JP5021240B2 - Hydraulic torque wrench - Google Patents

Hydraulic torque wrench Download PDF

Info

Publication number
JP5021240B2
JP5021240B2 JP2006158897A JP2006158897A JP5021240B2 JP 5021240 B2 JP5021240 B2 JP 5021240B2 JP 2006158897 A JP2006158897 A JP 2006158897A JP 2006158897 A JP2006158897 A JP 2006158897A JP 5021240 B2 JP5021240 B2 JP 5021240B2
Authority
JP
Japan
Prior art keywords
sliding member
guide groove
cylinder
hole
shaft base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006158897A
Other languages
Japanese (ja)
Other versions
JP2007326172A (en
Inventor
義明 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Makita Corp
Original Assignee
Makita Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Makita Corp filed Critical Makita Corp
Priority to JP2006158897A priority Critical patent/JP5021240B2/en
Publication of JP2007326172A publication Critical patent/JP2007326172A/en
Application granted granted Critical
Publication of JP5021240B2 publication Critical patent/JP5021240B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Details Of Spanners, Wrenches, And Screw Drivers And Accessories (AREA)

Description

本発明は、ボルト、ナットなどのねじ嵌合部材、その他の回転部材に回転トルクや締め付け又は弛めのためのトルクを与える油圧式トルクレンチに関する。   The present invention relates to a hydraulic torque wrench that applies rotational torque and torque for tightening or loosening to screw fitting members such as bolts and nuts and other rotating members.

この種の油圧式トルクレンチは、内部に液密室を形成し作動油を収容したシリンダを回転駆動し、該シリンダから前方に突出した出力軸に駆動力を伝達するものである。その伝達のために、液密室において、シリンダ内周面には、対向する1対の隆起部、及びこれらに直交する向きに対向する1対のシール用突部を設け、出力軸には径方向に出没する1対の摺動部材及び1対のシール用突起を設け、シリンダと共に回転して摺動部材を出没させるカム部材をシリンダの後端から出力軸の軸孔内に延ばした構造が採用されている。これにより、シリンダの回転に伴って、隆起部と突出した摺動部材、シール用突部とシール用突起のが各々接触する位置で、液密室内が分割される。この状態でシリンダが高速回転をすることにより、分割室内に形成される高圧で駆動力を伝達して摺動部材を軸回りに押し動かし、出力軸を回転させる。この構造の油圧式トルクレンチは、隆起部と摺動部材が各々1対設けられているので、出力軸に対して、シリンダの半回転毎に1回、前述の接触位置に到達する。したがって、シリンダの1回転で2回の衝撃的トルクが出力軸に発生する。   This type of hydraulic torque wrench is configured to rotationally drive a cylinder in which a fluid tight chamber is formed and contains hydraulic oil, and to transmit a driving force to an output shaft protruding forward from the cylinder. For the transmission, in the liquid tight chamber, a pair of opposed raised portions and a pair of sealing projections opposed in a direction perpendicular to these are provided on the inner peripheral surface of the cylinder, and the output shaft is radially arranged A structure is adopted in which a pair of sliding members and a pair of seal protrusions are provided in the cylinder, and a cam member that rotates with the cylinder and extends and slides out from the rear end of the cylinder into the shaft hole of the output shaft. Has been. Thereby, with the rotation of the cylinder, the liquid-tight chamber is divided at a position where the raised portion and the protruding sliding member, and the sealing projection and the sealing projection contact each other. When the cylinder rotates at a high speed in this state, the driving force is transmitted at a high pressure formed in the divided chamber to push the sliding member around the axis and rotate the output shaft. Since the hydraulic torque wrench having this structure is provided with a pair of raised portions and sliding members, it reaches the contact position once per half rotation of the cylinder with respect to the output shaft. Accordingly, two impact torques are generated in the output shaft by one rotation of the cylinder.

これに対し、シリンダの1回転で出力軸に1回の衝撃的トルクを発生させることにより、発生トルクを増大した油圧式トルクレンチが提案されている。このような油圧式トルクレンチとしては、例えば、特開昭64−45582号公報(特許文献1)、特開平5−253858号公報(特許文献2)などに記載されたものがある。   On the other hand, a hydraulic torque wrench has been proposed in which the generated torque is increased by generating an impact torque once on the output shaft by one rotation of the cylinder. Examples of such a hydraulic torque wrench include those described in Japanese Patent Application Laid-Open No. 64-45582 (Patent Document 1) and Japanese Patent Application Laid-Open No. 5-253858 (Patent Document 2).

特許文献1のものは、カム部材及び出力軸に各々油路を形成し、シリンダの1回転中に1対の隆起部と摺動部材とが合う2つの位置の内、一方の位置でカム部材と出力軸の各油路が連通し他方の位置では連通しない構造とされている。これにより、油路が連通した位置では高圧が形成されず、他方の合致位置でのみ駆動力の伝達が行なわれる。これによりシリンダの1回転で1回のトルクが発生する。   Patent Document 1 discloses that a cam member and an output shaft are each formed with an oil passage, and a cam member at one of two positions where a pair of raised portions and a sliding member meet during one rotation of the cylinder. The oil passages of the output shaft communicate with each other and do not communicate with each other at the other position. As a result, high pressure is not formed at the position where the oil passages are communicated, and driving force is transmitted only at the other matching position. As a result, one torque is generated by one rotation of the cylinder.

特許文献2のものは、カム部材から径方向に180°をなす位置で張り出した1対の扁平部が設けられている。1対の摺動部材は、径方向内方に突き出た係合部を有し、該係合部がカム部材の扁平部で内側から押圧されて径方向に突出し、シリンダの隆起部と接触し得る位置に至る。係合部については、1対の内、一方に切欠きを設け、摺動部材の係合部については、1対の内、一方の幅を大きく、他方の幅を小さくしてある。これにより、小さい方の係合部は切欠きを通過するので扁平部から押圧されず、大きい方の係合部は切欠きを通過しないので扁平部から押圧されるというように作動する。これにより、シリンダの1回転中における扁平部と摺動部材との2つの合致位置の一方でのみ摺動部材が突出して高圧が形成され、その結果、シリンダの1回転で1回のトルクが発生する。
特開昭64−45582号公報 特開平5−253858号公報
The thing of patent document 2 is provided with a pair of flat part which protruded in the position which makes | forms 180 degrees in a radial direction from a cam member. The pair of sliding members have engaging portions protruding inward in the radial direction, the engaging portions are pressed from the inside by the flat portion of the cam member, protrude in the radial direction, and come into contact with the raised portion of the cylinder. To the position to get. The engaging portion is provided with a notch in one of the pair, and the engaging portion of the sliding member has one of the pair having a larger width and the other having a smaller width. Accordingly, the smaller engaging portion is not pressed from the flat portion because it passes through the notch, and the larger engaging portion is operated so as to be pressed from the flat portion because it does not pass through the notch. As a result, the sliding member protrudes only at one of the two matching positions of the flat portion and the sliding member during one rotation of the cylinder to form a high pressure. As a result, one torque is generated by one rotation of the cylinder. To do.
JP-A 64-45582 JP-A-5-253858

シリンダの1回転で2回の衝撃的トルクを出力軸に発生させる構造では、駆動源のエネルギが多数回のトルク発生に分散する結果、大きなトルクを効率的に出力するのが困難である。   In the structure in which the impact torque is generated twice on the output shaft by one rotation of the cylinder, it is difficult to efficiently output a large torque as a result of the energy of the drive source being dispersed over many times of torque generation.

一方、シリンダの1回転で1回の衝撃的トルクを発生させるために前述の特許文献記載の構造とすると、次のような問題があった。すなわち、特許文献1記載の構造では、カム部材及び出力軸に油路を形成する必要があり、また、特許文献2記載の構造では、小さい方の係合部をもつ摺動部材は、大きい方の係合部をもつ摺動部材が2回突出動作をする間に1回しか突出動作をしないので、動作が不規則となる。また、いずれの構造においても、カム部材に接触した摺動部材は、トルク発生をしないタイミングにおいても無駄な突出動作を行なうので、その分、摺動部材及びその摺動面の摩耗を速め、エネルギロスを生むこととなる。   On the other hand, when the structure described in the above-mentioned patent document is used in order to generate a shocking torque once in one rotation of the cylinder, there are the following problems. That is, in the structure described in Patent Document 1, it is necessary to form an oil passage in the cam member and the output shaft. In the structure described in Patent Document 2, the sliding member having the smaller engagement portion is larger. Since the sliding member having the engagement portion performs the projecting operation only once during the projecting operation twice, the operation becomes irregular. Also, in any structure, the sliding member in contact with the cam member performs a wasteful projecting operation even at a timing when no torque is generated, and accordingly, wear of the sliding member and its sliding surface is accelerated, and energy is increased. It will cause loss.

したがって、本発明は、従来の装置に比して、簡単な構造で効率よくトルクを出力し得る油圧式トルクレンチを提供することを目的とする。   Accordingly, an object of the present invention is to provide a hydraulic torque wrench that can output torque efficiently with a simple structure as compared with a conventional device.

本発明は、前記目的を達成するため、対象物にトルクを与える出力軸と、該出力軸を回転可能に支持し前方へ突出するように貫通させた前壁、駆動入力部を後部に接続される後壁、及びこれらの間に位置する側壁を備えて、内部に作動油収容の液密室を形成し、前記出力軸と同一の回転軸線回りに回転し得るシリンダと、前記液密室内で前記出力軸により径方向に摺動可能に保持された複数の摺動部材と、前記シリンダと共に回転するように前記後壁に接続されたカム部材とを備え、前記出力軸は、前記前壁に支持され前方へ突出した軸先部と、前記液密室内に位置する軸基部とを備えており、前記シリンダの側壁内面には、前記摺動部材との接触に基づいて前記軸基部に回転駆動力を及ぼすための隆起部が周方向に複数形成されており、前記軸基部には、前記回転軸線に沿って延びる収容孔と、前記隆起部に対応した間隔で配置され各々が軸線方向に延び外周面に開いた複数のガイド溝とが形成されており、前記摺動部材は、前記軸基部の各ガイド溝に径方向に摺動可能に受け入れられており、該ガイド溝に沿って延びる外側部分と、該外側部分より径方向内方に位置し一部を前記収容孔内へ突出させ得るように設けられた内側部分とを備え、該複数の摺動部材は、前記内側部分を軸線方向における相互に異なる箇所に備えており、前記軸基部は、前記ガイド溝の径方向内側に底壁を備え、該底壁には前記内側部分を径方向に案内する貫通孔が形成されており、前記カム部材は、前記収容孔内に位置する扁平部を軸線方向の異なる箇所に複数備えており、該扁平部は、前記回転軸線から相互に異なる半径方向へ延び、前記カム部材が1回転する毎に同時に前記摺動部材に作用し、該摺動部材を前記隆起部に接触し得る作動位置に至らしめるように各摺動部材に対応して配置されており、前記カム部材は、前記扁平部に対して軸方向に並んで配置され前記軸基部における収容孔の内周面に沿う周面を有する円盤部を備え、前記軸基部には、前記複数のガイド溝の各間の位置で前記円盤部に臨んで開口し該軸基部を半径方向に貫通するリリース孔が形成され、前記円盤部は、周面の一部が切欠かれて連通部が形成されており、該連通部は、前記扁平部が前記摺動部材を前記作動位置に至らしめる回転位置にあるときに、前記ガイド溝に臨む位置にあって該ガイド溝と前記リリース孔との連通を遮断し、前記扁平部が前記回転位置を通過したときに前記ガイド溝及びリリース孔に跨って両者を連通させる大きさに形成されていることを特徴とする油圧式トルクレンチを提供するものである(発明1)。 In order to achieve the above object, the present invention has an output shaft that applies torque to an object, a front wall that rotatably supports the output shaft and penetrates it so as to protrude forward, and a drive input section connected to the rear portion. A rear wall and a side wall located between them, forming a fluid-tight chamber containing hydraulic oil therein, a cylinder capable of rotating about the same rotation axis as the output shaft, and the cylinder in the liquid-tight chamber A plurality of sliding members held slidably in the radial direction by an output shaft; and a cam member connected to the rear wall so as to rotate together with the cylinder, wherein the output shaft is supported by the front wall. And a shaft base portion that protrudes forward and a shaft base portion that is positioned in the liquid-tight chamber, and a rotational driving force is applied to the shaft base portion on the inner surface of the side wall of the cylinder based on contact with the sliding member. A plurality of ridges are formed in the circumferential direction to exert The shaft base is formed with a receiving hole extending along the rotation axis, and a plurality of guide grooves that are arranged at intervals corresponding to the raised portions and extend in the axial direction and open on the outer peripheral surface. The moving member is slidably received in each guide groove of the shaft base so as to be slidable in the radial direction, and an outer portion extending along the guide groove and a portion located radially inward from the outer portion and partially An inner portion provided so as to protrude into the receiving hole, and the plurality of sliding members include the inner portion at different locations in the axial direction, and the shaft base portion includes the guide groove. A bottom wall is provided on the radially inner side, and a through hole is formed in the bottom wall for guiding the inner portion in the radial direction. The cam member has a flat portion positioned in the housing hole in the axial direction. A plurality of different portions are provided, and the flat portion is provided on the rotating shaft. The sliding members extend in different radial directions from each other and act on the sliding member simultaneously every time the cam member makes one rotation, so that the sliding member reaches an operating position where it can contact the raised portion. The cam member includes a disk portion that is arranged side by side in the axial direction with respect to the flat portion and has a circumferential surface along an inner circumferential surface of the accommodation hole in the shaft base portion, and the shaft A release hole is formed in the base so as to face the disk part at a position between each of the plurality of guide grooves and to penetrate the shaft base part in the radial direction. Thus, a communication portion is formed, and the communication portion is located at a position facing the guide groove when the flat portion is in a rotational position that brings the sliding member to the operating position. The communication with the release hole is blocked, and the flat portion is in the rotational position. The present invention provides a hydraulic torque wrench characterized in that the hydraulic torque wrench is formed in such a size as to communicate with both of the guide groove and the release hole when passing through the device (Invention 1).

発明1は、以下の構造1を基本として成立したものであり、発明1及び構造1は、関連する構造として、構造2以下のものをさらに採用することができる。   The invention 1 is established on the basis of the following structure 1, and the invention 1 and the structure 1 can further adopt the structure 2 or less as related structures.

[構造1]油圧式トルクレンチは、対象物にトルクを与える出力軸と、該出力軸を回転可能に支持し前方へ突出するように貫通させ、駆動入力部を後部に接続され、内部に作動油収容の液密室を形成するシリンダと、前記液密室内で前記出力軸により径方向に摺動可能に保持された摺動部材と、前記シリンダから回転力を受けるように接続されたカム部材とを備え、前記出力軸は、前記シリンダに支持され前方へ突出した軸先部と、前記液密室内に位置する軸基部とを備えており、前記シリンダの側壁内面には、前記摺動部材との接触に基づいて前記軸基部に回転駆動力を及ぼすための隆起部が周方向に複数形成されており、前記軸基部には、前記回転軸線に沿って延びる収容孔と、軸線方向に延び外周面に開いたガイド溝とが形成されており、前記摺動部材は、前記軸基部の各ガイド溝に径方向に摺動可能に受け入れられ、一部を前記収容孔内へ突出させ得るように設けられており、前記カム部材は、前記収容孔内に位置する偏平部を備えており、該扁平部は、前記摺動部材に作用し、該摺動部材を前記隆起部に接触し得る作動位置に至らしめるように該摺動部材に対応して配置されている。   [Structure 1] The hydraulic torque wrench has an output shaft for applying torque to an object, and the output shaft is rotatably supported so as to protrude forward, and a drive input portion is connected to the rear portion to operate internally. A cylinder that forms a fluid-tight chamber containing oil; a sliding member that is slidable in the radial direction by the output shaft in the liquid-tight chamber; and a cam member that is connected to receive a rotational force from the cylinder; The output shaft includes a shaft tip portion supported by the cylinder and protruding forward, and a shaft base portion located in the liquid-tight chamber, and an inner surface of the side wall of the cylinder includes the sliding member. A plurality of raised portions are formed in the circumferential direction for exerting a rotational driving force on the shaft base portion based on the contact of the shaft, and the shaft base portion includes a receiving hole extending along the rotation axis, and an outer periphery extending in the axial direction. A guide groove that is open on the surface. The sliding member is slidably received in each guide groove of the shaft base portion in the radial direction, and a part of the sliding member protrudes into the receiving hole. A flat portion located in the hole is provided, and the flat portion acts on the sliding member and corresponds to the sliding member so as to reach the operating position where the sliding member can contact the raised portion. Are arranged.

[構造2]前記発明1又は構造1において、前記摺動部材は、前記液密室内の油圧変動を緩衝するためのアキュームレータを内蔵し、該アキュームレータは、前記回転軸線に沿う方向に延び一端部に通液孔を有する貯留室と、貯留室に摺動可能に収容され前記通液孔に向けて付勢されたピストンとを備えることができる。   [Structure 2] In the invention 1 or structure 1, the sliding member incorporates an accumulator for buffering a hydraulic pressure fluctuation in the liquid tight chamber, and the accumulator extends in a direction along the rotation axis and is at one end. A storage chamber having a liquid passage hole and a piston slidably accommodated in the storage chamber and biased toward the liquid passage hole can be provided.

[構造3]前記発明1又は構造1若しくは2において、前記シリンダの隆起部は、前記摺動部材との接触時に該摺動部材が微小変位により該隆起部を通過するように設定されており、前記隆起部と前記摺動部材との接触に基づく前記軸基部への回転駆動力が、前記接触から通過に至るまでの接触圧により形成されるものとすることができる。   [Structure 3] In the invention 1 or the structure 1 or 2, the raised portion of the cylinder is set so that the sliding member passes through the raised portion by a minute displacement when in contact with the sliding member. A rotational driving force to the shaft base portion based on contact between the raised portion and the sliding member may be formed by contact pressure from the contact to passage.

[構造]前記発明1又は構造1は、前記シリンダと前記軸基部との間に油収容空間が形成され、前記軸基部には、前記摺動部材と異なる周方向の位置にシール用突起が形成されており、前記シリンダには、前記摺動部材が前記隆起部に接触したときに前記シール用突起に接触して前記油収容空間を分割空間に仕切るためのシール用凸部がさらに設けられており、前記隆起部と前記摺動部材との接触に基づく前記軸基部への回転駆動力が、該接触によるシール下で前記分割空間に生じる圧力により形成されるものとすることができる。 [Structure 4 ] In the invention 1 or structure 1, an oil containing space is formed between the cylinder and the shaft base, and the shaft base has protrusions for sealing at positions in a circumferential direction different from the sliding member. The cylinder is further provided with a sealing protrusion for contacting the sealing protrusion when the sliding member contacts the raised portion and partitioning the oil containing space into divided spaces. The rotational driving force to the shaft base portion based on the contact between the raised portion and the sliding member can be formed by the pressure generated in the divided space under the seal by the contact.

本発明によれば、次の効果を奏する油圧式トルクレンチを提供することができる。すなわち、このトルクレンチにおいては、出力軸の複数のガイド溝の各々に摺動部材が摺動可能に保持され、出力軸の収容孔内で回転するカム部材の扁平部が、摺動部材をシリンダ内面の隆起部に接触し得る作動位置に至らしめ、隆起部は、その接触に基づいて出力軸に回転駆動力を及ぼす。そして、複数の前記摺動部材は、収容孔内へ突出可能な内側部分を軸線方向における相互に異なる箇所に備え、カム部材は、前記偏平部を軸線方向の異なる箇所において複数備え、これらの扁平部は、カム部材が1回転する毎に同時に摺動部材に作用して該摺動部材を作動位置に至らしめるように各摺動部材に対応して配置されている。このように、複数の摺動部材に対して軸線方向及び回転方向に対応する位置にある扁平部が、カム部材の1回転毎に摺動部材に作用するので、前述の従来技術のようなトルク発生のないタイミングでの摺動部材の突出動作がなく、簡単な構造で、効率よくトルクを出力することができる。   According to the present invention, a hydraulic torque wrench having the following effects can be provided. That is, in this torque wrench, the sliding member is slidably held in each of the plurality of guide grooves of the output shaft, and the flat portion of the cam member that rotates within the accommodation hole of the output shaft serves as a cylinder for the sliding member. An operating position that can contact the raised portion of the inner surface is reached, and the raised portion exerts a rotational driving force on the output shaft based on the contact. The plurality of sliding members include inner portions that can protrude into the receiving holes at different locations in the axial direction, and the cam member includes a plurality of the flat portions at different locations in the axial direction. The portion is arranged corresponding to each sliding member so as to simultaneously act on the sliding member every time the cam member makes one rotation and bring the sliding member to the operating position. As described above, the flat portions located at the positions corresponding to the axial direction and the rotation direction with respect to the plurality of sliding members act on the sliding member for each rotation of the cam member. There is no protruding operation of the sliding member at the timing when it does not occur, and torque can be output efficiently with a simple structure.

以下、本発明の一実施形態について添付図面を参照しつつ説明する。図面中の同一又は同種の部分については、同じ符号を付して説明を省略することがある。   Hereinafter, an embodiment of the present invention will be described with reference to the accompanying drawings. The same or similar parts in the drawings may be denoted by the same reference numerals and description thereof may be omitted.

[第1実施形態]
図1は本発明に係る油圧式トルクレンチの第1の実施形態を示しており、図2はそのケーシングの一部を切欠いた図である。この油圧式トルクレンチは、ボディ1とハンドル2とを備え、ボディ1は、後部に駆動モータ3、前部に伝動装置4を備え、前端から出力軸10を突出させている。ハンドル2は、片手で把持される大きさとされ、前側にモータ作動のオン・オフ用スイッチ5が設けられている。駆動モータは、電動モータ、エアモータ等、適宜の駆動源を備えたものを用いることができる。
[First Embodiment]
FIG. 1 shows a first embodiment of a hydraulic torque wrench according to the present invention, and FIG. 2 is a partially cutaway view of the casing. This hydraulic torque wrench includes a body 1 and a handle 2, and the body 1 includes a drive motor 3 at a rear portion and a transmission device 4 at a front portion, and an output shaft 10 projects from a front end. The handle 2 is sized to be held with one hand, and a motor-operated on / off switch 5 is provided on the front side. As the drive motor, a motor provided with an appropriate drive source such as an electric motor or an air motor can be used.

図3は図1の伝動装置4の縦断面、図4は図3のIV−IV線に沿う断面を各々示している。伝動装置4は、対象物にトルクを与える出力軸10を前方へ突出させたシリンダ20を備え、該シリンダの後部が駆動モータ3の回転軸3aに接続されている。シリンダ20は、出力軸10を回転可能に支持し前方へ突出するように貫通させた前壁21と、回転軸3aを後方に接続される後部部材22、及びこれらの間に位置する側壁23を備えている。   3 shows a longitudinal section of the transmission device 4 of FIG. 1, and FIG. 4 shows a section taken along line IV-IV of FIG. The transmission device 4 includes a cylinder 20 in which an output shaft 10 that gives torque to an object protrudes forward, and a rear portion of the cylinder is connected to a rotating shaft 3 a of the drive motor 3. The cylinder 20 includes a front wall 21 through which the output shaft 10 is rotatably supported and protruded forward, a rear member 22 to which the rotary shaft 3a is connected rearward, and a side wall 23 positioned therebetween. I have.

この実施形態においては、前壁21と側壁23とが一体的に形成され、後部部材22は側壁23後端の開口を閉じる後壁の役割をする。後部部材22は、筒状壁26と、該筒状壁の前端から径方向外方へ広がったフランジ27と、筒状壁26の後端から後方へ延びた接続用軸部28とを備え、フランジ27が側壁23の開口に嵌合された状態で、後方から保持リング29を側壁23にねじ嵌合して固定されている。   In this embodiment, the front wall 21 and the side wall 23 are integrally formed, and the rear member 22 serves as a rear wall that closes the opening at the rear end of the side wall 23. The rear member 22 includes a cylindrical wall 26, a flange 27 extending radially outward from the front end of the cylindrical wall, and a connecting shaft portion 28 extending rearward from the rear end of the cylindrical wall 26, In a state where the flange 27 is fitted in the opening of the side wall 23, the holding ring 29 is screwed and fixed to the side wall 23 from the rear.

前壁21と主軸10との間、及びフランジ27と側壁23との間には、シールリング21a,27aが配置され、シリンダ20内部は液密室24を形成し、内部に作動油が収容されている。   Seal rings 21a and 27a are arranged between the front wall 21 and the main shaft 10 and between the flange 27 and the side wall 23. A liquid tight chamber 24 is formed inside the cylinder 20, and hydraulic oil is accommodated therein. Yes.

出力軸10は、シリンダ20の前壁21に支持され前方へ突出した軸先部11と、液密室24内に位置する軸基部12とを備えており、軸基部12は後端部を後部部材22の筒状壁26の内側に回転可能に支持されている。また、軸基部12は、軸線方向に延びる収容孔14を内部に形成された囲繞壁15を備え、該囲繞壁には軸線方向に延び周面から径方向に深くされ、相互に平行に延びる側壁を備えた1対のガイド溝16が形成されている。また、囲繞壁15におけるガイド溝16の底壁15aには、1対の貫通孔17が形成されている。   The output shaft 10 includes a shaft tip portion 11 that is supported by the front wall 21 of the cylinder 20 and protrudes forward, and a shaft base portion 12 that is positioned in the liquid-tight chamber 24, and the shaft base portion 12 has a rear end portion as a rear member. It is rotatably supported inside the 22 cylindrical walls 26. The shaft base 12 includes an enclosure wall 15 formed therein with a housing hole 14 extending in the axial direction. The enclosure wall extends in the axial direction and is deepened in the radial direction from the peripheral surface, and extends in parallel to each other. A pair of guide grooves 16 provided with A pair of through holes 17 are formed in the bottom wall 15 a of the guide groove 16 in the surrounding wall 15.

液密室24内では、軸基部12のガイド溝16に摺動部材40が径方向に摺動可能に保持されている。摺動部材40は、ガイド溝16の軸方向長さに亘って延びる外側部分41と、該外側部分41の径方向内側に接しているローラ(小片)からなる内側部分42とを備え、軸基部12のガイド溝16により径方向に摺動可能に保持されている。外側部分41は、ガイド溝16の側壁に平行な側壁を有し、ガイド溝16にほぼ密に嵌合している。内側部分42は、前述の貫通孔17に挿入され、摺動位置により該貫通孔17から収容孔14内に突出した位置と該収容孔14から後退した位置とを取り得る。1対の摺動部材40は、内側部分42を軸線方向における相互に異なる箇所に備えている。この例のように、内側部分42をローラとし、その軸線をカム部材50の軸線と平行にすることにより、カム部材50ところがり接触となり摩擦抵抗が小さくなる。この観点から、内側部分42を球体とすることもできる。或いは、摩擦抵抗の小さい部材であれば、内側部分42を貫通孔17に対応した断面形状を有するピンとすることもできる。   In the liquid tight chamber 24, the sliding member 40 is held in the guide groove 16 of the shaft base 12 so as to be slidable in the radial direction. The sliding member 40 includes an outer portion 41 extending over the axial length of the guide groove 16 and an inner portion 42 formed of a roller (small piece) in contact with the radially inner side of the outer portion 41. The twelve guide grooves 16 are slidably held in the radial direction. The outer portion 41 has a side wall parallel to the side wall of the guide groove 16 and is fitted into the guide groove 16 almost closely. The inner portion 42 is inserted into the aforementioned through-hole 17 and can take a position protruding from the through-hole 17 into the accommodation hole 14 and a position retracted from the accommodation hole 14 depending on the sliding position. The pair of sliding members 40 includes inner portions 42 at different locations in the axial direction. As in this example, when the inner portion 42 is a roller and its axis is parallel to the axis of the cam member 50, the cam member 50 is brought into point contact and the frictional resistance is reduced. From this viewpoint, the inner portion 42 may be a sphere. Or if it is a member with small frictional resistance, the inner part 42 can also be made into the pin which has the cross-sectional shape corresponding to the through-hole 17. FIG.

図4に示すように、シリンダ20の側壁23は、内周面の断面形状がほぼ円形とされ、なだらかに隆起した1対の隆起部31が対向位置に設けられており、これらの隆起部31は各々軸方向に延びている。これらの部分は、図4に示すように、シリンダ20の回転位置において、1対の隆起部31と1対の摺動部材40とが同時に対向位置に至るように配置されており、その位置で隆起部31は摺動部材40に接して径方向に押し込み力を与える。   As shown in FIG. 4, the side wall 23 of the cylinder 20 has a substantially circular cross-sectional shape on the inner peripheral surface, and a pair of gently raised ridges 31 are provided at opposing positions. Each extend in the axial direction. As shown in FIG. 4, these portions are arranged so that the pair of raised portions 31 and the pair of sliding members 40 reach the opposite positions at the same time in the rotational position of the cylinder 20. The raised portion 31 is in contact with the sliding member 40 and applies a pushing force in the radial direction.

また、軸基部12の収容孔14には、図5及び図6に示すカム部材50が収容されている。図5の(a)は正面図、(b)は平面図、(c)は(a)のc視図、(d)は(b)のd視図、(e)はaのe−e線断面図、(f)は(b)のf−f線断面図であり、図6は斜視図である。   Further, the cam member 50 shown in FIGS. 5 and 6 is accommodated in the accommodation hole 14 of the shaft base 12. 5A is a front view, FIG. 5B is a plan view, FIG. 5C is a c view of FIG. 5A, FIG. 5D is a d view of FIG. 5B, and FIG. (F) is a sectional view taken along line ff of (b), and FIG. 6 is a perspective view.

カム部材50は、前端部51,中央部52及び後端部53が、収容孔14の内径に近い外径を有した円板状とされ、前端部51と中央部52との間、及び中央部52と後端部53との間に、扁平部54,55が各々設けられている。2つの扁平部54,55は、軸線方向において摺動部材の内側部分42に対応した位置で、相反する径方向に延びている。円板状の前端部51,中央部52及び後端部53には、周縁の一部を平らにした各1つの切欠部51a,52a及び、相互に対向する位置にある1対の切欠部53aが設けられ、収容孔14内での作動油の流通と圧力の均一化が図られている。カム部材50の後端部53における後端面には、径方向に延びる凸部53cが設けられている。一方、シリンダ20の後壁22における内端面には、該凸部53cに対応して凹部22aが設けられており(図3)、これら凸部53c及び凹部22aの嵌合により、カム部材50は、シリンダ20と共に回転するようになっている。 The cam member 50 has a front end portion 51, a central portion 52, and a rear end portion 53 having a disk shape having an outer diameter close to the inner diameter of the accommodation hole 14, and between the front end portion 51 and the central portion 52 and in the center. Flat portions 54 and 55 are respectively provided between the portion 52 and the rear end portion 53. The two flat portions 54 and 55 extend in opposite radial directions at positions corresponding to the inner portion 42 of the sliding member in the axial direction. Each of the disc-shaped front end 51, center 52 and rear end 53 has one notch 51a, 52a in which a part of the periphery is flattened, and a pair of notches 53a at positions facing each other. Is provided, and the circulation of the hydraulic oil and the equalization of the pressure in the accommodation hole 14 are achieved. On the rear end surface of the rear end portion 53 of the cam member 50, a convex portion 53c extending in the radial direction is provided. On the other hand, a recess 22a is provided on the inner end surface of the rear wall 22 of the cylinder 20 corresponding to the protrusion 53c (FIG. 3), and the cam member 50 is fitted by the fitting of the protrusion 53c and the recess 22a. , And rotates with the cylinder 20.

図7は、カム部材50と摺動部材40との位置関係を、部材の分解状態で示している。図7(a)はカム部材50の扁平部54,55により摺動部材40が押し出された状態、図7(b)はカム部材50の扁平部54,55の作用から外れて摺動部材40が後退した状態を各々示している。摺動部材40は、カム部材50の内側部分42が扁平部54,55の先端部に接しているときにガイド溝16から突出した位置にあり、カム部材50の回転と共に扁平部54,55の扁平面へと内側部分42の接触部が移行するに従ってガイド溝16内へ没入可能な状態となる。図4は、扁平部54,55が摺動部材40をガイド溝16から突出させた状態を示している。   FIG. 7 shows the positional relationship between the cam member 50 and the sliding member 40 in an exploded state of the members. 7A shows a state in which the sliding member 40 is pushed out by the flat portions 54 and 55 of the cam member 50, and FIG. 7B shows a state in which the sliding member 40 deviates from the action of the flat portions 54 and 55 of the cam member 50. Each indicates a state of retreating. The sliding member 40 is in a position protruding from the guide groove 16 when the inner portion 42 of the cam member 50 is in contact with the tip end portions of the flat portions 54 and 55, and the flat portions 54 and 55 of the sliding member 40 are rotated along with the rotation of the cam member 50. As the contact portion of the inner portion 42 moves to the flat surface, the guide groove 16 can be immersed. FIG. 4 shows a state in which the flat portions 54 and 55 project the sliding member 40 from the guide groove 16.

出力軸10の軸基部12にはさらに、図8に示すように、収容孔14から径方向に対向する位置で外方へ貫通するリリース孔19が1対形成されている。図8(a)は図3のVIII-VIII線に沿う断面図、図8(b)はリリース孔19の内端部付近の拡大図である。リリース孔19は、図3に破線で示すように、カム部材50の後端部53に対応する位置に設けられている。一方、カム部材50の後端部53には、切欠部53aと異なる位置に切欠き状に設けられた連通部53bが、径方向に対向する位置に1対形成されている。切欠部53a及び連通部53bは、後述するように、カム部材50の回転位置により、収容孔14を通じてガイド孔16の貫通孔17とリリース孔19とを連通させたり(図9)、その連通を閉じたり(図8)するように機能する。   Further, as shown in FIG. 8, a pair of release holes 19 are formed in the shaft base portion 12 of the output shaft 10 so as to penetrate outward from the housing holes 14 at positions opposed to each other in the radial direction. 8A is a cross-sectional view taken along the line VIII-VIII in FIG. 3, and FIG. 8B is an enlarged view of the vicinity of the inner end of the release hole 19. The release hole 19 is provided at a position corresponding to the rear end portion 53 of the cam member 50 as indicated by a broken line in FIG. On the other hand, in the rear end portion 53 of the cam member 50, a pair of communication portions 53b provided in a notch shape at positions different from the notch portions 53a are formed at positions opposed in the radial direction. As will be described later, the cutout portion 53a and the communication portion 53b cause the through hole 17 and the release hole 19 of the guide hole 16 to communicate with each other through the accommodation hole 14 depending on the rotational position of the cam member 50 (FIG. 9). It functions to close (FIG. 8).

次に、図10を参照しつつ実施形態1についてさらに説明する。図10は、油圧式トルクレンチの使用状態において、シリンダ20等が回転する様子を位相別に表示している。右回りに回転するシリンダ20の図中の位相(A)を初期状態(0°)とすると、各位相でのシリンダ20の回転角は、位相(B):55°、位相(C):60°、位相(D):61°、位相(E):90°、位相(F):180°、位相(G):270°、位相(H):315°となっており、360°回転して位相(A)に戻る。   Next, the first embodiment will be further described with reference to FIG. FIG. 10 shows how the cylinders 20 and the like rotate according to phase when the hydraulic torque wrench is in use. Assuming that the phase (A) in the figure of the cylinder 20 that rotates clockwise is the initial state (0 °), the rotation angle of the cylinder 20 at each phase is as follows: °, phase (D): 61 °, phase (E): 90 °, phase (F): 180 °, phase (G): 270 °, phase (H): 315 °, and 360 ° rotation. To return to phase (A).

位相(A)では、摺動部材40がカム部材50の扁平部54,55で径方向外方に押出されている。この状態では、図8に示すように、カム部材50の後端部53に形成された連通部53bは、リリース孔19に臨む位置にある。連通部53bは、図5及び図6に示すカム部材50の形状から明らかなとおり、収容孔14内で扁平部54,55周囲の空所及び切欠部51a,52aに連通している。したがって、収容孔14内の作動油は、連通部53b及びリリース孔19を通じて液密室24における囲繞壁15の外側部分に流通状態となっている。   In the phase (A), the sliding member 40 is extruded radially outward by the flat portions 54 and 55 of the cam member 50. In this state, as shown in FIG. 8, the communication portion 53 b formed at the rear end portion 53 of the cam member 50 is in a position facing the release hole 19. As is apparent from the shape of the cam member 50 shown in FIGS. 5 and 6, the communication portion 53 b communicates with the voids around the flat portions 54 and 55 and the notches 51 a and 52 a in the accommodation hole 14. Therefore, the hydraulic oil in the accommodation hole 14 is in a circulation state in the outer portion of the surrounding wall 15 in the liquid tight chamber 24 through the communication portion 53 b and the release hole 19.

位相(B)では、隆起部31が摺動部材40に接触し始めたところである。前述の図4は、この状態を示しており、図示のように、連通部53bはリリース孔19(一点鎖線で示す)から外れた位置にある。その結果、収容孔14内の作動油は、リリース孔19を通じた流通が不可能となっている。しかも、隆起部31の当接力により、図4に示すように、図の上方に位置する摺動部材40は、僅かに傾斜して右側面の外方部P1をガイド溝16の外方縁に接し、左側面の内方端P2をガイド溝16の内方縁に接する。図の下方に位置する摺動部材も同様に傾斜する。したがって、位相(B)では、扁平部54,55は摺動部材40から外れているが、摺動部材40とガイド溝16との接触によりシールが形成され、ガイド溝16内方の作動油は密閉され、摺動部材40の突出状態が保持された作動状態となる。その密閉領域を図10(B’)にハッチングで示す。   In phase (B), the raised portion 31 has just started to contact the sliding member 40. FIG. 4 described above shows this state, and as shown in the figure, the communication portion 53b is located away from the release hole 19 (indicated by the alternate long and short dash line). As a result, the hydraulic oil in the accommodation hole 14 cannot be distributed through the release hole 19. In addition, as shown in FIG. 4, the sliding member 40 located in the upper part of the drawing is slightly inclined due to the contact force of the raised portion 31, and the outer side portion P <b> 1 on the right side surface becomes the outer edge of the guide groove 16. The inner end P2 on the left side is in contact with the inner edge of the guide groove 16. The sliding member located in the lower part of the figure is similarly inclined. Therefore, in the phase (B), the flat portions 54 and 55 are disengaged from the sliding member 40, but a seal is formed by the contact between the sliding member 40 and the guide groove 16, and the hydraulic oil inside the guide groove 16 is It will be sealed and it will be in the operation state where the protruding state of sliding member 40 was held. The sealed region is indicated by hatching in FIG.

この状態から隆起部31が位相(C)へと回転するのに伴って、隆起部31と摺動部材40との接触圧により、軸基部12への回転駆動力が伝達される。摺動部材40は、作動油の圧縮変形と接触部分での僅かな漏出とに従ってガイド溝16内へ若干移動する。この伝達による出力状態は瞬間的に生じ、出力軸10にパルス状トルクが発生する。   As the raised portion 31 rotates to the phase (C) from this state, the rotational driving force to the shaft base portion 12 is transmitted by the contact pressure between the raised portion 31 and the sliding member 40. The sliding member 40 moves slightly into the guide groove 16 in accordance with the compressive deformation of the hydraulic oil and a slight leakage at the contact portion. The output state due to this transmission occurs instantaneously, and pulse torque is generated on the output shaft 10.

位相(D)は、位相(C)から僅かにカム部材50が回転した状態であり、その状態を図9に示す。図9(a)は、図8と同じ断面で位相(D)の状態を示しており、図9(b)はリリース孔19の内端部付近の拡大図である。この状態では、カム部材50の連通部53bその縁部をリリース孔19に通じ始めている。したがって、収容孔14内の作動油は、リリース孔19を経て、液密室24における軸基部12とシリンダ20との間へと流出し得る状態となる。その結果、隆起部31からの押圧力が摺動部材40に作用することにより、摺動部材40は作動油の上記流出を伴ってガイド溝16内の後退位置へと押し込まれる。   The phase (D) is a state where the cam member 50 is slightly rotated from the phase (C), and this state is shown in FIG. FIG. 9A shows the state of the phase (D) in the same cross section as FIG. 8, and FIG. 9B is an enlarged view of the vicinity of the inner end of the release hole 19. In this state, the communication member 53 b of the cam member 50 starts to communicate with the edge of the release hole 19. Accordingly, the hydraulic oil in the accommodation hole 14 can flow out through the release hole 19 and between the shaft base 12 and the cylinder 20 in the liquid tight chamber 24. As a result, the pressing force from the raised portion 31 acts on the sliding member 40, so that the sliding member 40 is pushed into the retracted position in the guide groove 16 with the outflow of the hydraulic oil.

位相(E)では、摺動部材40を押し込んだ状態で隆起部31が摺動部材上を移動する。   In the phase (E), the raised portion 31 moves on the sliding member while the sliding member 40 is pushed in.

位相(F)では、前方に位置する扁平部54及び後方に位置する扁平部55が、各々、前方及び後方の摺動部材40の内側部分42、42に対し、180°の位置に至っているので、摺動部材40は後退位置を保持する。   In the phase (F), the flat part 54 located at the front and the flat part 55 located at the rear reach the position of 180 ° with respect to the inner portions 42 and 42 of the front and rear sliding members 40, respectively. The sliding member 40 holds the retracted position.

位相(G)では、隆起部31が再び摺動部材40に対応した位置に到達するが、摺動部材40は後退位置にあるので、隆起部31が摺動部材40に回転力を及ぼすことはない。   In the phase (G), the protruding portion 31 reaches the position corresponding to the sliding member 40 again. However, since the sliding member 40 is in the retracted position, the protruding portion 31 exerts a rotational force on the sliding member 40. Absent.

位相(H)では、扁平部54,55が再び摺動部材40を押し出す。この押出し過程では、切欠部53aが図8に示した位置(左上及び右下)から左下及び右上に移動していて、その一部がリリース孔19に臨む位置にある。したがって、液密室24内における囲繞壁15の外側の作動油は、リリース孔19から切欠部53a、収容孔14を経て貫通孔17、さらにガイド溝16へと流入し得る状態となる。そして、扁平部54,55からの押出し力が摺動部材40に作用することにより、摺動部材40は、ガイド溝16内方に負圧を形成しつつ作動油の上記流入を伴ってガイド溝16から外方へ押出される。   In the phase (H), the flat portions 54 and 55 push out the sliding member 40 again. In this extrusion process, the notch 53a is moved from the position shown in FIG. 8 (upper left and lower right) to the lower left and upper right, and a part thereof is at a position facing the release hole 19. Accordingly, the hydraulic oil outside the surrounding wall 15 in the liquid tight chamber 24 can flow into the through hole 17 and the guide groove 16 from the release hole 19 through the notch 53 a and the accommodation hole 14. Then, when the pushing force from the flat portions 54 and 55 acts on the sliding member 40, the sliding member 40 forms a negative pressure inside the guide groove 16 and the guide groove with the inflow of the hydraulic oil. 16 is extruded outward.

このように、この実施形態においては、最初の出力状態から摺動部材40に対してシリンダ20が1回転したときに、カム部材50が1回転して摺動部材40を作動状態とする位置に至り、次の出力状態が得られる。これは、隆起部がシリンダにおける対向する2箇所に形成されており、1対の摺動部材40は、内側部分42を軸線方向における相互に異なる箇所に備えており、カム部材は、回転軸線から相互に180°をなす方向へ延びる1対の偏平部54,55を備えており、該1対の扁平部は、カム部材が1回転する毎に同時に摺動部材40に作用し、該摺動部材を作動位置に至らしめるように各摺動部材40に対応して配置されていることにより得られるものである。   Thus, in this embodiment, when the cylinder 20 makes one rotation with respect to the sliding member 40 from the initial output state, the cam member 50 makes one rotation to bring the sliding member 40 into an operating state. Thus, the next output state is obtained. This is because the raised portions are formed at two opposite positions in the cylinder, the pair of sliding members 40 are provided with inner portions 42 at different positions in the axial direction, and the cam member is separated from the rotation axis. A pair of flat portions 54 and 55 extending in a direction of 180 ° with each other are provided, and the pair of flat portions simultaneously act on the sliding member 40 each time the cam member makes one rotation, and the sliding portion It is obtained by being arranged corresponding to each sliding member 40 so as to bring the member to the operating position.

次に、図2に示すように、摺動部材40には、アキュームレータ60が設けられているので、これについて説明する。図11は、アキュームレータ部分のみをとり出して示す縦断面図であり、(a)は作動油の放出状態、(b)は作動油の流入状態を示す。このアキュームレータ60は、摺動部材40の外側部分41において出力軸10の軸線方向に設けられた一端閉塞の穴44に対して設けられている。穴44には圧縮コイルばね61が納められ、その開口側に栓体62が摺動自在に嵌められ、栓体62の外周面にはシールリング63が装着され、外側部分41内面との間にシールが形成されている。このシールにより、穴44内には空気が封入されている。摺動部材40の前端とシリンダ20の前壁21との間には僅かな隙間があり、その隙間は、トルク伝達の際の液密室内圧力の急激な変動にはほとんど影響することなく、且つ周囲温度の変化などによる緩やかな圧力変動を時間を掛けて吸収し得る程度に、ゆっくりと作動油を流通させる。   Next, as shown in FIG. 2, since the accumulator 60 is provided in the sliding member 40, this is demonstrated. FIG. 11 is a longitudinal sectional view showing only the accumulator portion, where (a) shows a state in which hydraulic oil is released and (b) shows an inflow state of hydraulic oil. The accumulator 60 is provided in a hole 44 that is closed at one end in the axial direction of the output shaft 10 in the outer portion 41 of the sliding member 40. A compression coil spring 61 is accommodated in the hole 44, and a plug body 62 is slidably fitted on the opening side thereof. A seal ring 63 is attached to the outer peripheral surface of the plug body 62, and between the inner surface of the outer portion 41. A seal is formed. Air is sealed in the hole 44 by this seal. There is a slight gap between the front end of the sliding member 40 and the front wall 21 of the cylinder 20, and the gap hardly affects the sudden fluctuation of the pressure in the liquid tight chamber during torque transmission, and The operating oil is circulated slowly to such an extent that a gradual pressure fluctuation due to a change in ambient temperature or the like can be absorbed over time.

この構造において、液密室24内の圧力が通常である場合は、栓体62がばね61の力を受けた状態で前方(図の左)に位置している。液密室24内の圧力が、トルクレンチの作動による発熱や周囲温度の上昇などにより高まると、栓体62は前端面に受ける圧力の増加により、ばね61の力に抗し且つ穴44内の空気を圧縮しつつゆっくりと後方へ移動する。これにより、作動油収容容積が増加し、その結果、液密室24内の圧力が補償され、正常な作動が確保される。この例では、アキュームレータが摺動部材40の外側部分42に設けられており、該外側部分はアキュームレータのための穴を設けるのに十分な容積を有しているので、伝動装置4の機能を損なうことなく、しかもトルクレンチの外形寸法の増大を生じず或いは極めて僅かにwえて、設置することができるという利点を有する。   In this structure, when the pressure in the liquid tight chamber 24 is normal, the plug body 62 is positioned forward (left in the figure) in a state where the force of the spring 61 is received. When the pressure in the liquid tight chamber 24 increases due to heat generated by the operation of the torque wrench or an increase in ambient temperature, the plug body 62 resists the force of the spring 61 and the air in the hole 44 due to the increase in pressure received on the front end surface. Slowly moving backwards while compressing. As a result, the hydraulic oil storage volume is increased, and as a result, the pressure in the liquid tight chamber 24 is compensated and normal operation is ensured. In this example, the accumulator is provided in the outer portion 42 of the sliding member 40, and the outer portion has a sufficient volume to provide a hole for the accumulator, so that the function of the transmission device 4 is impaired. In addition, the torque wrench has the advantage that it can be installed without causing an increase in the external dimensions of the torque wrench or very little.

[第2実施形態]
次に、本発明に係る油圧式トルクレンチの第2の実施形態について説明する。図12は、油圧式トルクレンチの一部を切欠いて示す正面図、図13は伝動装置104をケーシングの一部と共に示す縦断面、図14は図13のXIV−XIV線に沿う断面を各々示している。この油圧式トルクレンチは、第1実施形態の場合と同様に、ボディ101、ハンドル102、駆動モータ103、伝動装置104、及びオン・オフ用スイッチ105を備え、前端から出力軸110を突出させている。
[Second Embodiment]
Next, a second embodiment of the hydraulic torque wrench according to the present invention will be described. 12 is a front view showing a part of the hydraulic torque wrench, FIG. 13 is a longitudinal section showing the transmission device 104 together with a part of the casing, and FIG. 14 is a section taken along line XIV-XIV in FIG. ing. As in the case of the first embodiment, this hydraulic torque wrench includes a body 101, a handle 102, a drive motor 103, a transmission device 104, and an on / off switch 105, and projects an output shaft 110 from the front end. Yes.

この実施形態において、次の構造は、第1実施形態と同様である。すなわち、伝動装置104はシリンダ120を備え、シリンダ120は、前壁121、後部部材122、及び側壁123を備えており、後部部材122は、筒状壁126、フランジ127、接続用軸部128、及び保持リング129を備えている。また、シールリング121a,127aが配置され、シリンダ120内部は、作動油を収容した液密室124を形成している。出力軸110は、軸先部111及び軸基部112を備えており、軸基部112は、後端部を後部部材122の筒状壁126の内側に回転可能に支持され、収容孔114を内部に形成された囲繞壁115を備え、該囲繞壁には相互に平行に延びる側壁を備えた1対のガイド溝116が形成されている。また、ガイド溝116には、外側部分141及び内側部分142を備えた摺動部材140が摺動可能に保持されている。   In this embodiment, the following structure is the same as that of the first embodiment. That is, the transmission device 104 includes a cylinder 120. The cylinder 120 includes a front wall 121, a rear member 122, and a side wall 123. The rear member 122 includes a cylindrical wall 126, a flange 127, a connecting shaft portion 128, And a retaining ring 129. In addition, seal rings 121a and 127a are arranged, and the inside of the cylinder 120 forms a liquid tight chamber 124 containing hydraulic oil. The output shaft 110 includes a shaft tip portion 111 and a shaft base portion 112. The shaft base portion 112 is rotatably supported at the rear end portion inside the cylindrical wall 126 of the rear member 122, and the accommodation hole 114 is formed inside. A surrounding wall 115 is formed, and a pair of guide grooves 116 having side walls extending in parallel to each other are formed in the surrounding wall. A sliding member 140 having an outer portion 141 and an inner portion 142 is slidably held in the guide groove 116.

この実施形態においては、第1実施形態と異なり、シリンダ120の側壁相互に平行に延びる側壁を備えた123に、1対の隆起部131と直交する方向の対向位置に隆起部131より低く隆起したシール用凸部132が設けられ、これらの隆起部131及びシール用凸部132は各々軸方向に延びている。軸基部112には、シール用凸部132に対応してシール用突起118が形成されている。これらの部分は、図14に示すように、シリンダ120の回転位置において、隆起部131と摺動部材140、シール用凸部132とシール用突起118が、同時に対向位置に至るように配置されており、その位置で隆起部131は摺動部材140に接して径方向に押し込み力を与え、シール用凸部132はシール用突起118とほぼ接するか僅かに押し付けられる状態に接近する。また、軸基部112の収容孔114には、図15に示すカム部材150が収容されている。図15は、カム部材150と摺動部材140との位置関係を、部材の分解状態で示しており、図15(a)はカム部材150の扁平部154,155により摺動部材140が押し出された状態、図15(b)はカム部材150の扁平部154,155の作用から外れて摺動部材140が後退した状態を各々示している。カム部材150は、第1実施形態のものと同様の構造を有し、収容孔114の内径に近い外径を有した円板状の前端部151,中央部152及び後端部153、並びにこれらの間に配置された扁平部154,155を備えている。後端部153における後端面には、径方向に延びる凸部153cが設けられ、シリンダ120の後壁122における内端面には、該凸部153cに対応して凹部122aが設けられており(図13)、これら凸部153c及び凹部122aの嵌合により、カム部材150は、シリンダ120と共に回転するようになっている。 In this embodiment, unlike the first embodiment, 123 provided with side walls extending in parallel with the side walls of the cylinder 120 is raised lower than the raised portions 131 at opposed positions in a direction orthogonal to the pair of raised portions 131. Sealing convex portions 132 are provided, and the raised portions 131 and the sealing convex portions 132 each extend in the axial direction. The shaft base 112 is formed with a seal projection 118 corresponding to the seal projection 132. As shown in FIG. 14, these portions are arranged so that the raised portion 131 and the sliding member 140, the sealing convex portion 132, and the sealing projection 118 reach the opposing positions at the same time in the rotational position of the cylinder 120. At this position, the raised portion 131 is in contact with the sliding member 140 to apply a pushing force in the radial direction, and the sealing convex portion 132 is substantially in contact with or slightly pressed against the sealing projection 118. A cam member 150 shown in FIG. 15 is accommodated in the accommodation hole 114 of the shaft base 112. FIG. 15 shows the positional relationship between the cam member 150 and the sliding member 140 in an exploded state. FIG. 15A shows that the sliding member 140 is pushed out by the flat portions 154 and 155 of the cam member 150. FIG. 15B shows a state where the sliding member 140 is retracted from the action of the flat portions 154 and 155 of the cam member 150. The cam member 150 has the same structure as that of the first embodiment, and has a disk-shaped front end portion 151, a central portion 152 and a rear end portion 153 having outer diameters close to the inner diameter of the accommodation hole 114, and these Are provided with flat portions 154 and 155. The rear end surface of the rear end 153 is provided with a convex portion 153c extending in the radial direction, and the inner end surface of the rear wall 122 of the cylinder 120 is provided with a concave portion 122a corresponding to the convex portion 153c (see FIG. 13) The cam member 150 rotates together with the cylinder 120 by the fitting of the convex portion 153c and the concave portion 122a.

摺動部材140は、外側部分141が、ガイド溝116の側壁に平行な側壁を有し、ガイド溝116にほぼ密に嵌合しており、内側部分142が、外側部分141から径方向内側へ延びた突出部(小片)として一体的に形成されている。1対の摺動部材140は、内側部分142を軸線方向における相互に異なる箇所に備えている。摺動部材140は、図15(a)に示すように扁平部154,155の先端部に接しているときにガイド溝(図示せず)から突出した位置にあり、カム部材150の回転に伴って、扁平部154,155の先端部から外れると、図15(b)に示すようにガイド溝内へ没入可能な状態となる。   In the sliding member 140, the outer portion 141 has a side wall parallel to the side wall of the guide groove 116, and the inner portion 142 is radially inward from the outer portion 141. It is integrally formed as an extended protrusion (small piece). The pair of sliding members 140 includes inner portions 142 at different locations in the axial direction. As shown in FIG. 15A, the sliding member 140 is in a position protruding from a guide groove (not shown) when in contact with the tip portions of the flat portions 154 and 155, and as the cam member 150 rotates. Then, when the flat portions 154 and 155 are disengaged from the tip portions, as shown in FIG.

次に、図16を参照しつつ実施形態2についてさらに説明する。図16は、油圧式トルクレンチの使用状態において、シリンダ120等が回転する様子を位相別に表示している。右回りに回転するシリンダ120の図中の位相(A)を初期状態(0°)とすると、各位相でのシリンダ120の回転角は、位相(B):90°、位相(C):180°、位相(D):270°となっている。   Next, the second embodiment will be further described with reference to FIG. FIG. 16 shows how the cylinder 120 and the like rotate in accordance with the phase when the hydraulic torque wrench is in use. Assuming that the phase (A) in the drawing of the cylinder 120 rotating clockwise is the initial state (0 °), the rotation angle of the cylinder 120 in each phase is as follows: phase (B): 90 °, phase (C): 180 °, phase (D): 270 °.

位相(A)では、摺動部材140は、カム部材150の扁平部154から外れた位置にあり、ガイド溝116内に後退している。この状態では、シリンダ120のシール用凸部132は摺動部材140に対応した位置にあるが、液密室内には回転力を伝達すような圧力は生じない。   In the phase (A), the sliding member 140 is at a position deviated from the flat portion 154 of the cam member 150 and is retracted into the guide groove 116. In this state, the sealing convex portion 132 of the cylinder 120 is at a position corresponding to the sliding member 140, but no pressure is generated to transmit the rotational force in the liquid tight chamber.

位相(B)では、扁平部154,155が各々摺動部材の1対の内側部分142に接触し、先端部で摺動部材140を作動位置まで押し出す。これにより、隆起部131が摺動部材140に接し、同時にシール用凸部132がシール用突起118に接する位置に至る。   In phase (B), the flat portions 154 and 155 each contact the pair of inner portions 142 of the sliding member, and push the sliding member 140 to the operating position at the tip. As a result, the raised portion 131 comes into contact with the sliding member 140, and at the same time, the sealing convex portion 132 comes into contact with the sealing projection 118.

位相(C)では、シール用凸部132が再び摺動部材140に対応した位置に来るが、摺動部材140は後退位置にあるので、液密室内には回転力を伝達すような圧力は生じない。   In the phase (C), the sealing convex portion 132 again comes to a position corresponding to the sliding member 140. However, since the sliding member 140 is in the retracted position, the pressure that transmits the rotational force to the liquid tight chamber is not Does not occur.

位相(D)では、シール用凸部132はシール用突起118に接するが、摺動部材140は後退位置にあるので、液密室内には回転力を伝達すような圧力は生じない。   In the phase (D), the sealing projection 132 is in contact with the sealing projection 118, but the sliding member 140 is in the retracted position, so that no pressure is generated to transmit the rotational force in the liquid tight chamber.

位相(B)の状態の詳細を図17に示す。シリンダ120は、図において右回りに回転するので、上側の摺動部材140について見ると、隆起部131からの押圧力により、摺動部材140は右回りに傾斜して外側部分141の右端面をガイド溝116の右側開口縁に接触させて押しつけ、シール作用をする(接触点をP3で示す)。シリンダ120と軸基部112との間には、油収容空間が形成され、位相(B)では、油収容空間が隆起部131と摺動部材140、シール用凸部132とシール用突起118の各々の対向により分割空間に仕切られる。油収容空間は、シリンダ120の回転により、隆起部131を境にして回転の上流側の分割空間を高圧、下流側の分割空間を低圧とするように形状が決められている。図16(B)では、高圧部分を斑点を付して示している。なお、摺動部材140の左端面は、内側部分142が点P0でガイド溝116に接する結果、外側部分141はガイド溝116に接触せず、シール作用は生じない。その結果、高圧部分は、摺動部材140の左側を通って収容孔114内にまで及ぶ。したがって、隆起部131との接触圧は摺動部材140をガイド溝116内へ押し込もうとするが、上記高圧部分の作用により、摺動部材は突出位置を保持した作動状態となる。   Details of the phase (B) state are shown in FIG. Since the cylinder 120 rotates clockwise in the drawing, when the upper sliding member 140 is viewed, the sliding member 140 is inclined clockwise by the pressing force from the raised portion 131 and the right end surface of the outer portion 141 is inclined. The right side opening edge of the guide groove 116 is contacted and pressed to perform a sealing action (a contact point is indicated by P3). An oil storage space is formed between the cylinder 120 and the shaft base 112. In the phase (B), the oil storage space includes the raised portion 131, the sliding member 140, the sealing convex portion 132, and the sealing protrusion 118, respectively. Is partitioned into divided spaces. The shape of the oil storage space is determined by rotating the cylinder 120 so that the divided space on the upstream side of the rotation is made high pressure and the divided space on the downstream side is made low pressure by the ridge 131. In FIG. 16B, the high-pressure portion is shown with spots. Note that the left end surface of the sliding member 140 is such that the inner portion 142 contacts the guide groove 116 at the point P0. As a result, the outer portion 141 does not contact the guide groove 116, and a sealing action does not occur. As a result, the high pressure portion passes through the left side of the sliding member 140 and extends into the accommodation hole 114. Therefore, the contact pressure with the raised portion 131 tries to push the sliding member 140 into the guide groove 116, but the sliding member is in an operating state in which the protruding position is maintained by the action of the high pressure portion.

このようにして、隆起部131と摺動部材140との接触に基づく軸基部112への回転駆動力が、該接触にともなう押圧力、及び、シール下で生じる分割空間の圧力により伝達される。この出力状態は、位相(B)において瞬間的に生じ、出力軸110にパルス状トルクが発生する。そして、シリンダ120がさらに回転し、位相(C)へと移行する。   In this way, the rotational driving force to the shaft base 112 based on the contact between the raised portion 131 and the sliding member 140 is transmitted by the pressing force accompanying the contact and the pressure in the divided space generated under the seal. This output state occurs instantaneously in the phase (B), and pulse torque is generated on the output shaft 110. Then, the cylinder 120 further rotates and shifts to the phase (C).

このように、この実施形態においては、最初の出力状態から摺動部材140に対してシリンダ120が1回転したときに、カム部材150が1回転して摺動部材140を作動状態とする位置に至り、次の出力状態が得られる。これは、第1実施形態と同様に、隆起部がシリンダにおける対向する2箇所に形成されており、1対の摺動部材140は、内側部分142を軸線方向における相互に異なる箇所に備えており、カム部材は、回転軸線から相互に180°をなす方向へ延びる1対の偏平部154,155を備えており、該1対の扁平部は、カム部材が1回転する毎に同時に摺動部材140に作用し、該摺動部材を作動位置に至らしめるように各摺動部材140に対応して配置されていることにより得られるものである。
[他の実施形態]
本発明は、上記実施形態に限定されるものではなく、種々の変形を伴うことができる。図18は、第2実施形態の変形例を示している。第2実施形態における摺動部材140は、内側部分142が、外側部分141から径方向内側へ延びた突出部として一体的に形成されていたが、ここでは、摺動部材140’は、第1実施形態における摺動部材40とほぼ同様の形態とされ、ガイド溝の軸方向長さに亘って延びる外側部分141’と、該外側部分41の径方向内側に接しているローラ(小片)からなる内側部分142とを備えたものとなっている。図18は、第1実施形態と同じ部分を同じ番号で示しており、図18(a)はカム部材150の扁平部154,155により摺動部材140’が押し出された状態、図18(b)はカム部材150の扁平部154,155の作用から外れて摺動部材140’が後退した状態を各々示している。この例では、外側部分141’は、第1実施形態における外側部分141と同じ形状のブロックに対し、径方向内方の角部に切欠き143が形成されたものとなっている。切欠き143は、1対の外側部分141’において、カム部材150の扁平部154及び155中の異なる一方に対応する位置に設けられている。外側部分141’がこの形態を有することにより、図19に示す状態、すなわち、第2実施形態における位相(B)(図17)と同じ位相において、外側部分141’は、右に回るシリンダ120によって右端面をガイド溝116の右側開口縁に接触させてシール作用をする(接触点をP4で示す)。この状態でシリンダ120が右回転することにより、隆起部131と摺動部材140、シール用凸部132とシール用突起118の対向により仕切られた分割空間が高圧となる。一方、摺動部材140の左端面は、ガイド溝116の側壁に接しても切欠き143を通じた連通が確保される。その結果、高圧部分は、摺動部材140の左側を通って収容孔114内にまで及ぶ。図19は、高圧部分をクロスハッチングで示している。こうして、分割空間形成時において、切欠き143を通じた連通が確保される結果、高圧部分の圧力が均一化され、ムラのない円滑な回転が得られる。なお、切欠き143を1個の外側部分141’の左右両側に設けたのは、シリンダ120の正逆双方向の回転に対して、いずれにも作用するようにしたものである。
As described above, in this embodiment, when the cylinder 120 makes one rotation with respect to the sliding member 140 from the initial output state, the cam member 150 makes one rotation to bring the sliding member 140 into an operating state. Thus, the next output state is obtained. As in the first embodiment, the raised portions are formed at two opposing positions in the cylinder, and the pair of sliding members 140 are provided with inner portions 142 at different positions in the axial direction. The cam member is provided with a pair of flat portions 154 and 155 extending in the direction of 180 ° from the rotation axis, and the pair of flat portions is a sliding member simultaneously every time the cam member makes one rotation. It is obtained by being arranged corresponding to each sliding member 140 so as to act on 140 and bring the sliding member to the operating position.
[Other Embodiments]
The present invention is not limited to the above embodiment, and various modifications can be involved. FIG. 18 shows a modification of the second embodiment. In the sliding member 140 according to the second embodiment, the inner portion 142 is integrally formed as a protrusion extending radially inward from the outer portion 141, but here, the sliding member 140 ′ is the first member. The sliding member 40 according to the embodiment has substantially the same configuration, and includes an outer portion 141 ′ extending over the axial length of the guide groove and a roller (small piece) in contact with the radially inner side of the outer portion 41. An inner portion 142 is provided. 18 shows the same parts as those in the first embodiment with the same numbers, and FIG. 18A shows a state in which the sliding member 140 ′ is pushed out by the flat portions 154 and 155 of the cam member 150, FIG. ) Shows a state in which the sliding member 140 ′ is retracted from the action of the flat portions 154 and 155 of the cam member 150, respectively. In this example, the outer portion 141 ′ has a notch 143 formed at a radially inner corner with respect to a block having the same shape as the outer portion 141 in the first embodiment. The notches 143 are provided at positions corresponding to different ones of the flat portions 154 and 155 of the cam member 150 in the pair of outer portions 141 ′. Since the outer portion 141 ′ has this configuration, in the state shown in FIG. 19, that is, in the same phase as the phase (B) in the second embodiment (FIG. 17), the outer portion 141 ′ is rotated by the cylinder 120 turning to the right. The right end surface is brought into contact with the right opening edge of the guide groove 116 for sealing (a contact point is indicated by P4). When the cylinder 120 rotates clockwise in this state, the divided space partitioned by the facing of the raised portion 131 and the sliding member 140, the sealing convex portion 132, and the sealing projection 118 becomes high pressure. On the other hand, even if the left end surface of the sliding member 140 is in contact with the side wall of the guide groove 116, communication through the notch 143 is ensured. As a result, the high pressure portion passes through the left side of the sliding member 140 and extends into the accommodation hole 114. FIG. 19 shows the high-pressure portion by cross hatching. Thus, when the divided space is formed, the communication through the notch 143 is ensured. As a result, the pressure in the high-pressure portion is made uniform, and smooth rotation without unevenness is obtained. The notches 143 are provided on both the left and right sides of the single outer portion 141 ′ so as to act on both forward and reverse rotations of the cylinder 120.

また、他の変形例として、摺動部材の数は、上記実施形態のように1対とする他、出力軸の回転軸回りに等間隔で3個又はそれ以上とすることも可能であり、その場合は、摺動部材の配置に対応してシール用凸部、シール用突起、カム部材の扁平部や連通孔等が配置される。   As another modification, the number of sliding members can be three or more at regular intervals around the rotation axis of the output shaft, in addition to a pair as in the above embodiment. In this case, a seal projection, a seal projection, a flat portion of the cam member, a communication hole, and the like are arranged corresponding to the arrangement of the sliding member.

また、第1実施形態に示したアキュームレータ及びトルク設定構造を第2実施形態に適用することも可能である。   Further, the accumulator and torque setting structure shown in the first embodiment can be applied to the second embodiment.

さらに、シリンダ又は後部部材とカム部材との間に変速歯車列を介在させることにより、シリンダが隆起部を摺動体に接触させ且つカム部材が摺動体を作動状態とする位置にある出力状態から、シリンダが摺動体に対して1回転を越える回転をしたときに、摺動体を作動状態とする位置にカム部材が再到達するように変速動作を行なわせることもできる。これにより、出力の周期は、シリンダが1回転を越える回転をした時に得られることになり、入力軸の回転に対する出力頻度が減少した分、各出力時のエネルギが増大する。その結果、より高いトルクを発生することができ、或いは、同じトルクであれば装置をより小型化することが可能となる。   Furthermore, by interposing a transmission gear train between the cylinder or the rear member and the cam member, the cylinder brings the raised portion into contact with the sliding member and the cam member is in the position where the sliding member is in the operating state. When the cylinder rotates more than one rotation with respect to the sliding body, the speed change operation can be performed so that the cam member reaches the position where the sliding body is activated. As a result, the output cycle is obtained when the cylinder rotates more than one rotation, and the energy at each output increases as the output frequency with respect to the rotation of the input shaft decreases. As a result, a higher torque can be generated, or the apparatus can be further miniaturized with the same torque.

本発明の第1実施形態に係る油圧式トルクレンチを示す正面図である。1 is a front view showing a hydraulic torque wrench according to a first embodiment of the present invention. 図1の油圧式トルクレンチの一部を切欠いて示す正面図である。It is a front view which notches and shows a part of hydraulic type torque wrench of FIG. 図1の油圧式トルクレンチの伝動装置の縦断正面図である。It is a longitudinal front view of the transmission device of the hydraulic torque wrench of FIG. 図3のIV-IV線に沿う断面図である。It is sectional drawing which follows the IV-IV line of FIG. 図3の伝動装置におけるカム部材を示す図であり、(a)は正面図、(b)は平面図、(c)は(a)のc視図、(d)は(b)のd視図、(e)はaのe−e線断面図、(f)は(b)のf−f線断面図である。It is a figure which shows the cam member in the transmission of FIG. 3, (a) is a front view, (b) is a top view, (c) is c view of (a), (d) is d view of (b). FIG. 4E is a sectional view taken along line ee of a, and FIG. 5F is a sectional view taken along line ff of FIG. 図5に示したカム部材の斜視図である。FIG. 6 is a perspective view of the cam member shown in FIG. 5. 図3の伝動装置におけるカム部材と摺動部材との作動についての説明図である。It is explanatory drawing about an action | operation with the cam member and sliding member in the transmission of FIG. (a)は図3のVIII-VIII線に沿う断面図、(b)は(a)の一部を拡大して示す図である。(a) is sectional drawing which follows the VIII-VIII line of FIG. 3, (b) is a figure which expands and shows a part of (a). (a)は図8と同じ断面についてシリンダ回転の異なる位相を示す図、(b)は(a)の一部を拡大して示す図である。(a) is a figure which shows the phase from which cylinder rotation differs about the same cross section as FIG. 8, (b) is a figure which expands and shows a part of (a). 図1の油圧式トルクレンチの作動説明図である。FIG. 2 is an operation explanatory diagram of the hydraulic torque wrench of FIG. 1. 図1の油圧式トルクレンチにおけるアキュームレータ部分を相異なる状態で(a)及び(b)に示す縦断面図である。It is the longitudinal cross-sectional view which shows the accumulator part in the hydraulic torque wrench of FIG. 1 in a different state to (a) and (b). 本発明の第2実施形態に係る油圧式トルクレンチを一部断面で示す正面図である。It is a front view which shows the hydraulic type torque wrench which concerns on 2nd Embodiment of this invention in a partial cross section. 図12の油圧式トルクレンチの伝動装置の縦断正面図である。FIG. 13 is a longitudinal front view of the transmission device of the hydraulic torque wrench of FIG. 12. 図13の伝動装置のXIV-XIV線に沿う断面図である。It is sectional drawing which follows the XIV-XIV line of the transmission of FIG. 図13の伝動装置におけるカム部材と摺動部材との作動について相異なる状態を(a)及び(b)に示す説明図である。It is explanatory drawing which shows a different state about the action | operation of the cam member and sliding member in the transmission of FIG. 13, in (a) and (b). 図13の油圧式トルクレンチの作動説明図である。It is action | operation explanatory drawing of the hydraulic torque wrench of FIG. 図14と同じ箇所の断面を異なる作動位相で示す断面図である。It is sectional drawing which shows the cross section of the same location as FIG. 14 in a different operation | movement phase. 本発明の第2実施形態の変形例における摺動部材及びカム部材を示す斜視図である。It is a perspective view which shows the sliding member and cam member in the modification of 2nd Embodiment of this invention. 図18に示した変形例について示す図17と同じ箇所の断面図である。It is sectional drawing of the same location as FIG. 17 shown about the modification shown in FIG.

符号の説明Explanation of symbols

10,110 出力軸
11,111 軸先部
12,112 軸基部
14,114 収容孔
15,115 囲繞壁
16,116 ガイド溝
18,118 シール用突起
19 リリース孔
20,120 シリンダ
21,121 前壁
22,122 後部部材
23,123 側壁
24,124 液密室
31,131 隆起部
132 シール用凸部
40,140,140’ 摺動部材
50,150 カム部材
60 アキュームレータ
10, 110 Output shaft 11, 111 Shaft tip portion 12, 112 Shaft base portion 14, 114 Housing hole 15, 115 Surrounding wall 16, 116 Guide groove 18, 118 Seal projection 19 Release hole 20, 120 Cylinder 21, 121 Front wall 22 122 Rear member 23, 123 Side wall 24, 124 Liquid tight chamber 31, 131 Raised portion 132 Sealing convex portion 40, 140, 140 'Sliding member 50, 150 Cam member 60 Accumulator

Claims (4)

対象物にトルクを与える出力軸と、
該出力軸を回転可能に支持し前方へ突出するように貫通させた前壁、駆動入力部を後部に接続される後壁、及びこれらの間に位置する側壁を備えて、内部に作動油収容の液密室を形成し、前記出力軸と同一の回転軸線回りに回転し得るシリンダと、
前記液密室内で前記出力軸により径方向に摺動可能に保持された複数の摺動部材と、
前記シリンダと共に回転するように前記後壁に接続されたカム部材とを備え、
前記出力軸は、前記前壁に支持され前方へ突出した軸先部と、前記液密室内に位置する軸基部とを備えており、
前記シリンダの側壁内面には、前記摺動部材との接触に基づいて前記軸基部に回転駆動力を及ぼすための隆起部が周方向に複数形成されており、
前記軸基部には、前記回転軸線に沿って延びる収容孔と、前記隆起部に対応した間隔で配置され各々が軸線方向に延び外周面に開いた複数のガイド溝とが形成されており、
前記摺動部材は、前記軸基部の各ガイド溝に径方向に摺動可能に受け入れられており、該ガイド溝に沿って延びる外側部分と、該外側部分より径方向内方に位置し一部を前記収容孔内へ突出させ得るように設けられた内側部分とを備え、該複数の摺動部材は、前記内側部分を軸線方向における相互に異なる箇所に備えており、
前記軸基部は、前記ガイド溝の径方向内側に底壁を備え、該底壁には前記内側部分を径方向に案内する貫通孔が形成されており、
前記カム部材は、前記収容孔内に位置する扁平部を軸線方向の異なる箇所に複数備えており、該扁平部は、前記回転軸線から相互に異なる半径方向へ延び、前記カム部材が1回転する毎に同時に前記摺動部材に作用し、該摺動部材を前記隆起部に接触し得る作動位置に至らしめるように各摺動部材に対応して配置されており、
前記カム部材は、前記扁平部に対して軸方向に並んで配置され前記軸基部における収容孔の内周面に沿う周面を有する円盤部を備え、前記軸基部には、前記複数のガイド溝の各間の位置で前記円盤部に臨んで開口し該軸基部を半径方向に貫通するリリース孔が形成され、前記円盤部は、周面の一部が切欠かれて連通部が形成されており、該連通部は、前記扁平部が前記摺動部材を前記作動位置に至らしめる回転位置にあるときに、前記ガイド溝に臨む位置にあって該ガイド溝と前記リリース孔との連通を遮断し、前記扁平部が前記回転位置を通過したときに前記ガイド溝及びリリース孔に跨って両者を連通させる大きさに形成されていることを特徴とする油圧式トルクレンチ。
An output shaft for applying torque to the object;
The output shaft is provided with a front wall that is rotatably supported and penetrated so as to protrude forward, a rear wall that is connected to the rear portion of the drive input portion, and a side wall positioned therebetween, and contains hydraulic oil therein. A cylinder capable of rotating around the same rotation axis as the output shaft,
A plurality of sliding members held slidable in the radial direction by the output shaft in the liquid tight chamber;
A cam member connected to the rear wall to rotate with the cylinder;
The output shaft includes a shaft tip portion that is supported by the front wall and protrudes forward, and a shaft base portion that is located in the liquid-tight chamber,
A plurality of raised portions in the circumferential direction are formed on the inner surface of the side wall of the cylinder to exert a rotational driving force on the shaft base portion based on contact with the sliding member,
The shaft base is formed with a receiving hole extending along the rotational axis, and a plurality of guide grooves that are arranged at intervals corresponding to the raised portions and each extend in the axial direction and open to the outer peripheral surface.
The sliding member is slidably received in each guide groove of the shaft base portion in a radial direction, and has an outer portion extending along the guide groove, and a portion positioned radially inward from the outer portion. An inner portion provided so as to protrude into the receiving hole, and the plurality of sliding members include the inner portions at different locations in the axial direction,
The shaft base includes a bottom wall on the radially inner side of the guide groove, and a through hole is formed on the bottom wall to guide the inner portion in the radial direction.
The cam member includes a plurality of flat portions positioned in the receiving hole at different locations in the axial direction, the flat portions extend in mutually different radial directions from the rotation axis, and the cam member makes one rotation. It is arranged corresponding to each sliding member so as to act on the sliding member at the same time every time and reach the operating position where the sliding member can come into contact with the raised portion ,
The cam member includes a disk portion that is arranged side by side in the axial direction with respect to the flat portion and has a circumferential surface along an inner circumferential surface of the accommodation hole in the shaft base portion, and the shaft base portion includes the plurality of guide grooves. A release hole that opens to the disk portion at a position between each of the holes and penetrates the shaft base portion in the radial direction is formed, and a part of the circumferential surface of the disk portion is cut out to form a communication portion. The communication portion is located at a position facing the guide groove when the flat portion is at a rotational position that brings the sliding member to the operating position, and blocks communication between the guide groove and the release hole. The hydraulic torque wrench is formed in such a size that when the flat portion passes through the rotation position, the flat portion extends over the guide groove and the release hole .
前記摺動部材の内側部分は前記外側部分から連続して延びる突片により形成されていることを特徴とする請求項1に記載の油圧式トルクレンチ。   2. The hydraulic torque wrench according to claim 1, wherein an inner portion of the sliding member is formed by a projecting piece continuously extending from the outer portion. 前記摺動部材は、前記ガイド溝に沿って延びる外側部分と、該外側部分から径方向内方に突出した内側部分とを備え、該内側部分は前記外側部分とは別個の小片により形成されており、前記軸基部は前記ガイド溝の径方向内側に底壁を備え、該底壁には前記内側部分を径方向に案内する貫通孔が形成されていることを特徴とする請求項1に記載の油圧式トルク
レンチ。
The sliding member includes an outer portion extending along the guide groove, and an inner portion protruding radially inward from the outer portion, and the inner portion is formed by a small piece separate from the outer portion. The shaft base portion includes a bottom wall on the radially inner side of the guide groove, and a through hole that guides the inner portion in the radial direction is formed on the bottom wall. Hydraulic torque wrench.
前記摺動部材は、前記液密室内の油圧変動を緩衝するためのアキュームレータを内蔵しており、該アキュームレータは、前記回転軸線に沿う方向に延び一端部に通液孔を有する貯留室と、貯留室に摺動可能に収容され前記通液孔に向けて付勢されたピストンとを備えていることを特徴とする請求項1から3のいずれかに記載の油圧式トルクレンチ。 The sliding member incorporates an accumulator for buffering hydraulic pressure fluctuations in the liquid tight chamber, and the accumulator extends in a direction along the rotation axis and has a reservoir chamber having a liquid passage hole at one end thereof, The hydraulic torque wrench according to any one of claims 1 to 3, further comprising a piston slidably accommodated in the chamber and biased toward the liquid passage hole.
JP2006158897A 2006-06-07 2006-06-07 Hydraulic torque wrench Active JP5021240B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006158897A JP5021240B2 (en) 2006-06-07 2006-06-07 Hydraulic torque wrench

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006158897A JP5021240B2 (en) 2006-06-07 2006-06-07 Hydraulic torque wrench

Publications (2)

Publication Number Publication Date
JP2007326172A JP2007326172A (en) 2007-12-20
JP5021240B2 true JP5021240B2 (en) 2012-09-05

Family

ID=38927017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006158897A Active JP5021240B2 (en) 2006-06-07 2006-06-07 Hydraulic torque wrench

Country Status (1)

Country Link
JP (1) JP5021240B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5561076B2 (en) * 2010-09-30 2014-07-30 日立工機株式会社 Oil pulse tool
JP6102191B2 (en) * 2012-11-07 2017-03-29 マックス株式会社 Pressure relief mechanism of oil pulse tool
JP7055291B2 (en) * 2017-08-21 2022-04-18 不二空機株式会社 Tightening torque generation mechanism and hydraulic pulse wrench
JP6670921B2 (en) * 2018-12-26 2020-03-25 株式会社マキタ Electric rotating tool
JP7390166B2 (en) * 2019-11-13 2023-12-01 株式会社マキタ power tools

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4018084C1 (en) * 1990-06-06 1992-01-30 Deutsche Gardner-Denver Gmbh & Co, 7084 Westhausen, De
JP3131622B2 (en) * 1992-03-04 2001-02-05 不二空機株式会社 Hydraulic torque wrench
SE469322B (en) * 1992-05-05 1993-06-21 Atlas Copco Tools Ab HYDRAULIC Torque Pulse Generator
JP2558583B2 (en) * 1992-12-02 1996-11-27 瓜生製作株式会社 Torque jumping absorber for driving torque control wrench
SE504101C2 (en) * 1994-12-30 1996-11-11 Atlas Copco Tools Ab Hydraulic torque pulse mechanism
JP4801888B2 (en) * 2004-07-26 2011-10-26 株式会社マキタ Stroke wrench

Also Published As

Publication number Publication date
JP2007326172A (en) 2007-12-20

Similar Documents

Publication Publication Date Title
JP5021240B2 (en) Hydraulic torque wrench
KR101795163B1 (en) Clutch for vehicle
JPWO2010073898A1 (en) Rotary valve device
JP2003139163A (en) Starting clutch
KR100707766B1 (en) Impulse torque generator for a hydraulic power wrench
WO2016140059A1 (en) Micro-traction drive unit and hydraulic continuously variable transmission
US6074184A (en) Pump utilizing helical seal
JP5128094B2 (en) Hydraulic torque wrench
JP5341260B2 (en) Rotating damper
JP4890884B2 (en) Hydraulic torque wrench
JP2010001742A (en) Variable displacement pump
JP4918614B1 (en) Actuator
JP6451096B2 (en) Driving force transmission device
JP4108277B2 (en) Oil unit
JP2017180688A (en) Rolling bearing-type transmission mechanism
JP2016017615A (en) Power transmission device and forward/reverse switching mechanism
JP2007113597A (en) Gear train device
JP2002115726A (en) Elastic shaft coupling
JP2006070777A (en) Swash plate type variable displacement piston pump
WO2023085199A1 (en) Working machine
JP2005127490A (en) Toroidal continuously variable transmission
JP5087019B2 (en) Viscous fluid coupling
JP2023177373A (en) Impact torque generator for hydraulic torque wrench
JP6572764B2 (en) Swash plate type piston pump
JP2731470B2 (en) Hydraulic power transmission coupling

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090528

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20091117

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20091117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120515

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120614

R150 Certificate of patent or registration of utility model

Ref document number: 5021240

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250