JP5019517B2 - Binuclear metal complex and method for producing the same - Google Patents

Binuclear metal complex and method for producing the same Download PDF

Info

Publication number
JP5019517B2
JP5019517B2 JP2007054789A JP2007054789A JP5019517B2 JP 5019517 B2 JP5019517 B2 JP 5019517B2 JP 2007054789 A JP2007054789 A JP 2007054789A JP 2007054789 A JP2007054789 A JP 2007054789A JP 5019517 B2 JP5019517 B2 JP 5019517B2
Authority
JP
Japan
Prior art keywords
metal
complex
binuclear
cpm
metal complex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007054789A
Other languages
Japanese (ja)
Other versions
JP2008214278A (en
Inventor
英隆 中井
清 磯邉
沙織 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanazawa University NUC
Original Assignee
Kanazawa University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanazawa University NUC filed Critical Kanazawa University NUC
Priority to JP2007054789A priority Critical patent/JP5019517B2/en
Publication of JP2008214278A publication Critical patent/JP2008214278A/en
Application granted granted Critical
Publication of JP5019517B2 publication Critical patent/JP5019517B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Catalysts (AREA)

Description

本発明は、二核金属錯体およびその製造方法に関するものである。   The present invention relates to a binuclear metal complex and a method for producing the same.

従来、9族の遷移金属原子(Co、RhおよびIr)を中心金属とする二核錯体は、金属に結合する官能基の種類等によって、触媒や各種変換反応の出発物質など様々に利用することができる。   Conventionally, a binuclear complex having a group 9 transition metal atom (Co, Rh and Ir) as a central metal can be used in various ways such as a catalyst and a starting material for various conversion reactions depending on the type of functional group bonded to the metal. Can do.

例えば、非特許文献1には、SS基で金属原子間が架橋されたロジウム二核錯体[(RhCp(μ−CH(μ−SS)]、およびイリジウム二核錯体[(IrCp(μ−CH(μ−SS)](Cpはペンタメチルシクロペンタジエニル配位子(η−CMe))により、ポリ塩化有機化合物のC−Hと複数のC−Cl結合の切断を同時に行うことができる旨が開示されている。また、非特許文献2では、ロジウムの二核錯体[(RhCp(μ−CH(μ−OSSO)]が結晶相で光異性化するという特異な性質を示すことが明らかにされている。 For example, Non-Patent Document 1 discloses a rhodium binuclear complex [(RhCp * ) 2 (μ-CH 2 ) 2 (μ-SS)] in which metal atoms are bridged with an SS group, and an iridium binuclear complex [( IrCp * ) 2 (μ-CH 2 ) 2 (μ-SS)] (Cp * is a pentamethylcyclopentadienyl ligand (η 5 -C 5 Me 5 )) And that a plurality of C—Cl bonds can be simultaneously cut. Non-Patent Document 2 shows a unique property that rhodium binuclear complex [(RhCp * ) 2 (μ-CH 2 ) 2 (μ-O 2 SSO 2 )] is photoisomerized in the crystalline phase. Has been revealed.

一方、9族の金属−金属二重結合をもつ錯体(M=M錯体)は、金属原子間の電子密度が高く、還元力が強いため、その多様な反応性が期待されている。また、M=M錯体は、求電子付加や付加環化反応などでの、反応性が高く重要な工業原料であるエチレン(HC=CH)と等価な構造とみなすことができ、エチレン化学の拡張として考えることができる。その場合、エチレンの炭素では持ち得ない金属原子由来の特性が期待される。しかし、M=M錯体は、その合成が困難であることや高い反応性のため、これまでに単離された例は少ない。 On the other hand, complexes having group 9 metal-metal double bonds (M = M complexes) have high electron density between metal atoms and strong reducing power, and thus are expected to have various reactivity. In addition, the M = M complex can be regarded as a structure equivalent to ethylene (H 2 C═CH 2 ), which is a highly reactive and important industrial raw material in electrophilic addition and cycloaddition reactions. It can be thought of as an extension of chemistry. In that case, characteristics derived from metal atoms that cannot be possessed by ethylene carbon are expected. However, there are few examples of M = M complexes isolated so far because of their difficulty in synthesis and high reactivity.

従来のM=M錯体として、非特許文献3には、中心金属であるコバルト原子間がCO基で架橋された錯体[CpCo(μ−CO)]が開示されている。構造式を以下に示す。 As a conventional M = M complex, Non-Patent Document 3 discloses a complex [Cp * Co (μ-CO)] 2 in which cobalt atoms that are central metals are bridged by CO groups. The structural formula is shown below.

Figure 0005019517
Figure 0005019517

この他にも、中心金属がロジウムである錯体(非特許文献4)、イリジウムである錯体(非特許文献5)がそれぞれ開示されている。   In addition, a complex in which the central metal is rhodium (Non-Patent Document 4) and a complex in which iridium is formed (Non-Patent Document 5) are disclosed.

Lobana, T. S.; Isobe, K.; Kitayama, H.; Nishioka, T.; Doe, M.; Kinoshita, I., Organometallics, 23, 5347-5352 (2004).Lobana, T. S .; Isobe, K .; Kitayama, H .; Nishioka, T .; Doe, M .; Kinoshita, I., Organometallics, 23, 5347-5352 (2004). Nakai, H; Mizuno, M.; Nishioka, T.; Koga, N.; Shiomi, K.; Miyano, Y.; Irie, M.; Breedlove, B. K.; Kinoshita, I.; Hayashi, Y.; Ozawa, Y.; Yonezawa, T.; Toriumi, K.; Isobe, K., Angew. Chem. Int. Ed., 45, 6473-6476 (2006).Nakai, H; Mizuno, M .; Nishioka, T .; Koga, N .; Shiomi, K .; Miyano, Y .; Irie, M .; Breedlove, BK; Kinoshita, I .; Hayashi, Y .; Ozawa, Y .; Yonezawa, T .; Toriumi, K .; Isobe, K., Angew. Chem. Int. Ed., 45, 6473-6476 (2006). Ginsburg, R. E.; Cirjak, L. M.; Dahl, L. F., J. C. S. Chem. Comm., 468-470 (1979).Ginsburg, R. E .; Cirjak, L. M .; Dahl, L. F., J. C. S. Chem. Comm., 468-470 (1979). Nutton, A.; Maitlis, P. M., J. Organomet. Chem., 166, C21-C22 (1979).Nutton, A .; Maitlis, P. M., J. Organomet. Chem., 166, C21-C22 (1979). Ball, R. G.; Graham, W. A. G.; Heinekey, D. M.; Hoyano, J. K.; McMaster, A. D.; Mattson, B. M.; Michel, S. T., Inorg. Chem., 29, 2023-2025 (1990).Ball, R. G .; Graham, W. A. G .; Heinekey, D. M .; Hoyano, J. K .; McMaster, A. D .; Mattson, B. M .; Michel, S. T., Inorg. Chem., 29, 2023-2025 (1990).

本発明は、より反応性に優れた金属−金属二重結合を有する新規な二核錯体(M=M錯体)およびその製造方法を提供することを目的とする。   An object of this invention is to provide the novel binuclear complex (M = M complex) which has the metal-metal double bond excellent in the reactivity, and its manufacturing method.

上記課題に対して、Rh等の9族遷移金属原子を中心金属とし、金属間がメチレン基(CH)あるいはCHMe基で架橋された構造を有する新規なM=M錯体の合成・単離に成功した。さらに、そのM=M錯体を用いて、金属−金属結合に対して末端ヒドリドがcis型に配置された特異な構造をもつジヒドリド錯体の合成に成功した。 In response to the above problems, for the synthesis and isolation of a novel M = M complex having a structure in which a group 9 transition metal atom such as Rh is a central metal and the metal is bridged by a methylene group (CH 2 ) or a CHMe group Successful. Furthermore, using the M = M complex, a dihydride complex having a unique structure in which a terminal hydride is arranged in a cis form with respect to a metal-metal bond was successfully synthesized.

すなわち、本発明の要旨は次の通りである。
(1)式:[CpM(μ−CH)](式中、Cpはシクロペンタジエニル系配位子であり、MはCo、RhおよびIrから選ばれる金属原子であり、金属−金属間は二重結合である)で表される二核金属錯体。
(2)式:[CpM(μ−CH)H](式中、Cpはシクロペンタジエニル系配位子であり、MはCo、RhおよびIrから選ばれる金属原子であり、金属−金属間は単結合であり、Hは金属−金属単結合に対してcis型配置をとる)で表される二核金属錯体。
(3)式:[(CpM)(μ−CH)(μ−CHMe)](式中、Cpはシクロペンタジエニル系配位子であり、MはCo、RhおよびIrから選ばれる金属原子であり、金属−金属間は二重結合である)で表される二核金属錯体。
(4)シクロペンタジエニル系配位子が、ペンタメチルシクロペンタジエニル配位子である上記(1)〜(3)のいずれか記載の二核金属錯体。
(5)[CpM(μ−CH)Cl]の溶液に窒素雰囲気下でNaを加える上記(1)記載の二核金属錯体の製造方法。
(6)上記(1)記載の二核金属錯体とメタノールとを反応させる上記(2)記載の二核金属錯体の製造方法。
(7)[(CpM)(μ−CH)(μ−CHMe)Cl]の溶液に窒素雰囲気下でNaを加える上記(3)記載の二核金属錯体の製造方法。
That is, the gist of the present invention is as follows.
(1) Formula: [CpM (μ-CH 2 )] 2 (where Cp is a cyclopentadienyl-based ligand, M is a metal atom selected from Co, Rh and Ir, and metal-metal A binuclear metal complex represented by a double bond.
(2) Formula: [CpM (μ-CH 2 ) H] 2 (wherein Cp is a cyclopentadienyl-based ligand, M is a metal atom selected from Co, Rh and Ir, A binuclear metal complex represented by a single bond between metals and H having a cis configuration with respect to the metal-metal single bond.
(3): [(CpM) 2 (μ -CH 2) (μ-CHMe)] ( wherein, Cp is a cyclopentadienyl-type ligand, the metal M is selected from Co, Rh and Ir A binuclear metal complex represented by an atom and a metal-metal double bond).
(4) The binuclear metal complex according to any one of (1) to (3), wherein the cyclopentadienyl-based ligand is a pentamethylcyclopentadienyl ligand.
(5) The method for producing a binuclear metal complex according to the above (1), wherein Na is added to a solution of [CpM (μ-CH 2 ) Cl] 2 under a nitrogen atmosphere.
(6) The method for producing a binuclear metal complex according to (2), wherein the binuclear metal complex according to (1) is reacted with methanol.
(7) The method for producing a binuclear metal complex according to the above (3), wherein Na is added to a solution of [(CpM) 2 (μ-CH 2 ) (μ-CHMe) Cl 2 ] under a nitrogen atmosphere.

本発明に係るロジウム等の二核錯体は、金属原子間の結合距離が、従来のCO架橋を有する二核錯体[CpM(μ−CO)]における結合距離よりも短く、より高い反応性を示す。それゆえ、NおよびOの活性化剤、ポリマー重合等における触媒、各種変換反応の出発物質として用いることができる。 In the binuclear complex such as rhodium according to the present invention, the bond distance between metal atoms is shorter than the bond distance in the conventional binuclear complex [Cp * M (μ-CO)] 2 having a CO bridge, and a higher reaction. Showing gender. Therefore, it can be used as an activator for N 2 and O 2, a catalyst in polymer polymerization and the like, and a starting material for various conversion reactions.

また、本発明におけるジヒドリド二核錯体は、末端ヒドリドがcis型に配置された特異な構造をもち、そのため例えば不飽和炭化水素の不斉水素化触媒への利用が期待される。   Further, the dihydride binuclear complex in the present invention has a unique structure in which terminal hydrides are arranged in a cis form, and therefore, for example, it is expected to be used as an asymmetric hydrogenation catalyst for unsaturated hydrocarbons.

以下、本発明を詳細に説明する。
本発明の二核金属錯体は、式:[CpM(μ−CH)](式中、Cpはシクロペンタジエニル系配位子であり、金属−金属間は二重結合である]で表される。MはCo、RhおよびIrから選ばれる9族の遷移金属原子である。この錯体は、二重結合のために金属原子間の電子密度が高く、還元力が強い。それゆえ反応性に優れ、各種触媒や変換反応の出発物質として有用である。
Hereinafter, the present invention will be described in detail.
The binuclear metal complex of the present invention has the formula: [CpM (μ-CH 2 )] 2 (where Cp is a cyclopentadienyl-based ligand and the metal-metal is a double bond). M is a group 9 transition metal atom selected from Co, Rh and Ir.This complex has a high electron density between metal atoms due to a double bond and a strong reducing power. It has excellent properties and is useful as a starting material for various catalysts and conversion reactions.

シクロペンタジエニル系配位子としては、シクロペンタジエニル配位子の他、シクロペンタジエニルの水素原子が1〜5個のアルキル基、アリール基(ナフタレン、アントラセン等の拡張芳香族化合物を含む)、トリフルオロメタン基(−CF)、アルキルシリル基(−SiR)基で置換された配位子を採用することができ、好ましくは1〜5個の同一または異なるC1−4アルキル基を有するアルキル置換シクロペンタジエニル配位子である。その中でも、入手が容易で、化学的には電子密度をより高めると共に、反応場の立体的形状安定性を保持する観点から、電子供与性の大きいペンタメチルシクロペンタジエニル配位子(η−CMe、本明細書ではCpと表す)が特に好ましい。ペンタメチルシクロペンタジエニル配位子を採用した場合の本発明に係る二核錯体の好ましい実施形態として、以下の構造のものが挙げられる。 Examples of the cyclopentadienyl-based ligand include cyclopentadienyl ligands, alkyl groups having 1 to 5 hydrogen atoms of cyclopentadienyl, and aryl groups (extended aromatic compounds such as naphthalene and anthracene). Including), a trifluoromethane group (—CF 3 ), a ligand substituted with an alkylsilyl group (—SiR 3 ) group, and preferably 1 to 5 identical or different C 1-4 alkyls. It is an alkyl-substituted cyclopentadienyl ligand having a group. Among them, a pentamethylcyclopentadienyl ligand (η 5 having a large electron donating property is provided from the viewpoint of easy acquisition, chemical enhancement of electron density, and retention of steric shape stability of the reaction field. -C 5 Me 5, herein represented as Cp *) is particularly preferred. Preferred embodiments of the binuclear complex according to the present invention when a pentamethylcyclopentadienyl ligand is employed include the following structures.

Figure 0005019517
Figure 0005019517

Figure 0005019517
Figure 0005019517

Figure 0005019517
Figure 0005019517

上記二核錯体[CpM(μ−CH)]を合成するには、まず、[CpM(μ−CH)Me]の溶液に塩化水素を作用させて[CpM(μ−CH)Cl]を得る。反応は0℃〜30℃で行うことができ、溶液の溶媒としてはペンタン、トルエン、ジクロロメタン、クロロホルム等を用いることができる。なお、[CpM(μ−CH)Cl]の合成は、Isobe, K.; Okeya, S.; Meanwell, N. J.; Smith, A. J.; Adams, H.; Maitlis, P. M.; J. Chem. Soc., Dalton Trans., 1215-1221 (1984).に記載された方法に基づき行うことができる。また、出発物質となる[CpM(μ−CH)Me]は、Isobe, K.; Miguel, A. V.; Bailey, P. M.; Okeya, S.; Maitlis, P. M.; J. Chem. Soc., Dalton Trans., 1441-1447 (1983).に記載の方法に基づき合成することができる。 In order to synthesize the above binuclear complex [CpM (μ-CH 2 )] 2 , first, hydrogen chloride is allowed to act on a solution of [CpM (μ-CH 2 ) Me] 2 [CpM (μ-CH 2 )]. Cl] 2 is obtained. The reaction can be performed at 0 ° C. to 30 ° C., and pentane, toluene, dichloromethane, chloroform or the like can be used as a solvent for the solution. [CpM (μ-CH 2 ) Cl] 2 was synthesized by Isobe, K .; Okeya, S .; Meanwell, NJ; Smith, AJ; Adams, H .; Maitlis, PM; J. Chem. Soc. , Dalton Trans., 1215-1221 (1984). [CpM (μ-CH 2 ) Me] 2 as a starting material is Isobe, K .; Miguel, AV; Bailey, PM; Okeya, S .; Maitlis, PM; J. Chem. Soc., Dalton Trans , 1441-1447 (1983).

次いで、得られた[CpM(μ−CH)Cl]の溶液に窒素雰囲気下でNaを加え、生成した沈殿を取り除き、溶媒を除去して得られる粉末を再結晶などにより精製することで目的の二核金属錯体[CpM(μ−CH)]を得ることができる。なお、上記[CpM(μ−CH)Cl]溶液における溶媒としては、ベンゼン、トルエン、ヘキサン、ペンテン、シクロヘキサン、テトラヒドロフラン等を用いることができる。 Next, Na is added to the obtained solution of [CpM (μ-CH 2 ) Cl] 2 under a nitrogen atmosphere to remove the formed precipitate, and the solvent is removed to purify the resulting powder by recrystallization or the like. The target binuclear metal complex [CpM (μ-CH 2 )] 2 can be obtained. As the solvent in the [CpM (μ-CH 2 ) Cl] 2 solution, benzene, toluene, hexane, pentene, cyclohexane, tetrahydrofuran, or the like can be used.

本発明のM=M錯体は、金属原子間が電子供与性のメチレン基(CH)によって架橋されている。このようなM=M錯体の合成経路は、その合成前駆体を含めて従来の架橋CO基を有するM=M錯体の合成経路(上記非特許文献3、4および5参照)とは全く異なる新規なものであり、これによって反応性に優れた錯体を得ることができる。 In the M = M complex of the present invention, metal atoms are cross-linked by an electron-donating methylene group (CH 2 ). The synthesis route of such M = M complex is completely different from the synthesis route of the M = M complex having a crosslinked CO group including the synthesis precursor (see Non-Patent Documents 3, 4 and 5 above). As a result, a complex having excellent reactivity can be obtained.

本発明の別の実施形態は、式:[CpM(μ−CH)H](金属−金属間は単結合である)で表される二核金属錯体である。ここで、Cpは上述のようなシクロペンタジエニル系配位子であり、MはCo、RhおよびIrから選ばれる遷移金属原子である。また、この二核錯体は、末端ヒドリドHが金属−金属単結合に対してcis型配置をとることを特徴とする。この特異な構造により、例えば不飽和炭化水素の不斉水素化触媒として利用することが可能である。下記に、中心金属がIrであり、配位子がペンタメチルシクロペンタジエニルである場合の構造を示す。 Another embodiment of the present invention is a binuclear metal complex represented by the formula: [CpM (μ-CH 2 ) H] 2 (metal-metal is a single bond). Here, Cp is a cyclopentadienyl-based ligand as described above, and M is a transition metal atom selected from Co, Rh and Ir. In addition, this binuclear complex is characterized in that the terminal hydride H has a cis configuration with respect to a metal-metal single bond. Due to this unique structure, it can be used, for example, as an asymmetric hydrogenation catalyst for unsaturated hydrocarbons. The structure in the case where the central metal is Ir and the ligand is pentamethylcyclopentadienyl is shown below.

Figure 0005019517
Figure 0005019517

このようなジヒドリド二核錯体は、上述の[CpM(μ−CH)]から合成することができる。すなわち、まず、[CpM(μ−CH)Me]の溶液に塩化水素を作用させて[CpM(μ−CH)Cl]を得、次に得られた[CpM(μ−CH)Cl]の溶液に窒素雰囲気下でNaを加えることによって[CpM(μ−CH)]を生成する。この[CpM(μ−CH)]にメタノールを加えて反応させると沈殿を生成するので、それを再結晶などにより精製して目的のジヒドリド二核錯体を得ることができる。 Such a dihydride binuclear complex can be synthesized from the above-mentioned [CpM (μ-CH 2 )] 2 . That is, first, hydrogen chloride was allowed to act on a solution of [CpM (μ-CH 2 ) Me] 2 to obtain [CpM (μ-CH 2 ) Cl] 2 , and then obtained [CpM (μ-CH 2). ) Cl] 2 to form [CpM (μ-CH 2 )] 2 by adding Na under a nitrogen atmosphere. When methanol is added to and reacted with this [CpM (μ-CH 2 )] 2 , a precipitate is formed, which can be purified by recrystallization or the like to obtain the target dihydride binuclear complex.

本発明のさらに別の実施形態は、式:[(CpM)(μ−CH)(μ−CHMe)](金属−金属間は二重結合である)で表される二核金属錯体である。Cpは上述のようなシクロペンタジエニル系配位子であり、MはCo、RhおよびIrから選ばれる遷移金属原子である。この錯体も、上述の二核錯体[CpM(μ−CH)]と同様に、二重結合のために金属原子間の電子密度が高く、還元力が強い。そのため反応性に優れ、各種触媒や変換反応の出発物質として利用することができる。下記に、中心金属がRhであり、配位子がペンタメチルシクロペンタジエニルである場合の構造を示す。 Yet another embodiment of the present invention is a binuclear metal complex represented by the formula: [(CpM) 2 (μ-CH 2 ) (μ-CHMe)] (metal-metal is a double bond). is there. Cp is a cyclopentadienyl-based ligand as described above, and M is a transition metal atom selected from Co, Rh and Ir. Similarly to the above-described binuclear complex [CpM (μ-CH 2 )] 2 , this complex also has a high electron density between metal atoms due to a double bond and a strong reducing power. Therefore, it has excellent reactivity and can be used as a starting material for various catalysts and conversion reactions. The structure in the case where the central metal is Rh and the ligand is pentamethylcyclopentadienyl is shown below.

Figure 0005019517
Figure 0005019517

上記の二核錯体[(CpM)(μ−CH)(μ−CHMe)]は、[(CpM)(μ−CH)(μ−CHMe)Cl]の溶液に窒素雰囲気下でNaを加え、得られた生成物を再結晶などにより精製して得ることができる。なお、出発物質である[(CpM)(μ−CH)(μ−CHMe)Cl]は、Martinez, J.; Gill, J. B.; Adams, H.; Bailey, N. A.; Saez, I. M.; Sunley, G. J.; Maitlis, P. M., J. Organomet. Chem., 394, 583-599 (1990).に記載の方法に基づき合成することができる。 The above binuclear complex [(CpM) 2 (μ-CH 2 ) (μ-CHMe)] is added to a solution of [(CpM) 2 (μ-CH 2 ) (μ-CHMe) Cl 2 ] under a nitrogen atmosphere. Na can be added and the resulting product can be purified by recrystallization or the like. The starting material [(CpM) 2 (μ-CH 2 ) (μ-CHMe) Cl 2 ] is Martinez, J .; Gill, JB; Adams, H .; Bailey, NA; Saez, IM; Sunley. , GJ; Maitlis, PM, J. Organomet. Chem., 394, 583-599 (1990).

以下、実施例により本発明をさらに詳細に説明する。
(実施例1)
以下に示すような構造をもつ二核錯体[CpRh(μ−CH)]を合成した。
Hereinafter, the present invention will be described in more detail with reference to examples.
Example 1
A binuclear complex [Cp * Rh (μ-CH 2 )] 2 having a structure as shown below was synthesized.

Figure 0005019517
Figure 0005019517

まず、出発物質となる[CpRh(μ−CH)Cl]を、Isobe, K.; Okeya, S.; Meanwell, N. J.; Smith, A. J.; Adams, H.; Maitlis, P. M.; J. Chem. Soc., Dalton Trans., 1215-1221 (1984).に記載の方法に基づき合成した。具体的には、[CpRh(μ−CH)Me]のペンタン溶液に塩化水素ガスを加え(20℃、3分)、反応させることにより、溶液の色が濃紫色になり赤褐色の沈殿が得られた。得られた沈殿を再結晶により精製し、[CpRh(μ−CH)Cl]を得た。 First, [Cp * Rh (μ-CH 2 ) Cl] 2 which is a starting material is converted into Isobe, K .; Okeya, S .; Meanwell, NJ; Smith, AJ; Adams, H .; Maitlis, PM; It was synthesized based on the method described in Chem. Soc., Dalton Trans., 1215-1221 (1984). Specifically, hydrogen chloride gas is added to a pentane solution of [Cp * Rh (μ-CH 2 ) Me] 2 (20 ° C., 3 minutes) and reacted to make the solution color dark purple and reddish brown A precipitate was obtained. The obtained precipitate was purified by recrystallization to obtain [Cp * Rh (μ-CH 2 ) Cl] 2 .

次に、窒素雰囲気下、[CpRh(μ−CH)Cl](203mg、0.353mmol)を無水ベンゼン(20ml)に溶かし、Na(64mg)を加えた。この溶液を5時間撹拌すると、白色沈殿の析出を伴い、溶液の色は赤色から青緑色に変化した。沈殿をろ過により取り除いた後、得られた溶媒を除去し濃青色粉末を得た(収量168mg、95% based on Rh)。反応式は以下の通りである。
[CpRh(μ−CH)Cl]+2Na→[CpRh(μ−CH)]+2NaCl
Next, [Cp * Rh (μ-CH 2 ) Cl] 2 (203 mg, 0.353 mmol) was dissolved in anhydrous benzene (20 ml) under a nitrogen atmosphere, and Na (64 mg) was added. When this solution was stirred for 5 hours, the color of the solution changed from red to blue-green with the precipitation of a white precipitate. After removing the precipitate by filtration, the resulting solvent was removed to obtain a dark blue powder (yield 168 mg, 95% based on Rh). The reaction formula is as follows.
[Cp * Rh (μ-CH 2 ) Cl] 2 + 2Na → [Cp * Rh (μ-CH 2 )] 2 + 2NaCl

得られた粉末をトルエンで再結晶し、青色結晶を得た。なお、生成物はNMRおよびUVスペクトルにより同定した。
H NMR(400MHz,C):δ1.64(s,CMe,30H),9.44(t,μ−CH,4H)
13C NMR(100MHz,C):δ157.2,93.5,10.8
UV/vis(C):λmax=606nm(ε=1.02×10−1cm−1
The obtained powder was recrystallized with toluene to obtain blue crystals. The product was identified by NMR and UV spectrum.
1 H NMR (400 MHz, C 6 D 6 ): δ 1.64 (s, C 5 Me 5 , 30H), 9.44 (t, μ-CH 2 , 4H)
13 C NMR (100 MHz, C 6 D 6 ): δ 157.2, 93.5, 10.8
UV / vis (C 6 H 6 ): λmax = 606 nm (ε = 1.02 × 10 4 M −1 cm −1 )

得られた錯体は、窒素雰囲気下、固体及び溶液状態で数日間安定であった。また、単結晶のX線回折により構造解析を行った。図1に正面から見たORTEP図、図2に横から見たORTEP図をそれぞれ示す。錯体の主な結合距離・角度は次の通りである。   The resulting complex was stable for several days in a solid and solution state under a nitrogen atmosphere. In addition, structural analysis was performed by X-ray diffraction of a single crystal. FIG. 1 shows an ORTEP diagram viewed from the front, and FIG. 2 shows an ORTEP diagram viewed from the side. The main bond distances and angles of the complex are as follows.

距離(Å)
Rh1−Rh1 2.4549(5)
Rh1−C1 2.012(3)
Rh1−C1 2.020(5)
角度(°)
Rh1−C1−Rh1 75.00(14)
C1−Rh1−C1 105.00(18)
Distance (Å)
Rh1-Rh1 * 2.4549 (5)
Rh1-C1 2.012 (3)
Rh1-C1 * 2.020 (5)
Angle (°)
Rh1-C1-Rh1 * 75.00 (14)
C1-Rh1-C1 * 105.00 (18)

X線構造解析により、錯体の構造的特徴として、中心骨格のロジウム金属を含む四員環は平面をなしており(4つの角の和が360°)、2つのCp環はその平面の両側に垂直に位置することが明らかとなった。また、Rh−Rhの距離は、CO架橋をもつ類似構造の錯体[CpRh(μ−CO)]のRh−Rh距離2.564(1)Åに比べて0.1Å以上も短く、現在知られているRh=Rh錯体の中で最も短い結合距離を有していた。 As a structural feature of the complex, X-ray structural analysis shows that the four-membered ring containing the rhodium metal of the central skeleton forms a plane (the sum of four angles is 360 °), and the two Cp * rings are on both sides of the plane. It was revealed that it is located perpendicular to The distance of Rh-Rh is shorter by 0.1 mm or more than the Rh-Rh distance of 2.564 (1) の of the complex structure [Cp * Rh (μ-CO)] 2 having a CO bridge, It had the shortest bond distance among the currently known Rh = Rh complexes.

(実施例2)
以下に示すような構造をもつ二核錯体[CpIr(μ−CH)]を合成した。
(Example 2)
A binuclear complex [Cp * Ir (μ-CH 2 )] 2 having a structure as shown below was synthesized.

Figure 0005019517
Figure 0005019517

まず、出発物質となる[CpIr(μ−CH)Cl]を、上記実施例1の方法に準じて合成した。 First, [Cp * Ir (μ-CH 2 ) Cl] 2 as a starting material was synthesized according to the method of Example 1 above.

次に、窒素雰囲気下、[CpIr(μ−CH)Cl](203mg、0.269mmol)を無水ベンゼン(20ml)に溶かし、Na(64mg)を加えた。この溶液を5時間撹拌すると、白色沈殿の析出を伴い、溶液の色は赤橙色から赤紫色に変化した。沈殿をろ過により取り除いた後、得られた溶媒を除去し赤色粉末を得た(収量181mg、98% based on Ir)。反応式は以下の通りである。
[CpIr(μ−CH)Cl]+2Na→[CpIr(μ−CH)]+2NaCl
Next, [Cp * Ir (μ-CH 2 ) Cl] 2 (203 mg, 0.269 mmol) was dissolved in anhydrous benzene (20 ml) under a nitrogen atmosphere, and Na (64 mg) was added. When this solution was stirred for 5 hours, the color of the solution changed from reddish orange to reddish purple with the precipitation of a white precipitate. After removing the precipitate by filtration, the resulting solvent was removed to obtain a red powder (yield 181 mg, 98% based on Ir). The reaction formula is as follows.
[Cp * Ir (μ-CH 2 ) Cl] 2 + 2Na → [Cp * Ir (μ-CH 2 )] 2 + 2NaCl

得られた粉末をTHFで再結晶し、赤色結晶を得た。なお、生成物はNMRおよびUVスペクトルにより同定した。
H NMR(400MHz,C):δ1.72(s,CMe,30H),9.01(s,μ−CH,4H)
13C NMR(100MHz,C):δ88.7,88.1,10.6
UV/vis(C):λmax=474nm(ε=1.43×10−1cm−1
The obtained powder was recrystallized with THF to obtain red crystals. The product was identified by NMR and UV spectrum.
1 H NMR (400 MHz, C 6 D 6 ): δ 1.72 (s, C 5 Me 5 , 30H), 9.01 (s, μ-CH 2 , 4H)
13 C NMR (100 MHz, C 6 D 6 ): δ 88.7, 88.1, 10.6
UV / vis (C 6 H 6 ): λmax = 474 nm (ε = 1.43 × 10 4 M −1 cm −1 )

得られた錯体は、窒素雰囲気下、固体及び溶液状態で数日間安定であった。また、単結晶のX線回折により構造解析を行った。図3に正面から見たORTEP図を示す。錯体の主な結合距離・角度は次の通りである。   The resulting complex was stable for several days in a solid and solution state under a nitrogen atmosphere. In addition, structural analysis was performed by X-ray diffraction of a single crystal. FIG. 3 shows an ORTEP diagram viewed from the front. The main bond distances and angles of the complex are as follows.

距離(Å)
Ir1−Ir1 2.4378(3)
Ir1−C1 2.032(7)
Ir1−C1 2.034(4)
角度(°)
Ir1−C1−Ir1 73.68(18)
C1−Ir1−C1 106.3(2)
Distance (Å)
Ir1-Ir1 * 2.4378 (3)
Ir1-C1 2.032 (7)
Ir1-C1 * 2.034 (4)
Angle (°)
Ir1-C1-Ir1 * 73.68 (18)
C1-Ir1-C1 * 106.3 (2)

X線構造解析により、この錯体は実施例1のロジウム二核錯体と同様の構造を有しており、中心骨格のイリジウム金属を含む四員環は平面をなし(4つの角の和が360°)、2つのCp環はその平面の両側に垂直に位置することが明らかとなった。また、Ir−Irの距離は、CO架橋をもつ類似構造の錯体[CpIr(μ−CO)]のIr−Ir距離2.554(1)Åに比べて0.1Å以上も短く、現在知られているIr=Ir錯体の中で最も短い結合距離を有していた。 By X-ray structural analysis, this complex has a structure similar to that of the rhodium binuclear complex of Example 1, and the four-membered ring containing the iridium metal of the central skeleton forms a plane (the sum of four angles is 360 °). ) It became clear that the two Cp * rings are located perpendicular to both sides of the plane. In addition, the Ir-Ir distance is shorter by 0.1 mm or more than the Ir-Ir distance 2.554 (1) Å of the complex structure [Cp * Ir (μ-CO)] 2 having a CO bridge, It had the shortest bond distance among the currently known Ir = Ir complexes.

(実施例3)
上記実施例2で得られた[CpIr(μ−CH)]から、以下の二核錯体[CpIr(μ−CH)H]を合成した。
(Example 3)
The following binuclear complex [Cp * Ir (μ-CH 2 ) H] 2 was synthesized from [Cp * Ir (μ-CH 2 )] 2 obtained in Example 2 above.

Figure 0005019517
Figure 0005019517

窒素雰囲気下、[CpIr(μ−CH)](184mg、0.297mmol)の赤色粉末に、無水メタノール(20ml)加え24時間撹拌すると、黄色沈殿が得られた。この溶液をろ過し、得られた沈殿を乾燥させて黄色粉末を得た(収量158mg、86% based on Ir)。この反応は以下のように進行すると考えられる。
2[CpIr(μ−CH)]+2CHOH→2[CpIr(μ−CH)H]+CHOCH
Under a nitrogen atmosphere, anhydrous methanol (20 ml) was added to a red powder of [Cp * Ir (μ-CH 2 )] 2 (184 mg, 0.297 mmol) and stirred for 24 hours to obtain a yellow precipitate. The solution was filtered, and the resulting precipitate was dried to give a yellow powder (yield 158 mg, 86% based on Ir). This reaction is considered to proceed as follows.
2 [Cp * Ir (μ-CH 2 )] 2 + 2CH 3 OH → 2 [Cp * Ir (μ-CH 2 ) H] 2 + CHO 2 CH 3

この黄色粉末をメタノールで再結晶し、黄色結晶を得た。生成物をNMRならびにUV、IRスペクトルにより同定した。
H NMR(400MHz,C):δ1.89(s,CMe,30H),7.94(t,μ−CH,2H),6.54(t,μ−CH,2H),−18.9(s,Ir−H,2H)
13C NMR(100MHz,C):δ94.4,64.0,10.8
IR(Nujol):νIr−H=2168,2131cm−1
UV/vis(C):λmax=417nm(ε=1.08×10−1cm−1
This yellow powder was recrystallized from methanol to obtain yellow crystals. The product was identified by NMR as well as UV and IR spectra.
1 H NMR (400 MHz, C 6 D 6 ): δ 1.89 (s, C 5 Me 5 , 30H), 7.94 (t, μ-CH 2 , 2H), 6.54 (t, μ-CH 2 , 2H), -18.9 (s, Ir-H, 2H)
13 C NMR (100 MHz, C 6 D 6 ): δ 94.4, 64.0, 10.8
IR (Nujol): νIr−H = 2168,2131 cm −1
UV / vis (C 6 H 6 ): λmax = 417 nm (ε = 1.08 × 10 3 M −1 cm −1 )

得られた錯体は、窒素雰囲気下、固体及び溶液状態で一ヶ月以上安定であり、空気中でも数時間にわたり安定であった。また、単結晶のX線回折により構造解析を行った。図4に斜め上から見たORTEP図を示す。錯体の主な結合距離・角度は次の通りである。   The resulting complex was stable for more than a month in a solid and solution state under a nitrogen atmosphere and was stable over several hours in air. In addition, structural analysis was performed by X-ray diffraction of a single crystal. FIG. 4 shows an ORTEP diagram as seen from diagonally above. The main bond distances and angles of the complex are as follows.

距離(Å)
Ir1−Ir2 2.6442(4)
Ir1−C1 2.059(9)
Ir1−C2 2.057(8)
Ir2−C1 2.052(8)
Ir2−C2 2.043(9)
角度(°)
Ir1−C1−Ir2 80.1(2)
Ir1−C2−Ir2 80.3(2)
C1−Ir1−C2 96.3(3)
C1−Ir2−C2 97.0(3)
Distance (Å)
Ir1-Ir2 2.6442 (4)
Ir1-C1 2.059 (9)
Ir1-C2 2.057 (8)
Ir2-C1 2.052 (8)
Ir2-C2 2.043 (9)
Angle (°)
Ir1-C1-Ir2 80.1 (2)
Ir1-C2-Ir2 80.3 (2)
C1-Ir1-C2 96.3 (3)
C1-Ir2-C2 97.0 (3)

上記の通り、ヒドリドが配位したことによって、Ir−Ir距離は実施例2の錯体より約0.2Å長くなった。また両側のCp環は開き、CH架橋がCp環の反対側にわずかに折れ曲がった構造であることが明らかとなった。H NMRスペクトル(δ=−18.9)およびIRスペクトル(νIr−H=2168,2131cm−1)により、末端ヒドリドの存在が確認できた。X線構造解析、NMR、IRの結果から総合的に判断して、上記の構造式で示すように末端ヒドリドが二核錯体上でcis型配置をとっているものと考えられ、したがって不飽和炭化水素の不斉水素化触媒への利用など、特異な反応性が期待できる。 As described above, the coordination of hydride made the Ir-Ir distance about 0.2 mm longer than that of the complex of Example 2. It was also revealed that the Cp * rings on both sides were open and the CH 2 bridge was slightly bent to the opposite side of the Cp * ring. The presence of terminal hydride could be confirmed by 1 H NMR spectrum (δ = −18.9) and IR spectrum (νIr-H = 2168,2131 cm −1 ). Judging comprehensively from the results of X-ray structural analysis, NMR, and IR, it is considered that the terminal hydride has a cis configuration on the binuclear complex as shown in the above structural formula. Specific reactivity can be expected, such as utilization of hydrogen as an asymmetric hydrogenation catalyst.

実施例1における[CpRh(μ−CH)]錯体の正面から見たORTEP図である。FIG. 3 is an ORTEP diagram viewed from the front of the [Cp * Rh (μ-CH 2 )] 2 complex in Example 1. 実施例1における[CpRh(μ−CH)]錯体の横から見たORTEP図である。FIG. 3 is an ORTEP diagram viewed from the side of the [Cp * Rh (μ-CH 2 )] 2 complex in Example 1. 実施例2における[CpIr(μ−CH)]錯体の正面から見たORTEP図である。FIG. 4 is an ORTEP diagram viewed from the front of the [Cp * Ir (μ-CH 2 )] 2 complex in Example 2. 実施例3における[CpIr(μ−CH)H]錯体の斜め上から見たORTEP図である。FIG. 4 is an ORTEP diagram of the [Cp * Ir (μ-CH 2 ) H] 2 complex in Example 3 as viewed from diagonally above.

Claims (7)

式:[CpM(μ−CH)]
(式中、Cpはシクロペンタジエニル系配位子であり、MはCo、RhおよびIrから選ばれる金属原子であり、金属−金属間は二重結合である)
で表される二核金属錯体。
Formula: [CpM (μ-CH 2 )] 2
(In the formula, Cp is a cyclopentadienyl-based ligand, M is a metal atom selected from Co, Rh and Ir, and a metal-metal bond is a double bond)
A binuclear metal complex represented by
式:[CpM(μ−CH)H]
(式中、Cpはシクロペンタジエニル系配位子であり、MはCo、RhおよびIrから選ばれる金属原子であり、金属−金属間は単結合であり、Hは金属−金属単結合に対してcis型配置をとる)
で表される二核金属錯体。
Formula: [CpM (μ-CH 2 ) H] 2
(In the formula, Cp is a cyclopentadienyl-based ligand, M is a metal atom selected from Co, Rh, and Ir, a metal-metal bond is a single bond, and H is a metal-metal single bond. Cis-type arrangement for)
A binuclear metal complex represented by
式:[(CpM)(μ−CH)(μ−CHMe)]
(式中、Cpはシクロペンタジエニル系配位子であり、MはCo、RhおよびIrから選ばれる金属原子であり、金属−金属間は二重結合である)
で表される二核金属錯体。
Formula: [(CpM) 2 (μ -CH 2) (μ-CHMe)]
(In the formula, Cp is a cyclopentadienyl-based ligand, M is a metal atom selected from Co, Rh and Ir, and a metal-metal bond is a double bond)
A binuclear metal complex represented by
シクロペンタジエニル系配位子が、ペンタメチルシクロペンタジエニル配位子である請求項1〜3のいずれか記載の二核金属錯体。   The binuclear metal complex according to any one of claims 1 to 3, wherein the cyclopentadienyl-based ligand is a pentamethylcyclopentadienyl ligand. [CpM(μ−CH)Cl]の溶液に窒素雰囲気下でNaを加える請求項1記載の二核金属錯体の製造方法。 The method for producing a binuclear metal complex according to claim 1, wherein Na is added to a solution of [CpM (μ-CH 2 ) Cl] 2 under a nitrogen atmosphere. 請求項1記載の二核金属錯体とメタノールとを反応させる請求項2記載の二核金属錯体の製造方法。   The method for producing a binuclear metal complex according to claim 2, wherein the binuclear metal complex according to claim 1 is reacted with methanol. [(CpM)(μ−CH)(μ−CHMe)Cl]の溶液に窒素雰囲気下でNaを加える請求項3記載の二核金属錯体の製造方法。 [(CpM) 2 (μ- CH 2) (μ-CHMe) Cl 2] The method according to claim 3 binuclear metal complex according to the solution is added the Na under a nitrogen atmosphere.
JP2007054789A 2007-03-05 2007-03-05 Binuclear metal complex and method for producing the same Expired - Fee Related JP5019517B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007054789A JP5019517B2 (en) 2007-03-05 2007-03-05 Binuclear metal complex and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007054789A JP5019517B2 (en) 2007-03-05 2007-03-05 Binuclear metal complex and method for producing the same

Publications (2)

Publication Number Publication Date
JP2008214278A JP2008214278A (en) 2008-09-18
JP5019517B2 true JP5019517B2 (en) 2012-09-05

Family

ID=39834753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007054789A Expired - Fee Related JP5019517B2 (en) 2007-03-05 2007-03-05 Binuclear metal complex and method for producing the same

Country Status (1)

Country Link
JP (1) JP5019517B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10870144B2 (en) 2015-04-17 2020-12-22 Hatebur Umformmaschinen Ag Ring rolling device with axially fixed rolling bearings

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2010005106A1 (en) * 2008-07-11 2012-01-05 独立行政法人科学技術振興機構 Method for producing polymer
JPWO2010005107A1 (en) * 2008-07-11 2012-01-05 独立行政法人科学技術振興機構 Production method of polysilane
CN108187747B (en) * 2017-12-27 2020-07-17 盐城工学院 Multifunctional integrated catalyst, synthesis method and application
CN109180845B (en) * 2018-07-20 2020-12-15 北京理工大学 Binuclear rhodium metal catalyst, preparation method and application

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03100529A (en) * 1989-09-14 1991-04-25 Nippon Steel Corp Organic nonlinear optical material
JP3590880B2 (en) * 1998-03-12 2004-11-17 独立行政法人理化学研究所 New iridium complex

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10870144B2 (en) 2015-04-17 2020-12-22 Hatebur Umformmaschinen Ag Ring rolling device with axially fixed rolling bearings

Also Published As

Publication number Publication date
JP2008214278A (en) 2008-09-18

Similar Documents

Publication Publication Date Title
US6909009B2 (en) Alkane and alkane group dehydrogenation with organometallic catalysts
Wallner et al. Synthesis of new chiral pincer-complex catalysts for asymmetric allylation of sulfonimines
JP5019517B2 (en) Binuclear metal complex and method for producing the same
Watanabe et al. Synthesis and structures of (dialkylsilylene) bis (phosphine)-nickel, palladium, and platinum complexes and (η 6-arene)(dialkylsilylene) nickel complexes
JP5372771B2 (en) process
JP5090368B2 (en) Transition metal compound and method for producing the same
Chamberlain et al. The chemistry of sterically crowded aryl-oxide ligands. Part 2. Cyclotantalation of 2, 6-di-tert-butylphenoxide
WO2007111226A1 (en) Fullerene derivative and method for producing same
Yao et al. Synthesis, characterization and polymerization activity of copper complexes with N, O-chelate ligands
Guo et al. Potassium complexes containing bidentate pyrrole ligands: synthesis, structures, and catalytic activity for the cyclotrimerization of isocyanates
JP2574012B2 (en) Method for producing polysilane compound
Okuda et al. Chiral complexes of titanium containing a linked amido-cyclopentadienyl ligand: synthesis, structure, and asymmetric imine hydrogenation catalysis
Wong et al. Carbon-rich organometallic materials derived from 4-ethynylphenylferrocene
US20030139617A1 (en) Fullerene derivatives and their metal complexes
Xia et al. Dithia [3.3] paracyclophane-bridged bimetallic ruthenium acetylide complexes: synthesis, structures and influence of transannular π–π interactions on their electronic properties
Bai et al. An alkyl-ended ansa-bis (amidine) and solvent-influenced complexation modes of its group IV metal derivatives
Gemel et al. Cationic 16-electron half-sandwich ruthenium complexes containing asymmetric diamines: understanding the stability and reactivity of coordinatively unsaturated two-legged piano stool complexes
JP2020007232A (en) Novel triborylalkene, production method thereof, and production method of multisubstituted alkene
Gómez-Ruiz et al. Synthesis, hydrosilylation reactivity and catalytic properties of group 4 ansa-metallocene complexes
RU2445316C1 (en) Methods of producing organic compound of alkali metal and organic compound of transition metal
Lee et al. Synthesis of zirconocenes bearing benz [f] indenyl ligand and their use as a catalyst in ethylene polymerization
CN112694489B (en) Preparation method of N-heterocyclic carbene copper catalyst
Fandos et al. A new titanium building block for early–late heterometallic complexes; preparation of a new tetrameric metallomacrocycle by self assembly
Kealey et al. Variable coordination behaviour of pyrazole-containing N, P and N, P (O) ligands towards palladium (II)
US6489526B2 (en) Method for synthesis of hydrocarbyl bridged indenes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100301

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120522

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120608

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees