JP5024689B2 - Assembly robot and its control method - Google Patents
Assembly robot and its control method Download PDFInfo
- Publication number
- JP5024689B2 JP5024689B2 JP2010264730A JP2010264730A JP5024689B2 JP 5024689 B2 JP5024689 B2 JP 5024689B2 JP 2010264730 A JP2010264730 A JP 2010264730A JP 2010264730 A JP2010264730 A JP 2010264730A JP 5024689 B2 JP5024689 B2 JP 5024689B2
- Authority
- JP
- Japan
- Prior art keywords
- workpiece
- intermediate member
- assembly
- work
- robot
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/40—Robotics, robotics mapping to robotics vision
- G05B2219/40032—Peg and hole insertion, mating and joining, remote center compliance
Landscapes
- Manipulator (AREA)
Description
本発明は、中間部材を介してワークを対象物に組み付ける組立ロボットとその制御方法に関する。 The present invention relates to an assembly robot for assembling a workpiece on an object via an intermediate member and a control method therefor.
ロボットの手先に取り付けた力覚センサ、あるいはロボット関節のトルクから作業にかかる力やモーメントを計測し、これに応じて手先の位置や速度を変化させるのが「力制御」である。
力制御は、例えば精密部品の嵌め合い作業などに用いられる。力制御における調整パラメータは、仮想ばね、仮想ダンパ、仮想マスなどである。
“Force control” is a technique that measures the force and moment applied to the work from the force sensor attached to the hand of the robot or the torque of the robot joint, and changes the position and speed of the hand according to this.
Force control is used, for example, for fitting work of precision parts. Adjustment parameters in force control are a virtual spring, a virtual damper, a virtual mass, and the like.
ロボットによりワークを対象物に組み付ける際に力制御を用いることは、例えば、特許文献1〜6に開示されている。 For example, Patent Documents 1 to 6 disclose that force control is used when a workpiece is assembled to an object by a robot.
特許文献1は、作業中にかかる力などから失敗を検知するものである。
特許文献2は、作業に失敗した仕掛部品を画像センサで認識し、撤去することで稼動を停止することなく動作を継続するものである。
特許文献3は、失敗後に、画像センサを用いた部品の位置・姿勢の認識結果に基づき、作業手順を再計画し直すものである。
Japanese Patent Application Laid-Open No. H10-228561 detects failure from the force applied during work.
In Patent Document 2, an in-process component that has failed in work is recognized by an image sensor and removed to continue operation without stopping operation.
Patent Document 3 re-plans the work procedure after the failure based on the recognition result of the position / posture of the part using the image sensor.
特許文献4は、複数の工程で使われる物品の対応を記憶し、各行程において物品と関連付けて自動処理を実行するものである。
特許文献5は、内力管理制御により、強度が弱い部材であっても把持力を最適化して破損や変形を防ぎ、他の部材に組付けするものである。
特許文献6は、ワークをそのワーク座標の原点が目標粗位置まで移動するように各アクチュエータを位置制御した後、作業座標系をもとに組み付け位置にワークをローリング、ピッチング、ヨーイング方向に位置・力制御しながらワークを組み立てるものである。
Patent Document 4 stores correspondence of articles used in a plurality of processes, and executes automatic processing in association with articles in each process.
Patent Document 5 optimizes the gripping force to prevent breakage and deformation even when a member is weak in strength by internal force management control, and is assembled to another member.
In Patent Document 6, after controlling the position of each actuator so that the origin of the workpiece coordinate moves to the target coarse position, the workpiece is positioned in the rolling, pitching and yawing directions based on the work coordinate system. The work is assembled while controlling the force.
特許文献3は、失敗後に再度作業そのものを試みる手段を提案しているが、それ以外の特許文献1及び特許文献2は、失敗後の再試行に関してなんら開示していない。 Patent Document 3 proposes a means of trying the work itself again after a failure, but Patent Document 1 and Patent Document 2 other than that do not disclose anything about retry after the failure.
特許文献3の手段では、各部品の目標状態や組立作業中の所定時点での部品のあるべき位置姿勢、作業手順などをすべて洗い出して記憶しておくことで、作業手順を計画し直して組立作業を継続できる。
しかし、この手段は、事前に準備しておくべき情報が非常に多く、複雑である。特に、力制御を要するほど精密な組立作業においては、微小な状況の異なりをすべて別の事象と判断する必要があり、作業に影響がある微小な部品の状態や位置姿勢を正確に判断するには高分解能・高精度な計測が可能な画像センサと画像認識処理が必要となる。
In the means of Patent Document 3, the target state of each part, the position and orientation of the part at a predetermined point in time during assembly, and the work procedure are all identified and stored, so that the work procedure is re-planned and assembled. You can continue working.
However, this means has a lot of information to prepare in advance and is complicated. In particular, in assembly work that requires precise force control, it is necessary to judge all differences in minute situations as separate events, and to accurately determine the state and position of minute parts that affect the work. Requires an image sensor capable of high-resolution and high-precision measurement and image recognition processing.
本発明は、上述した問題点を解決するために創案されたものである。すなわち、本発明の目的は、画像センサを用いて画像認識処理をすることなく、中間部材を介してワークを対象物に組み付ける組立作業を実行し、該組立作業の成功又は失敗を判断し、該組立作業が失敗であるときに、ワークと中間部材の嵌合状態を判断することができる組立ロボットとその制御方法を提供することにある。 The present invention has been developed to solve the above-described problems. That is, an object of the present invention is to execute an assembly operation for assembling a workpiece on an object via an intermediate member without performing image recognition processing using an image sensor, and determine whether the assembly operation is successful or unsuccessful. It is an object to provide an assembly robot capable of determining a fitting state between a workpiece and an intermediate member when an assembly operation is unsuccessful, and a control method therefor.
本発明によれば、外力を計測する力センサを有しワークを把持するロボットハンドと、
該ロボットハンドを3次元空間内で位置と姿勢を移動可能なロボットアームと、
前記ロボットアームを制御し、中間部材を介して前記ワークを対象物に組み付ける組立作業を実行するロボット制御装置とを備え、
該ロボット制御装置により、前記組立作業中のワークの位置と計測された外力から前記組立作業の成功又は失敗を判断し、
前記組立作業が失敗であるときに、前記ワークを前記組立作業前の位置へ戻し、
次いで、前記中間部材が嵌合不能な固定部材に対して、該固定部材を仮想的に前記対象物とみなして前記組立作業を再実行し、
該再実行中のワークの位置と計測された外力から、前記ワークと中間部材の嵌合状態を判断する、ことを特徴とする組立ロボットが提供される。
According to the present invention, a robot hand having a force sensor for measuring an external force and gripping a workpiece;
A robot arm capable of moving the position and posture of the robot hand in a three-dimensional space;
A robot control device that controls the robot arm and executes an assembly operation for assembling the workpiece onto an object via an intermediate member;
The robot controller determines the success or failure of the assembly work from the position of the workpiece during the assembly work and the measured external force,
When the assembly operation is unsuccessful, the workpiece is returned to the position before the assembly operation,
Next, for the fixing member to which the intermediate member cannot be fitted, the fixing member is virtually regarded as the object, and the assembly operation is performed again.
An assembly robot is provided, wherein a fitting state between the workpiece and the intermediate member is determined from the position of the workpiece being re-executed and the measured external force.
また本発明によれば、外力を計測する力センサを有しワークを把持するロボットハンドと、
該ロボットハンドを3次元空間内で位置と姿勢を移動可能なロボットアームと、を備え、
(A)前記ロボットアームを制御し、中間部材を介して前記ワークを対象物に組み付ける組立作業を実行し、
(B)前記組立作業中のワークの位置と計測された外力から前記組立作業の成功又は失敗を判断し、
(C)前記組立作業が失敗であるときに、前記ワークを前記組立作業前の位置へ戻し、
(D)次いで、前記中間部材が嵌合不能な固定部材に対して、該固定部材を仮想的に前記対象物とみなして前記組立作業を再実行し、
(E)該再実行中のワークの位置と計測された外力から、前記ワークと中間部材の嵌合状態を判断する、ことを特徴とする組立ロボットの制御方法が提供される。
According to the present invention, a robot hand having a force sensor for measuring an external force and gripping a workpiece;
A robot arm capable of moving the position and posture of the robot hand in a three-dimensional space;
(A) controlling the robot arm, and performing an assembly operation for assembling the workpiece onto an object via an intermediate member;
(B) determining the success or failure of the assembly operation from the position of the workpiece during the assembly operation and the measured external force;
(C) When the assembly work is unsuccessful, the work is returned to the position before the assembly work,
(D) Next, for the fixing member to which the intermediate member cannot be fitted, the fixing member is virtually regarded as the object, and the assembly operation is re-executed.
(E) Provided is a method for controlling an assembly robot, wherein a fitting state between the workpiece and the intermediate member is determined from the position of the workpiece being re-executed and the measured external force.
上記本発明の装置及び方法によれば、力センサを有するロボットハンド、ロボットアーム、及びロボット制御装置により、ワーク又は対象物に予め嵌合されている中間部材を介してワークを対象物に組み付ける組立作業を実行することができる。
また、組立作業中のワークの位置と計測された外力から組立作業の成功又は失敗を判断することができる。
According to the above-described apparatus and method of the present invention, the assembly of assembling the workpiece onto the object through the intermediate member pre-fitted to the workpiece or the object by the robot hand having the force sensor, the robot arm, and the robot controller. Work can be performed.
Further, the success or failure of the assembling work can be determined from the position of the workpiece during the assembling work and the measured external force.
さらに、組立作業が失敗であるとき、すなわち異常検出時に、ロボットハンドが把持するワークを組立作業前の位置へ戻し、別の場所で前記中間部材が嵌合不能な固定部材に力制御で組立作業を再実行することで、再実行中のワークの位置と計測された外力から、中間部材の嵌合状態、すなわちワークから外れうる中間部材の有無を判断することができる。 Further, when the assembly work is unsuccessful, that is, when an abnormality is detected, the work gripped by the robot hand is returned to the position before the assembly work, and the assembly work is performed by force control on the fixed member where the intermediate member cannot be fitted in another place. By re-executing, it is possible to determine the fitting state of the intermediate member, that is, the presence or absence of the intermediate member that can be detached from the workpiece, from the position of the workpiece being re-executed and the measured external force.
また、この組立動作中に、ワークに中間部材が正しく嵌合された場合は中間部材が再度理想的な位置(正規の位置)に戻っているため、そのまま組立作業を再試行できる。また、中間部材がワークに正しく嵌合されなかった場合は、中間部材を理想的な位置(正規の位置)に戻せないので、前記ワークを用いた組立作業の継続は困難と判断し、中間部材が正しく嵌合された新しいワークを用いて組立作業が行なえる。 Further, during the assembling operation, if the intermediate member is correctly fitted to the workpiece, the intermediate member has returned to the ideal position (regular position) again, so that the assembling operation can be retried as it is. Further, if the intermediate member is not properly fitted to the workpiece, the intermediate member cannot be returned to the ideal position (regular position). Therefore, it is determined that it is difficult to continue the assembly work using the workpiece, and the intermediate member Assembling work can be performed using a new work that is correctly fitted.
従ってこの判断により、組立失敗時の(1)中間部材の有無検出、(2)中間部材の健全性のチェックとその健全化、(3)中間部材の健全化失敗時の新しい部品利用の判断と動作、(4)装置の稼動停止防止、等ができる効果が得られる。
Therefore, by this determination, (1) detection of presence / absence of intermediate member at the time of assembly failure, (2) check of soundness of intermediate member and its soundness, (3) determination of use of new parts at failure of sounding of intermediate member The effect which can perform operation | movement, (4) prevention of operation stop of an apparatus, etc. is acquired.
以下、本発明の好ましい実施形態を添付図面に基づいて詳細に説明する。なお、各図において共通する部分には同一の符号を付し、重複した説明を省略する。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. In addition, the same code | symbol is attached | subjected to the common part in each figure, and the overlapping description is abbreviate | omitted.
図1は、本発明による組立ロボットの実施形態図である。
この図において、組立ロボット10は、中間部材3を介してワーク1を対象物2に組み付ける自動装置であり、ロボットハンド12、ロボットアーム16、及びロボット制御装置20を備える。
FIG. 1 is an embodiment diagram of an assembly robot according to the present invention.
In this figure, an assembly robot 10 is an automatic device for assembling a workpiece 1 to an object 2 via an intermediate member 3, and includes a robot hand 12, a robot arm 16, and a robot control device 20.
この例において、中間部材3は、ワーク1に予め嵌合されており、中間部材3を対象物2に嵌合させてワーク1を対象物2に組み付けるようになっている。
なお、本発明はこれに限定されず、中間部材3を対象物2に予め嵌合させて、中間部材3をワーク1に嵌合させてワーク1を対象物2に組み付けてもよい。
以下、中間部材3が、ワーク1に予め嵌合されている場合を説明する。
In this example, the intermediate member 3 is fitted to the workpiece 1 in advance, and the workpiece 1 is assembled to the object 2 by fitting the intermediate member 3 to the object 2.
In addition, this invention is not limited to this, The intermediate member 3 may be previously fitted to the target object 2, the intermediate member 3 may be fitted to the workpiece | work 1, and the workpiece | work 1 may be assembled | attached to the target object 2. FIG.
Hereinafter, the case where the intermediate member 3 is previously fitted to the workpiece 1 will be described.
中間部材3は、後述する実施形態では、円筒形部材であり、その上端にワーク1が嵌合され、このワーク1をロボットハンド12が把持するようになっている。 In the embodiment described later, the intermediate member 3 is a cylindrical member, and the workpiece 1 is fitted to the upper end thereof, and the robot hand 12 grips the workpiece 1.
ロボットハンド12は、外力を計測する力センサ14を有し、ワーク1を把持する。 The robot hand 12 has a force sensor 14 that measures an external force, and grips the workpiece 1.
力センサ14は、ワーク1に作用する外力を検出するセンサである。
この例において、力センサ14は直交3軸方向の力(Fx,Fy,Fz)と各軸まわりのトルク(Tx,Ty,Tz)を計測可能な6軸センサであり、3次元的に移動可能なロボットアーム16に取り付けられ、これに作用する6自由度の外力(3方向の力Fx,Fy,Fzと、3軸まわりのトルクTx,Ty,Tz)を検出するようになっている。
なお、本発明はこれに限定されず、ワーク1に作用する外力が検出できる限りで、その他の力センサであってもよい。
The force sensor 14 is a sensor that detects an external force acting on the workpiece 1.
In this example, the force sensor 14 is a six-axis sensor capable of measuring a force (Fx, Fy, Fz) in three orthogonal axes and a torque (Tx, Ty, Tz) around each axis, and can be moved three-dimensionally. 6 degrees of freedom external force (forces Fx, Fy, Fz in three directions and torques Tx, Ty, Tz around three axes) acting on the robot arm 16 is detected.
In addition, this invention is not limited to this, As long as the external force which acts on the workpiece | work 1 is detectable, another force sensor may be sufficient.
ロボットアーム16は、手先にロボットハンド12を取付け、これを3次元空間内で位置と姿勢を移動可能に構成されている。
ロボットアーム16は、この例では、多関節ロボットのロボットアームであるが、本発明はこれに限定されず、その他のロボットであってもよい。
The robot arm 16 is configured such that the robot hand 12 is attached to the hand, and the position and posture of the robot arm 16 can be moved in a three-dimensional space.
In this example, the robot arm 16 is a robot arm of an articulated robot, but the present invention is not limited to this and may be another robot.
ロボット制御装置20は、記憶装置21に各動作におけるワーク1の動作条件を記憶し、ロボットアーム16を制御する。
ロボット制御装置20は、例えば数値制御装置であり、指令信号によりロボットアーム16を6自由度(3次元位置と3軸まわりの回転)に制御するようになっている。
The robot control device 20 stores the operation conditions of the workpiece 1 in each operation in the storage device 21 and controls the robot arm 16.
The robot control device 20 is, for example, a numerical control device, and controls the robot arm 16 to six degrees of freedom (three-dimensional position and rotation about three axes) by a command signal.
記憶装置21に記憶された各動作におけるワーク1の動作条件は、前提条件、成功条件及び失敗条件からなる。
また、記憶装置21は、各動作にそれぞれ対応する動作条件と制御方法を記憶する。
制御方法は、位置制御、速度制御、又は力制御であり、力制御は、インピーダンス制御又はダンピング制御であるが、本発明はこれに限定されず、その他の力制御方法であってもよい。
The operation condition of the work 1 in each operation stored in the storage device 21 includes a precondition, a success condition, and a failure condition.
The storage device 21 stores operation conditions and control methods corresponding to the respective operations.
The control method is position control, speed control, or force control, and the force control is impedance control or damping control, but the present invention is not limited to this, and other force control methods may be used.
記憶装置21は、さらに各動作における軌道データテーブルを記憶する。軌道データテーブルは、ロボットハンド12のTCPの目標位置(X,Y,Z)と、押付け方向ベクトルからなる。 The storage device 21 further stores a trajectory data table for each operation. The trajectory data table includes TCP target positions (X, Y, Z) of the robot hand 12 and pressing direction vectors.
図2は、本発明が対象とする組立対象物品の例を示す図である。
本発明は、中間部材3を介してワーク1を対象物2に組み付ける組立作業を対象とする。
図2(A)において、中間部材3は円筒形部材であり、ワーク1はその下面に中間部材3の上部と嵌合する孔1aを有し、対象物2はその上部に中間部材3の下部と嵌合する孔2aを有する。
図2(B)において、中間部材3は鍔3aを有する円筒形部材であり、ワーク1はその下面に中間部材3の上部と嵌合する孔1aを有し、対象物2はその上部に中間部材3の下部と嵌合する孔2aを有する。
FIG. 2 is a diagram illustrating an example of an assembly target article targeted by the present invention.
The present invention is directed to an assembly operation in which the workpiece 1 is assembled to the object 2 via the intermediate member 3.
In FIG. 2A, the intermediate member 3 is a cylindrical member, the workpiece 1 has a hole 1a that fits into the upper part of the intermediate member 3 on the lower surface thereof, and the object 2 has a lower part of the intermediate member 3 on the upper part thereof. And a hole 2a to be fitted.
In FIG. 2 (B), the intermediate member 3 is a cylindrical member having a flange 3a, the workpiece 1 has a hole 1a fitted to the upper part of the intermediate member 3 on the lower surface, and the object 2 is intermediate in the upper part. It has a hole 2 a that fits into the lower part of the member 3.
図2(A)の例では、孔1aの上端は閉じており、中間部材3の上面が孔1aの上面と当接した位置が正規の初期位置である。
また、図2(B)の例では、孔1aは貫通しており、鍔3aの上面がワーク1の下面と当接した位置が正規の初期位置である。
In the example of FIG. 2A, the upper end of the hole 1a is closed, and the position where the upper surface of the intermediate member 3 is in contact with the upper surface of the hole 1a is the normal initial position.
In the example of FIG. 2B, the hole 1a passes through, and the position where the upper surface of the flange 3a contacts the lower surface of the workpiece 1 is the normal initial position.
その他の構成は、図2(A)と図2(B)で同一である。以下、組立対象物品が図2(A)の場合を説明する。 Other structures are the same in FIGS. 2A and 2B. Hereinafter, the case where the assembly target article is shown in FIG.
ワーク1の孔1aは、円筒形孔であり、その内径は、中間部材3の直径よりわずかに大きく、中間部材3の上部が上述した初期位置に達するまで、同心を維持したまま挿入できるようになっている。
円筒形孔1aの内径と中間部材3の直径の差は、例えば、0.01mmである。
The hole 1a of the workpiece 1 is a cylindrical hole, and its inner diameter is slightly larger than the diameter of the intermediate member 3, so that it can be inserted while maintaining concentricity until the upper part of the intermediate member 3 reaches the initial position described above. It has become.
The difference between the inner diameter of the cylindrical hole 1a and the diameter of the intermediate member 3 is, for example, 0.01 mm.
図2(A)において、対象物2は作業台4(図1参照)に移動しないように固定されている。
対象物2の孔2aは、円筒形孔であり、その内径は、中間部材3の直径よりわずかに大きく、中間部材3の下部が円筒形孔2aの所定位置に達するまで、同心を維持したまま挿入できるようになっている。
円筒形孔2aの内径と中間部材3の直径の差は、例えば、0.01mmである。
In FIG. 2A, the object 2 is fixed so as not to move to the work table 4 (see FIG. 1).
The hole 2a of the object 2 is a cylindrical hole, the inner diameter thereof is slightly larger than the diameter of the intermediate member 3, and the concentricity is maintained until the lower part of the intermediate member 3 reaches a predetermined position of the cylindrical hole 2a. It can be inserted.
The difference between the inner diameter of the cylindrical hole 2a and the diameter of the intermediate member 3 is, for example, 0.01 mm.
ロボット制御装置20は、ロボットアーム16を制御し、ワーク1に嵌合された中間部材3を対象物2に嵌合させる組立作業を実行する。
この組立作業は、例えば、以下の3つの動作(1)〜(3)からなる。
動作(1)は、中間部材3の下端を円筒形孔2aの上部に挿入するまでの近接動作である。この動作では、挿入の成否を判定する必要がある。
動作(2)は、はめあい開始直後の動作である。この動作では、円筒形孔1a、2aが一致するように、ワーク1の位置と姿勢のずれを修正する必要がある。
動作(3)は、はめあい中の挿入動作である。この動作では、円筒形孔1a、2aが一致するように、ワーク1の位置のずれを修正しつつ中間部材3を挿入する必要がある。
従って、動作(2)(3)では、対象物2の円筒形孔2aの軸線に沿って、ワーク1を対象物2に向けて移動する。
The robot control device 20 controls the robot arm 16 and executes an assembly operation for fitting the intermediate member 3 fitted to the workpiece 1 to the object 2.
This assembly work includes, for example, the following three operations (1) to (3).
Operation (1) is a proximity operation until the lower end of the intermediate member 3 is inserted into the upper portion of the cylindrical hole 2a. In this operation, it is necessary to determine whether or not the insertion is successful.
The operation (2) is an operation immediately after the start of fitting. In this operation, it is necessary to correct the displacement of the position and posture of the workpiece 1 so that the cylindrical holes 1a and 2a coincide.
Operation (3) is an insertion operation during fitting. In this operation, it is necessary to insert the intermediate member 3 while correcting the displacement of the position of the workpiece 1 so that the cylindrical holes 1a and 2a coincide.
Therefore, in the operations (2) and (3), the workpiece 1 is moved toward the target object 2 along the axis of the cylindrical hole 2a of the target object 2.
図3は、本発明による制御方法のフローチャートである。この図において、本発明の方法は、S1〜S8の各ステップ(工程)からなる。 FIG. 3 is a flowchart of the control method according to the present invention. In this figure, the method of the present invention comprises the steps S1 to S8.
S1ステップ(ワーク把持ステップ)では、上述した正規の初期位置に中間部材3が嵌合されたワーク1(中間部材3付きワーク1)をロボットハンド12で把持する。
S2ステップ(組立ステップ)では、ロボットアーム16を制御し、ワーク1に嵌合された中間部材3を対象物2に嵌合させる組立作業を実行する。
In step S <b> 1 (work gripping step), the robot hand 12 grips the work 1 (work 1 with the intermediate member 3) in which the intermediate member 3 is fitted at the normal initial position described above.
In step S2 (assembly step), the robot arm 16 is controlled, and an assembly operation for fitting the intermediate member 3 fitted to the workpiece 1 to the object 2 is executed.
S3ステップ(組立判断ステップ)では、組立作業中のワーク1の位置と計測された外力から組立作業の成功又は失敗を判断する。
例えば、上述した3つの動作(1)〜(3)において、各動作範囲における力センサ14で検出される外力が予め設定した閾値を超える場合に失敗と判断し、外力が閾値以下であれば成功と判断する。
S3ステップで、成功(Yes)であれば、組立作業を終了する。
In step S3 (assembly determination step), the success or failure of the assembly work is determined from the position of the workpiece 1 during the assembly work and the measured external force.
For example, in the above-described three operations (1) to (3), if the external force detected by the force sensor 14 in each operation range exceeds a preset threshold value, it is determined as a failure, and if the external force is equal to or less than the threshold value, the operation is successful. Judge.
If it is successful (Yes) in step S3, the assembly work is terminated.
図4は、3つの動作(1)〜(3)により、正常にワークが組み立てられた状態を示す図である。
この例では、中間部材3の上面が孔1aの上面と当接した初期位置に位置したまま、中間部材3のワーク1より下方に突出した部分(中間部分から下方部分)が、対象物2の円筒形孔2aに同心を維持したまま挿入されている。
従って、この状態により中間部材3を介してワーク1を対象物2に位置決めすることができる。
なお、中間部材3は1つに限定されず、2以上であってもよい。2以上の中間部材3を用いることにより、対象物2に対するワーク1の相対位置及び姿勢を正確に位置決めすることができる。
FIG. 4 is a diagram illustrating a state in which the workpiece is normally assembled by the three operations (1) to (3).
In this example, the portion of the intermediate member 3 that protrudes downward from the work 1 while the upper surface of the intermediate member 3 is in contact with the upper surface of the hole 1a (the lower portion from the intermediate portion) is the object 2. It is inserted into the cylindrical hole 2a while maintaining concentricity.
Therefore, the workpiece 1 can be positioned on the object 2 via the intermediate member 3 in this state.
The intermediate member 3 is not limited to one, and may be two or more. By using two or more intermediate members 3, the relative position and posture of the workpiece 1 with respect to the object 2 can be accurately positioned.
図5は、組立中に異常を検出して停止した状態を示す図である。
例えば、動作(1)(2)において、組立中にかじりや挿入失敗などが発生すると、ワーク1を対象物2に向けて移動する挿入方向の抵抗が過大となり、これを力センサ14で検出することで異常を検出し、装置を停止させることができる。
FIG. 5 is a diagram illustrating a state in which an abnormality is detected and stopped during assembly.
For example, in the operations (1) and (2), when galling or insertion failure occurs during assembly, the resistance in the insertion direction for moving the workpiece 1 toward the object 2 becomes excessive, and this is detected by the force sensor 14. Thus, the abnormality can be detected and the apparatus can be stopped.
図3のS3ステップで、失敗(No)であれば、S4ステップ(戻しステップ)でワーク1を組立作業前の位置へ戻す。すなわち、この動作では、対象物2の円筒形孔2aの軸線に沿って、ワーク1を対象物2から離れる方向に移動する。 If it is a failure (No) at step S3 in FIG. 3, the workpiece 1 is returned to the position before the assembly work at step S4 (return step). That is, in this operation, the workpiece 1 is moved in a direction away from the object 2 along the axis of the cylindrical hole 2 a of the object 2.
次いで、S5ステップ(再組立ステップ)で、中間部材3が嵌合不能な固定部材5に対して、固定部材5を仮想的に対象物2とみなして組立作業を再実行する。
中間部材3が嵌合不能な固定部材5とは、中間部材3が嵌合する孔2aがない部材であり、後述する例では上面が水平な固定平板であるが、孔2aのない対象物2であってもよい。
この固定部材5は、対象物2と異なる位置で作業台4(図1参照)に移動しないように固定されている。
Next, in step S5 (reassembly step), the fixing member 5 is virtually regarded as the object 2 and the assembling operation is re-executed with respect to the fixing member 5 into which the intermediate member 3 cannot be fitted.
The fixing member 5 to which the intermediate member 3 cannot be fitted is a member that does not have the hole 2a into which the intermediate member 3 is fitted. In the example described later, the upper surface is a fixed flat plate with a horizontal surface, but the object 2 without the hole 2a. It may be.
The fixing member 5 is fixed so as not to move to the work table 4 (see FIG. 1) at a position different from the object 2.
S6ステップ(嵌合判断ステップ)では、再実行中のワーク1の位置と計測された外力から、ワーク1と中間部材3の嵌合状態を判断する。 In step S6 (fitting determination step), the fitting state of the workpiece 1 and the intermediate member 3 is determined from the position of the workpiece 1 being re-executed and the measured external force.
図6は、ワーク1から外れかかった中間部材3を、固定部材5によりワーク1に嵌合させる動作の説明図である。
この図において、(A)はS4ステップによりワーク1を組立作業前の位置へ戻した状態、(B)は、S5ステップにより組立作業の再実行中の状態、(C)は再実行後の状態を示す模式図である。
図6(B)の組立作業の再実行は、中間部材3が嵌合不能な固定部材5に対して、固定部材5を仮想的に対象物2とみなして組立作業を再実行する。
FIG. 6 is an explanatory view of the operation of fitting the intermediate member 3 that has come off the workpiece 1 to the workpiece 1 by the fixing member 5.
In this figure, (A) is a state in which the workpiece 1 is returned to the position before the assembly work in step S4, (B) is a state in which the assembly work is being re-executed in step S5, and (C) is a state after the re-execution. It is a schematic diagram which shows.
In the re-execution of the assembling operation in FIG. 6B, the assembling operation is re-executed with the fixing member 5 virtually regarded as the object 2 with respect to the fixing member 5 into which the intermediate member 3 cannot be fitted.
図6に示すように、本発明の方法では、組立作業が失敗(S3ステップでNo)であるときに、挿入しかけた中間部材3付きワーク1を対象物2から離れる方向に後退させて中間部材3を対象物2から抜き、ワーク1を組立作業前の位置へ戻し(A)、予め準備した中間部材3が嵌合不能な固定部材5の場所へ移動する(S4ステップ)。
次いで、中間部材3が嵌合不能な固定部材5に対して、固定部材5を仮想的に対象物2とみなして組立作業(動作(1)〜(3))を再実行する(B)(C)。この組立作業により、中間部材3が外れていなければ、ワーク1を対象物2に向けて移動する押付動作によって外れかかっている中間部材3はワーク1に再度取り付けられる(図6(C))。
As shown in FIG. 6, in the method of the present invention, when the assembly work is unsuccessful (No in step S <b> 3), the inserted workpiece 1 with the intermediate member 3 is retracted in the direction away from the target object 2. 3 is removed from the object 2, the workpiece 1 is returned to the position before the assembly work (A), and the intermediate member 3 prepared in advance is moved to the place of the fixing member 5 where the fitting is impossible (step S4).
Next, with respect to the fixing member 5 to which the intermediate member 3 cannot be fitted, the fixing member 5 is virtually regarded as the object 2 and the assembly work (operations (1) to (3)) is performed again (B) ( C). If the intermediate member 3 is not detached by this assembling operation, the intermediate member 3 that is about to be detached by the pressing operation of moving the workpiece 1 toward the object 2 is attached to the workpiece 1 again (FIG. 6C).
ここで、中間部材3がワーク1に理想的に組み付いた時に押付制御(再組立作業)が完了するワーク1の上面位置を「理想位置a」、S2ステップにおける組立作業に支障がない程度に中間部材3がワーク1に組み付いたときに押付制御が完了するワーク1の上面範囲を「許容範囲b」とする。
理想位置aでは、中間部材3は図2(A)の正規の初期位置に位置する。
また、許容範囲bでは、中間部材3は初期位置ではないが、組立作業中に図2(A)の初期位置に位置決めされ得る範囲に位置する。
Here, when the intermediate member 3 is ideally assembled to the workpiece 1, the upper surface position of the workpiece 1 for which the pressing control (reassembly operation) is completed is “ideal position a”, so that the assembly operation in step S2 is not hindered. The upper surface range of the work 1 for which the pressing control is completed when the intermediate member 3 is assembled to the work 1 is defined as an “allowable range b”.
At the ideal position a, the intermediate member 3 is located at the normal initial position in FIG.
Further, in the allowable range b, the intermediate member 3 is not in the initial position, but is positioned in a range where the intermediate member 3 can be positioned at the initial position in FIG.
図3のS6ステップで、S5ステップによる組立作業の再実行完了時のワーク1の位置が、上述した理想位置a又は許容範囲bである場合には、中間部材3が許容位置にあるので、中間部材3付きワーク1をそのまま再使用することができる。
従ってこの場合には、S2ステップに戻り、ワーク1に嵌合された中間部材3を対象物2に嵌合させる組立作業を実行する。
In step S6 of FIG. 3, when the position of the workpiece 1 at the completion of re-execution of the assembly work in step S5 is the ideal position a or the allowable range b described above, the intermediate member 3 is in the allowable position. The workpiece 1 with the member 3 can be reused as it is.
Therefore, in this case, the process returns to step S2, and an assembly operation for fitting the intermediate member 3 fitted to the workpiece 1 to the object 2 is executed.
図7は、固定部材5を用いて中間部材3がワーク1から外れていることを検出する動作の説明図である。
この図において、(A)は中間部材3がワーク1から外れている状態、(B)は、次いで、組立作業の再実行の初期状態、(C)は組立作業の再実行中に中間部材3が外れていなければ押付けが完了する位置、(D)は(C)の位置からさらに所定の閾値以上押付け動作が進行した状態を示す模式図である。
FIG. 7 is an explanatory diagram of an operation for detecting that the intermediate member 3 is detached from the workpiece 1 using the fixing member 5.
In this figure, (A) is a state in which the intermediate member 3 is detached from the workpiece 1, (B) is an initial state of re-execution of the assembly work, and (C) is an intermediate member 3 during re-execution of the assembly work. (D) is a schematic diagram showing a state in which the pressing operation has further progressed by a predetermined threshold or more from the position of (C).
中間部材3がワーク1から外れていれば、図7(C)(D)に示すように、組立作業の再実行(S5ステップ)により押付動作を行なったとき、ワーク1の上面位置が理想位置aよりも進んだ位置まで力制御によってワーク1が移動する。
従って、理想位置aを超えて、かつ許容範囲bを超えても押付が完了しない(押付力を検出しない)場合、中間部材3がないものとして、S7ステップ(払い出しステップ)において把持するワーク1を失敗部品として払い出し、S1に戻り、新たな中間部材3付きワーク1を把持して動作を継続する。
If the intermediate member 3 is disengaged from the work 1, as shown in FIGS. 7C and 7D, when the pressing operation is performed by re-execution of the assembly work (step S5), the upper surface position of the work 1 is the ideal position. The workpiece 1 moves to a position advanced from a by force control.
Therefore, when the pressing is not completed (the pressing force is not detected) even if the ideal position a is exceeded and the allowable range b is exceeded, it is assumed that there is no intermediate member 3, and the workpiece 1 to be gripped in step S7 (dispensing step) is taken. Dispensing as a failed part, returning to S1, gripping the new workpiece 1 with the intermediate member 3 and continuing the operation.
また、中間部材3が外れてかかっており、かつ押付動作をしても中間部材3が理想的な位置まで組み付けられない場合は、理想位置a及び許容範囲bに入らないため、許容範囲bに進行する前に、検出される外力が閾値を超える異常を検出することになる。
従って、許容範囲bに入る前に外力が閾値を超える異常を検出した場合は、S8ステップ(払い出しステップ)において中間部材3がワーク1に組み付かないものとして、把持するワーク1を失敗部品として払い出し、S1ステップに戻り、新たな中間部材3付きワーク1を把持して動作を継続する。
Further, when the intermediate member 3 is detached and the intermediate member 3 cannot be assembled to the ideal position even after the pressing operation, the ideal position a and the allowable range b are not entered. Before proceeding, an abnormality in which the detected external force exceeds the threshold value is detected.
Therefore, if an abnormality in which the external force exceeds the threshold value is detected before entering the allowable range b, the intermediate member 3 is not assembled to the workpiece 1 in step S8 (dispensing step), and the gripped workpiece 1 is dispensed as a failed part. Returning to step S1, the new workpiece 1 with the intermediate member 3 is gripped and the operation is continued.
図8は、ワーク1と固定部材5との相対位置と、ワーク1と中間部材3の嵌合状態との関係を示す図である。
この図において、aは上述した理想位置、bは上述した許容範囲である。
また、cは許容範囲bを超えても押付が完了しない異常位置、dは許容範囲bに入る前に外力が閾値を超える異常位置である。
FIG. 8 is a diagram illustrating the relationship between the relative position between the workpiece 1 and the fixing member 5 and the fitting state between the workpiece 1 and the intermediate member 3.
In this figure, a is the ideal position described above, and b is the allowable range described above.
Further, c is an abnormal position where pressing is not completed even if the allowable range b is exceeded, and d is an abnormal position where the external force exceeds the threshold before entering the allowable range b.
ワーク1を固定部材5に向けて移動する押付動作の完了位置において、ワーク1の上面が正常に理想位置a又は許容範囲bに位置する場合は、上述したように、中間部材3が許容位置にあると判断できる。
また、ワーク1の上面が異常位置cに位置する場合は、上述したように、中間部材3がないものと判断できる。
さらに、ワーク1の上面が異常位置dに位置する場合は、上述したように、中間部材3がワーク1に組み付かないものと判断できる。
従って、把持しているワーク1での再試行の可否と中間部材3の様子の判断を、図8のようにワーク1を固定部材5に向けて移動する押付動作の完了位置で判断することができる。
When the upper surface of the workpiece 1 is normally positioned at the ideal position a or the allowable range b at the completion position of the pressing operation for moving the workpiece 1 toward the fixing member 5, as described above, the intermediate member 3 is set at the allowable position. It can be judged that there is.
When the upper surface of the work 1 is located at the abnormal position c, it can be determined that the intermediate member 3 is not present as described above.
Furthermore, when the upper surface of the workpiece 1 is located at the abnormal position d, it can be determined that the intermediate member 3 is not assembled to the workpiece 1 as described above.
Therefore, it is possible to determine whether or not to retry the gripped work 1 and the state of the intermediate member 3 at the completion position of the pressing operation for moving the work 1 toward the fixed member 5 as shown in FIG. it can.
なお上述した例では、ワーク1の孔1aに中間部材3が予め嵌合されたもの(中間部材3付きワーク1)を対象としているが、本発明はこれに限定されない。
すなわち、中間部材3がワーク1に取り付けられた中間部材3付きワーク1ではなく、対象物2に中間部材3が取り付けてある「中間部材3付き対象物2」にワーク1を組み付ける場合であってもよい。この場合、中間部材3が誤ってワーク1に取り付いていることを検出するため、上述した押付動作と同じように押付動作によって中間部材3の存在を検出することが可能である。
In the above-described example, the intermediate member 3 is previously fitted in the hole 1a of the workpiece 1 (the workpiece 1 with the intermediate member 3), but the present invention is not limited to this.
That is, when the workpiece 1 is assembled not to the workpiece 1 with the intermediate member 3 attached to the workpiece 1 but to the “object 2 with the intermediate member 3” in which the intermediate member 3 is attached to the object 2. Also good. In this case, since it is detected that the intermediate member 3 is erroneously attached to the workpiece 1, it is possible to detect the presence of the intermediate member 3 by the pressing operation in the same manner as the pressing operation described above.
また上述した例では、ワーク1と対象物2に嵌合孔1a、2aがあり、中間部材3が円筒形部材(棒又はピン形状)であり、嵌合孔1a、2aに中間部材3が嵌め合わされるようになっているが、孔と円筒形部材の関係は反対であってもよい。 In the above-described example, the workpiece 1 and the object 2 have the fitting holes 1a and 2a, the intermediate member 3 is a cylindrical member (bar or pin shape), and the intermediate member 3 is fitted into the fitting holes 1a and 2a. Although they are adapted, the relationship between the hole and the cylindrical member may be reversed.
上述したように本発明の装置及び方法によれば、力センサ14を有するロボットハンド12、ロボットアーム16、及びロボット制御装置20により、ワーク1又は対象物2に予め嵌合されている中間部材3を介してワーク1を対象物2に組み付ける組立作業を実行することができる。
また、組立作業中のワーク1の位置と計測された外力から組立作業の成功又は失敗を判断することができる。
As described above, according to the apparatus and method of the present invention, the intermediate member 3 that is preliminarily fitted to the workpiece 1 or the object 2 by the robot hand 12 having the force sensor 14, the robot arm 16, and the robot controller 20. Assembling work for assembling the workpiece 1 to the object 2 can be executed via the.
Further, the success or failure of the assembling work can be determined from the position of the workpiece 1 during the assembling work and the measured external force.
さらに、組立作業が失敗であるとき、すなわち異常検出時に、ロボットハンド12が把持するワーク1を組立作業前の位置へ戻し、別の場所で中間部材3が嵌合不能な固定部材5に力制御で組立作業を再実行することで、再実行中のワーク1の位置と計測された外力から、中間部材3の嵌合状態、すなわちワーク1から外れうる中間部材3の有無を判断することができる。 Further, when the assembly work is unsuccessful, that is, when an abnormality is detected, the work 1 held by the robot hand 12 is returned to the position before the assembly work, and the force control is performed on the fixing member 5 in which the intermediate member 3 cannot be fitted at another place. By re-executing the assembly operation, it is possible to determine the fitting state of the intermediate member 3, that is, the presence or absence of the intermediate member 3 that can be detached from the workpiece 1, from the position of the workpiece 1 being re-executed and the measured external force. .
また、この組立動作中に、ワーク1に中間部材3が正しく嵌合された場合は中間部材3が再度理想的な位置(正規の位置)に戻っているため、そのまま組立作業を再試行できる。また、中間部材3がワーク1に正しく嵌合されなかった場合は、中間部材3を理想的な位置(正規の位置)に戻せないので、ワーク1を用いた組立作業の継続は困難と判断し、中間部材3が正しく嵌合された新しいワーク1を用いて組立作業が行なえる。 Further, during the assembling operation, when the intermediate member 3 is correctly fitted to the workpiece 1, the intermediate member 3 has returned to the ideal position (regular position) again, so that the assembling operation can be retried as it is. Further, if the intermediate member 3 is not properly fitted to the workpiece 1, the intermediate member 3 cannot be returned to the ideal position (regular position), so that it is determined that it is difficult to continue the assembly work using the workpiece 1. The assembly work can be performed using the new workpiece 1 in which the intermediate member 3 is correctly fitted.
従ってこの判断により、組立失敗時の(1)中間部材の有無検出、(2)中間部材の健全性のチェックとその健全化、(3)中間部材の健全化失敗時の新しい部品利用の判断と動作、(4)装置の稼動停止防止、等ができる効果が得られる。 Therefore, by this determination, (1) detection of presence / absence of intermediate member at the time of assembly failure, (2) check of soundness of intermediate member and its soundness, (3) determination of use of new parts at failure of sounding of intermediate member The effect which can perform operation | movement, (4) prevention of operation stop of an apparatus, etc. is acquired.
なお、本発明は上述した実施形態に限定されず、特許請求の範囲の記載により示され、さらに特許請求の範囲の記載と均等の意味および範囲内でのすべての変更を含むものである。 In addition, this invention is not limited to embodiment mentioned above, is shown by description of a claim, and also includes all the changes within the meaning and range equivalent to description of a claim.
1 ワーク、2 対象物、3 中間部材、
4 作業台、5 固定部材、
10 組立ロボット、12 ロボットハンド、14 力センサ、
16 ロボットアーム、20 ロボット制御装置、
21 記憶装置
1 workpiece, 2 object, 3 intermediate member,
4 worktables, 5 fixing members,
10 assembly robot, 12 robot hand, 14 force sensor,
16 robot arm, 20 robot control device,
21 Storage device
Claims (4)
該ロボットハンドを3次元空間内で位置と姿勢を移動可能なロボットアームと、
前記ロボットアームを制御し、中間部材を介して前記ワークを対象物に組み付ける組立作業を実行するロボット制御装置とを備え、
該ロボット制御装置により、前記組立作業中のワークの位置と計測された外力から前記組立作業の成功又は失敗を判断し、
前記組立作業が失敗であるときに、前記ワークを前記組立作業前の位置へ戻し、
次いで、前記中間部材が嵌合不能な固定部材に対して、該固定部材を仮想的に前記対象物とみなして前記組立作業を再実行し、
該再実行中のワークの位置と計測された外力から、前記ワークと中間部材の嵌合状態を判断する、ことを特徴とする組立ロボット。 A robot hand having a force sensor for measuring an external force and holding a workpiece;
A robot arm capable of moving the position and posture of the robot hand in a three-dimensional space;
A robot control device that controls the robot arm and executes an assembly operation for assembling the workpiece onto an object via an intermediate member;
The robot controller determines the success or failure of the assembly work from the position of the workpiece during the assembly work and the measured external force,
When the assembly operation is unsuccessful, the workpiece is returned to the position before the assembly operation,
Next, for the fixing member to which the intermediate member cannot be fitted, the fixing member is virtually regarded as the object, and the assembly operation is performed again.
An assembly robot characterized in that a fitting state between the workpiece and the intermediate member is determined from the position of the workpiece being re-executed and the measured external force.
該ロボットハンドを3次元空間内で位置と姿勢を移動可能なロボットアームと、を備え、
(A)前記ロボットアームを制御し、中間部材を介して前記ワークを対象物に組み付ける組立作業を実行し、
(B)前記組立作業中のワークの位置と計測された外力から前記組立作業の成功又は失敗を判断し、
(C)前記組立作業が失敗であるときに、前記ワークを前記組立作業前の位置へ戻し、
(D)次いで、前記中間部材が嵌合不能な固定部材に対して、該固定部材を仮想的に前記対象物とみなして前記組立作業を再実行し、
(E)該再実行中のワークの位置と計測された外力から、前記ワークと中間部材の嵌合状態を判断する、ことを特徴とする組立ロボットの制御方法。 A robot hand having a force sensor for measuring an external force and holding a workpiece;
A robot arm capable of moving the position and posture of the robot hand in a three-dimensional space;
(A) controlling the robot arm, and performing an assembly operation for assembling the workpiece onto an object via an intermediate member;
(B) determining the success or failure of the assembly operation from the position of the workpiece during the assembly operation and the measured external force;
(C) When the assembly work is unsuccessful, the work is returned to the position before the assembly work,
(D) Next, for the fixing member to which the intermediate member cannot be fitted, the fixing member is virtually regarded as the object, and the assembly operation is re-executed.
(E) A method for controlling an assembly robot, wherein a fitting state between the workpiece and the intermediate member is determined from the position of the workpiece being re-executed and the measured external force.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010264730A JP5024689B2 (en) | 2010-11-29 | 2010-11-29 | Assembly robot and its control method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010264730A JP5024689B2 (en) | 2010-11-29 | 2010-11-29 | Assembly robot and its control method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012115910A JP2012115910A (en) | 2012-06-21 |
JP5024689B2 true JP5024689B2 (en) | 2012-09-12 |
Family
ID=46499391
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010264730A Active JP5024689B2 (en) | 2010-11-29 | 2010-11-29 | Assembly robot and its control method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5024689B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103213136B (en) * | 2013-03-22 | 2016-06-15 | 南通航运职业技术学院 | A kind of method and system drawing teaching for industrial robot |
CN104589358A (en) * | 2014-12-03 | 2015-05-06 | 安徽省库仑动力自动化科技有限公司 | Industrial robot disassembling dumping method based on force sensor and database comparison |
JP6219890B2 (en) * | 2015-07-17 | 2017-10-25 | ファナック株式会社 | Automatic assembly system by robot |
JP6693098B2 (en) * | 2015-11-26 | 2020-05-13 | セイコーエプソン株式会社 | Robots and robot systems |
JP7204354B2 (en) * | 2018-06-19 | 2023-01-16 | キヤノン株式会社 | Robot system, robot system control method, article manufacturing method using robot system, program and recording medium |
JP7479976B2 (en) * | 2020-07-22 | 2024-05-09 | 住友重機械工業株式会社 | Robot arm operation method, robot system, control device and program |
-
2010
- 2010-11-29 JP JP2010264730A patent/JP5024689B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2012115910A (en) | 2012-06-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5024689B2 (en) | Assembly robot and its control method | |
JP6490032B2 (en) | Robot controller for assembly robot | |
KR101798673B1 (en) | Method and device for controlling a manipulator | |
JP5846479B2 (en) | Robot and its control method | |
US8712589B2 (en) | System and method for judging success or failure of work of robot | |
JP5791387B2 (en) | Automatic assembly apparatus and component assembly method using automatic assembly apparatus | |
US10168686B2 (en) | Smart loader apparatus for trunk lid hinge | |
JP5382359B2 (en) | Robot system | |
US20080267737A1 (en) | Fitting device | |
US10449676B2 (en) | Multi-jointed robot deviation under load determination | |
US20150234375A1 (en) | Tool coordinate system correcting method of robot system, and robot system | |
JP5643082B2 (en) | Work quality determination system and quality determination method | |
US10232511B2 (en) | Method for calibrating a measuring apparatus for measuring body parts and other workpieces, and measuring apparatus suitable for carrying out the method | |
JP6542629B2 (en) | Positioning device and method for machining tool | |
CN111571642B (en) | Coordinate robot to robot part assembly | |
JP5892459B2 (en) | Assembly robot and its control method | |
JP5218540B2 (en) | Assembly robot and its control method | |
WO2014127992A1 (en) | Compensating device for a tool unit and fitting method by means of the tool unit | |
JP2010099784A (en) | Pin fitting method and pin pulling out method | |
JP3818986B2 (en) | Mating device | |
US20160008980A1 (en) | Inspection system for inspecting object using force sensor | |
JP2005052941A (en) | Apparatus for mounting workpiece | |
JP2019055455A (en) | Robot hand, and control method of robot hand | |
EP3002088A2 (en) | Orthogonal positioning instrument, system and method for automatic machines | |
JP4847049B2 (en) | Reference point error measuring method and polar coordinate control machining center in polar coordinate machining center |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120525 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120607 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150629 Year of fee payment: 3 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5024689 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |