JP5023275B2 - Method for producing inorganic particles, inorganic particles and resin product - Google Patents
Method for producing inorganic particles, inorganic particles and resin product Download PDFInfo
- Publication number
- JP5023275B2 JP5023275B2 JP2006169139A JP2006169139A JP5023275B2 JP 5023275 B2 JP5023275 B2 JP 5023275B2 JP 2006169139 A JP2006169139 A JP 2006169139A JP 2006169139 A JP2006169139 A JP 2006169139A JP 5023275 B2 JP5023275 B2 JP 5023275B2
- Authority
- JP
- Japan
- Prior art keywords
- inorganic particles
- group
- inorganic
- oligomer
- low polymer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
- Pigments, Carbon Blacks, Or Wood Stains (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Description
本発明は、無機粒子の製造方法と、無機粒子と、樹脂製品とに関する。 The present invention relates to a method for producing inorganic particles, inorganic particles, and a resin product.
CaCO3等の無機粒子は天然鉱石から生成されることが一般的である。また、蒸発凝集法、気相反応法を含む気相法、化学沈殿法、溶媒蒸発法を含む液相法等により無機粒子を製造することもなされている(非特許文献1〜4等)。 Inorganic particles such as CaCO 3 are generally produced from natural ores. In addition, inorganic particles are also produced by an evaporation aggregation method, a gas phase method including a gas phase reaction method, a chemical precipitation method, a liquid phase method including a solvent evaporation method, or the like (Non-Patent Documents 1 to 4, etc.).
例えば、液相法では、陽イオンを供する第1水溶性物質と、陽イオンと反応して無機塩を生成し得る陰イオンを供する第2水溶性物質とを用意し、第1水溶性物質及び第2水溶性物質を混合することにより、無機塩からなる無機粒子を製造する。こうして得られた無機粒子は有機高分子材料等の添加剤等に応用される。 For example, in the liquid phase method, a first water-soluble substance that provides a cation and a second water-soluble substance that provides an anion that can react with the cation to generate an inorganic salt are prepared. By mixing the second water-soluble substance, inorganic particles made of an inorganic salt are produced. The inorganic particles thus obtained are applied to additives such as organic polymer materials.
しかし、従来の無機粒子は、一次粒子が凝集した二次粒子であることが多く、分散性が十分でない。このため、その無機粒子を例えば有機高分子材料の添加剤に用いた場合、無機粒子の偏在により製品の意匠等が損なわれるおそれがある。 However, conventional inorganic particles are often secondary particles in which primary particles are aggregated, and dispersibility is not sufficient. For this reason, when the inorganic particles are used, for example, as an additive for an organic polymer material, the design of the product may be damaged due to the uneven distribution of the inorganic particles.
本発明は、上記従来の実情に鑑みてなされたものであって、優れた分散性をもつ無機粒子を提供することを解決すべき課題としている。 This invention is made | formed in view of the said conventional situation, Comprising: It is set as the problem which should be solved to provide the inorganic particle which has the outstanding dispersibility.
発明者らは上記課題を解決するために鋭意研究を行なった。そして、特定の低重合体は、両末端のフルオロアルキル基が自己との間又は他との間で分子間凝集力を有し、これを利用して分散性に優れた無機粒子を製造できることを発見し、本発明を完成させるに至った。 The inventors have intensively studied to solve the above problems. And, the specific low polymer has the ability to produce inorganic particles having excellent dispersibility by utilizing the intermolecular cohesive force between the fluoroalkyl groups at both ends between itself and others. It discovered and came to complete this invention.
本発明の無機粒子の製造方法は、Caイオンを供する第1水溶性物質と、該Caイオンと反応して無機塩を生成し得る陰イオンを供する第2水溶性物質と、両末端にフルオロアルキル基を有するオリゴマー及び/又はコオリゴマーである低重合体とを用意し、該第1水溶性物質、該第2水溶性物質及び該低重合体を混合することを特徴とする。 The method for producing inorganic particles of the present invention comprises a first water-soluble substance that provides Ca ions, a second water-soluble substance that provides an anion that can react with the Ca ions to form an inorganic salt, and fluoroalkyl at both ends. And a low polymer which is an oligomer having a group and / or a co-oligomer, and the first water-soluble substance, the second water-soluble substance and the low polymer are mixed.
本発明の製造方法では、第1水溶性物質及び第2水溶性物質とともに、特定の低重合体を混合する。第1水溶性物質のCaイオンと第2水溶性物質の陰イオンとは反応して無機塩を生成し得る。特定の低重合体は、両末端にフルオロアルキル基を有するオリゴマー及び/又はコオリゴマーである。 In the production method of the present invention, a specific low polymer is mixed together with the first water-soluble substance and the second water-soluble substance. The Ca ion of the first water-soluble substance and the anion of the second water-soluble substance can react to generate an inorganic salt. Specific low polymers are oligomers and / or co-oligomers having fluoroalkyl groups at both ends.
この低重合体が例えば化1のものである場合、この低重合体を図1に示すように略記して説明する。ここで、RFはフルオロアルキル基1aである。また、O=CNHC(CH3)2CH2COCH3(N−(1,1−ジメチル−3−オキソブチル)アクリルアミド)をDOBAAとして標記する。 When this low polymer is, for example, Chemical Formula 1, this low polymer is abbreviated as shown in FIG. Here, R F is the fluoroalkyl group 1a. O = CNHC (CH 3 ) 2 CH 2 COCH 3 (N- (1,1-dimethyl-3-oxobutyl) acrylamide) is labeled as DOBAA.
この低重合体は、両末端のフルオロアルキル基1aが自己との間又は他との間の分子間凝集力を有するため、図2に示すように、両末端のフルオロアルキル基1aが自己との間又は他との間の分子間凝集力により互いに引き合い、内部に空間を形成した担体となる。 In this low polymer, since the fluoroalkyl groups 1a at both ends have intermolecular cohesion between itself and the others, as shown in FIG. They attract each other by intermolecular cohesion between them or others, and become a carrier in which a space is formed.
このため、この低重合体とともに第1水溶性物質及び第2水溶性物質を混合しておれば、担体の空間内において、第1水溶性物質のCaイオンと第2水溶性物質の陰イオンとが反応して無機塩が生成され、無機塩が低重合体内に内包される。この際、無機塩は低重合体の特定の官能基と結合すると考えられる。こうして、本発明の無機粒子が得られる。 Therefore, if the first water-soluble substance and the second water-soluble substance are mixed with the low polymer, the Ca ion of the first water-soluble substance and the anion of the second water-soluble substance in the space of the carrier. Reacts to produce an inorganic salt, which is encapsulated in the low polymer. At this time, the inorganic salt is considered to bind to a specific functional group of the low polymer. Thus, the inorganic particles of the present invention are obtained.
本発明の無機粒子は、第1水溶性物質のCaイオン及び第2水溶性物質の陰イオンが反応した無機塩と、両末端のフルオロアルキル基が自己との間又は他との間の分子間凝集力によって凝集しているとともに、該無機塩の表面に官能基が結合しているオリゴマー及び/又はコオリゴマーである低重合体とからなることを特徴とする。 The inorganic particles of the present invention include an inorganic salt obtained by reacting Ca ion of the first water-soluble substance and an anion of the second water-soluble substance, and intermolecular molecules between the fluoroalkyl groups at both ends and the self. It is characterized by comprising a low polymer which is an oligomer and / or a co-oligomer which is aggregated by a cohesive force and has a functional group bonded to the surface of the inorganic salt.
発明者らの試験結果によれば、低重合体は親水性の官能基を有することが好ましい。官能基が親水性であれば、無機塩がその官能基と結合しやすいと考えられる。 According to the test results of the inventors, the low polymer preferably has a hydrophilic functional group. If the functional group is hydrophilic, the inorganic salt is considered to be easily bonded to the functional group.
こうして得られた無機粒子は、ほぼ一次粒子である無機塩が担体内に内包されたものであり、無機塩の周囲にフルオロアルキル基1aの殻を有するものとなっている。 The inorganic particles obtained in this manner are those in which an inorganic salt, which is substantially primary particles, is encapsulated in a carrier, and has a shell of a fluoroalkyl group 1a around the inorganic salt.
したがって、本発明の無機粒子は、凝集し難く、優れた分散性を発揮する。このため、この無機粒子を例えば有機高分子材料の添加剤に用いた場合には、無機粒子の偏在を生じ難く、優れた意匠等の製品となる。特に、担体内の無機塩は微細なものであることから、有機高分子材料等の添加剤等に応用した場合、優れた意匠等の製品となる。 Therefore, the inorganic particles of the present invention hardly aggregate and exhibit excellent dispersibility. For this reason, when this inorganic particle is used, for example, as an additive for an organic polymer material, the uneven distribution of the inorganic particle hardly occurs, resulting in a product having an excellent design. In particular, since the inorganic salt in the carrier is fine, when applied to an additive such as an organic polymer material, it becomes a product having an excellent design.
また、この無機粒子は、無機塩に低重合体が結合していることから、そのまま秤量、混合等でき、高い取り扱い性を発揮する。 In addition, since the inorganic particles have a low polymer bonded to the inorganic salt, they can be weighed and mixed as they are, and exhibit high handling properties.
第1水溶性物質及び第2水溶性物質は、下記の概念式により、それぞれのCaイオン及び陰イオンから無機塩を生成し得るものである。 A 1st water-soluble substance and a 2nd water-soluble substance can produce | generate an inorganic salt from each Ca ion and anion by the following conceptual formula.
AX + BY → An+ + Xl- + Bm- + Yh+ → AB + XY AX + BY → An + + X l− + B m− + Y h + → AB + XY
AのCaイオンはCa2+である。 The Ca ion of A is Ca 2+ .
AのCaイオンを供する第1水溶性物質としては、水溶性(酸、アルカリ含む。)の塩として、亜硫酸塩、亜硫酸水素塩、亜塩酸塩、アジ化物、亜硝酸塩、亜ヒ酸塩、亜硫酸塩、ケイ酸塩、酸化物、硝酸、シュウ酸塩、酢酸塩、水酸化物、リン酸塩、硫酸塩、塩化物、ヨウ化物、フッ化物、臭化物、硫化物、脂肪酸塩等を採用することができる。 As the first water-soluble substance providing the Ca ion of A, as a water-soluble (acid and alkali-containing) salt, sulfite, bisulfite, chlorite, azide, nitrite, arsenite, sulfite Adopt salt, silicate, oxide, nitric acid, oxalate, acetate, hydroxide, phosphate, sulfate, chloride, iodide, fluoride, bromide, sulfide, fatty acid salt, etc. Can do.
AのCaイオンを供する第1水溶性物質としては、例えば、CaCO3、Ca(NO3)2、Ca(CH3COO)2、Ca(OH)2、Ca(PO4)2、CaSO4、Ca(NO3)2、CaHPO4、CaCl2、CaBr2、CaF2、CaS、(RCOO)2Ca(Rは有機基)等が挙げられる。 Examples of the first water-soluble substance that provides the Ca ions of A include CaCO 3 , Ca (NO 3 ) 2 , Ca (CH 3 COO) 2 , Ca (OH) 2 , Ca (PO 4 ) 2 , CaSO 4 , Ca (NO 3 ) 2 , CaHPO 4 , CaCl 2 , CaBr 2 , CaF 2 , CaS, (RCOO) 2 Ca (R is an organic group) and the like.
Bの陰イオンとしては、Br-、C2O4 2-、CH3COO-、Cl-、ClO-、C2O4 2-、CO3 2-、Cr2O7 2-、CrO4 2-、F-、HCO3 -、HPO4 -、HSO3 -、I-、MnO4 -、N3 -、NO2 -、NO3 -、OH-、PO4 -、PO4 2-、PO4 3-、S2-、SO3 2-、SO4 -、SO4 2-、O-等が挙げられる。 Examples of B anions include Br − , C 2 O 4 2− , CH 3 COO − , Cl − , ClO − , C 2 O 4 2− , CO 3 2− , Cr 2 O 7 2− , CrO 4 2. -, F -, HCO 3 - , HPO 4 -, HSO 3 -, I -, MnO 4 -, N 3 -, NO 2 -, NO 3 -, OH -, PO 4 -, PO 4 2-, PO 4 3-, S 2-, SO 3 2- , SO 4 -, SO 4 2-, O - , and the like.
また、Bの陰イオンとして、亜硫酸イオン、亜硫酸水素イオン、亜塩酸イオン、アジ化物イオン、亜硝酸イオン、亜ヒ酸イオン、亜硫酸イオン、ケイ酸イオン、酸素イオン、リン酸イオン(ピロリン酸、オルトリン酸等を含む。)、硝酸イオン、シュウ酸イオン、酢酸イオン、水酸化物イオン、硫酸イオン等を採用することもできる。 Further, as anions of B, sulfite ion, hydrogen sulfite ion, sulfite ion, azide ion, nitrite ion, arsenite ion, sulfite ion, silicate ion, oxygen ion, phosphate ion (pyrophosphate, ortholine) Acid ions, etc.), nitrate ions, oxalate ions, acetate ions, hydroxide ions, sulfate ions and the like can also be employed.
Bの陰イオンを供する第2水溶性物質としては、水溶性の無機塩として、亜硫酸塩、亜硫酸水素塩、亜塩酸塩、アジ化物、亜硝酸塩、亜ヒ酸塩、亜硫酸塩、ケイ酸塩、酸化物、酸化リン、硝酸、シュウ酸塩、酢酸塩、水酸化物、リン酸塩、炭酸塩、硫酸塩、ヨウ化物、フッ化物、臭化物、硫化物、水等を採用することができる。 As the second water-soluble substance providing the anion of B, as a water-soluble inorganic salt, sulfite, bisulfite, chlorite, azide, nitrite, arsenite, sulfite, silicate, An oxide, phosphorus oxide, nitric acid, oxalate, acetate, hydroxide, phosphate, carbonate, sulfate, iodide, fluoride, bromide, sulfide, water and the like can be employed.
Bの陰イオンを供する第2水溶性物質としては、例えば、H2SO3、Na2SO3、NaHSO3、NaClO、MClO(M=Ag、Pb、Hg以外の元素)NaN3、HN3、HNO2、NH4NO2、KNO2、NaNO2、H2SO4、(NH4)2SO3、K2SO3、Na2SO3、NH4HSO3、Ca(HSO3)2、P4O10、P4O9、P4O8、P4O7、P4O6、(PO)n、H2NO3、NH4NO3、KNO3、NaNO3、H2C2O4、(NH4)2C2O4、CH3COOH、KCH3COO、H3PO4、NaH2PO4、Na2HPO4、NaH2PO4、CaHPO4、KH2PO4、NH4H2PO4、Ca(PO4)2、K3PO4、Na2HPO4、K2HPO4、Na3PO4、H2SO4、KHSO4、(NH4)2SO4、NaHSO4、Na2SO4、K2SO4、KHSO4、(NH4)2SO4、FeSO4、M2PHO3(M=Li、Na、K)(NH4)2PHO3、H2CO3、ZnCO3、(NH4)2CO3、K2CO3、Na2CO3、BaCO3、MgCO3、NiCO3、Li2CO3、TaCO3、Zn(OH)2、Co(OH)2、LiOH、NH4OH、Co(OH)3、KOH、Sr(OH)2、Ca(OH)2、NaOH、Cr(OH)2、Ba(OH)2、Cr(OH)3、Mn(OH)2、Mg(OH)2、H2O、ZnBr2、NH4Br、CdBr2、KBr、CaBr2、AgBr、TlBr、TlBr3、CuBr、CuBr2、NaBr、BaBr2、HF、ZnF2、AlF3、NH4F、UF6、OsF8、OsF5、KF、CaF2、XeF2、XeF4、XeF6、Ag2F、AgF、AgF2、SiF4、Si2F6、GeF2、GeF4、HF、BrF3、BrF5、NaF、BaF2、AsF3、MnF2、MnF3、MnF4、IF7、PF3、ReF4、ReF6、ReF7、ZnS、Sb2S3、K2S、CaS、Au2S、GeS、GeS2、SiS2、SiS、Co4S3、Co9S8、CoS、Co3S4、Co4S3、HgS、H2S、NaHS、SnS、CS、CS2、Fe2S、Cu2S、CuS、Na2S、PbS、As4S4、As2S3、As2S5、MnS、MnS2、P4S10等が挙げられる。 Examples of the second water-soluble substance that provides the anion of B include H 2 SO 3 , Na 2 SO 3 , NaHSO 3 , NaClO, MClO (elements other than M = Ag, Pb, Hg) NaN 3 , HN 3 , HNO 2 , NH 4 NO 2 , KNO 2 , NaNO 2 , H 2 SO 4 , (NH 4 ) 2 SO 3 , K 2 SO 3 , Na 2 SO 3 , NH 4 HSO 3 , Ca (HSO 3 ) 2 , P 4 O 10 , P 4 O 9 , P 4 O 8 , P 4 O 7 , P 4 O 6 , (PO) n , H 2 NO 3 , NH 4 NO 3 , KNO 3 , NaNO 3 , H 2 C 2 O 4 , (NH 4 ) 2 C 2 O 4 , CH 3 COOH, KCH 3 COO, H 3 PO 4 , NaH 2 PO 4 , Na 2 HPO 4 , NaH 2 PO 4 , CaHPO 4 , KH 2 PO 4 , NH 4 H 2 PO 4 , Ca (PO 4 ) 2 , K 3 PO 4 , Na 2 HPO 4 , K 2 HPO 4 , Na 3 PO 4 , H 2 SO 4 , KHSO 4 , (NH 4 ) 2 SO 4 , NaHSO 4 , Na 2 SO 4 , K 2 SO 4 , KHSO 4 , (NH 4 ) 2 SO 4 , FeSO 4 , M 2 PHO 3 (M = Li, Na, K) (NH 4 ) 2 PHO 3 , H 2 CO 3 , ZnCO 3 , (NH 4 ) 2 CO 3 , K 2 CO 3 , Na 2 CO 3 , BaCO 3 , MgCO 3 , NiCO 3 , Li 2 CO 3 , TaCO 3 , Zn (OH) 2 , Co (OH) 2 , LiOH, NH 4 OH, Co (OH) 3 , KOH, Sr (OH) 2 , Ca (OH) 2 , NaOH, Cr (OH) 2 Ba (OH) 2 , Cr (OH) 3 , Mn (OH) 2 , Mg (OH) 2 , H 2 O, ZnBr 2 , NH 4 Br, CdBr 2 , KBr, CaBr 2 , AgBr, TlBr, TlBr 3 , CuBr, CuBr 2, NaBr, BaBr 2, HF, ZnF 2 AlF 3, NH 4 F, UF 6, OsF 8, OsF 5, KF, CaF 2, XeF 2, XeF 4, XeF 6, Ag 2 F, AgF, AgF 2, SiF 4, Si 2 F 6, GeF 2, GeF 4 , HF, BrF 3 , BrF 5 , NaF, BaF 2 , AsF 3 , MnF 2 , MnF 3 , MnF 4 , IF 7 , PF 3 , ReF 4 , ReF 6 , ReF 7 , ZnS, Sb 2 S 3 , K 2 S, CaS, Au 2 S, GeS, GeS 2 , SiS 2 , SiS, Co 4 S 3 , Co 9 S 8 , CoS, Co 3 S 4 , Co 4 S 3 , HgS, H 2 S, NaHS, mentioned SnS, CS, CS 2, Fe 2 S, Cu 2 S, CuS, Na 2 S, PbS, As 4 S 4, As 2 S 3, As 2 S 5, MnS, MnS 2, P 4 S 10 or the like It is done.
ABとしては、不溶性又は難溶性の無機塩として、亜硫酸塩、亜硫酸水素塩、亜塩酸塩、アジ化物、亜硝酸塩、亜ヒ酸塩、亜硫酸塩、ケイ酸塩、酸化物、酸化リン、硝酸、シュウ酸塩、酢酸塩、水酸化物、リン酸塩、硫酸塩、酸化物、水酸化物、リン酸塩、窒化物、炭酸塩、炭化物、シュウ酸塩、酢酸塩、硫酸塩、ホスホン酸塩、塩化物、ヨウ化物、フッ化物、臭化物、硫化物が挙げられる。 AB includes insoluble or hardly soluble inorganic salts such as sulfite, bisulfite, sulfite, azide, nitrite, arsenite, sulfite, silicate, oxide, phosphorus oxide, nitric acid, Oxalate, acetate, hydroxide, phosphate, sulfate, oxide, hydroxide, phosphate, nitride, carbonate, carbide, oxalate, acetate, sulfate, phosphonate , Chloride, iodide, fluoride, bromide, sulfide.
ABとしては、例えば、CaC2O4、Ca(OH)2、Ca(PO4)2、CaHPO4、CaSO4、CaCO3、CaF2等が挙げられる。 Examples of AB include CaC 2 O 4 , Ca (OH) 2 , Ca (PO 4 ) 2 , CaHPO 4 , CaSO 4 , CaCO 3 , and CaF 2 .
反応の例は以下のとおりである。 Examples of reactions are as follows.
Ca2++CO3 2-→CaCO3↓ Ca 2+ + CO 3 2- → CaCO 3 ↓
Ca2++2F-→CaF2↓ Ca 2+ + 2F - → CaF 2 ↓
Ca2++SO4 2-→CaSO4↓ Ca 2+ + SO 4 2- → CaSO 4 ↓
Ca2++2OH-→Ca(OH)2↓ Ca 2+ + 2OH − → Ca (OH) 2 ↓
低重合体は、化2に示すオリゴマー(RFはフルオロアルキル基、R1は有機基、xは自然数である。)又は化3に示すコオリゴマー(RFはフルオロアルキル基、R2及びR3は有機基、x及びyは自然数である。)であり得る。 The low polymer is an oligomer represented by Chemical Formula 2 (R F is a fluoroalkyl group, R 1 is an organic group, x is a natural number) or a co-oligomer represented by Chemical Formula 3 (R F is a fluoroalkyl group, R 2 and R 3 may be an organic group and x and y are natural numbers).
R1及びR2は水素結合し得る側鎖をもつものであることが好ましい。R3は、アルコキシドと相互作用し得る官能基又は無機塩と相互作用し得る官能基を有するものであることが好ましい。このため、本発明の製造方法では、無機塩と低重合体とを結合可能なアルコキシドをさらに混合することが好ましい。 R 1 and R 2 preferably have a side chain capable of hydrogen bonding. R 3 preferably has a functional group capable of interacting with an alkoxide or a functional group capable of interacting with an inorganic salt. For this reason, in the manufacturing method of this invention, it is preferable to further mix the alkoxide which can couple | bond an inorganic salt and a low polymer.
R1は、具体的には、カルボキシル基(−COOH)、スルホ基(−SO3H)、リン酸基(−PO3H2)、シラノール基(SiOH)、ヒドロキシル基(−OH)、アミノ基(−NH2)、ニトロ基(−NO2)、カルボニル基(C=O)、アミド(C(=O)NH)等の官能基又はこれらの誘導体を含む分子鎖であり得る。 Specifically, R 1 is a carboxyl group (—COOH), a sulfo group (—SO 3 H), a phosphoric acid group (—PO 3 H 2 ), a silanol group (SiOH), a hydroxyl group (—OH), amino It may be a molecular chain containing a functional group such as a group (—NH 2 ), a nitro group (—NO 2 ), a carbonyl group (C═O), an amide (C (═O) NH), or a derivative thereof.
R2は、アルコキシドが置換反応によって有するヒドロキシル基と相互作用(水素結合、配位結合、共有結合、イオン結合、エステル結合、ウレタン結合、脱水重縮合等)する有機基である。 R 2 is an organic group that interacts (hydrogen bond, coordination bond, covalent bond, ionic bond, ester bond, urethane bond, dehydration polycondensation, etc.) with the hydroxyl group that the alkoxide has by a substitution reaction.
R2は、具体的には、カルボキシル基、スルホ基、リン酸基、シラノール基、ヒドロキシル基、アミノ基、ニトロ基、カルボニル基、アミド等、これらの誘導体、アルコキシ基(M(OCnH2n+1)m(3-m);MはSi、Ti、Al等、nは1〜3の自然数、mは1〜3の自然数)、イソシアネート基(−N=C=0)等の官能基を含む分子鎖であり得る。 Specifically, R 2 represents a carboxyl group, a sulfo group, a phosphoric acid group, a silanol group, a hydroxyl group, an amino group, a nitro group, a carbonyl group, an amide, or a derivative thereof, an alkoxy group (M (OC n H 2n +1 ) m (3-m) ; M is Si, Ti, Al, etc., n is a natural number of 1 to 3, m is a natural number of 1 to 3, and a functional group such as an isocyanate group (—N═C = 0) May be a molecular chain comprising
また、R2は、アルコキシドを介さず、直接無機塩と相互作用(水素結合、配位結合、共有結合、イオン結合、エステル結合、ウレタン結合、脱水重縮合、ビニル重合等)できる有機基でもよい。特に、R2は、カルボキシル基、スルホ基、リン酸基、シラノール基、ヒドロキシル基、アミノ基、ニトロ基、カルボニル基、アミド等、これらの誘導体、アルコキシ基、イソシアネート基、ビニル基等等の官能基を含む分子鎖であり得る。 R 2 may be an organic group capable of directly interacting with an inorganic salt (hydrogen bond, coordination bond, covalent bond, ionic bond, ester bond, urethane bond, dehydration polycondensation, vinyl polymerization, etc.) without using an alkoxide. . In particular, R 2 is a functional group such as a carboxyl group, a sulfo group, a phosphoric acid group, a silanol group, a hydroxyl group, an amino group, a nitro group, a carbonyl group, an amide, a derivative thereof, an alkoxy group, an isocyanate group, a vinyl group, or the like. It can be a molecular chain containing groups.
この低重合体は、化4に示すように、パーフルオロオキサイドと、ビニル基(−CH=CH2)を有する1種以上の物質から合成され得る。Ra、Rb、Rc等に該当する官能基を持つ物質は、1種類に限らず、複数種類であってもかまわない。また、Ra、Rb、Rc等の要件を同時に満たす1種類の物質でもよい。 As shown in Chemical formula 4, this low polymer can be synthesized from perfluorooxide and one or more substances having a vinyl group (—CH═CH 2 ). The substance having a functional group corresponding to R a , R b , R c and the like is not limited to one type, and may be a plurality of types. Further, it may be one kind of substance that simultaneously satisfies the requirements such as R a , R b , and R c .
両末端のフルオロアルキル鎖はC及びFを含むアルキル鎖である。フルオロアルキル鎖は、特に、CF(CF3)OCF2CF(CF3)OC3F7、CF(CF3)OC3F7、C3F7、CF(CF3){OCF2CF(CF3)}2OC3F7が好ましい。このため、低重合体は、化5に示す架橋されたオリゴマー又はコオリゴマー(Rxは、Ra、Rb、Rc等の同種又は異種の有機基、nは自然数である。)でもあり得る。 Both terminal fluoroalkyl chains are alkyl chains containing C and F. The fluoroalkyl chain is, in particular, CF (CF 3 ) OCF 2 CF (CF 3 ) OC 3 F 7 , CF (CF 3 ) OC 3 F 7 , C 3 F 7 , CF (CF 3 ) {OCF 2 CF (CF 3 )} 2 OC 3 F 7 is preferred. For this reason, the low polymer is also a crosslinked oligomer or co-oligomer shown in Chemical formula 5 (R x is the same or different organic group such as R a , R b , and R c , and n is a natural number). obtain.
無機塩がCaCO3からなる場合、無機塩と低重合体とは、官能基を介して結合している。アルコキシドは無機塩と官能基とを結合する物質として機能する。アルコキシドとして、TEOS(テトラエトキシシラン)を混合した場合には、無機塩と官能基との間にはシロキサン骨格が存在している。 When the inorganic salt is made of CaCO 3 , the inorganic salt and the low polymer are bonded via a functional group. The alkoxide functions as a substance that binds an inorganic salt and a functional group. When TEOS (tetraethoxysilane) is mixed as the alkoxide, a siloxane skeleton is present between the inorganic salt and the functional group.
本発明の樹脂製品は、樹脂からなるマトリックスと、該マトリックス中に分散された上記無機粒子とを含むことを特徴とする。 The resin product of the present invention includes a matrix made of a resin and the inorganic particles dispersed in the matrix.
この樹脂製品は、無機粒子の優れた分散性により、優れた意匠等を発揮する。また、この樹脂製品は、無機粒子の高い取り扱い性により製造コストの低廉化を実現可能である。 This resin product exhibits an excellent design and the like due to the excellent dispersibility of the inorganic particles. In addition, this resin product can realize a reduction in manufacturing cost due to high handling of inorganic particles.
(試験1)
低重合体として、図3に示すフルオロアルキル基含有オリゴマーと図4に示すフルオロアルキル基含有コオリゴマーとを用意した。
(Test 1)
As the low polymer, a fluoroalkyl group-containing oligomer shown in FIG. 3 and a fluoroalkyl group-containing co-oligomer shown in FIG. 4 were prepared.
図3のフルオロアルキル基含有オリゴマーにおいて、RFはCF(CF3)O[CF2CF(CF3)O]mC3F7(mは0又は1))であり、RはOH、OCH2CH2SO3H、化6又はN(CH3)2であり、nは自然数である。以下、RがOHである場合をACA、OCH2CH2SO3Hである場合をMES、化6である場合をACMO、N(CH3)2である場合をDMAAとして標記する。 In the fluoroalkyl group-containing oligomer of FIG. 3, R F is CF (CF 3 ) O [CF 2 CF (CF 3 ) O] mC 3 F 7 (m is 0 or 1)), and R is OH, OCH 2 CH 2 SO 3 H, Chemical formula 6 or N (CH 3 ) 2 , and n is a natural number. Hereinafter, the case where R is OH is denoted as ACA, the case where it is OCH 2 CH 2 SO 3 H is denoted as MES, the case where it is 6 is denoted as ACMO, and the case where it is N (CH 3 ) 2 is denoted as DMAA.
また、図4の反応式で合成できるフルオロアルキル基含有架橋コオリゴマーにおいて、RFはCF(CF3)OC3F7であり、x及びyは自然数である。以下、化7に示すCH2=CH(O=C−O(CH2CH2O)2−C(CH=CH2)=O)をPDE−100として標記する。 In the fluoroalkyl group-containing cross-linked co-oligomer that can be synthesized by the reaction formula of FIG. 4, R F is CF (CF 3 ) OC 3 F 7 , and x and y are natural numbers. Hereinafter, of 7 to show CH 2 = CH (O = C -O (CH 2 CH 2 O) 2 -C (CH = CH 2) = O) a to title as PDE-100.
また、Ca2+を供する第1水溶性物質として、1.0mmolの塩化カルシウムを含む第1水溶液2mlを用意した。 In addition, 2 ml of a first aqueous solution containing 1.0 mmol of calcium chloride was prepared as the first water-soluble substance that provided Ca 2+ .
また、CO3 2-を供する第2水溶性物質として、1.0mmolの炭酸ナトリウムを含む第2水溶液5mlを用意した。 In addition, 5 ml of a second aqueous solution containing 1.0 mmol of sodium carbonate was prepared as a second water-soluble substance for providing CO 3 2- .
これらフルオロアルキル基含有オリゴマー、第1水溶液及び第2水溶液を混合し、室温で1日反応させた。また、フルオロアルキル基含有コオリゴマー、第1水溶液及び第2水溶液を混合し、室温で1日反応させた。 These fluoroalkyl group-containing oligomer, the first aqueous solution and the second aqueous solution were mixed and reacted at room temperature for 1 day. Moreover, the fluoroalkyl group-containing co-oligomer, the first aqueous solution and the second aqueous solution were mixed and reacted at room temperature for 1 day.
これにより、フルオロアルキル基含有オリゴマー及びフルオロアルキル基含有コオリゴマーは、図5に示すように、両末端のフルオロアルキル基1aが自己との間又は他との間の分子間凝集力により互いに引き合い、内部に空間を形成した担体となる。また、このフルオロアルキル基含有オリゴマーとともに第1水溶液及び第2水溶液が混合されているため、担体の空間内において、Ca2+とCO3 2-とが反応し、図6に示すように、CaCO3が生成される。この際、CaCO3とフルオロアルキル基含有オリゴマーの官能基とが相互作用すると考えられる。 Thereby, as shown in FIG. 5, the fluoroalkyl group-containing oligomer and the fluoroalkyl group-containing co-oligomer attract each other by the intermolecular cohesive force between the fluoroalkyl groups 1a at both ends or between them, It becomes a carrier having a space formed inside. In addition, since the first aqueous solution and the second aqueous solution are mixed together with the fluoroalkyl group-containing oligomer, Ca 2+ and CO 3 2− react in the space of the carrier, and as shown in FIG. 3 is generated. At this time, it is considered that CaCO 3 and the functional group of the fluoroalkyl group-containing oligomer interact.
特に、フルオロアルキル基含有架橋コオリゴマーでは、図7に示す主鎖と架橋部とによって囲まれる領域の中でも、CaCO3が生成するものと思われる。 In particular, in the fluoroalkyl group-containing cross-linked co-oligomer, it is considered that CaCO 3 is generated in the region surrounded by the main chain and the cross-linked portion shown in FIG.
沈殿物をろ過によって回収し、乾燥させて試験品1〜14の無機粒子が得られた。 The precipitate was collected by filtration and dried to obtain inorganic particles of Test Samples 1-14.
表1に示すように、図3に示すフルオロアルキル基含有オリゴマーのRをACAとし、RFをCF(CF3)OC3F7とし、その添加量を変化させた場合を試験品1〜4とした。 As shown in Table 1, when the R of the fluoroalkyl group-containing oligomer shown in FIG. 3 is ACA, R F is CF (CF 3 ) OC 3 F 7 , and the addition amount is changed, the test samples 1 to 4 are used. It was.
また、図3に示すフルオロアルキル基含有オリゴマーのRをACAとし、RFをCF(CF3)OCF2CF(CF3)OC3F7とし、その添加量を変化させた場合を試験品5〜8とした。 Further, in the case where R is ACA and R F is CF (CF 3 ) OCF 2 CF (CF 3 ) OC 3 F 7 in the fluoroalkyl group-containing oligomer shown in FIG. It was set to ~ 8.
また、表2に示すように、図3に示すフルオロアルキル基含有オリゴマーのRをMESとし、RFをCF(CF3)OC3F7とし、その添加量を変化させた場合を試験品9〜11とした。 Moreover, as shown in Table 2, when the R of the fluoroalkyl group-containing oligomer shown in FIG. 3 is MES, R F is CF (CF 3 ) OC 3 F 7, and the amount of addition is changed, the test product 9 It was set to ~ 11.
さらに、表3に示すように、図3に示すフルオロアルキル基含有オリゴマーのRをACMOとし、RFをCF(CF3)OC3F7とした場合を試験品12とした。 Furthermore, as shown in Table 3, when the R of the fluoroalkyl group-containing oligomer shown in FIG. 3 is ACMO and R F is CF (CF 3 ) OC 3 F 7 , the test sample 12 is obtained.
また、表4に示すように、図3に示すフルオロアルキル基含有オリゴマーのRをDMAAとし、RFをCF(CF3)OC3F7とした場合を試験品13とした。 Moreover, as shown in Table 4, when the R of the fluoroalkyl group-containing oligomer shown in FIG. 3 is DMAA and R F is CF (CF 3 ) OC 3 F 7 , it was designated as a test sample 13.
さらに、表5に示すように、図4に示すフルオロアルキル基含有コオリゴマーとして、RF−(PDE−100)x−(ACA)y−RFを用い、その添加量を変化させた場合を試験品14とした。 Furthermore, as shown in Table 5, as the fluoroalkyl group-containing co-oligomer shown in FIG. 4, R F- (PDE-100) x- (ACA) y-R F was used, and the amount added was changed. This was designated as test product 14.
無機粒子の収率(%)も表1〜5に示す。 The yield (%) of inorganic particles is also shown in Tables 1-5.
(評価1)
図8に試験品2の無機粒子と、RがACAであり、RFがCF(CF3)OC3F7であるフルオロアルキル基含有オリゴマーと、CaCO3単体とのFT−IRスペクトルを示す。図中、(A)がフルオロアルキル基含有オリゴマー単体の結果であり、(B)がCaCO3単体の結果であり、(C)が試験品2の無機粒子の結果である。
(Evaluation 1)
FIG. 8 shows an FT-IR spectrum of inorganic particles of test product 2, a fluoroalkyl group-containing oligomer in which R is ACA, R F is CF (CF 3 ) OC 3 F 7 , and CaCO 3 alone. In the figure, (A) is the result of the fluoroalkyl group-containing oligomer alone, (B) is the result of CaCO 3 alone, and (C) is the result of the inorganic particles of test product 2.
同様に、試験品6の無機粒子と、RがACAであり、RFがCF(CF3)OCF2CF(CF3)OC3F7であるフルオロアルキル基含有オリゴマーと、CaCO3単体との結果を図9に示す。 Similarly, an inorganic particle of test sample 6, a fluoroalkyl group-containing oligomer in which R is ACA, R F is CF (CF 3 ) OCF 2 CF (CF 3 ) OC 3 F 7 , and CaCO 3 alone The results are shown in FIG.
試験品11の無機粒子と、RがMESであり、RFがCF(CF3)OC3F7であるフルオロアルキル基含有オリゴマーと、CaCO3単体との結果を図10に示す。 FIG. 10 shows the results of the inorganic particles of the test product 11, the fluoroalkyl group-containing oligomer in which R is MES, R F is CF (CF 3 ) OC 3 F 7 , and CaCO 3 alone.
試験品12の無機粒子と、RがACMOであり、RFがCF(CF3)OC3F7であるフルオロアルキル基含有オリゴマーと、CaCO3単体との結果を図11に示す。 FIG. 11 shows the results of the inorganic particles of the test product 12, the fluoroalkyl group-containing oligomer in which R is ACMO, R F is CF (CF 3 ) OC 3 F 7 , and CaCO 3 alone.
試験品14の無機粒子と、RF−(PDE−100)x−(ACA)y−RFであるフルオロアルキル基含有コオリゴマーと、CaCO3単体との結果を図12に示す。 Inorganic particles specimens 14, R F - (PDE- 100) x- and fluoroalkyl group-containing co-oligomer is a (ACA) y-R F, shows the results of the CaCO 3 alone in Figure 12.
図8〜12の各図において、(C)のチャートが(A)と(B)との重ね合わせになっていることが分かる。 In each of FIGS. 8 to 12, it can be seen that the chart of (C) is an overlay of (A) and (B).
(評価2)
熱重量分析計(TGA)により、試験品2の無機粒子と、RがACAであり、RFがCF(CF3)OC3F7であるフルオロアルキル基含有オリゴマーと、CaCO3単体との質量減少率(%)を測定した。結果を図13に示す。図中、(A)がフルオロアルキル基含有オリゴマー単体の結果であり、(B)がCaCO3単体の結果であり、(C)が試験品2の無機粒子の結果である。
(Evaluation 2)
Mass of inorganic particles of test sample 2, fluoroalkyl group-containing oligomer in which R is ACA, R F is CF (CF 3 ) OC 3 F 7 , and CaCO 3 alone by thermogravimetric analyzer (TGA) The reduction rate (%) was measured. The results are shown in FIG. In the figure, (A) is the result of the fluoroalkyl group-containing oligomer alone, (B) is the result of CaCO 3 alone, and (C) is the result of the inorganic particles of test product 2.
同様に、試験品6の無機粒子と、RがACAであり、RFがCF(CF3)OCF2CF(CF3)OC3F7であるフルオロアルキル基含有オリゴマーと、CaCO3単体との結果を図14に示す。 Similarly, an inorganic particle of test sample 6, a fluoroalkyl group-containing oligomer in which R is ACA, R F is CF (CF 3 ) OCF 2 CF (CF 3 ) OC 3 F 7 , and CaCO 3 alone The results are shown in FIG.
試験品10の無機粒子と、RがMESであり、RFがCF(CF3)OC3F7であるフルオロアルキル基含有オリゴマーと、CaCO3単体との結果を図15に示す。なお、フルオロアルキル基含有オリゴマー単体の結果は図示を省略した。 FIG. 15 shows the results of the inorganic particles of the test product 10, the fluoroalkyl group-containing oligomer in which R is MES, R F is CF (CF 3 ) OC 3 F 7 , and CaCO 3 alone. The results of the fluoroalkyl group-containing oligomer alone are not shown.
試験品12の無機粒子と、RがACMOであり、RFがCF(CF3)OC3F7であるフルオロアルキル基含有オリゴマーと、CaCO3単体との結果を図16に示す。 FIG. 16 shows the results of the inorganic particles of the test product 12, the fluoroalkyl group-containing oligomer in which R is ACMO, R F is CF (CF 3 ) OC 3 F 7 , and CaCO 3 alone.
試験品13の無機粒子と、RがDMAAであり、RFがCF(CF3)OC3F7であるフルオロアルキル基含有オリゴマーと、CaCO3単体との結果を図17に示す。 FIG. 17 shows the results of the inorganic particles of the test product 13, the fluoroalkyl group-containing oligomer in which R is DMAA, R F is CF (CF 3 ) OC 3 F 7 , and CaCO 3 alone.
試験品14の無機粒子と、RF−(PDE−100)x−(ACA)y−RFであるフルオロアルキル基含有コオリゴマーと、CaCO3単体との結果を図18に示す。なお、フルオロアルキル基含有コオリゴマー単体の結果は図示を省略した。 Inorganic particles specimens 14, R F - and (PDE-100) x- (ACA ) y-R F fluoroalkyl group-containing co-oligomers which are the result of the CaCO 3 alone is shown in FIG. 18. The results of the fluoroalkyl group-containing co-oligomer alone are not shown.
以上より、得られた無機粒子は、図19に示すように、ほぼ一次粒子であるCaCO3が低重合体の担体内に内包されたものであり、CaCO3の周囲にフルオロアルキル基1aの殻を有するものとなっているものと思われる。 From the above, as shown in FIG. 19, the obtained inorganic particles are substantially primary particles of CaCO 3 encapsulated in a low polymer carrier, and a shell of fluoroalkyl group 1a around CaCO 3. It seems that it has become.
(評価3)
得られた無機粒子について、1,2−ジクロロエタン、テトラヒドロフラン、メタノール、フッ素溶媒(AK−225(旭硝子製))及び水に対する分散性を評価した。試験品2、11〜13についての結果を表6に示し、試験品14についての結果を表7に示す。
(Evaluation 3)
About the obtained inorganic particle, the dispersibility with respect to 1, 2- dichloroethane, tetrahydrofuran, methanol, a fluorine solvent (AK-225 (made by Asahi Glass)), and water was evaluated. The results for test products 2, 11 to 13 are shown in Table 6, and the results for test product 14 are shown in Table 7.
表6及び表7に示されるように、これらの無機粒子は、各液に対し、凝集し難く、優れた分散性を発揮することが分かる。このため、これらの無機粒子を有機高分子材料の添加剤に用いた場合には、無機粒子の偏在を生じ難く、優れた意匠等の製品となることが分かる。また、これらの無機粒子は、CaCO3に低重合体が結合していることから、そのまま秤量、混合等でき、高い取り扱い性を発揮する。 As shown in Tables 6 and 7, it can be seen that these inorganic particles hardly aggregate with respect to each liquid and exhibit excellent dispersibility. Therefore, it can be seen that when these inorganic particles are used as additives for organic polymer materials, uneven distribution of the inorganic particles hardly occurs and the product has an excellent design and the like. In addition, since these inorganic particles are bonded to CaCO 3 with a low polymer, they can be weighed and mixed as they are, and exhibit high handling properties.
メタノール中に分散させた試験品10の無機粒子のTEM写真を図20に示し、その粒度分布を図21に示す。図20及び図21に示されるように、試験品10の無機粒子はメタノール中で優れた分散性を発揮していることが分かる。 FIG. 20 shows a TEM photograph of the inorganic particles of the test product 10 dispersed in methanol, and FIG. 21 shows the particle size distribution. As shown in FIGS. 20 and 21, it can be seen that the inorganic particles of the test product 10 exhibit excellent dispersibility in methanol.
また、メタノール中に分散させた試験品14の無機粒子のTEM写真を図22に示し、その粒度分布を図23に示す。図22及び図23に示されるように、試験品14の無機粒子はメタノール中でさらに優れた分散性を発揮していることが分かる。 Further, a TEM photograph of the inorganic particles of the test product 14 dispersed in methanol is shown in FIG. 22, and its particle size distribution is shown in FIG. As shown in FIG. 22 and FIG. 23, it can be seen that the inorganic particles of the test product 14 exhibit further superior dispersibility in methanol.
(評価4)
試験品2、11〜13の無機粒子について、フルオロアルキル基含有オリゴマーのサイズ(nm)と、初期の粒径(nm)と、水に分散させた後の粒径(nm)とを求めた。結果を表8に示す。
(Evaluation 4)
With respect to the inorganic particles of test products 2 and 11 to 13, the size (nm) of the fluoroalkyl group-containing oligomer, the initial particle size (nm), and the particle size (nm) after being dispersed in water were determined. The results are shown in Table 8.
表8より、これらの無機粒子は、フルオロアルキル基含有オリゴマーの数倍の大きさで得られ、ほぼ二次凝集も生じないことが分かる。 From Table 8, it can be seen that these inorganic particles are obtained in several times the size of the fluoroalkyl group-containing oligomer and almost no secondary aggregation occurs.
(評価5)
試験品2、6、11〜13の無機粒子について、耐熱性(°C)とフルオロアルキル基含有オリゴマーの割合(%)との関係を求めた。耐熱性は、分速10°Cで昇温した場合において、10%の質量減少があった温度とした。結果を表9に示す。
(Evaluation 5)
The relationship between the heat resistance (° C.) and the ratio (%) of the fluoroalkyl group-containing oligomer was determined for the inorganic particles of Test Samples 2, 6, and 11-13. The heat resistance was set to a temperature at which the mass was reduced by 10% when the temperature was raised at a rate of 10 ° C per minute. The results are shown in Table 9.
表9より、これらの無機粒子は、フルオロアルキル基含有オリゴマーの割合にかかわらず、満足できる耐熱性を有することが分かる。 From Table 9, it can be seen that these inorganic particles have satisfactory heat resistance regardless of the proportion of the fluoroalkyl group-containing oligomer.
(評価6)
試験品2、11〜13の無機粒子をPMMAのマトリックスに添加し、PMMAの表面改質等について検討を行なった。まず、各無機粒子とPMMAとを均一に分散させた1、2−ジクロロエタン溶液又はテトラヒドロフランを調製し、これらの溶液をシャーレにキャスティングして膜厚200μm程度のキャストフィルムを製造した。次いで、得られたキャストフィルムについて、空気に触れる面である表面と空気に触れない面である裏面とのドデカンの接触角(°)の測定を行なった。各フィルムの厚さ(μm)とともに、結果を表10に示す。
(Evaluation 6)
The inorganic particles of Test Products 2, 11 to 13 were added to the PMMA matrix, and the surface modification of PMMA was examined. First, a 1,2-dichloroethane solution or tetrahydrofuran in which each inorganic particle and PMMA were uniformly dispersed was prepared, and these solutions were cast in a petri dish to produce a cast film having a thickness of about 200 μm. Next, for the obtained cast film, the contact angle (°) of dodecane between the surface that was in contact with air and the back surface that was not in contact with air was measured. The results are shown in Table 10 together with the thickness (μm) of each film.
表10に示されるように、無機粒子により改質されたキャストフィルムは改質されていことが分かる。これは、図24に示すように、キャストフィルムにおいて、無機粒子10がPMMAのマトリックス11の表面に効率良く配向し、キャストフィルムの表面にフルオロアルキル基に起因した高い撥油性(防汚性)を示すからである。このため、この無機粒子を有機高分子材料の添加剤に用いた場合には、有機高分子材料の表面を好適に改質できることが分かる。 As shown in Table 10, it can be seen that the cast film modified with inorganic particles is modified. This is because, as shown in FIG. 24, in the cast film, the inorganic particles 10 are efficiently oriented on the surface of the matrix 11 of PMMA, and the surface of the cast film has high oil repellency (antifouling property) due to the fluoroalkyl group. It is because it shows. For this reason, when this inorganic particle is used for the additive of organic polymer material, it turns out that the surface of organic polymer material can be modified suitably.
(評価7)
試験品2、11又は14の無機粒子を含むキャストフィルムと、無機粒子を含まないキャストフィルムと、第1水溶液及び第2水溶液だけから生成したCaCO3を含むキャストフィルムとについて、軟化温度(°C)及びヤング率を求めた。溶媒としてはテトラヒドロフランを用いた。結果を表11に示す。
(Evaluation 7)
The softening temperature (° C.) of the cast film containing the inorganic particles of the test product 2, 11 or 14, the cast film containing no inorganic particles, and the cast film containing CaCO 3 produced only from the first aqueous solution and the second aqueous solution. ) And Young's modulus. Tetrahydrofuran was used as the solvent. The results are shown in Table 11.
表11より、試験品11及び14の無機粒子を含むキャストフィルムは、第1水溶液及び第2水溶液だけから生成したCaCO3を含むキャストフィルムと比べ、ヤング率が大きいことが分かる。また、表11より、試験品2及び14の無機粒子を含むキャストフィルムは、無機粒子を含まないキャストフィルムや第1水溶液及び第2水溶液だけから生成したCaCO3を含むキャストフィルムと比べ、軟化温度も上がっていることが分かる。 From Table 11, it can be seen that the cast film containing the inorganic particles of the test products 11 and 14 has a higher Young's modulus than the cast film containing CaCO 3 produced only from the first aqueous solution and the second aqueous solution. Moreover, from Table 11, the cast film containing the inorganic particles of Test Samples 2 and 14 has a softening temperature compared with a cast film containing no inorganic particles or a cast film containing CaCO 3 produced only from the first aqueous solution and the second aqueous solution. You can see that
これらのことから、試験品2、11及び14の無機粒子は、樹脂製品の特性を向上させるものであることが分かる。特に、試験品14の無機粒子はこの傾向が顕著である。これは試験品14の無機粒子が架橋したフルオロアルキル基含有コオリゴマーを有しているからである。 From these, it can be seen that the inorganic particles of the test products 2, 11 and 14 improve the characteristics of the resin product. In particular, this tendency is remarkable in the inorganic particles of the test product 14. This is because the inorganic particles of the test product 14 have a crosslinked fluoroalkyl group-containing co-oligomer.
試験品11の無機粒子を用いたフィルムの断面のSEM写真を図25(A)及び(B)に示す。また、試験品14の無機粒子を用いたフィルムの断面のSEM写真を図26(A)及び(B)に示す。さらに、液相法で製造したCaCO3を用いたフィルムの断面のSEM写真を図27(A)及び(B)に示す。また、試験品2、11、14の無機粒子のXRD結果を図28に示す。 The SEM photograph of the cross section of the film which used the inorganic particle of the test article 11 is shown to FIG. 25 (A) and (B). Moreover, the SEM photograph of the cross section of the film using the inorganic particle of the test article 14 is shown to FIG. 26 (A) and (B). Further, FIGS. 27A and 27B show SEM photographs of a cross section of a film using CaCO 3 produced by a liquid phase method. Moreover, the XRD result of the inorganic particles of Test Samples 2, 11, and 14 is shown in FIG.
図25(A)及び(B)並びに図26(A)及び(B)より、フルオロアルキル基含有オリゴマーを用いて製造したCaCO3を用いたフィルムは、表面にCaCO3が偏析していることが分かる。これはCaCO3にフルオロアルキル基含有オリゴマーが修飾されているためである。 From FIGS. 25 (A) and 25 (B) and FIGS. 26 (A) and 26 (B), the film using CaCO 3 produced using the fluoroalkyl group-containing oligomer shows that CaCO 3 is segregated on the surface. I understand. This is because the fluoroalkyl group-containing oligomer is modified in CaCO 3 .
一方、図27(A)及び(B)より、液相法で製造したCaCO3を用いたフィルムでは、CaCO3がフィルムの裏面(シャーレにキャスティングした底面)に沈降していることが分かる。 On the other hand, it can be seen from FIGS. 27A and 27B that in the film using CaCO 3 manufactured by the liquid phase method, CaCO 3 is settled on the back surface (bottom surface cast on the petri dish) of the film.
このため、フルオロアルキル基含有オリゴマーを用いて製造したCaCO3は、添加対象の表面近傍を効率的に機能化できることがわかる。また、図25(A)及び(B)、図26(A)及び(B)並びに図27(A)及び(B)より、フルオロアルキル基含有オリゴマーを用いて製造したCaCO3は、液相法で製造したCaCO3と異なった特徴的な形状をしていることが分かる。このような粒子の形状の違いが表11に示すフィルムの物理特性の差異に寄与していると考えられる。 Accordingly, CaCO 3 produced using a fluoroalkyl group-containing oligomer, it can be seen that function efficiently the vicinity of the surface of the added object. Further, from FIGS. 25 (A) and (B), FIGS. 26 (A) and (B), and FIGS. 27 (A) and (B), CaCO 3 produced using a fluoroalkyl group-containing oligomer is a liquid phase method. It can be seen that it has a characteristic shape different from that of CaCO 3 manufactured in the above. It is considered that such a difference in particle shape contributes to the difference in physical properties of the film shown in Table 11.
また、図28から、液相法で製造したCaCO3はCalsiteであるが、実施例11のCaCO3はこれとは結晶構造が異なるVerteriteである。この結果から、フルオロアルキル基含有オリゴマーの種類によって生成する無機粒子の結晶構造を制御できる可能性がある。 Further, from FIG. 28, CaCO 3 produced by the liquid phase method is calsite, but CaCO 3 of Example 11 is verterite having a different crystal structure. From this result, there is a possibility that the crystal structure of the inorganic particles generated can be controlled depending on the type of the fluoroalkyl group-containing oligomer.
(試験2)
図29に示すように、図3に示すRがACAのフルオロアルキル基含有オリゴマーと、第1水溶液と、第2水溶液と、TEOSと、アンモニア水溶液と、エタノールとを用意した。フルオロアルキル基含有オリゴマーは、RFがCF(CF3)OC3F7のものである。アンモニア水溶液はNH3を25質量%含むものである。
(Test 2)
As shown in FIG. 29, a fluoroalkyl group-containing oligomer in which R shown in FIG. 3 is ACA, a first aqueous solution, a second aqueous solution, TEOS, an aqueous ammonia solution, and ethanol were prepared. The fluoroalkyl group-containing oligomer is one having R F of CF (CF 3 ) OC 3 F 7 . The aqueous ammonia solution contains 25% by mass of NH 3 .
表12に示す条件で試験品15の無機粒子を得た。他の条件は試験1と同一である。無機粒子の収率(%)も表12に示す。 Inorganic particles of Test Product 15 were obtained under the conditions shown in Table 12. Other conditions are the same as in Test 1. Table 12 also shows the yield (%) of the inorganic particles.
得られた無機粒子は、TEOSによって形成されたシロキサン結合により、CaCO3とフルオロアルキル基含有オリゴマーの官能基とが結合されているものと思われる。 In the obtained inorganic particles, it is considered that CaCO 3 and the functional group of the fluoroalkyl group-containing oligomer are bonded by a siloxane bond formed by TEOS.
(評価8)
試験品15の無機粒子について、評価3と同様、分散性を評価した。結果を表13に示す。
(Evaluation 8)
The dispersibility of the inorganic particles of the test product 15 was evaluated in the same manner as in Evaluation 3. The results are shown in Table 13.
表13に示されるように、この無機粒子も、各液に対し、凝集し難く、優れた分散性を発揮することが分かる。 As shown in Table 13, it can be seen that these inorganic particles also hardly aggregate with respect to each liquid and exhibit excellent dispersibility.
(評価9)
TGAにより、試験品15の無機粒子と、RがACAであり、RFがCF(CF3)OC3F7であるフルオロアルキル基含有オリゴマーと、CaCO3及びSiO2の複合体と、CaCO3単体との質量減少率(%)を測定した。CaCO3及びSiO2の複合体は、表12の条件からフルオロアルキル基含有オリゴマーだけを除いて得たものである。結果を図30に示す。図中、(A)がフルオロアルキル基含有オリゴマー単体の結果であり、(B1)が複合体単体の結果であり、(B2)がCaCO3単体の結果であり、(C)が試験品15の無機粒子の結果である。図30においても、上記と同様の結果が得られている。
(Evaluation 9)
By TGA, inorganic particles of the test product 15, a fluoroalkyl group-containing oligomer in which R is ACA and R F is CF (CF 3 ) OC 3 F 7 , a composite of CaCO 3 and SiO 2 , and CaCO 3 The mass reduction rate (%) with a simple substance was measured. The composite of CaCO 3 and SiO 2 was obtained by removing only the fluoroalkyl group-containing oligomer from the conditions in Table 12. The results are shown in FIG. In the figure, (A) is the result of the fluoroalkyl group-containing oligomer alone, (B1) is the result of the composite alone, (B2) is the result of CaCO 3 alone, and (C) is the test product 15 It is a result of inorganic particles. In FIG. 30, the same result as above is obtained.
(評価10)
試験品2、6、10、14のTGA測定の結果を図31に示す。図中、(B)がCaCO3単体の結果であり、(C1)が試験品10の無機粒子の結果であり、(C2)が試験品6の無機粒子の結果であり、(C3)が試験品2の無機粒子の結果であり、(C4)が試験品14の無機粒子の結果である。図31においても、上記と同様の結果が得られている。
(Evaluation 10)
The result of the TGA measurement of the test products 2, 6, 10, and 14 is shown in FIG. In the figure, (B) is the result of CaCO 3 alone, (C1) is the result of inorganic particles of the test product 10, (C2) is the result of inorganic particles of the test product 6, and (C3) is the test This is the result of the inorganic particles of the product 2, and (C4) is the result of the inorganic particles of the test product 14. In FIG. 31, the same result as above is obtained.
(評価11)
試験品2、6、11、14、15の無機粒子を水に混合し、経過時間(分)と濁り率(%)との関係を求めた。結果を図32に示す。試験品2の無機粒子は8g/l混合し、結果を△で示す。試験品6の無機粒子は12g/l混合し、結果を□で示す。試験品11の無機粒子は12g/l混合し、結果を▲で示す。試験品14の無機粒子は16g/l混合し、結果を●で示す。試験品15の無機粒子は4g/l混合し、結果を■で示す。
(Evaluation 11)
The inorganic particles of test products 2, 6, 11, 14, and 15 were mixed with water, and the relationship between elapsed time (min) and turbidity (%) was determined. The results are shown in FIG. The inorganic particles of Test Product 2 are mixed at 8 g / l, and the result is indicated by Δ. The inorganic particles of Test Product 6 are mixed at 12 g / l, and the result is indicated by □. The inorganic particles of the test product 11 are mixed at 12 g / l, and the result is indicated by ▲. The inorganic particles of the test product 14 were mixed at 16 g / l, and the result is shown by ●. The inorganic particles of the test product 15 were mixed at 4 g / l, and the result is shown by ▪.
図32より、これら試験品2、6、11、14、15の無機粒子は長時間に亘って好適な分散性を発揮できることが分かる。特に、試験品15の無機粒子は安定性に優れている。 From FIG. 32, it can be seen that the inorganic particles of these test products 2, 6, 11, 14, and 15 can exhibit suitable dispersibility over a long period of time. In particular, the inorganic particles of the test product 15 are excellent in stability.
(試験3)
図33に示す反応で、イソシアネート基をもつフルオロアルキル基含有オリゴマーを合成した。RFはCF(CF3)OC3F7であり、RがACMO又はDMAAのモノマーを用いた。
(Test 3)
A fluoroalkyl group-containing oligomer having an isocyanate group was synthesized by the reaction shown in FIG. R F is CF (CF 3 ) OC 3 F 7 , and R is an ACMO or DMAA monomer.
表14に示す条件で試験品16〜19の無機粒子を得た。溶媒として、フッ素溶媒(AK−225(旭硝子製))を用い、CaCO3は水/エチレングリコールの混合溶媒に分散させた状態でフッ素溶媒に添加した。無機粒子の収率(%)も表14に示す。 Inorganic particles of test products 16 to 19 were obtained under the conditions shown in Table 14. A fluorine solvent (AK-225 (manufactured by Asahi Glass)) was used as the solvent, and CaCO 3 was added to the fluorine solvent in a state of being dispersed in a water / ethylene glycol mixed solvent. Table 14 also shows the yield (%) of the inorganic particles.
得られた無機粒子は、イソシアネート基をもつフルオロアルキル基含有オリゴマーのイソシアネート基を介してCaCO3と結合しているものと思われる。 The obtained inorganic particles are considered to be bonded to CaCO 3 through the isocyanate group of the fluoroalkyl group-containing oligomer having an isocyanate group.
(評価12)
TGAにより、試験品16、17の無機粒子と、CaCO3単体との質量減少率(%)を測定した。結果を図34に示す。図中、(B)がCaCO3単体の結果であり、(C1)が試験品16の無機粒子の結果であり、(C2)が試験品17の無機粒子の結果である。図34においても、上記と同様の結果が得られている。
(Evaluation 12)
The mass reduction rate (%) between the inorganic particles of the test products 16 and 17 and the CaCO 3 simple substance was measured by TGA. The results are shown in FIG. In the figure, (B) is the result of CaCO 3 alone, (C1) is the result of the inorganic particles of the test product 16, and (C2) is the result of the inorganic particles of the test product 17. In FIG. 34, the same result as above is obtained.
試験品17、19の無機粒子及びCaCO3単体のTGA測定の結果を図35に示す。図中、(B)がCaCO3単体の結果であり、(C1)が試験品17の無機粒子の結果であり、(C2)が試験品19の無機粒子の結果である。図35においても、上記と同様の結果が得られている。なお、試験品19は、イソシアネート基をもつフルオロアルキル基含有オリゴマー単体である(CaCO3を含まない。)。 The result of TGA measurement of the inorganic particles of the test products 17 and 19 and CaCO 3 alone is shown in FIG. In the figure, (B) is the result of CaCO 3 alone, (C1) is the result of the inorganic particles of the test product 17, and (C2) is the result of the inorganic particles of the test product 19. In FIG. 35, the same result as above is obtained. The test product 19 is a single fluoroalkyl group-containing oligomer having an isocyanate group (not containing CaCO 3 ).
試験品18の無機粒子のTGA測定の結果を図36に示す。図中、(C)が試験品18の無機粒子の結果である。図36においても、上記と同様の結果が得られている。 The result of the TGA measurement of the inorganic particles of the test product 18 is shown in FIG. In the figure, (C) is the result of the inorganic particles of the test product 18. In FIG. 36, the same result as above is obtained.
以上において、本発明を上記試験1〜4に即して説明したが、本発明は上記実施例の範囲内の試験品に制限されるものではなく、その趣旨を逸脱しない範囲で適宜変更して適用できることはいうまでもない。 In the above, the present invention has been described with reference to the above tests 1 to 4, but the present invention is not limited to the test products within the scope of the above-described examples, and can be appropriately changed without departing from the spirit of the present invention. Needless to say, this is applicable.
本発明は、薬品、浴槽、カウンタ等の樹脂製品、建材等に利用可能である。 The present invention can be used for chemical products, resin products such as bathtubs and counters, building materials, and the like.
1a…フルオロアルキル基
2a〜2h…官能基
1a ... fluoroalkyl group 2a-2h ... functional group
Claims (11)
(式1)
(式2)
The low polymer is an oligomer represented by the following formula 1 (R F is a fluoroalkyl group, R 1 is an organic group, x is a natural number) or a co-oligomer represented by the following formula 2 (R F is a fluoroalkyl group, R The method for producing inorganic particles according to claim 2, wherein 2 and R 3 are organic groups, and x and y are natural numbers.
(Formula 1)
(Formula 2)
(式3)
The low polymer is a crosslinked oligomer or co-oligomer represented by the following formula 3 (R x is the same or different organic group such as R a , R b , and R c , and n is a natural number). Item 4. A method for producing inorganic particles according to Item 3.
(Formula 3)
(式1)
(式2)
The low polymer is an oligomer represented by the following formula 1 (R F is a fluoroalkyl group, R 1 is an organic group, x is a natural number) or a co-oligomer represented by the following formula 2 (R F is a fluoroalkyl group, R The inorganic particles according to claim 6, wherein 2 and R 3 are organic groups, and x and y are natural numbers.
(Formula 1)
(Formula 2)
(式3)
The low polymer is a crosslinked oligomer or co-oligomer represented by the following formula 3 (R x is the same or different organic group such as R a , R b , and R c , and n is a natural number). Item 8. The inorganic particles according to Item 7.
(Formula 3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006169139A JP5023275B2 (en) | 2006-06-19 | 2006-06-19 | Method for producing inorganic particles, inorganic particles and resin product |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006169139A JP5023275B2 (en) | 2006-06-19 | 2006-06-19 | Method for producing inorganic particles, inorganic particles and resin product |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007332011A JP2007332011A (en) | 2007-12-27 |
JP5023275B2 true JP5023275B2 (en) | 2012-09-12 |
Family
ID=38931831
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006169139A Expired - Fee Related JP5023275B2 (en) | 2006-06-19 | 2006-06-19 | Method for producing inorganic particles, inorganic particles and resin product |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5023275B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5269453B2 (en) * | 2008-03-25 | 2013-08-21 | 株式会社Lixil | Functional glaze |
JP5240654B2 (en) * | 2008-05-22 | 2013-07-17 | 日産自動車株式会社 | Coating |
JP2013117036A (en) * | 2013-03-15 | 2013-06-13 | Lixil Corp | Method of producing hybrid titania powder |
JP2013139386A (en) * | 2013-03-15 | 2013-07-18 | Lixil Corp | Method of producing hybrid titania powder, hybrid titania powder, function-imparting liquid, and product |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3305373B2 (en) * | 1992-10-01 | 2002-07-22 | 丸尾カルシウム株式会社 | Conductive inorganic powder, method for producing the same, and antistatic polymer material filled with the conductive inorganic powder |
JP3488276B2 (en) * | 1993-12-29 | 2004-01-19 | 丸尾カルシウム株式会社 | Foaming agent for phenolic resin foam comprising surface-modified calcium carbonate and method for producing phenolic resin foam using the same |
JP3860259B2 (en) * | 1996-08-02 | 2006-12-20 | 矢橋工業株式会社 | Method for producing spherical calcium carbonate |
JP2001302238A (en) * | 2000-04-26 | 2001-10-31 | Nittetsu Mining Co Ltd | Method for producing spindle-shaped calcium carbonate having small particle diameter |
JP4889888B2 (en) * | 2001-08-27 | 2012-03-07 | 宇部日東化成株式会社 | Method for producing vaterite-type spherical calcium carbonate and vaterite-type spherical calcium carbonate |
JP2006076828A (en) * | 2004-09-09 | 2006-03-23 | Kyushu Institute Of Technology | Composite of calcium carbonate of vaterite crystal system and starch, recording medium, printed article, inkjet recording method and method for producing recording medium |
-
2006
- 2006-06-19 JP JP2006169139A patent/JP5023275B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2007332011A (en) | 2007-12-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7027389B2 (en) | Luminous crystals and their manufacture | |
JP2021121661A (en) | Luminescent crystals and manufacturing thereof | |
Freslon et al. | Brightness and color tuning in a series of lanthanide-based coordination polymers with benzene-1, 2, 4, 5-tetracarboxylic acid as a ligand | |
JP5023275B2 (en) | Method for producing inorganic particles, inorganic particles and resin product | |
Ma et al. | Luminescent lanthanide coordination polymers | |
Sanchez et al. | Designed hybrid organic− inorganic nanocomposites from functional nanobuilding blocks | |
Takeuchi et al. | Real-time imaging of 2D and 3D temperature distribution: coating of metal-ion-intercalated organic layered composites with tunable stimuli-responsive properties | |
TWI519483B (en) | Globular magnesium hydroxide particles, globular mangesium oxide particles and method for manufacturing the same | |
CN104411780A (en) | Process for producing nanoparticles | |
CN101573415A (en) | Process for producing nanoparticles | |
Guan et al. | Ratiometric luminescent thermometer based on the lanthanide metal–organic frameworks by thermal curing | |
JP2009280489A (en) | Silica particle containing organolanthanide compound, method of preparing the same, and use of the same | |
CN101489935B (en) | Method for producing modified zirconium oxide-tin oxide composite sol | |
Arras et al. | The world needs new colors: cutting edge mobility focusing on long persistent luminescence materials | |
Cang et al. | Immobilized CdS quantum dots in spherical polyelectrolyte brushes: Fabrication, characterization and optical properties | |
Sun et al. | Europium/1, 3, 5-benzenetricarboxylic acid metal–organic framework nanorods decorated with CdSe quantum dots as coatings for noncontact ratiometric optical temperature sensing | |
Ivanchenko et al. | Structural and surface studies of luminescent Ca/Eu phosphate nanomaterials: From the bulk to surface features | |
Zhao et al. | Rare earth hybrid materials of organically modified silica covalently bonded to a GaN matrix: multicomponent assembly and multi-color luminescence | |
Sheng et al. | Rare earth centered hybrid materials: Tb 3+ covalently bonded with La 3+, Gd 3+, Y 3+ through sulfonamide bridge and luminescence enhancement | |
JP4788186B2 (en) | New zirconium phosphate | |
Park et al. | Characterization of chain molecular assemblies in long-chain, lamellar copper alkylsulfonates: Self-assembled monolayer vs bilayer structure | |
EP3307847B1 (en) | Luminescent crystals and manufacturing thereof | |
Di et al. | Enhanced photoluminescence features of rare earth phenylphosphonate hybrid nanostructures synthesized under nonaqueous conditions | |
US9162900B2 (en) | Method for preparing a water-compatible composition of metal oxide nanocrystals and the water-compatible composition obtained | |
JP2006306676A (en) | New zirconium phosphate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090129 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20100116 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20100130 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20100116 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20101021 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20110523 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120410 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120424 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150629 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5023275 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |