適用できる。更には、これら記憶し表示するデータを、電力会社などの遠隔地に送信する機能を備えたものが適用できる。   The ground-fault current detector in the device of the present invention is a current transformer that sequentially moves to a plurality of parallel connection locations between the low-voltage AC distribution lines, or a permanent transformer one at each of the plurality of parallel connection locations. It can be set as the structure which has several current transformers installed in a line. In addition, the reference time signal generation unit includes a zero cross detection circuit that detects, for example, a zero cross of the commercial power supply voltage of the low-voltage AC distribution line, a pulse generation circuit that generates a pulse synchronized with the rising point of the zero cross of the commercial voltage, and a generated pulse. It can comprise with the superimposition current transformer made to superimpose on either of the several parallel connection places of the low voltage | pressure AC distribution line. Furthermore, the reference time signal generation unit can be applied with a GPS reception function or with a dedicated pulse oscillation circuit. In addition, the ground fault bank determination unit stores and displays whether the phase of the ground fault current at each of the plurality of parallel connection locations and the ground fault current phase of the adjacent two parallel connection locations are in phase or reverse phase. In the case of a phase, one having a function of voice display indicating that it is a ground fault occurrence bank can be applied. Furthermore, those having a function of transmitting data to be stored and displayed to a remote place such as an electric power company can be applied.

本発明によれば、低圧交流配電線路間の並列接続箇所それぞれで検出した地絡電流の位相、方向を各並列接続箇所に共通の基準時間信号に基づいて測定して、各並列接続箇所での地絡電流の位相が同相または互いに逆相かを判定するようにしたので、低圧交流配電線路の線間電圧や対地電圧を測定することなく簡単な作業で、かつ、常に高精度に地絡発生バンクの特定ができるようになる。特に、多重接地式低圧交流配電線路の複数バンクのいずれかに地絡が発生して、複数のバンクに地絡電流が流れても、多重接地のままで地絡発生したバンクが特定できるようになり、多重接地式低圧交流配電線路のバンク地絡対策が作業性よく、常に正確にできるようになる。   According to the present invention, the phase and direction of the ground fault current detected at each parallel connection point between the low-voltage AC distribution lines are measured based on the reference time signal common to each parallel connection point, and at each parallel connection point, Since it is determined whether the phase of the ground fault current is in phase or opposite to each other, it is easy to operate without measuring the line voltage or ground voltage of the low voltage AC distribution line, and always generates a ground fault with high accuracy. The bank can be specified. In particular, even if a ground fault occurs in one of the multiple banks of the multi-grounding type low-voltage AC distribution line, and a ground fault current flows through the multiple banks, the bank in which the ground fault occurs can be identified with multiple grounds. Therefore, the bank ground fault countermeasure of the multi-grounding type low-voltage AC distribution line can be always accurately performed with good workability.

以下、本発明の実施の形態を図1〜図5を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to FIGS.

図1は、複数のバンクBのB種接地線4を共同接地線5で並列に連結した単相三線式の多重接地式低圧交流配電線路1に適用したものである。高圧交流配電線路に接続された各バンクBのB種接地線4は、低圧柱の変圧器二次側に低圧線がある場合は低圧線中性線に、低圧線がない場合は直接柱上変圧器中性線に接続される。図1に示すバンクBの数は5で、図1で左からバンクB1、B2、B3、B4、B5と称する。各バンクB1〜B5における接地抵抗値は、5つのバンクB1〜B5の接地抵抗を並列接続したときの合成接地抵抗値になる。共同接地線5には負荷電流が流れず、いずれかのバンクの低圧需要家に地絡が発生したときに、5つの各バンクB1〜B5に地絡発生バンクとの位置関係で決まる大きさの地絡電流が流れる。   FIG. 1 shows an application to a single-phase three-wire multiple grounding type low-voltage AC distribution line 1 in which B-type grounding wires 4 of a plurality of banks B are connected in parallel by a common grounding wire 5. Class B ground wire 4 of each bank B connected to the high-voltage AC distribution line is on the low-voltage line neutral line when there is a low-voltage line on the transformer secondary side of the low-voltage column, and directly on the column when there is no low-voltage line Connected to transformer neutral wire. The number of banks B shown in FIG. 1 is 5, which are referred to as banks B1, B2, B3, B4, and B5 from the left in FIG. The ground resistance value in each of the banks B1 to B5 is a combined ground resistance value when the ground resistances of the five banks B1 to B5 are connected in parallel. When the load current does not flow in the common ground line 5 and a ground fault occurs in the low-voltage consumer of any bank, the size of each of the five banks B1 to B5 is determined by the positional relationship with the ground fault generating bank. A ground fault current flows.

地絡発生による地絡電流は、各バンクB1〜B5の定期的な接地抵抗測定の際、或いは住宅、工場、事務所等からの漏電申し出によりに検知されて、地絡発生バンクの特定作業が行われる。図1に示される地絡発生バンク特定装置10は、地絡電流検出部20と、基準時間信号生成部30と、地絡バンク判定部40を備える。地絡発生バンク特定装置10の説明の前に、地絡バンク発生時に各バンクB1〜B5で地絡電流がどのように流れるかを説明する。   The ground fault current due to the occurrence of a ground fault is detected during periodic grounding resistance measurement of each bank B1 to B5, or due to a leakage request from a house, factory, office, etc. Done. The ground fault occurrence bank identification device 10 shown in FIG. 1 includes a ground fault current detection unit 20, a reference time signal generation unit 30, and a ground fault bank determination unit 40. Prior to the description of the ground fault occurrence bank specifying apparatus 10, how the ground fault current flows in each of the banks B1 to B5 when the ground fault bank is generated will be described.

図1は、5つのバンクB1〜B5の内の図1で左から3番目のバンクB3から供給する低圧需要家に漏電による地絡が発生して地絡電流Igが流れた場合を示す。この地絡電流Igは商用交流で、地絡発生バンクから大地に流れ出し、地絡発生バンクB3のB種接地線4を通り、大地から地絡発生バンクB3に地絡電流Ig3が戻る。また、地絡電流Igは、地絡発生をしていない他のバンクB1、B2、B4、B5それぞれのB種接地線4を通り、それぞれに電流Ig1、Ig2、Ig4、Ig5が大地から戻る。この各電流Ig1、Ig2、Ig4、Ig5は、共同接地線5を通り地絡発生のバンクB3に戻る。   FIG. 1 shows a case where a ground fault occurs due to a ground fault in a low-voltage consumer supplied from the third bank B3 from the left in FIG. 1 among the five banks B1 to B5, and a ground fault current Ig flows. This ground fault current Ig is a commercial alternating current, and flows out from the ground fault generation bank to the ground. The ground fault current Ig3 returns from the ground to the ground fault generation bank B3 through the B-type ground line 4 of the ground fault generation bank B3. The ground fault current Ig passes through the B-type ground lines 4 of the other banks B1, B2, B4, and B5 where no ground fault has occurred, and the currents Ig1, Ig2, Ig4, and Ig5 return from the ground. The currents Ig1, Ig2, Ig4, and Ig5 return to the bank B3 where the ground fault has occurred through the common ground line 5.

共同接地線5と各バンクB1〜B5のB種接地線4との接続箇所11が5箇所あり、3つの各バンクB2、B3、B4の接続箇所11の両側線路を並列接続箇所12a、12b、12c、12dとする。4線路の各並列接続箇所12a〜12dに、後述の地絡電流Ia、Ib、Ic、Idが流れる。この各地絡電流Ia〜Idは、その流れる方向と大きさが地絡発生バンクと地絡が発生していないバンクの位置関係によって決まる。   There are five connection points 11 between the common grounding wire 5 and the B-type grounding wires 4 of the banks B1 to B5, and both side lines of the connection points 11 of the three banks B2, B3, B4 are connected in parallel at the points 12a, 12b, 12c and 12d. Ground fault currents Ia, Ib, Ic, and Id described later flow through the parallel connection portions 12a to 12d of the four lines. The local fault currents Ia to Id are determined by the positional relationship between the bank in which the ground fault has occurred and the bank in which no ground fault has occurred in the direction and magnitude of the current.

なお、地絡発生バンクB3から大地に流出する地絡電流Igは、共同接地線5で連結された5つの各バンクB1〜B5のすべてのB種接地線4を通って大地から戻り、それぞれの電流Ig1〜Ig5の向きは同じであることから、B種接地線4を流れる地絡電流Ig1〜Ig5を検知しても地絡発生バンクは分からない。   The ground fault current Ig flowing out from the ground fault occurrence bank B3 to the ground returns from the ground through all the B-type ground lines 4 of the five banks B1 to B5 connected by the common ground line 5. Since the directions of the currents Ig1 to Ig5 are the same, even if the ground fault currents Ig1 to Ig5 flowing through the B-type ground line 4 are detected, the ground fault occurrence bank is not known.

図1で左端から1番目のバンクB1と2番目のバンクB2の間の並列接続箇所12aに流れる地絡電流Iaは、地絡発生のバンクB3に戻るため図1の左から右の方向に流れる。図1で左端から2番目のバンクB2と3番目のバンクB3の間の並列接続箇所12bに流れる地絡電流Ibは、地絡発生のバンクB3に戻るため図1の左から右の方向に流れる。この地絡電流Ibは、並列接続箇所12aからの地絡電流Iaが合流した電流であり、地絡電流Iaより大きい。さらに、図1で左端から3番目のバンクB3と4番目のバンクB4の間の並列接続箇所12cに流れる地絡電流Icは、地絡発生のバンクB3に戻るため図1の右から左の方向に流れる。また、図1で左端から4番目のバンクB4と5番目のバンクB5の間の並列接続箇所12dに流れる地絡電流Idは、地絡発生のバンクB3に戻るため図1の右から左の方向に流れて地絡電流Icに合流する。即ち、地絡発生のバンクB3を挟む並列接続箇所12b、12cの地絡電流方向が180°逆であり、位相が180°逆相である。このことから隣接バンクから地絡電流が流れ込むばかりのバンクが、地絡発生バンクであると判定できる。また、地絡が発生していないバンクでは、隣接するバンクとの共同接地線を流れる地絡電流の向きが同じで、位相が同相である。   In FIG. 1, the ground fault current Ia flowing in the parallel connection location 12a between the first bank B1 and the second bank B2 from the left end flows in the direction from the left to the right in FIG. . In FIG. 1, the ground fault current Ib flowing in the parallel connection location 12b between the second bank B2 and the third bank B3 from the left end flows in the direction from the left to the right in FIG. . This ground fault current Ib is a current obtained by joining the ground fault currents Ia from the parallel connection points 12a and is larger than the ground fault current Ia. Further, since the ground fault current Ic flowing in the parallel connection location 12c between the third bank B3 and the fourth bank B4 from the left end in FIG. 1 returns to the bank B3 where the ground fault occurs, the direction from the right to the left in FIG. Flowing into. Further, since the ground fault current Id flowing in the parallel connection point 12d between the fourth bank B4 and the fifth bank B5 from the left end in FIG. 1 returns to the bank B3 where the ground fault occurs, the direction from the right to the left in FIG. To join the ground fault current Ic. That is, the ground fault current directions of the parallel connection locations 12b and 12c sandwiching the bank B3 where the ground fault occurs are 180 ° reverse and the phase is 180 ° reverse. From this, it can be determined that the bank into which the ground fault current just flows from the adjacent bank is the ground fault occurrence bank. In the bank where no ground fault has occurred, the direction of the ground fault current flowing through the common ground line with the adjacent bank is the same, and the phase is the same.

図1の地絡発生バンク特定装置10は、任意の隣接する並列接続箇所12での地絡電流を検出して、各々の流れる方向が同じか逆かを位相が同相か逆相かで判定することで、地絡発生バンクを特定する。地絡電流検出部20で並列接続箇所12a〜12dに流れる地絡電流を検出する。並列接続箇所12a〜12dで検出されたそれぞれの地絡電流の位相を測定するための基準となる共通の基準時間信号CPを基準時間信号生成部30で生成して、地絡バンク判定部40で隣接する並列接続箇所12a〜12dでの地絡電流の位相が同相または互いに逆相かを判別し、逆相と判別された隣接する二並列接続箇所で挟まれたバンクを地絡発生バンクと判定する。   The ground fault occurrence bank specifying device 10 in FIG. 1 detects a ground fault current at an arbitrary adjacent parallel connection point 12 and determines whether each of the flowing directions is the same or opposite depending on whether the phase is the same phase or opposite phase. In this way, the ground fault occurrence bank is specified. The ground fault current detection unit 20 detects the ground fault current flowing through the parallel connection points 12a to 12d. The reference time signal generator 30 generates a common reference time signal CP, which is a reference for measuring the phase of each ground fault current detected at the parallel connection points 12a to 12d, and the ground fault bank determination unit 40 It is determined whether the phase of the ground fault current at the adjacent parallel connection points 12a to 12d is the same phase or opposite to each other, and the bank sandwiched between the two adjacent parallel connection points determined to be opposite in phase is determined as the ground fault occurrence bank. To do.

地絡電流検出部20は、並列接続箇所12a〜12dに流れる地絡電流を検出する変流器CTを備える。使用する変流器CTの数は、単数または複数と任意であり、単数の場合は4線路区間の各並列接続箇所12a〜12dに順次に設置して使用する。図1には、本発明方法の説明上に4台の変流器CT1〜CT4を示しているが、数は任意である。以下、必要に応じて4台の変流器CT1〜CT4を検出CT1〜CT4と称する。   The ground fault current detection unit 20 includes a current transformer CT that detects a ground fault current flowing in the parallel connection locations 12a to 12d. The number of current transformers CT to be used is arbitrary as single or plural, and in the case of a single current transformer CT, the current transformer CT is sequentially installed and used at each of the parallel connection points 12a to 12d in the four-line section. In FIG. 1, four current transformers CT1 to CT4 are shown for explaining the method of the present invention, but the number is arbitrary. Hereinafter, the four current transformers CT1 to CT4 are referred to as detection CT1 to CT4 as necessary.

図1に示す基準時間信号生成部30は、低圧交流配電線路であるバンクBの商用電源と同期したパルス信号に基づいて基準時間信号CPを生成する。この基準時間信号生成部30は、いずれか1つのバンクBの低圧交流配電線路の商用電源に同期させるため、例えば正弦波の商用電源電圧のゼロクロスを検出するゼロクロス検出回路31と、商用電圧のゼロクロスの立ち上がり点に同期したパルスを発生させるパルス発生回路32と、発生させたパルスを共同接地線5のいずれか1箇所に重畳する重畳変流器33を備える。以下、必要に応じて重畳変流器33を重畳CTと称する。   The reference time signal generation unit 30 shown in FIG. 1 generates a reference time signal CP based on a pulse signal synchronized with the commercial power supply of the bank B which is a low-voltage AC distribution line. This reference time signal generation unit 30 is synchronized with the commercial power supply of the low-voltage AC distribution line of any one bank B, for example, a zero-cross detection circuit 31 that detects a zero-cross of a commercial power supply voltage of a sine wave, and a zero-cross of the commercial voltage A pulse generation circuit 32 that generates a pulse synchronized with the rising point of the current and a superposition current transformer 33 that superimposes the generated pulse on any one of the common ground lines 5. Hereinafter, the superimposed current transformer 33 is referred to as a superimposed CT as necessary.

図2に重畳CTで重畳されるパルス波形と、検出CT1〜CT4で検出した地絡電流波形を示す。重畳CTは、商用低圧線間電圧を検出し、ゼロクロスの立ち上がり点に同期したパルスを基準時間信号CPとして生成し、共同接地線5に重畳する。一方で共同接地線5の、例えば並列接続箇所12aに設置した検出CT1で地絡電流Iaを検出する。ここで検出された電流は商用周波数の正弦波で、重畳パルスがノイズとして入るので、バンドパスフィルター等でノイズ成分を除いて地絡電流Iaを検出する。地絡バンク判定部40で、基準時間信号CPを基準とした地絡電流Iaの立ち上がり時間を測定し、基準に対する電流位相θ°を算出する。   FIG. 2 shows a pulse waveform superimposed by the superimposed CT and a ground fault current waveform detected by the detection CT1 to CT4. The superimposed CT detects a commercial low-voltage line voltage, generates a pulse synchronized with the rising point of the zero cross as a reference time signal CP, and superimposes it on the common ground line 5. On the other hand, the ground fault current Ia is detected by the detection CT1 of the common ground line 5, for example, installed at the parallel connection location 12a. Since the detected current is a sine wave having a commercial frequency and a superimposed pulse is input as noise, the ground fault current Ia is detected by removing the noise component with a band-pass filter or the like. The ground fault bank determination unit 40 measures the rise time of the ground fault current Ia with reference to the reference time signal CP, and calculates the current phase θ ° with respect to the reference.

また、並列接続箇所12bに設置した検出CT2で地絡電流Ibを検出し、地絡バンク判定部40で基準時間信号CPを基準とした地絡電流Ibの立ち上がり時間を測定して、基準に対する電流位相θ°を算出する。2つの地絡電流Ia、Ibは同方向に流れる電流ゆえに同じ電流位相θ°であり、大きさが相違する。地絡バンク判定部40は、2箇所の地絡電流Ia、Ibが同相と判別すると、バンクB2からバンクB3のある外側に流れる地絡電流と判別し、バンクB1とB2が地絡発生バンクでないと判別する。なお、図1では検出CT1、CT2で検出した地絡電流Ia、Ibを有線で地絡バンク判定部40に送信するようにしているが、無線で検出電流の送信を行うようにしてもよい。このことは、他の検出CT3、CT4においても同様である。   In addition, the ground fault current Ib is detected by the detection CT2 installed in the parallel connection location 12b, the rise time of the ground fault current Ib with reference to the reference time signal CP is measured by the ground fault bank determination unit 40, and the current relative to the reference is measured. The phase θ ° is calculated. Since the two ground fault currents Ia and Ib flow in the same direction, they have the same current phase θ ° and have different sizes. When the ground fault bank determination unit 40 determines that the two ground fault currents Ia and Ib are in phase, it determines that the ground fault current flows from the bank B2 to the outside of the bank B3, and the banks B1 and B2 are not the fault occurrence bank. Is determined. In FIG. 1, the ground fault currents Ia and Ib detected by the detection CT1 and CT2 are transmitted by wire to the ground fault bank determination unit 40. However, the detection current may be transmitted wirelessly. The same applies to the other detections CT3 and CT4.

また、別の並列接続箇所12cに設置した検出CT3で地絡電流Icを検出し、地絡バンク判定部40で基準時間信号CPを基準とした地絡電流Icの立ち上がり時間を測定して、基準に対する電流位相を算出する。地絡電流Icは、地絡電流Ia、Ibと逆方向に流れる電流であるから、測定される電流位相は180°ずれた(θ°+180°)である。地絡バンク判定部40は、バンクB3を挟む2箇所の地絡電流Ib、Icが逆相であると判別すると、地絡電流Ib及びIcがバンクB3に隣接するバンクB2とバンクB4の両方から流れ込む電流と判別し、バンクB3が地絡発生バンクと特定する。   In addition, the ground fault current Ic is detected by the detection CT3 installed in another parallel connection location 12c, and the rise time of the ground fault current Ic with reference to the reference time signal CP is measured by the ground fault bank determination unit 40. The current phase with respect to is calculated. Since the ground fault current Ic is a current that flows in the opposite direction to the ground fault currents Ia and Ib, the measured current phase is shifted by 180 ° (θ ° + 180 °). When the ground fault bank determination unit 40 determines that the two ground fault currents Ib and Ic across the bank B3 are in opposite phases, the ground fault currents Ib and Ic are obtained from both the banks B2 and B4 adjacent to the bank B3. It is determined that the current flows in, and the bank B3 is specified as a ground fault occurrence bank.

また、並列接続箇所12dに設置した検出CT4で地絡電流Idを検出し、地絡バンク判定部40で基準時間信号CPを基準とした地絡電流Idの立ち上がり時間を測定して、基準に対する電流位相を算出する。ここでの地絡電流Idは、地絡電流Icと同方向に流れる電流であるから、測定される電流位相は(θ°+180°)である。地絡バンク判定部40は、バンクB4における2つの地絡電流Ic、Idが同相と判別して、バンクB4さらにはバンクB5が地絡発生バンクでないと判別する。   In addition, the ground fault current Id is detected by the detection CT4 installed at the parallel connection point 12d, and the rise time of the ground fault current Id with reference to the reference time signal CP is measured by the ground fault bank determination unit 40, and the current relative to the reference is measured. Calculate the phase. Since the ground fault current Id here is a current that flows in the same direction as the ground fault current Ic, the measured current phase is (θ ° + 180 °). The ground fault bank determination unit 40 determines that the two ground fault currents Ic and Id in the bank B4 are in phase, and determines that the bank B4 and further the bank B5 are not the ground fault occurrence bank.

4箇所の並列接続箇所12a〜12cにおける地絡電流検出は、同時或いは順次に行うことができる。同時に行う場合は、各並列接続箇所12a〜12cに検出CT1〜CT4を設置して行い、各線路で電流位相が同相と逆相かを判定して地絡発生バンクを特定する。順次に行う場合は、例えば1台の検出CT1のみ使用して行うことができる。また、2台の検出CT1、CT2を同時に使用して、バンクB2が地絡発生バンクかどうかの判別をし、地絡発生バンクでないと判別すると、この2台を別のバンクBへと移動させることも有効である。また、5つのバンクB1〜B5における地絡電流検出と位相測定の順番は上記例に限らず、任意である。仮に、最初に地絡発生のバンクB3で地絡電流検出と位相測定して、2つの地絡電流Ib、Icが逆相であり、地絡発生バンクであると判定されると、他のバンクでの地絡電流検出と位相測定は必ずしも必要としない。この場合、より高い正確性を期するため、他のバンクでの地絡電流検出と位相測定を行うことが望ましい。   The ground fault current detection at the four parallel connection points 12a to 12c can be performed simultaneously or sequentially. When performing simultaneously, detection CT1-CT4 is installed in each parallel connection location 12a-12c, it determines whether a current phase is an in-phase and an antiphase with each track | line, and specifies a ground fault generation bank. When performing sequentially, it can carry out, for example using only one detection CT1. Further, the two detection CT1 and CT2 are simultaneously used to determine whether or not the bank B2 is a ground fault occurrence bank. If it is determined that the bank is not a ground fault occurrence bank, the two sets are moved to another bank B. It is also effective. In addition, the order of ground fault current detection and phase measurement in the five banks B1 to B5 is not limited to the above example, but is arbitrary. If the ground fault current detection and phase measurement are first performed in the ground fault occurrence bank B3 and the two ground fault currents Ib and Ic are out of phase and are determined to be the ground fault occurrence bank, The ground fault current detection and phase measurement are not necessarily required. In this case, it is desirable to perform ground fault current detection and phase measurement in another bank for higher accuracy.

図1に示す基準時間信号生成部30は、低圧交流配電線路であるバンクBの商用電源周波数と共同接地線5を流れる地絡電流の周波数に同じ微少な変動が生じても、この変動に対応して商用電源と同期した基準時間信号CPの周波数が変動する。そのため、各バンクB1〜B5での地絡電流検出と位相測定の順番が時間的に相違しても、常に高精度で地絡電流の位相測定、同相か逆相かの判別ができる。   The reference time signal generation unit 30 shown in FIG. 1 responds to this fluctuation even if the same slight fluctuation occurs in the commercial power supply frequency of the bank B which is a low-voltage AC distribution line and the frequency of the ground fault current flowing through the common ground line 5. Thus, the frequency of the reference time signal CP synchronized with the commercial power supply fluctuates. Therefore, even if the order of the ground fault current detection and the phase measurement in each of the banks B1 to B5 is temporally different, the phase measurement of the ground fault current can always be determined with high accuracy and whether it is in phase or reverse phase.

基準時間信号生成部30は、図1のパルス重畳式のもの以外に、例えば、図3に示すGPS受信器35を使用したものや、図5に示すパルス発振回路37を使用したものが適用できる。   As the reference time signal generating unit 30, in addition to the pulse superimposition type shown in FIG. 1, for example, a type using the GPS receiver 35 shown in FIG. 3 or a type using the pulse oscillation circuit 37 shown in FIG. .

図3に示す基準時間信号生成部30は、全地球測位システム(GPS)のGPS衛星から送信されるGPS信号をアンテナ36を通してGPS受信器35で受信する。受信したGPS信号から同期した基準時間信号CPを生成して、地絡バンク判定部40に送信する。地絡バンク判定部40は、GPS信号から生成された基準時間信号CPを絶対的な時間として地絡電流位相の測定に使用する。   The reference time signal generator 30 shown in FIG. 3 receives a GPS signal transmitted from a GPS satellite of the global positioning system (GPS) by the GPS receiver 35 through the antenna 36. A reference time signal CP synchronized with the received GPS signal is generated and transmitted to the ground fault bank determination unit 40. The ground fault bank determination unit 40 uses the reference time signal CP generated from the GPS signal as an absolute time to measure the ground fault current phase.

図3のGPS基準時間方式の場合、同時刻で2箇所以上を同時に地絡電流の位相を測定する。例えば、図3に示すように、並列接続箇所12aに検出CT1を設置し、この検出CT1に地絡バンク判定部40と位相データ受信器41、受信アンテナ42を付設する。別の並列接続箇所12dに検出CT4を設置し、この検出CT4に位相データ送信器43と送信アンテナ44を付設する。並列接続箇所12aと並列接続箇所12dそれぞれのGPS受信器35で同時刻の基準時間信号CPを生成する。例えば、図4に示すように、12時00分00秒の基準時間信号CP1を基準とした検出CT1の地絡電流Iaの立ち上がり時間を測定し、基準に対する電流位相θ1°を算出し、その位相データを地絡バンク判定部40に有線で送信する。同様に12時00分00秒の基準時間信号CP1を基準とした検出CT4の地絡電流Idの立ち上がり時間を測定し、基準に対する電流位相(θ1°+180°)を算出して、その位相データを送信器43、送信アンテナ44から地絡バンク判定部40の受信アンテナ42、受信器41に無線送信し、受信器1から地絡バンク判定部40に有線送信する。この場合、地絡バンク判定部40は、2箇所の並列接続箇所12aと12dの地絡電流が逆相と判別し、バンクB1とバンクB5が地絡発生バンクでないと判別し、バンクB1とバンクB5の内側に地絡発生バンクがあると判定する。また、同様にして例えば12時00分01秒の基準時間信号CP2を基準とした検出CT1の地絡電流Iaの電流位相(θ2°+180°)を算出し、同じ12時00分01秒の基準時間信号CP2を基準とした検出CT4の地絡電流Idの電流位相θ2°を算出する。この場合も地絡バンク判定部40は、2箇所の並列接続箇所12aと12dの地絡電流が逆相と判別し、バンクB1とバンクB5の内側に地絡発生バンクがあると判定する。なお、図3では1台の地絡バンク判定部40で2箇所の並列接続箇所の地絡電流が同相か逆相かを判定しているが、2箇所の各並列接続箇所に1台ずつ地絡バンク判定部を設置して、互いにデータ交信させてそれぞれの地絡バンク判定部で2箇所の地絡電流が同相か逆相かの判別をしてもよい。   In the case of the GPS reference time method of FIG. 3, the phase of the ground fault current is simultaneously measured at two or more locations at the same time. For example, as shown in FIG. 3, a detection CT1 is installed at a parallel connection location 12a, and a ground fault bank determination unit 40, a phase data receiver 41, and a reception antenna 42 are attached to the detection CT1. A detection CT4 is installed at another parallel connection location 12d, and a phase data transmitter 43 and a transmission antenna 44 are attached to this detection CT4. A reference time signal CP at the same time is generated by the GPS receiver 35 at each of the parallel connection points 12a and 12d. For example, as shown in FIG. 4, the rise time of the ground fault current Ia of the detected CT1 with reference to the reference time signal CP1 of 12:00:00 is measured, the current phase θ1 ° with respect to the reference is calculated, and the phase Data is transmitted to the ground fault bank determination unit 40 by wire. Similarly, the rise time of the ground fault current Id of the detected CT4 with reference to the reference time signal CP1 of 12:00:00 is measured, the current phase (θ1 ° + 180 °) with respect to the reference is calculated, and the phase data is obtained. Wireless transmission is performed from the transmitter 43 and the transmission antenna 44 to the reception antenna 42 and the receiver 41 of the ground fault bank determination unit 40, and wired transmission is performed from the receiver 1 to the ground fault bank determination unit 40. In this case, the ground fault bank determination unit 40 determines that the ground fault currents at the two parallel connection points 12a and 12d are in reverse phase, determines that the bank B1 and the bank B5 are not the ground fault occurrence bank, and determines that the bank B1 and the bank B It is determined that there is a ground fault occurrence bank inside B5. Similarly, for example, the current phase (θ2 ° + 180 °) of the ground fault current Ia of the detected CT1 with respect to the reference time signal CP2 of 12:00:01 is calculated, and the same reference of 12:00:01 is calculated. The current phase θ2 ° of the ground fault current Id of the detection CT4 with respect to the time signal CP2 is calculated. Also in this case, the ground fault bank determination unit 40 determines that the ground fault currents at the two parallel connection locations 12a and 12d are in reverse phase, and determines that there is a ground fault occurrence bank inside the banks B1 and B5. In FIG. 3, one ground fault bank determination unit 40 determines whether the ground fault currents at the two parallel connection locations are in-phase or reverse phase. One ground fault bank is provided at each of the two parallel connection locations. A fault bank determination unit may be installed, and data may be communicated with each other, and each ground fault bank determination unit may determine whether the two ground fault currents are in phase or reverse phase.

図5に示す基準時間信号生成部30は、単独の高周波パルス発振回路37で低圧交流配電線路の商用周波数を整数nで除した1/nの周波数のパルス信号を発振させ、このパルス信号に同期させた基準時間信号CPを地絡バンク判定部40で使用する。この場合、n=1またはn=2にして、商用電圧のゼロクロスでパルス信号を発信させるのが、精度的かつ実用上に望ましい。   The reference time signal generator 30 shown in FIG. 5 oscillates a pulse signal having a frequency of 1 / n obtained by dividing the commercial frequency of the low-voltage AC distribution line by an integer n by a single high-frequency pulse oscillation circuit 37, and synchronizes with this pulse signal. The ground reference bank determination unit 40 uses the reference time signal CP thus made. In this case, it is desirable from the point of view of accuracy and practical use that n = 1 or n = 2 to transmit the pulse signal at the zero cross of the commercial voltage.

以上の実施の形態は、住宅や工場等の低圧需要家に電力供給する複数のバンクのB種接地線を共同接地線で並列に連系した多重接地式低圧交流配電線路に適用した地絡バンク特定方法、地絡バンク特定装置である。本発明は、多重接地式低圧交流配電線路に限らず適用できる。   The above embodiment is a ground fault bank that is applied to a multiple grounding type low voltage AC distribution line in which B type grounding wires of a plurality of banks that supply power to low voltage consumers such as houses and factories are connected in parallel with a common grounding wire. The identification method and the ground fault bank identification device. The present invention can be applied not only to the multiple grounding type low voltage AC distribution line.

本発明に係る地絡発生バンク特定装置の実施の形態を示す低圧交流配電線路の概要を示す回路図である。It is a circuit diagram which shows the outline | summary of the low voltage | pressure AC distribution line which shows embodiment of the ground fault generation bank specific device which concerns on this invention. 図1の地絡発生バンク特定装置による地絡電流位相測定方法を説明するための電圧・電流波形図である。FIG. 2 is a voltage / current waveform diagram for explaining a ground fault current phase measuring method by the ground fault occurrence bank identification device of FIG. 1. 他の実施の形態を示す低圧交流配電線路の概要を示す回路図である。It is a circuit diagram which shows the outline | summary of the low voltage | pressure AC distribution line which shows other embodiment. 図3の地絡発生バンク特定装置による地絡電流位相測定方法を説明するための地絡電流波形図である。It is a ground fault current waveform diagram for demonstrating the ground fault current phase measuring method by the ground fault generation bank specific apparatus of FIG. 他の実施の形態を示す低圧交流配電線路の概要を示す回路図である。It is a circuit diagram which shows the outline | summary of the low voltage | pressure AC distribution line which shows other embodiment.

符号の説明Explanation of symbols

1 低圧交流配電線路
4 接地線
5 共同接地線
B バンク(柱上変圧器)
Ia〜Id 地絡電流
10 地絡発生バンク特定装置
12a〜12d 並列接続箇所
20 地絡電流検出部
30 基準時間信号生成部
31 ゼロクロス検出回路
32 パルス発生回路
33 重畳変流器
35 GPS受信器
36 アンテナ
37 発信回路
40 地絡バンク判定部
CP 基準時間信号
CT 変流器
1 Low voltage AC distribution line 4 Grounding line 5 Joint grounding line B Bank (post transformer)
Ia to Id Ground fault current 10 Ground fault generation bank identification device 12a to 12d Parallel connection point 20 Ground fault current detection unit 30 Reference time signal generation unit 31 Zero cross detection circuit 32 Pulse generation circuit 33 Superimposed current transformer 35 GPS receiver 36 Antenna 37 Transmitter circuit 40 Ground fault bank determination unit CP Reference time signal CT Current transformer

Claims (7)

複数のバンクの低圧交流配電線路を並列に接続した配電系統におけるいずれかの地絡発生低圧交流配電線路に対応するバンクを特定する方法であって、
複数の前記低圧交流配電線路間の負荷電流が流れていない並列接続箇所それぞれで地絡電流を検出し、検出されたそれぞれの地絡電流の位相を共通の基準時間信号に基づいて測定して、隣接する前記並列接続箇所での地絡電流の位相が同相または逆相かの判定に基づいて地絡発生低圧交流配電線路に対応するバンクを特定することを特徴とする地絡発生バンク特定方法。
A method for identifying a bank corresponding to any ground fault occurrence low voltage AC distribution line in a distribution system in which a plurality of banks of low voltage AC distribution lines are connected in parallel,
Detecting a ground fault current in each of the parallel connection points where the load current between the plurality of low-voltage AC distribution lines does not flow, measuring the phase of each detected ground fault current based on a common reference time signal, A method for identifying a ground fault occurrence bank, comprising: identifying a bank corresponding to a ground fault generating low-voltage AC distribution line based on determination of whether a phase of a ground fault current at an adjacent parallel connection point is in phase or reverse phase.
前記基準時間信号を、前記低圧交流配電線路の商用電源と同期したパルス信号に基づいて生成することを特徴とする請求項1に記載の地絡発生バンク特定方法。   The ground fault occurrence bank identification method according to claim 1, wherein the reference time signal is generated based on a pulse signal synchronized with a commercial power source of the low-voltage AC distribution line. 前記パルス信号を複数の前記並列接続箇所に重畳したことを特徴とする請求項2に記載の地絡発生バンク特定方法。   The ground fault occurrence bank identification method according to claim 2, wherein the pulse signal is superimposed on a plurality of the parallel connection locations. 前記基準時間信号を、前記低圧交流配電線路の商用周波数を整数で除した周波数でパルス信号を発振するパルス発振回路からのパルス信号に基づいて生成することを特徴とする請求項1に記載の地絡発生バンク特定方法。   2. The ground according to claim 1, wherein the reference time signal is generated based on a pulse signal from a pulse oscillation circuit that oscillates a pulse signal at a frequency obtained by dividing a commercial frequency of the low-voltage AC distribution line by an integer. How to identify the bank where the tangle occurred. 前記基準時間信号を、全地球測位システムのGPS信号に基づいて生成することを特徴とする請求項1に記載の地絡発生バンク特定方法。   The ground fault occurrence bank identification method according to claim 1, wherein the reference time signal is generated based on a GPS signal of a global positioning system. 複数のバンクの低圧交流配電線路を並列に接続した配電系統におけるいずれかの地絡発生低圧交流配電線路に対応するバンクを特定する装置であって、
前記低圧交流配電線路間の前記並列接続箇所それぞれで当該並列接続箇所を流れる地絡電流を検出する地絡電流検出部と、前記並列接続箇所で検出されたそれぞれの地絡電流の位相を測定するための基準となる共通の基準時間信号を生成する基準時間信号生成部と、隣接する前記並列接続箇所の地絡電流の位相が同相または互いに逆相かを判別し、逆相と判別された隣接する並列接続箇所に挟まれたバンクを地絡発生バンクと判定する地絡バンク判定部とを具備したことを特徴とする地絡発生バンク特定装置。
An apparatus for identifying a bank corresponding to any ground fault occurrence low voltage AC distribution line in a distribution system in which low voltage AC distribution lines of a plurality of banks are connected in parallel,
A ground-fault current detection unit that detects a ground-fault current that flows through the parallel connection point at each of the parallel connection points between the low-voltage AC distribution lines, and measures the phase of each ground-fault current detected at the parallel connection point. A reference time signal generation unit that generates a common reference time signal serving as a reference for determining whether the phase of the ground fault current at the adjacent parallel connection point is in phase or opposite to each other, A ground fault occurrence bank identifying device, comprising: a ground fault bank determination unit that determines a bank sandwiched between parallel connection locations as a ground fault occurrence bank.
前記基準時間信号生成部は、前記低圧交流配電線路の商用電源と同期した高周波パルス電流を前記並列接続箇所に重畳する重畳変流器を有することを特徴とする請求項6に記載の地絡発生バンク特定装置。   The ground fault generation according to claim 6, wherein the reference time signal generation unit includes a superimposed current transformer that superimposes a high-frequency pulse current synchronized with a commercial power source of the low-voltage AC distribution line on the parallel connection portion. Bank specific device.
JP2007261027A 2007-10-04 2007-10-04 Ground fault occurrence bank identification method and ground fault occurrence bank identification device Active JP5026906B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007261027A JP5026906B2 (en) 2007-10-04 2007-10-04 Ground fault occurrence bank identification method and ground fault occurrence bank identification device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007261027A JP5026906B2 (en) 2007-10-04 2007-10-04 Ground fault occurrence bank identification method and ground fault occurrence bank identification device

Publications (2)

Publication Number Publication Date
JP2009092417A JP2009092417A (en) 2009-04-30
JP5026906B2 true JP5026906B2 (en) 2012-09-19

Family

ID=40664554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007261027A Active JP5026906B2 (en) 2007-10-04 2007-10-04 Ground fault occurrence bank identification method and ground fault occurrence bank identification device

Country Status (1)

Country Link
JP (1) JP5026906B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105790211A (en) * 2015-12-31 2016-07-20 国家电网公司 Method for protecting earth electrode line
CN111650533B (en) * 2020-06-15 2022-08-23 国家电网有限公司 Searching method of rotor magnetic pole grounding point searching instrument

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01153977A (en) * 1987-12-11 1989-06-16 Toko Denki Kk Investigating method for accident point of multiple earth distribution line
JP2627754B2 (en) * 1987-12-11 1997-07-09 東光電気株式会社 Fault detection method for multiple grounded distribution lines
JPH0375607U (en) * 1989-11-24 1991-07-30
JPH0580109A (en) * 1991-09-20 1993-04-02 Matsushita Electric Ind Co Ltd Troubled division sensing device for power distribution line
JP5021341B2 (en) * 2006-03-06 2012-09-05 関西電力株式会社 Ground fault bank identification method and ground fault bank identification device

Also Published As

Publication number Publication date
JP2009092417A (en) 2009-04-30

Similar Documents

Publication Publication Date Title
KR102050255B1 (en) Method and test device for testing wiring of transducers
JP5021341B2 (en) Ground fault bank identification method and ground fault bank identification device
CN101207281B (en) Multi-ended fault location system
US8866487B2 (en) Directional fault sectionalizing system
US8217640B2 (en) Method and device for determining the phases in a multi-phase electrical system
CN100580470C (en) Phase amount and zero sequence amount combined realization powerline both-end distance measuring method
CN100516909C (en) Method for implementing distance measurement between two ends of electric transmission line using interphase electrical quantities
EP2752674B1 (en) A detection method of a ground fault in an electric power distribution network
EP2325661A1 (en) Method of measuring earth ground resistance of a pylon using a single clamp
FI74365C (en) METHOD ATT DETEKTERA JORDFEL I NAET FOER DISTRIBUTION AV ELEKTRISK KRAFT OCH ANORDNING FOER GENOMFOERANDE AV METODEN.
KR102198674B1 (en) Leakage current calculation device and leakage current calculation method
JP2011153910A (en) Leak current measuring device and measurement method in electric apparatus
CN1987493A (en) Cable identifying method and cable identifying instrument
Nam et al. Single line-to-ground fault location based on unsynchronized phasors in automated ungrounded distribution systems
JP5380702B2 (en) Leakage current measuring device and measuring method
JP5026906B2 (en) Ground fault occurrence bank identification method and ground fault occurrence bank identification device
JP5477020B2 (en) Leakage current measuring device and measuring method in electrical equipment
JP2009069065A (en) Device for measuring effective leakage current
JP2016070877A (en) Ground fault detector and ground fault detection method
JP2017194465A (en) Monitoring device
WO2022018305A1 (en) Methods, devices and systems for detecting an isolation fault in an electrical installation
JP2004053361A (en) System for detecting current
JP5428030B1 (en) Insulation monitoring device
KR101708334B1 (en) The method and apparatus for identifying the power cable with time synchronized measuring function
JP2014211400A (en) Indirect ac megger measuring instrument and insulation resistance measuring method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120614

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120621

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150629

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5026906

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250