JP5022491B2 - Fuel leakage diagnostic device and fuel leakage diagnostic method for accumulator fuel injection device - Google Patents

Fuel leakage diagnostic device and fuel leakage diagnostic method for accumulator fuel injection device Download PDF

Info

Publication number
JP5022491B2
JP5022491B2 JP2010519620A JP2010519620A JP5022491B2 JP 5022491 B2 JP5022491 B2 JP 5022491B2 JP 2010519620 A JP2010519620 A JP 2010519620A JP 2010519620 A JP2010519620 A JP 2010519620A JP 5022491 B2 JP5022491 B2 JP 5022491B2
Authority
JP
Japan
Prior art keywords
fuel
diagnosis
vehicle
liquid level
lateral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010519620A
Other languages
Japanese (ja)
Other versions
JPWO2010004663A1 (en
Inventor
修 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bosch Corp
Original Assignee
Bosch Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bosch Corp filed Critical Bosch Corp
Priority to JP2010519620A priority Critical patent/JP5022491B2/en
Publication of JPWO2010004663A1 publication Critical patent/JPWO2010004663A1/en
Application granted granted Critical
Publication of JP5022491B2 publication Critical patent/JP5022491B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D2041/224Diagnosis of the fuel system
    • F02D2041/225Leakage detection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1497With detection of the mechanical response of the engine

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

本発明は、車両の蓄圧式燃料噴射装置における燃料漏れの有無を診断する燃料漏れ診断装置及び燃料漏れ診断方法に関する。   The present invention relates to a fuel leakage diagnosis device and a fuel leakage diagnosis method for diagnosing the presence or absence of fuel leakage in an accumulator fuel injection device for a vehicle.

車両の燃料噴射装置として、燃料供給ポンプから圧送されてくる燃料を蓄圧室(コモンレール)内に一旦高圧状態で蓄え、蓄圧室内の高圧燃料を内燃機関(エンジン)内に噴射供給する蓄圧式燃料噴射装置がある。この種の燃料噴射装置では、燃料漏れを検出してエンジンを停止する燃料漏れ診断が実行される。例えば、特許文献1に記載された燃料漏れ診断装置では、燃料供給ポンプ5からの燃料吐出量を制御する電磁弁60の目標通電開始時期TFが予め設定された基準値TL未満であるか否かを判定して、目標通電開始時期TFが基準値TL未満である場合に燃料漏れと診断している。また、この燃料漏れ診断装置では、基準値TLから目標通電開始時期TFを減算することによって燃料漏れ程度ΔTを算出し、燃料漏れ程度ΔTが小さくなるようにコモンレールの上限値PLを制御している。
特開平5−52146(段落41−53,第7図)
As a fuel injection device for a vehicle, an accumulator fuel injection in which fuel pumped from a fuel supply pump is temporarily stored in a pressure accumulator chamber (common rail) in a high pressure state, and high pressure fuel in the accumulator chamber is injected into an internal combustion engine (engine) There is a device. In this type of fuel injection device, a fuel leak diagnosis is performed in which a fuel leak is detected and the engine is stopped. For example, in the fuel leakage diagnosis device described in Patent Document 1, whether or not the target energization start timing TF of the electromagnetic valve 60 that controls the fuel discharge amount from the fuel supply pump 5 is less than a preset reference value TL. When the target energization start timing TF is less than the reference value TL, the fuel leakage is diagnosed. Further, in this fuel leakage diagnosis device, the fuel leakage degree ΔT is calculated by subtracting the target energization start timing TF from the reference value TL, and the upper limit value PL of the common rail is controlled so that the fuel leakage degree ΔT is reduced. .
Japanese Patent Laid-Open No. 5-52146 (paragraphs 41-53, FIG. 7)

特許文献1に記載の燃料漏れ診断装置では、燃料タンク内の燃料残量が少ない場合に問題がある。具体的には、燃料残量が少なく燃料液面に偏りがある場合に、燃料タンクから汲み上げる燃料に空気が混合して、コモンレール圧が上昇し難くなり、目標通電開始時期TFが早く(小さく)なる。つまり、燃欠状態と同様の現象が生じる。このため、燃料残量が少ない場合には、燃欠状態と燃料漏れとの区別ができず、燃料漏れが発生していないにも関わらず、燃料漏れが発生しているとして誤診断する可能性がある。   The fuel leakage diagnosis device described in Patent Document 1 has a problem when the remaining amount of fuel in the fuel tank is small. Specifically, when the remaining amount of fuel is small and the fuel level is uneven, air is mixed with the fuel pumped up from the fuel tank, making it difficult for the common rail pressure to rise and the target energization start timing TF to be early (small). Become. That is, the same phenomenon as in the burnout condition occurs. For this reason, when the remaining amount of fuel is low, it is not possible to distinguish between a fuel shortage condition and a fuel leak, and there is a possibility of misdiagnosing that a fuel leak has occurred even though no fuel leak has occurred. There is.

本発明の目的は、車両の蓄圧式燃料噴射装置の燃料漏れ診断装置において、燃欠状態と燃料漏れとを区別し、燃料漏れの診断の精度を向上させることにある。   An object of the present invention is to distinguish between a fuel shortage state and a fuel leakage in a fuel leakage diagnosis device for a pressure accumulation fuel injection device for a vehicle, and to improve the accuracy of the fuel leakage diagnosis.

本発明は、車両の蓄圧式燃料噴射装置における燃料漏れの有無を診断する燃料漏れ診断装置であって、燃欠診断処理と並行して、前記車両の前後加速度及び横加速度、並びに燃料残量に基づいて、燃料の液面挙動が許容範囲か否かを判定し、燃料の液面挙動が許容範囲であれば燃料漏れ診断を実行させ、燃料の液面挙動が許容範囲外であれば燃料漏れ診断を一時的に保留させる、燃料漏れ診断保留判定部と、前記燃料漏れ診断保留判定部からの指示に基づいて、燃料漏れ診断を実行する燃料漏れ診断部と、を備える。ここで、「燃料の液面挙動」は、燃料液面の変動の度合いであり、燃料の液面変動は、車両の加速度に対応する。   The present invention relates to a fuel leakage diagnosis device for diagnosing the presence or absence of fuel leakage in an accumulator fuel injection device for a vehicle. In parallel with the fuel shortage diagnosis processing, the vehicle longitudinal acceleration and lateral acceleration, and the fuel remaining amount are measured. Based on this, it is determined whether or not the liquid level behavior of the fuel is within an allowable range. If the liquid level behavior of the fuel is within the allowable range, a fuel leakage diagnosis is executed. A fuel leak diagnosis hold determination unit that temporarily holds the diagnosis, and a fuel leak diagnosis unit that executes a fuel leak diagnosis based on an instruction from the fuel leak diagnosis hold determination unit. Here, the “liquid level behavior of the fuel” is the degree of fluctuation of the fuel level, and the level fluctuation of the fuel corresponds to the acceleration of the vehicle.

本発明によれば、燃欠診断と並行して、車両の前後加速度及び横加速度、並びに燃料残量に基づいて、燃料の液面挙動(燃料液面の変動の加速度)が許容範囲か否かを判定する。そして、燃料液面の挙動が許容範囲内にない場合には、燃料残量及び燃料液面の偏りに起因してコモンレールに送る燃料に空気が混入する状態であるので、燃料漏れ診断を一時的に保留させる。これにより、燃欠状態において燃料液面の偏りが生じることにより燃料に空気が混入してコモンレール圧が上昇し難い状態において、燃料漏れとして誤診断することを防止できる。   According to the present invention, whether or not the fuel level behavior (acceleration of fuel level fluctuation) is within an allowable range based on the longitudinal and lateral accelerations of the vehicle and the remaining amount of fuel in parallel with the burnout diagnosis. Determine. If the behavior of the fuel level is not within the allowable range, the fuel leak diagnosis is temporarily performed because air is mixed into the fuel sent to the common rail due to the remaining amount of fuel and the deviation of the fuel level. To hold. Accordingly, it is possible to prevent erroneous diagnosis as a fuel leak in a state where air is mixed into the fuel due to the deviation of the fuel liquid level in the absence of fuel and the common rail pressure hardly increases.

本発明によれば、車両の旋回等によって一時的に燃料に空気が混入する状態を燃料残量、前後加速度及び横加速度を用いて検出し、燃料漏れ診断を一時的に保留させる。その後、燃料残量、前後加速度及び横加速度に基づいて、燃料液面の挙動が安定したことを検出すると、燃料漏れ診断を再開する。従って、車両の旋回などによって一時的に燃料に空気が混入しても、燃料漏れと誤診断されることを回避できるとともに、燃料漏れ診断を確実に実行することができる。   According to the present invention, a state in which air is temporarily mixed into the fuel by turning the vehicle or the like is detected using the remaining fuel amount, the longitudinal acceleration and the lateral acceleration, and the fuel leakage diagnosis is temporarily suspended. Thereafter, when it is detected that the behavior of the fuel level is stable based on the remaining fuel amount, the longitudinal acceleration, and the lateral acceleration, the fuel leakage diagnosis is restarted. Therefore, even if air is temporarily mixed into the fuel due to turning of the vehicle or the like, it can be avoided that the fuel leakage is erroneously diagnosed, and the fuel leakage diagnosis can be executed reliably.

また、本発明によれば、燃料残量とともに、前後加速度及び横加速度を用いて燃料液面の偏りを算出し、燃料に空気が混入する状態か否かを判断する。前後加速度及び横加速度を測定するセンサは、今後一般的になると考えられる横滑り防止装置などの車両の安定化システムでは標準化されるものである。従って、本実施形態によれば、燃料に空気が混入する状態か否かを判断するために、混入空気を認識できる圧力センサなどを燃料吸込み口に別途設ける必要がなく、コストダウンを図ることができる。   Further, according to the present invention, the deviation of the fuel liquid level is calculated using the longitudinal acceleration and the lateral acceleration together with the fuel remaining amount, and it is determined whether or not air is mixed into the fuel. A sensor for measuring longitudinal acceleration and lateral acceleration is standardized in a vehicle stabilization system such as a skid prevention device which is considered to be common in the future. Therefore, according to the present embodiment, it is not necessary to separately provide a pressure sensor or the like capable of recognizing mixed air in the fuel suction port in order to determine whether or not air is mixed into the fuel, thereby reducing costs. it can.

なお、前記燃料漏れ診断装置が、燃料タンク内の燃料が燃欠診断開始燃料量以下になったか否かを判定する燃欠診断開始判定部を更に備え、前記燃料漏れ診断保留判定部が、前記燃欠診断開始判定部によって燃料タンク内の燃料が燃欠診断開始燃料量以下になったと判定された場合に、燃料の液面挙動が許容範囲か否かの判定処理を開始する、ように構成しても良い。   The fuel leak diagnosis apparatus further includes a fuel shortage diagnosis start determination unit that determines whether or not the fuel in the fuel tank has become equal to or less than a fuel shortage diagnosis start fuel amount, and the fuel leak diagnosis hold determination unit includes When the fuel shortage diagnosis start determination unit determines that the fuel in the fuel tank has become equal to or less than the fuel shortage diagnosis start fuel amount, a process for determining whether or not the fuel level behavior is within an allowable range is started. You may do it.

燃料残量が少ない場合には、車両の加速度によって燃料液面が偏り、高圧ポンプの吸入燃料に空気が混入する可能性が高くなるので、燃料残量が一定以下となった場合に、燃料漏れ診断保留判定部による処理を実行することで、燃料に空気が混入する場合の燃料漏れ診断を効果的に回避することができる。   When the remaining amount of fuel is low, the fuel level is biased due to the acceleration of the vehicle, and there is a high possibility that air will be mixed into the intake fuel of the high-pressure pump. By executing the processing by the diagnosis suspension determination unit, it is possible to effectively avoid the fuel leakage diagnosis when air is mixed into the fuel.

また、前記燃料漏れ診断保留判定部は、前記車両の前後加速度の検出値に基づく前後方向の液面挙動が、燃料計によって測定される燃料残量に基づく前後方向許容閾値を超える場合、または、前記車両の横加速度の検出値に基づく横方向の液面挙動が、燃料計によって測定される燃料残量に基づく横方向許容閾値を超える場合の少なくとも一方の場合に、燃料漏れ診断を一時的に保留させる、ように構成しても良い。   In addition, the fuel leakage diagnosis suspension determination unit, when the liquid level behavior in the front-rear direction based on the detected value of the longitudinal acceleration of the vehicle exceeds a front-rear direction allowable threshold based on the remaining amount of fuel measured by a fuel gauge, or The fuel leak diagnosis is temporarily performed when the lateral liquid level behavior based on the detected value of the lateral acceleration of the vehicle exceeds the lateral allowable threshold value based on the remaining fuel amount measured by the fuel gauge. You may comprise so that it may hold.

燃料タンクが前後方向と横方向とで異なる形状である場合には、燃料液面の挙動の特性も前後方向と横方向とで異なるが、前後方向及び横方向のそれぞれにおいて、燃料液面の挙動が閾値を超えるか否かを判定することによって、燃料液面の挙動を正確に評価することができる。   When the fuel tank has different shapes in the front-rear direction and the lateral direction, the fuel liquid level behavior characteristics also differ in the front-rear direction and the lateral direction. By determining whether or not the value exceeds the threshold value, the behavior of the fuel liquid level can be accurately evaluated.

さらに、前記燃料漏れ診断保留判定部は、前記車両の前後加速度の検出値が前後加速度安定閾値未満となり、かつ、前記車両の横加速度の検出値が横加速度安定閾値未満となった場合に、燃料漏れ診断の保留を解除するように構成しても良い。   Further, the fuel leak diagnosis suspension determination unit determines that fuel is detected when the detected value of the longitudinal acceleration of the vehicle is less than the longitudinal acceleration stability threshold and the detected value of the lateral acceleration of the vehicle is less than the lateral acceleration stability threshold. You may comprise so that the holding | maintenance of leak diagnosis may be cancelled | released.

この場合、前後加速度と横加速度の両方がそれぞれ、前後加速度安定閾値及び横加速度安定閾値未満になった場合に、燃料漏れ診断の保留を解除するため、燃料の液面挙動が十分に小さくなって安定した後に、燃料漏れ診断を再開することができる。   In this case, when both the longitudinal acceleration and lateral acceleration are less than the longitudinal acceleration stability threshold and the lateral acceleration stability threshold, respectively, the fuel level behavior becomes sufficiently small in order to cancel the suspension of the fuel leakage diagnosis. After stabilization, the fuel leak diagnosis can be resumed.

また、本発明の別の側面は、車両の蓄圧式燃料噴射装置における燃料漏れの有無を診断する燃料漏れ診断方法に関する。この燃料漏れ診断方法は、燃欠診断処理と並行して、前記車両の前後加速度及び横加速度、並びに燃料残量に基づいて、燃料の液面挙動が許容範囲か否かを判定し、燃料の液面挙動が許容範囲であれば燃料漏れ診断を実行させ、燃料の液面挙動が許容範囲外であれば燃料漏れ診断を一時的に保留させる、燃料漏れ診断保留判定ステップ、を含む。   Another aspect of the present invention relates to a fuel leakage diagnosis method for diagnosing the presence or absence of fuel leakage in an accumulator fuel injection device for a vehicle. In parallel with the fuel shortage diagnosis process, this fuel leakage diagnosis method determines whether or not the liquid level behavior of the fuel is within an allowable range based on the longitudinal acceleration and lateral acceleration of the vehicle and the remaining amount of fuel. A fuel leakage diagnosis suspension determination step of executing a fuel leakage diagnosis if the liquid level behavior is within an allowable range, and temporarily suspending the fuel leakage diagnosis if the liquid level behavior of the fuel is outside the allowable range.

本発明の一実施形態に係る蓄圧式燃料噴射装置の概略構成図。1 is a schematic configuration diagram of a pressure accumulation fuel injection device according to an embodiment of the present invention. 燃料タンク内の液面の挙動を説明する説明図。Explanatory drawing explaining the behavior of the liquid level in a fuel tank. 本発明の一実施形態に係る燃料漏れ診断装置の機能ブロック図。1 is a functional block diagram of a fuel leakage diagnosis apparatus according to an embodiment of the present invention. 燃料漏れ診断保留判定部の機能ブロック図。The functional block diagram of a fuel leak diagnosis suspension determination part. 本発明の一実施形態に係る燃料漏れ診断処理のフローチャート。The flowchart of the fuel leak diagnostic process which concerns on one Embodiment of this invention.

符号の説明Explanation of symbols

1 燃料タンク
3 フィルタ
4 高圧ポンプ
5 アクチュエータ
7 コモンレール
8 圧力センサ
9 圧力調整弁
11 燃料噴射弁(インジェクタ)
2,6,10,12,13,14 配管
15 ECU
16 回転速度センサ
17 アクセルセンサ
20 燃欠診断開始判定部
21 燃料漏れ診断保留判定部
22 燃料漏れ診断部
23 前後方向液面挙動算出部
24 前後方向許容閾値算出部
25 第1前後方向比較部
26 横方向液面挙動算出部
27 横方向許容閾値算出部
28 第1横方向比較部
29 論理和回路
30 第2前後方向比較部
31 第2横方向比較部
32 論理積回路
33 フリップフロップ
100 燃料噴射装置
DESCRIPTION OF SYMBOLS 1 Fuel tank 3 Filter 4 High pressure pump 5 Actuator 7 Common rail 8 Pressure sensor 9 Pressure adjustment valve 11 Fuel injection valve (injector)
2, 6, 10, 12, 13, 14 Piping 15 ECU
DESCRIPTION OF SYMBOLS 16 Rotational speed sensor 17 Accelerator sensor 20 Burnout diagnosis start determination part 21 Fuel leak diagnosis pending | holding determination part 22 Fuel leak diagnosis part 23 Front-back direction liquid level behavior calculation part 24 Front-rear direction allowable threshold value calculation part 25 1st front-back direction comparison part 26 Side Directional liquid surface behavior calculation unit 27 Lateral allowable threshold calculation unit 28 First horizontal direction comparison unit 29 OR circuit 30 Second front-rear direction comparison unit 31 Second horizontal direction comparison unit 32 AND circuit 33 Flip-flop 100 Fuel injection device

図1は、本発明の一実施形態に係る蓄圧式燃料噴射装置の概略構成図である。   FIG. 1 is a schematic configuration diagram of a pressure accumulation fuel injection device according to an embodiment of the present invention.

この蓄圧式燃料噴射装置100は、ディーゼルエンジンの各気筒に対応して取り付けられた複数の燃料噴射弁(インジェクタ)11と、これらのインジェクタ11に供給する高圧燃料を蓄圧するコモンレール7と、燃料タンク1からフィルタ3を介して吸入した燃料を高圧に加圧してコモンレール7に圧送する高圧ポンプ4と、インジェクタ11、コモンレール7及び高圧ポンプ4を電子制御する電子制御ユニット(ECU)15と、を備えている。   This accumulator fuel injection device 100 includes a plurality of fuel injection valves (injectors) 11 attached corresponding to each cylinder of a diesel engine, a common rail 7 that accumulates high-pressure fuel supplied to these injectors 11, and a fuel tank. A high pressure pump 4 that pressurizes fuel sucked from 1 through a filter 3 to a high pressure and pumps the fuel to the common rail 7, and an electronic control unit (ECU) 15 that electronically controls the injector 11, the common rail 7, and the high pressure pump 4. ing.

高圧ポンプ4は、例えばエンジンによって駆動され、燃料タンク1内の燃料を配管2、低圧ポンプ(図示せず)及びフィルタ3を通じて吸入し、燃料を運転状態等に基づいて定められる高圧に昇圧して、配管6を通じてコモンレール7に供給する。高圧ポンプ4は、アクチュエータ5を有しており、ECU15からの制御信号がアクチュエータ5に入力されることによって燃料の圧送量が制御される。また、高圧ポンプ4には、過剰な燃料を燃料タンク1に戻すための配管14が連結されている。   The high-pressure pump 4 is driven by an engine, for example, and sucks fuel in the fuel tank 1 through a pipe 2, a low-pressure pump (not shown) and a filter 3, and boosts the fuel to a high pressure determined based on an operating state or the like. The common rail 7 is supplied through the pipe 6. The high-pressure pump 4 has an actuator 5, and the pumping amount of fuel is controlled when a control signal from the ECU 15 is input to the actuator 5. The high pressure pump 4 is connected to a pipe 14 for returning excess fuel to the fuel tank 1.

コモンレール7には、コモンレール内圧を検出するための圧力センサ8が取り付けられている。圧力センサ8は、検出した圧力検出信号をECU15に出力する。また、コモンレール7には、圧力調整弁9が設けられている。圧力調整弁9は、コモンレール内圧が過剰とならないようにコモンレール7内の余分な燃料を、配管13を介して燃料タンク1に戻す。   A pressure sensor 8 for detecting the common rail internal pressure is attached to the common rail 7. The pressure sensor 8 outputs the detected pressure detection signal to the ECU 15. The common rail 7 is provided with a pressure adjustment valve 9. The pressure regulating valve 9 returns excess fuel in the common rail 7 to the fuel tank 1 via the pipe 13 so that the common rail internal pressure does not become excessive.

各インジェクタ11は、燃料配管10を介してコモンレール7に連結されている。インジェクタ11は、内蔵されたコントロール弁(図示せず)の開閉によって、コモンレール7内の燃料をエンジンの気筒内に噴射する。燃料噴射時期及び燃料噴射量は、コントロール弁の開閉によって制御され、燃料噴射圧力は、コモンレール7内の圧力によって制御される。また、各インジェクタ11には、余分な燃料を燃料タンク1に戻すための配管12が接続されている。   Each injector 11 is connected to the common rail 7 via the fuel pipe 10. The injector 11 injects fuel in the common rail 7 into a cylinder of the engine by opening and closing a built-in control valve (not shown). The fuel injection timing and the fuel injection amount are controlled by opening and closing the control valve, and the fuel injection pressure is controlled by the pressure in the common rail 7. Each injector 11 is connected to a pipe 12 for returning excess fuel to the fuel tank 1.

ECU15は、回転速度センサ16及びアクセルセンサ17からエンジン回転速度NE及びエンジン負荷を表すアクセル開度ACCの検出信号を受け取り、エンジン回転速度NE及びアクセル開度ACCに基づいて、目標燃料圧力、燃料噴射時期及び燃料噴射量を算出する。そして、ECU15は、圧力センサ8によって検出される実燃料圧力が目標燃料圧力と一致するように、高圧ポンプ4(アクチュエータ5)及び圧力調整弁9に制御信号を出力し、コモンレール圧のフィードバック制御を行う。また、ECU15は、燃料噴射時期及び燃料噴射量の算出値に基づいて、インジェクタ11に制御信号を出力し、インジェクタ11による燃料噴射時期及び燃料噴射量を制御する。   The ECU 15 receives from the rotational speed sensor 16 and the accelerator sensor 17 detection signals of the engine rotational speed NE and the accelerator opening ACC representing the engine load, and based on the engine rotational speed NE and the accelerator opening ACC, the target fuel pressure, fuel injection Timing and fuel injection amount are calculated. The ECU 15 outputs a control signal to the high pressure pump 4 (actuator 5) and the pressure regulating valve 9 so that the actual fuel pressure detected by the pressure sensor 8 matches the target fuel pressure, and performs feedback control of the common rail pressure. Do. Further, the ECU 15 outputs a control signal to the injector 11 based on the calculated values of the fuel injection timing and the fuel injection amount, and controls the fuel injection timing and the fuel injection amount by the injector 11.

図2は、燃料液面の偏りがない場合と、燃料タンク1内の燃料液面に偏りがある場合における燃料タンク1内の様子を示す。図2(a)は、燃料タンク1内の燃料残量が所定値(燃欠診断開始燃料量)より大きいか、又は、燃料タンク1内の燃料残量が所定値より小さい場合において燃料液面の挙動が小さく、燃料吸込み口が燃料液面から露出せず、吸込み燃料に空気が混入しない状況を示す。図2(b)は、燃料タンク1内の燃料残量が所定値より小さい場合において、燃料液面の挙動が大きく、燃料吸込み口が燃料液面から露出し、吸込み燃料に空気が混入する状況を示す。ここで、燃料の液面挙動は、燃料液面の変動の度合いである。従って、燃料の液面挙動は、車両の加速度によって決まる。図2では、一方向(例えば、横方向)から見た燃料タンク1内の状態のみ示しているが、燃料タンク1の形状は車両の前後方向と横方向とで異なる場合があり、前後加速度又は横加速度の何れかが大きいと、加速度が大きい方向の液面が偏り、燃料に空気が混入する可能性がある。   FIG. 2 shows a state in the fuel tank 1 when there is no deviation in the fuel liquid level and when there is a deviation in the fuel liquid level in the fuel tank 1. FIG. 2A shows the fuel level when the remaining amount of fuel in the fuel tank 1 is larger than a predetermined value (fuel loss start fuel amount) or when the remaining amount of fuel in the fuel tank 1 is smaller than a predetermined value. This shows a situation in which the fuel intake port is not exposed from the fuel liquid level and air does not enter the intake fuel. FIG. 2 (b) shows a situation in which the fuel level behavior is large, the fuel inlet is exposed from the fuel level, and air is mixed into the sucked fuel when the remaining amount of fuel in the fuel tank 1 is smaller than a predetermined value. Indicates. Here, the liquid level behavior of the fuel is the degree of fluctuation of the fuel level. Therefore, the liquid level behavior of the fuel is determined by the acceleration of the vehicle. In FIG. 2, only the state in the fuel tank 1 viewed from one direction (for example, the lateral direction) is shown, but the shape of the fuel tank 1 may be different between the longitudinal direction and the lateral direction of the vehicle. If any of the lateral accelerations is large, the liquid level in the direction of large accelerations may be biased and air may be mixed into the fuel.

図1に示した燃料噴射装置100では、燃料タンク1からインジェクタ11までの経路において燃料漏れが発生した場合には、燃料漏れを検出してエンジンを停止する制御を行う。しかし、燃料残量が所定値以下となった場合に、車両の前後加速度又は横加速度の少なくとも一方が所定値以上になると、図2(b)に示すように燃料液面の挙動が大きくなり燃料液面が偏るため、高圧ポンプ4の吸入燃料に空気が混入する。このような場合には、コモンレール圧の実燃料圧力を目標燃料圧力まで上昇させることができなくなり、あるいは、コモンレール圧の実燃料圧力を目標燃料圧力にするための高圧ポンプ4のアクチュエータ5に出力する制御信号が標準値より大きくなる。これらの現象は、燃料漏れの際の現象と同じであり、燃欠状態と燃料漏れの状況とを区別ができない。   In the fuel injection device 100 shown in FIG. 1, when a fuel leak occurs in the path from the fuel tank 1 to the injector 11, control is performed to detect the fuel leak and stop the engine. However, when the remaining amount of fuel becomes a predetermined value or less, if at least one of the longitudinal acceleration and the lateral acceleration of the vehicle becomes a predetermined value or more, the behavior of the fuel level increases as shown in FIG. Since the liquid level is uneven, air is mixed into the intake fuel of the high-pressure pump 4. In such a case, the actual fuel pressure at the common rail pressure cannot be increased to the target fuel pressure, or the actual fuel pressure at the common rail pressure is output to the actuator 5 of the high-pressure pump 4 for setting the actual fuel pressure to the target fuel pressure. The control signal becomes larger than the standard value. These phenomena are the same as those at the time of fuel leakage, and it is not possible to distinguish between a fuel shortage condition and a fuel leakage situation.

そこで、本発明では、燃料残量、車両の前後加速度及び横加速度に基づいて燃料漏れ診断を一時的に保留する燃料漏れ診断装置を設けた。以下、図3から図5を参照して本発明の一実施形態に係る燃料漏れ診断装置を説明する。   Therefore, in the present invention, a fuel leakage diagnosis device that temporarily holds the fuel leakage diagnosis based on the remaining fuel amount, the longitudinal acceleration and the lateral acceleration of the vehicle is provided. Hereinafter, a fuel leakage diagnosis apparatus according to an embodiment of the present invention will be described with reference to FIGS. 3 to 5.

図3は、本発明の燃料漏れ診断装置の機能ブロックを示す。この燃料漏れ診断装置は、燃欠診断開始判定部20と、燃料漏れ診断保留判定部21と、燃料漏れ診断部22とを備える。燃欠診断開始判定部20と、燃料漏れ診断保留判定部21と、燃料漏れ診断部22は、ECU15により実現される。   FIG. 3 shows functional blocks of the fuel leakage diagnosis apparatus of the present invention. This fuel leak diagnosis apparatus includes a fuel shortage diagnosis start determination unit 20, a fuel leak diagnosis hold determination unit 21, and a fuel leak diagnosis unit 22. The burnout diagnosis start determination unit 20, the fuel leak diagnosis hold determination unit 21, and the fuel leak diagnosis unit 22 are realized by the ECU 15.

燃欠診断開始判定部20は、燃料タンク1内に設置された燃料計(図示せず)によって、燃料残量の検出値が予め設定された燃欠診断開始燃料量以下となったか否かを判定する。ここで、燃欠診断開始燃料量は、燃欠診断を開始するか否かを判断するための閾値であり、予め設定される。燃料漏れ診断保留判定部21は、燃欠診断開始判定部20によって燃料残量が燃欠診断開始燃料量以下になったと判定された場合に、車両の前後加速度gl1及び横加速度gt1並びに燃料残量Vに基づいて、燃料の液面挙動(燃料の液面変動の加速度)が許容範囲内か否かを判定し、燃料の液面挙動が許容範囲内であれば燃料漏れ診断部22に燃料漏れ診断を実行させ、燃料の液面挙動が許容範囲外であれば燃料漏れ診断部22による燃料漏れ診断を一時的に保留させる。燃料漏れ診断部22は、圧力センサ8によって測定される実燃料圧力がECU15で算出される目標燃料圧力に追従するか否か、又は、実燃料圧力を目標燃料圧力とするための高圧ポンプ4の吐出量が標準値以上となるか否か等によって、燃料漏れ診断を実行する。   The fuel shortage diagnosis start determination unit 20 determines whether or not the detected value of the remaining amount of fuel is equal to or less than a preset fuel shortage diagnosis start fuel amount by a fuel meter (not shown) installed in the fuel tank 1. judge. Here, the fuel shortage diagnosis start fuel amount is a threshold for determining whether or not to start the fuel shortage diagnosis, and is set in advance. The fuel leakage diagnosis hold determination unit 21 determines the vehicle longitudinal acceleration gl1 and lateral acceleration gt1 and the fuel remaining amount when the fuel shortage diagnosis start determination unit 20 determines that the remaining fuel amount is equal to or less than the fuel shortage diagnosis start fuel amount. Based on V, it is determined whether or not the fuel level behavior (acceleration of fuel level fluctuation) is within an allowable range. Diagnosis is executed, and if the fuel level behavior is outside the allowable range, the fuel leak diagnosis by the fuel leak diagnosis unit 22 is temporarily suspended. The fuel leakage diagnosis unit 22 determines whether or not the actual fuel pressure measured by the pressure sensor 8 follows the target fuel pressure calculated by the ECU 15, or the high-pressure pump 4 for setting the actual fuel pressure to the target fuel pressure. A fuel leakage diagnosis is executed depending on whether or not the discharge amount is equal to or greater than a standard value.

図4は、燃料漏れ診断保留判定部21の機能ブロック図である。   FIG. 4 is a functional block diagram of the fuel leakage diagnosis hold determination unit 21.

燃料漏れ診断保留判定部21は、前後方向液面挙動算出部23と、前後方向許容閾値算出部24と、第1前後方向比較部25と、横方向液面挙動算出部26と、横方向許容閾値算出部27と、第1横方向比較部28と、論理和回路29と、第2前後方向比較部30と、第2横方向比較部31と、論理積回路32と、フリップフロップ33と、を備えている。   The fuel leakage diagnosis suspension determination unit 21 includes a front-rear direction liquid level behavior calculation unit 23, a front-rear direction allowance threshold calculation unit 24, a first front-rear direction comparison unit 25, a lateral direction liquid level behavior calculation unit 26, and a lateral direction allowance. A threshold calculation unit 27, a first lateral comparison unit 28, an OR circuit 29, a second front-rear direction comparison unit 30, a second lateral comparison unit 31, a logical product circuit 32, a flip-flop 33, It has.

前後方向液面挙動算出部23は、加速度センサ(図示せず)で検出された前後加速度gl1を燃料の前後方向液面挙動(以下、前後液面挙動と称す)gsl1に変換する。前後液面挙動は、車両前後方向における燃料の液面変動の加速度に対応する。燃料の液面挙動は、車両の加速度に対して遅れて追従するため、前後液面挙動gsl1は、前後加速度gl1を遅延させるフィルタを通じて算出される。なお、前後加速度gl1は、車輪速度を微分することによって算出しても良い。   The front-rear direction liquid level behavior calculation unit 23 converts the front-rear acceleration gl1 detected by an acceleration sensor (not shown) into a fuel front-rear direction liquid level behavior (hereinafter referred to as front-rear liquid level behavior) gsl1. The front-rear liquid level behavior corresponds to the acceleration of the fuel level fluctuation in the vehicle front-rear direction. Since the liquid level behavior of the fuel follows the vehicle acceleration with a delay, the front / rear liquid level behavior gsl1 is calculated through a filter that delays the longitudinal acceleration gl1. The longitudinal acceleration gl1 may be calculated by differentiating the wheel speed.

前後方向許容閾値算出部24は、燃料計(図示せず)で測定した燃料残量Vに応じて、前後方向許容閾値gsl0を算出する。前後方向許容閾値gsl0は、特定の燃料残量Vにおいて、燃料の液面の偏りに起因して吸入燃料に空気が混入することがなく、燃料漏れ診断が許容される前後加速度の最大値である。   The front-rear direction allowable threshold value calculation unit 24 calculates the front-rear direction allowable threshold value gsl0 according to the remaining fuel amount V measured by a fuel gauge (not shown). The front-rear direction allowable threshold value gsl0 is the maximum value of the front-rear acceleration at which the fuel leakage diagnosis is permitted without air being mixed into the intake fuel due to the deviation of the fuel level in the specific fuel remaining amount V. .

第1前後方向比較部25は、前後液面挙動gsl1と、前後方向許容閾値gsl0とを比較して、前後液面挙動gsl1が前後方向許容閾値gsl0を超えている場合にa=“1”を出力し、前後液面挙動gsl1が前後方向許容閾値gsl0以下の場合にa=“0”を出力する。   The first front-rear direction comparison unit 25 compares the front-rear liquid level behavior gsl1 with the front-rear direction allowable threshold value gsl0, and when the front-rear liquid level behavior gsl1 exceeds the front-rear direction allowable threshold value gsl0, a = “1” is set. When the front / rear liquid level behavior gsl1 is equal to or smaller than the front / rear direction allowable threshold value gsl0, a = “0” is output.

横方向液面挙動算出部26は、加速度センサ(図示せず)で検出された横加速度gt1を燃料の横方向液面挙動(以下、横液面挙動と称す)gst1に変換する。横液面挙動は、車両横方向における燃料の液面変動の加速度に対応する。燃料の液面挙動は、車両の加速度に対して遅れて追従するため、横液面挙動gst1は、横加速度gt1を遅延させるフィルタを通じて算出される。なお、横加速度gt1は、ヨーレートと車速との積、規範ヨーレート(操舵角×車速)と車速との積によって算出しても良い。   The lateral liquid level behavior calculation unit 26 converts the lateral acceleration gt1 detected by an acceleration sensor (not shown) into a lateral liquid level behavior (hereinafter referred to as a lateral liquid level behavior) gst1 of fuel. The lateral liquid level behavior corresponds to the acceleration of the fuel liquid level fluctuation in the vehicle lateral direction. Since the liquid level behavior of the fuel follows the vehicle acceleration with a delay, the lateral liquid level behavior gst1 is calculated through a filter that delays the lateral acceleration gt1. The lateral acceleration gt1 may be calculated by the product of the yaw rate and the vehicle speed, or the product of the standard yaw rate (steering angle × vehicle speed) and the vehicle speed.

横方向許容閾値算出部27は、燃料計(図示せず)で測定した燃料残量Vに応じて、横方向許容閾値gst0を算出する。横方向許容閾値gst0は、特定の燃料残量Vにおいて、燃料の液面の偏りに起因して吸入燃料に空気が混入することがなく、燃料漏れ診断が許容される横加速度の最大値である。   The lateral direction allowable threshold value calculation unit 27 calculates the lateral direction allowable threshold value gst0 according to the remaining fuel amount V measured by a fuel gauge (not shown). The lateral allowable threshold value gst0 is the maximum value of the lateral acceleration at which the fuel leakage diagnosis is allowed without causing air to be mixed into the intake fuel due to the deviation of the fuel level in the specific fuel remaining amount V. .

第1横方向比較部28は、横液面挙動gst1と横方向許容閾値gst0とを比較して、横液面挙動gst1が横方向許容閾値gst0を超えている場合にb=“1”を出力し、横液面挙動gst1が横方向許容閾値gst0以下の場合にb=“0”を出力する。   The first lateral direction comparison unit 28 compares the lateral liquid level behavior gst1 with the lateral direction allowable threshold value gst0, and outputs b = “1” when the lateral liquid level behavior gst1 exceeds the lateral direction allowable threshold value gst0. When the horizontal liquid level behavior gst1 is equal to or less than the horizontal allowable threshold value gst0, b = “0” is output.

論理和回路29は、第1前後方向比較部25の出力aと、第1横方向比較部28の出力bとの論理和を算出し、出力a又は出力bの少なくとも一方が“1”である場合に、c=“1”を出力する。この場合、フリップフロップ33の設定入力部Sにはc=“1”が入力され、フリップフロップ33は、「燃料漏れ診断の保留条件成立」を表す出力e=“1”を出力する。即ち、論理和回路29及びフリップフロップ33は、前後加速度gsl1又は横加速度gst1の何れかがそれぞれ前後方向許容閾値gsl0又は横方向許容閾値gst0を超える場合に、「燃料漏れ診断の保留条件成立」を表す出力e=“1”を出力するように機能する。   The logical sum circuit 29 calculates the logical sum of the output a of the first front-rear direction comparison unit 25 and the output b of the first horizontal direction comparison unit 28, and at least one of the output a or the output b is “1”. In this case, c = "1" is output. In this case, c = “1” is input to the setting input unit S of the flip-flop 33, and the flip-flop 33 outputs an output e = “1” indicating “satisfaction condition of fuel leakage diagnosis established”. In other words, the logical sum circuit 29 and the flip-flop 33 set “satisfaction condition for fuel leakage diagnosis satisfied” when either the longitudinal acceleration gsl1 or the lateral acceleration gst1 exceeds the longitudinal allowable threshold gsl0 or the lateral allowable threshold gst0. It functions to output the output e = “1”.

一方、論理和回路29は、第1前後方向比較部25の出力aと、第1横方向比較部28の出力bとの論理和を算出し、出力a及び出力bの両方が“0”である場合に、c=“0”を出力する。この場合、フリップフロップ33の設定入力部Sにはc=“0”が入力され、フリップフロップ33は現状の出力eの状態を維持する。つまり、現状の出力が、「燃料漏れ診断の保留条件成立」を表す出力e=“1”であれば、e=“1”を維持し、現状の出力が、「燃料漏れ診断の保留条件不成立」を表す出力e=“0”であれば、e=“0”を維持する。即ち、論理和回路29及びフリップフロップ33は、前後加速度gsl1及び横加速度gst1の両方がそれぞれ前後方向許容閾値gsl0及び横方向許容閾値gst0以下である場合には、現状の出力e=“1”又は“0”を維持する。   On the other hand, the logical sum circuit 29 calculates the logical sum of the output a of the first front-rear direction comparison unit 25 and the output b of the first horizontal direction comparison unit 28, and both the output a and the output b are “0”. In some cases, c = "0" is output. In this case, c = “0” is input to the setting input unit S of the flip-flop 33, and the flip-flop 33 maintains the state of the current output e. That is, if the current output is an output e = “1” indicating that “the fuel leak diagnosis hold condition is satisfied”, e = “1” is maintained, and the current output is “the fuel leak diagnosis hold condition is not satisfied. If output e = “0” representing “”, e = “0” is maintained. That is, the logical sum circuit 29 and the flip-flop 33 have the current output e = “1” or the current output e = “1” when both the longitudinal acceleration gsl1 and the lateral acceleration gst1 are equal to or smaller than the longitudinal allowable threshold gsl0 and the lateral allowable threshold gst0, respectively. Keep “0”.

第2前後方向比較部30は、前後加速度gl1と前後加速度安定化閾値gl0とを比較し、前後加速度gl1が前後加速度安定化閾値gl0未満の場合に、a’=“1”を出力し、前後加速度gl1が前後加速度安定化閾値gl0以上の場合に、a’=“0”を出力する。前後加速度安定化閾値gl0は、燃料液面の挙動が十分に小さくなって安定して、吸入燃料に空気が混合しないような前後加速度の値であり、予め設定される。   The second longitudinal direction comparison unit 30 compares the longitudinal acceleration gl1 and the longitudinal acceleration stabilization threshold gl0, and outputs a ′ = “1” when the longitudinal acceleration gl1 is less than the longitudinal acceleration stabilization threshold gl0. When the acceleration gl1 is equal to or greater than the longitudinal acceleration stabilization threshold gl0, a ′ = “0” is output. The longitudinal acceleration stabilization threshold value gl0 is a value of the longitudinal acceleration so that the behavior of the fuel level becomes sufficiently small and stable so that air does not mix with the intake fuel, and is set in advance.

第2横方向比較部31は、横加速度gt1と横加速度安定化閾値gt0とを比較し、横加速度gt1が横加速度安定化閾値gt0未満の場合に、b’=“1”を出力し、横加速度gt1が横加速度安定化閾値gt0以上の場合に、b’=“0”を出力する。横加速度安定化閾値gt0は、燃料液面の挙動が十分に小さくなって安定して、吸入燃料に空気が混合しないような横加速度の値であり、予め設定される。   The second lateral direction comparison unit 31 compares the lateral acceleration gt1 with the lateral acceleration stabilization threshold value gt0, and outputs b ′ = “1” when the lateral acceleration gt1 is less than the lateral acceleration stabilization threshold value gt0. When the acceleration gt1 is equal to or greater than the lateral acceleration stabilization threshold gt0, b ′ = “0” is output. The lateral acceleration stabilization threshold value gt0 is a value of the lateral acceleration at which the behavior of the fuel liquid level becomes sufficiently small and stable so that air does not mix with the intake fuel, and is set in advance.

論理積回路32は、第2前後方向比較部30の出力a’と、第2横方向比較部31の出力b’との論理積を算出し、出力a’及び出力b’の両方が“1”である場合にd=“1”を出力する。このとき、フリップフロップ33のリセット入力部Rにd=“1”が入力され、フリップフロップ33は、出力eを“0”(「燃料漏れ診断の保留条件不成立」)にリセットする。   The logical product circuit 32 calculates a logical product of the output a ′ of the second front / rear direction comparison unit 30 and the output b ′ of the second horizontal direction comparison unit 31, and both the output a ′ and the output b ′ are “1”. If "," d = "1" is output. At this time, d = “1” is input to the reset input portion R of the flip-flop 33, and the flip-flop 33 resets the output e to “0” (“the fuel leakage diagnosis hold condition is not satisfied”).

一方、論理積回路32は、第2前後方向比較部30の出力a’と、第2横方向比較部31の出力b’との論理積を算出し、出力a’又は出力b’の何れかが“0”である場合にはd=“0”を出力する。このとき、フリップフロップ33のリセット入力部Rにはd=“0”が入力され、フリップフロップ33は出力eを現状の状態で維持する。   On the other hand, the logical product circuit 32 calculates the logical product of the output a ′ of the second front-rear direction comparison unit 30 and the output b ′ of the second horizontal direction comparison unit 31, and outputs either the output a ′ or the output b ′. When “0” is “0”, d = “0” is output. At this time, d = “0” is input to the reset input portion R of the flip-flop 33, and the flip-flop 33 maintains the output e in the current state.

以上述べたように、燃料漏れ診断保留判定部21は、前後液面挙動gsl1が前後方向許容閾値gsl0よりも大きい場合、又は、横液面挙動gst1が横方向許容閾値gst0よりも大きい場合の少なくとも一方の場合に、フリップフロップ33よりe=“1”(「燃料漏れ診断の保留条件成立」)を出力し、その後、前後加速度gl1及び横加速度gt1の両方が前後加速度安定閾値gl0及び横加速度安定閾値gt0よりも小さくなるまでe=“1”(「燃料漏れ診断の保留条件成立」)の出力を維持する。燃料漏れ診断保留判定部21は、前後加速度gl1及び横加速度gt1の両方が前後加速度安定閾値gl0及び横加速度安定閾値gt0よりも小さくなると、出力e=“0”(「燃料漏れ診断の保留条件不成立」)にリセットする。   As described above, the fuel leakage diagnosis suspension determination unit 21 performs at least the case where the front-rear liquid level behavior gsl1 is larger than the front-rear direction allowable threshold gsl0 or the case where the horizontal liquid level behavior gst1 is larger than the horizontal allowable threshold gst0. In one case, e = “1” is output from the flip-flop 33 (the fuel leakage diagnosis hold condition is satisfied), and then both the longitudinal acceleration gl1 and the lateral acceleration gt1 are the longitudinal acceleration stabilization threshold gl0 and the lateral acceleration stabilization. Until it becomes smaller than the threshold value gt0, the output of e = “1” (“Fuel leakage diagnosis hold condition established”) is maintained. When both the longitudinal acceleration gl1 and the lateral acceleration gt1 are smaller than the longitudinal acceleration stabilization threshold gl0 and the lateral acceleration stabilization threshold gt0, the fuel leakage diagnosis suspension determination unit 21 outputs e = “0” (“the fuel leakage diagnosis suspension condition is not satisfied. ”).

図5は、本発明の一実施形態に係る燃料漏れ診断処理のフローチャートである。   FIG. 5 is a flowchart of the fuel leakage diagnosis process according to an embodiment of the present invention.

ステップS10では、燃欠診断開始判定部20によって、燃料タンク1内に設置された燃料計(図示せず)によって測定された燃料残量Vが、燃欠診断開始燃料量以下となったか否か判断する。燃料残量Vが燃欠診断開始燃料量より大きければ、ステップS30に移行して、燃料漏れ診断を実行する。一方、燃料残量Vが燃欠診断開始燃料量以下であれば、ステップS20に移行して、燃料漏れ診断を保留するか否かを判断する。   In step S10, whether or not the remaining fuel amount V measured by a fuel gauge (not shown) installed in the fuel tank 1 by the burnout diagnosis start determination unit 20 is equal to or less than the burnout diagnosis start fuel amount. to decide. If the remaining fuel amount V is larger than the fuel shortage diagnosis start fuel amount, the routine proceeds to step S30, where fuel leakage diagnosis is executed. On the other hand, if the remaining fuel amount V is equal to or less than the fuel shortage diagnosis starting fuel amount, the process proceeds to step S20 to determine whether or not to hold the fuel leakage diagnosis.

ステップS20では、図4の燃料漏れ診断保留判定部21の処理を実行し、燃料漏れ診断保留判定部21の出力eが“0”(「燃料漏れ診断の保留条件不成立」)である場合に、ステップS30に移行して、燃料漏れ診断部22が燃料漏れ診断を実行する。一方、診断保留判定部21の出力eが“1”(「燃料漏れ診断の保留条件成立」)である場合には、ステップS40に移行して、燃料漏れ診断を一時的に保留する。   In step S20, the process of the fuel leak diagnosis hold determination unit 21 of FIG. 4 is executed, and when the output e of the fuel leak diagnosis hold determination unit 21 is “0” (“the fuel leak diagnosis hold condition is not satisfied”), In step S30, the fuel leakage diagnosis unit 22 executes a fuel leakage diagnosis. On the other hand, when the output e of the diagnosis hold determination unit 21 is “1” (“the fuel leak diagnosis hold condition is satisfied”), the process proceeds to step S40 to temporarily hold the fuel leak diagnosis.

以上述べた燃料漏れ診断処理によれば、燃料残量Vが燃欠診断開始燃料量以下(S10でYES)の場合に、前後液面挙動gsl1又は横液面挙動gst1の少なくとも一方が前後方向許容閾値gsl0又は横方向許容閾値gst0よりも大きくなると(S20でYES)、燃料漏れ診断の実行を保留する(S40)。そして、前後加速度gl1及び横加速度gt1の両方が前後加速度安定閾値gl0及び横加速度安定閾値gt0よりも小さくなる(S20でNO)まで、燃料漏れ診断の保留を継続する。これにより、燃欠状態において燃料液面に偏りが生じて燃料に空気が混入したためにコモンレール圧が上昇し難い状態を燃料漏れとして誤診断することを防止できる。また、前後加速度と横加速度の両方がそれぞれ、前後加速度安定閾値及び横加速度安定閾値未満になった場合に、燃料漏れ診断の保留を解除するため、燃料液面の挙動が十分に小さくなって安定した後に、燃料漏れ診断を再開することができる。   According to the fuel leakage diagnosis process described above, when the fuel remaining amount V is equal to or less than the fuel shortage diagnosis start fuel amount (YES in S10), at least one of the front / rear liquid level behavior gsl1 or the horizontal liquid level behavior gst1 is permitted in the front / rear direction. If it becomes larger than the threshold value gsl0 or the lateral direction allowable threshold value gst0 (YES in S20), execution of the fuel leakage diagnosis is suspended (S40). Then, the fuel leakage diagnosis is suspended until both the longitudinal acceleration gl1 and the lateral acceleration gt1 are smaller than the longitudinal acceleration stabilization threshold gl0 and the lateral acceleration stabilization threshold gt0 (NO in S20). Accordingly, it is possible to prevent a fuel leak from being erroneously diagnosed as a state in which the common rail pressure is unlikely to increase because the fuel liquid level is biased in the absence of fuel and air is mixed into the fuel. In addition, when both longitudinal acceleration and lateral acceleration are less than the longitudinal acceleration stability threshold and lateral acceleration stability threshold, the suspension of the fuel leak diagnosis is released, so the behavior of the fuel level becomes sufficiently small and stable. After that, the fuel leak diagnosis can be resumed.

また、燃料タンク1の形状が前後方向と横方向とで異なる場合には、燃料の液面挙動の特性も前後方向と横方向とで異なるが、前後方向及び横方向のそれぞれに対する燃料液面の挙動の閾値を超えるか否かを判定することによって、燃料液面の挙動を正確に評価することができる。   Further, when the shape of the fuel tank 1 is different in the front-rear direction and the lateral direction, the characteristics of the liquid level behavior of the fuel are also different in the front-rear direction and the lateral direction. By determining whether or not the behavior threshold is exceeded, the behavior of the fuel liquid level can be accurately evaluated.

従来の燃料漏れ診断装置では、燃料残量が少ない場合の車両の旋回時などには、一時的に燃料に空気が混入して燃料漏れと同様の現象を生じて、燃料漏れと誤診断する可能性がある。燃料漏れと診断された場合には、致命的な不具合であるため車両の再始動を禁止する処理が行われる。これに対して、本実施形態では、車両の旋回等によって一時的に燃料に空気が混入する状態を燃料残量V、前後加速度gl1及び横加速度gs1を用いて検出し、燃料漏れ診断を一時的に保留する。その後、燃料残量V、前後加速度gl1及び横加速度gs1に基づいて、燃料液面の挙動が安定したことを検出すると、燃料漏れ診断を再開する。従って、車両の旋回などによって一時的に燃料に空気が混入しても、燃料漏れと誤診断されることを回避できるとともに、燃料漏れ診断を確実に実行することができる。   With the conventional fuel leak diagnosis device, when turning the vehicle when the remaining amount of fuel is low, air can be temporarily mixed into the fuel and the same phenomenon as fuel leak can occur, making it possible to make a false diagnosis of fuel leak There is sex. When a fuel leak is diagnosed, a process for prohibiting restart of the vehicle is performed because of a fatal malfunction. On the other hand, in the present embodiment, a state in which air is temporarily mixed into the fuel due to turning of the vehicle or the like is detected using the remaining fuel amount V, the longitudinal acceleration gl1 and the lateral acceleration gs1, and the fuel leakage diagnosis is temporarily performed. Hold on to. Thereafter, when it is detected that the behavior of the fuel level is stabilized based on the remaining fuel amount V, the longitudinal acceleration gl1, and the lateral acceleration gs1, the fuel leakage diagnosis is resumed. Therefore, even if air is temporarily mixed into the fuel due to turning of the vehicle or the like, it can be avoided that the fuel leakage is erroneously diagnosed, and the fuel leakage diagnosis can be executed reliably.

また、本実施形態では、燃料残量Vとともに、前後加速度gl1及び横加速度gs1を用いて燃料液面の偏りを算出し、燃料に空気が混入する状態か否かを判断する。前後加速度gl1及び横加速度gs1を測定するセンサは、今後一般的になると考えられる横滑り防止装置などの車両の安定化システムでは標準化されるものである。従って、本実施形態によれば、燃料に空気が混入する状態か否かを判断するために、混入空気を認識できる圧力センサなどを燃料吸込み口に別途設ける必要がなく、コストダウンを図ることができる。   Further, in the present embodiment, the fuel liquid level deviation is calculated using the longitudinal acceleration gl1 and the lateral acceleration gs1 together with the fuel remaining amount V, and it is determined whether or not air is mixed into the fuel. A sensor that measures the longitudinal acceleration gl1 and the lateral acceleration gs1 is standardized in a vehicle stabilization system such as a skid prevention device that is considered to be common in the future. Therefore, according to the present embodiment, it is not necessary to separately provide a pressure sensor or the like capable of recognizing mixed air in the fuel suction port in order to determine whether or not air is mixed into the fuel, thereby reducing costs. it can.

Claims (6)

車両の蓄圧式燃料噴射装置における燃料漏れの有無を診断する燃料漏れ診断装置であって、
燃欠診断処理と並行して、前記車両の前後加速度及び横加速度、並びに燃料残量に基づいて、燃料の液面挙動が許容範囲か否かを判定し、燃料の液面挙動が許容範囲であれば燃料漏れ診断を実行させ、燃料の液面挙動が許容範囲外であれば燃料漏れ診断を一時的に保留させる、燃料漏れ診断保留判定部と、
前記燃料漏れ診断保留判定部からの指示に基づいて、燃料漏れ診断を実行する燃料漏れ診断部と、
を備え、
前記燃料漏れ診断保留判定部は、
前記車両の前後加速度の検出値に基づく前後方向の液面挙動が、燃料計によって検出される燃料残量に基づく前後方向許容閾値を超える場合、または、前記車両の横加速度の検出値に基づく横方向の液面挙動が、燃料計によって検出される燃料残量に基づく横方向許容閾値を超える場合の少なくとも一方の場合に、燃料漏れ診断を一時的に保留させる、燃料漏れ診断装置。
A fuel leakage diagnosis device for diagnosing the presence or absence of fuel leakage in an accumulator fuel injection device of a vehicle,
In parallel with the burnout diagnosis process, it is determined whether or not the liquid level behavior of the fuel is within an allowable range based on the longitudinal acceleration and lateral acceleration of the vehicle and the remaining amount of fuel. If there is a fuel leak diagnosis, the fuel leak diagnosis is temporarily suspended if the liquid level behavior of the fuel is outside the allowable range;
Based on an instruction from the fuel leakage diagnosis hold determination unit, a fuel leakage diagnosis unit that performs a fuel leakage diagnosis,
With
The fuel leakage diagnosis hold determination unit
When the liquid level behavior in the front-rear direction based on the detected value of the longitudinal acceleration of the vehicle exceeds the allowable threshold in the front-rear direction based on the remaining amount of fuel detected by the fuel gauge, or the lateral behavior based on the detected value of the lateral acceleration of the vehicle A fuel leak diagnosis apparatus that temporarily holds a fuel leak diagnosis in at least one of cases where a liquid level behavior in a direction exceeds a lateral allowable threshold value based on a fuel remaining amount detected by a fuel gauge .
請求項1に記載の燃料漏れ診断装置において、
燃料タンク内の燃料が燃欠診断開始燃料量以下になったか否かを判定する燃欠診断開始判定部を更に備え、
前記燃料漏れ診断保留判定部は、前記燃欠診断開始判定部によって燃料タンク内の燃料が燃欠診断開始燃料量以下になったと判定された場合に、燃料の液面挙動が許容範囲か否かの判定処理を開始する、燃料漏れ診断装置。
The fuel leakage diagnosis device according to claim 1,
A fuel shortage diagnosis start determination unit for determining whether or not the fuel in the fuel tank has become equal to or less than the fuel shortage diagnosis start fuel amount;
The fuel leak diagnosis suspension determination unit determines whether or not the fuel level behavior is within an allowable range when the fuel shortage diagnosis start determination unit determines that the fuel in the fuel tank has become equal to or less than the fuel shortage diagnosis start fuel amount. A fuel leakage diagnosis device that starts the determination process.
請求項1又は2に記載の燃料漏れ診断装置において、
前記燃料漏れ診断保留判定部は、
前記車両の前後加速度の検出値が前後加速度安定閾値未満となり、かつ、前記車両の横加速度の検出値が横加速度安定閾値未満となった場合に、燃料漏れ診断の保留を解除する、燃料漏れ診断装置。
The fuel leakage diagnosis device according to claim 1 or 2 ,
The fuel leakage diagnosis hold determination unit
A fuel leak diagnosis that releases the suspension of the fuel leak diagnosis when the detected value of the longitudinal acceleration of the vehicle is less than the longitudinal acceleration stability threshold and the detected lateral acceleration of the vehicle is less than the lateral acceleration stability threshold. apparatus.
車両の蓄圧式燃料噴射装置における燃料漏れの有無を診断する燃料漏れ診断方法であって、
燃欠診断処理と並行して、前記車両の前後加速度及び横加速度、並びに燃料残量に基づいて、燃料の液面挙動が許容範囲か否かを判定し、燃料の液面挙動が許容範囲であれば燃料漏れ診断を実行させ、燃料の液面挙動が許容範囲外であれば燃料漏れ診断を一時的に保留させることを含み
前記車両の前後加速度の検出値に基づく前後方向の液面挙動が、燃料計によって検出される燃料残量に基づく前後方向許容閾値を超える場合、または、前記車両の横加速度の検出値に基づく横方向の液面挙動が、燃料計によって検出される燃料残量に基づく横方向許容閾値を超える場合の少なくとも一方の場合に、燃料漏れ診断を一時的に保留させる燃料漏れ診断方法。
A fuel leakage diagnosis method for diagnosing the presence or absence of fuel leakage in an accumulator fuel injection device of a vehicle,
In parallel with the burnout diagnosis process, it is determined whether or not the liquid level behavior of the fuel is within an allowable range based on the longitudinal acceleration and lateral acceleration of the vehicle and the remaining amount of fuel. Including performing fuel leak diagnosis if it is present, and temporarily suspending fuel leak diagnosis if the liquid level behavior of the fuel is outside the allowable range,
When the liquid level behavior in the front-rear direction based on the detected value of the longitudinal acceleration of the vehicle exceeds the allowable threshold in the front-rear direction based on the remaining fuel amount detected by the fuel gauge, or the lateral behavior based on the detected value of the lateral acceleration of the vehicle A fuel leak diagnosis method for temporarily holding a fuel leak diagnosis in a case where the liquid level behavior in the direction exceeds a lateral allowable threshold value based on a fuel remaining amount detected by a fuel gauge .
請求項4に記載の燃料漏れ診断方法において、
燃料タンク内の燃料が燃欠診断開始燃料量以下になったと判定された場合に、燃料の液面挙動が許容範囲か否かの判定処理を開始する、燃料漏れ診断方法
The fuel leakage diagnosis method according to claim 4, wherein
A fuel leakage diagnosis method, wherein when it is determined that the fuel in the fuel tank has become equal to or less than a fuel shortage diagnosis start fuel amount, determination processing for determining whether or not the fuel level behavior is within an allowable range is started .
請求項4又は5に記載の燃料漏れ診断方法において、
前記車両の前後加速度の検出値が前後加速度安定閾値未満となり、かつ、前記車両の横加速度の検出値が横加速度安定閾値未満となった場合に、燃料漏れ診断の保留を解除する、燃料漏れ診断方法
The fuel leak diagnosis method according to claim 4 or 5,
A fuel leak diagnosis that releases the suspension of the fuel leak diagnosis when the detected value of the longitudinal acceleration of the vehicle is less than the longitudinal acceleration stability threshold and the detected lateral acceleration of the vehicle is less than the lateral acceleration stability threshold. Way .
JP2010519620A 2008-07-11 2008-12-12 Fuel leakage diagnostic device and fuel leakage diagnostic method for accumulator fuel injection device Expired - Fee Related JP5022491B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010519620A JP5022491B2 (en) 2008-07-11 2008-12-12 Fuel leakage diagnostic device and fuel leakage diagnostic method for accumulator fuel injection device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008180999 2008-07-11
JP2008180999 2008-07-11
JP2010519620A JP5022491B2 (en) 2008-07-11 2008-12-12 Fuel leakage diagnostic device and fuel leakage diagnostic method for accumulator fuel injection device
PCT/JP2008/072664 WO2010004663A1 (en) 2008-07-11 2008-12-12 Fuel leakage diagnostic device and fuel leakage diagnostic method for pressure storage type fuel injection device

Publications (2)

Publication Number Publication Date
JPWO2010004663A1 JPWO2010004663A1 (en) 2011-12-22
JP5022491B2 true JP5022491B2 (en) 2012-09-12

Family

ID=41506792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010519620A Expired - Fee Related JP5022491B2 (en) 2008-07-11 2008-12-12 Fuel leakage diagnostic device and fuel leakage diagnostic method for accumulator fuel injection device

Country Status (2)

Country Link
JP (1) JP5022491B2 (en)
WO (1) WO2010004663A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5828747B2 (en) * 2011-11-30 2015-12-09 ダイハツ工業株式会社 Fuel level judgment device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005147005A (en) * 2003-11-17 2005-06-09 Denso Corp Fuel injection device for internal combustion engine
JP2007077898A (en) * 2005-09-15 2007-03-29 Denso Corp Fuel injection control device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3008618B2 (en) * 1991-12-19 2000-02-14 トヨタ自動車株式会社 Fuel sub tank holding structure
JP2006063959A (en) * 2004-08-30 2006-03-09 Denso Corp Fuel remaining amount estimating device for vehicle and vehicle control device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005147005A (en) * 2003-11-17 2005-06-09 Denso Corp Fuel injection device for internal combustion engine
JP2007077898A (en) * 2005-09-15 2007-03-29 Denso Corp Fuel injection control device

Also Published As

Publication number Publication date
WO2010004663A1 (en) 2010-01-14
JPWO2010004663A1 (en) 2011-12-22

Similar Documents

Publication Publication Date Title
JP4355346B2 (en) Control device for internal combustion engine
US8061331B2 (en) Fuel injector for internal combustion engine
US9556827B2 (en) Fuel tank system
JP2012167559A (en) Fuel injection device
US7171944B1 (en) High-pressure fuel pump control device for internal combustion
JP2006291755A (en) Fuel injection control device
US10428769B2 (en) Fuel vapor treatment apparatus
JP2010185308A (en) Fuel supply apparatus for internal combustion engine
JP2000282932A (en) Failure determining method for high-pressure fuel injection system
JP2012021514A (en) Fuel injection control device
US10487765B2 (en) Failure detection apparatus for fuel systems of engine
JP2007247541A (en) Fuel injection device
JP5022491B2 (en) Fuel leakage diagnostic device and fuel leakage diagnostic method for accumulator fuel injection device
US9816455B2 (en) Control system for engine
JP4730613B2 (en) Common rail fuel injection system
JP5306109B2 (en) Abnormality diagnosis apparatus and abnormality diagnosis method for pressure sensor, and accumulator fuel injection apparatus
KR101106477B1 (en) Injector protection control method, and common rail fuel injection control device
JP2007100626A (en) Control device for fuel injection system
JP6390660B2 (en) Engine control device
JP2005344521A (en) Fuel supply system abnormality diagnosis device for internal combustion engine
JP2006316771A (en) Intake passage monitoring device for fuel supply device
JP5804639B2 (en) Fuel leak detection method and common rail fuel injection control device
JP5959060B2 (en) Pressure limit valve opening detection method and common rail fuel injection control device
JP4341606B2 (en) Fuel injection device for internal combustion engine
JP2010255544A (en) Fuel injection device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120517

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120615

R150 Certificate of patent or registration of utility model

Ref document number: 5022491

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees