JP5018502B2 - Superconducting cable - Google Patents

Superconducting cable Download PDF

Info

Publication number
JP5018502B2
JP5018502B2 JP2008009800A JP2008009800A JP5018502B2 JP 5018502 B2 JP5018502 B2 JP 5018502B2 JP 2008009800 A JP2008009800 A JP 2008009800A JP 2008009800 A JP2008009800 A JP 2008009800A JP 5018502 B2 JP5018502 B2 JP 5018502B2
Authority
JP
Japan
Prior art keywords
superconducting
layer
wire
thin film
critical current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008009800A
Other languages
Japanese (ja)
Other versions
JP2009170364A (en
Inventor
正義 大屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2008009800A priority Critical patent/JP5018502B2/en
Publication of JP2009170364A publication Critical patent/JP2009170364A/en
Application granted granted Critical
Publication of JP5018502B2 publication Critical patent/JP5018502B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Description

本発明は、超電導薄膜線材を主材とする超電導ケーブルにおいて、超電導薄膜線材に異種の超電導線材を含めて形成される超電導導体層又は超電導シールド層を備え、特に、臨界電流密度の対温度特性の安定化を図った超電導ケーブルに関する。   The present invention relates to a superconducting cable mainly composed of a superconducting thin film wire, comprising a superconducting conductor layer or a superconducting shield layer formed by including a superconducting thin film wire with a different superconducting wire, and in particular, having a critical current density versus temperature characteristic. The present invention relates to a stabilized superconducting cable.

超電導線材として、Bi-Sr-Ca-Cu-Oテープ線材に代表されるBi系超電導テープ線材(BSCCO(商品名))が実用化されつつある。このBi系超電導テープ線材は、例えばBi2223相からなる複数本の超電導フィラメントを銀などの安定化材中に埋設した構造のテープ線材である。その断面は、例えば図3に示すように、ビスマス系酸化物超電導体からなる多数本の超電導フィラメント21aを銀材等からなる金属シース(金属安定化材)21bで覆ってテープ状に形成される。このようなBi系超電導テープ線材21は、後で説明するように、液体窒素の沸点である77K付近で、温度変化に対する臨界電流(臨界電流密度(Jc))の変化率が少なく、臨界温度も高いという特徴を備えているが、冷媒温度を下げても臨界電流(臨界電流密度(Jc))の大きな増加が望めないという難点がある。   As a superconducting wire, a Bi-based superconducting tape wire (BSCCO (trade name)) typified by a Bi-Sr-Ca-Cu-O tape wire is being put into practical use. This Bi-based superconducting tape wire is a tape wire having a structure in which a plurality of superconducting filaments made of, for example, a Bi2223 phase are embedded in a stabilizing material such as silver. For example, as shown in FIG. 3, the cross section is formed in a tape shape by covering a large number of superconducting filaments 21a made of a bismuth-based oxide superconductor with a metal sheath (metal stabilizing material) 21b made of silver or the like. . As will be described later, such a Bi-based superconducting tape wire 21 has a small change rate of critical current (critical current density (Jc)) with respect to temperature change at around 77K, which is the boiling point of liquid nitrogen, and has a critical temperature as well. Although it has the feature of being high, there is a difficulty in that a large increase in critical current (critical current density (Jc)) cannot be expected even if the refrigerant temperature is lowered.

一方、次世代超電導線材として、いわゆる超電導薄膜線材であるY系超電導薄膜線材(YBCO)の開発が進められている(例えば特許文献1)。Y系超電導薄膜線材の構成は図4に示される。このY系超電導薄膜線材11は、テープ状の金属基板12上に順次中間層13、超電導薄膜14、保護層15を積層して形成される。具体例としては、金属基板12としてハステロイ(登録商標)、中間層13としてYSZ、超電導薄膜14としてY系123構造(YBa2Cu3Oy)薄膜、保護層15として銀が利用されている。通常、これら中間層13や超電導薄膜14はレーザ蒸着などにより金属基板12の片面のみに形成されている。このようなY系超電導薄膜線材11は、後で説明するように、77K付近で、温度変化に対する臨界電流(臨界電流密度(Jc))の変化率が大きいことから、冷媒温度を下げることによって臨界電流(臨界電流密度(Jc))が大きく上昇するという特徴を備えているが、運転温度が上昇した場合の臨界電流(臨界電流密度(Jc))の減少が大きいという難点がある。 On the other hand, as a next-generation superconducting wire, development of a Y-based superconducting thin film wire (YBCO), which is a so-called superconducting thin film wire, is in progress (for example, Patent Document 1). The configuration of the Y-based superconducting thin film wire is shown in FIG. The Y-based superconducting thin film wire 11 is formed by sequentially laminating an intermediate layer 13, a superconducting thin film 14, and a protective layer 15 on a tape-like metal substrate 12. As a specific example, Hastelloy (registered trademark) is used as the metal substrate 12, YSZ is used as the intermediate layer 13, a Y-based 123 (YBa 2 Cu 3 Oy) thin film is used as the superconducting thin film 14, and silver is used as the protective layer 15. Usually, the intermediate layer 13 and the superconducting thin film 14 are formed only on one side of the metal substrate 12 by laser vapor deposition or the like. As described later, the Y-based superconducting thin film wire 11 has a large rate of change of critical current (critical current density (Jc)) with respect to temperature change at around 77K. Although it has the feature that the current (critical current density (Jc)) rises greatly, there is a drawback that the critical current (critical current density (Jc)) decreases greatly when the operating temperature rises.

Y系超電導薄膜線材とBi系超電導テープ線材の臨界電流密度(Jc)の対温度特性は、例えば図5に示すように、かなり明瞭な差異が認められる。即ち、超電導ケーブルの運転温度近傍の65K〜77K(液体窒素の沸点)においては、一点鎖線で示すY系超電導薄膜線材は、二点鎖線で示すBi系超電導テープ線材に比べて、温度の上昇に対する臨界電流密度(Jc)の減少がかなり大きく、両線材の臨界電流密度曲線の対温度勾配に明瞭な相違が認められる。   As shown in FIG. 5, for example, a considerably clear difference is recognized in the critical current density (Jc) versus temperature characteristics of the Y-based superconducting thin film wire and the Bi-based superconducting tape wire. That is, at 65 K to 77 K (boiling point of liquid nitrogen) near the operating temperature of the superconducting cable, the Y-based superconducting thin film wire indicated by the alternate long and short dash line is more resistant to the temperature rise than the Bi-based superconducting tape wire indicated by the two-dot chain line. The decrease in critical current density (Jc) is quite large, and there is a clear difference between the temperature gradients of the critical current density curves of both wires.

このような両線材の臨界電流密度(Jc)の対温度特性の相違に起因して、短絡事故時に一時的に大きな電流が流れた場合において、瞬時復帰が可能な温度上昇幅に大きな相違が認められる。通常、送電線路システムに大きな短絡電流が流れた場合、遮断器の仕様によって決まる所定の時間の後に、ケーブルは線路より遮断されるが、遮断されるまでの間に超電導ケーブルに流れる短絡電流によってケーブルの温度が上昇する。瞬時復帰とは、このような大電流が流れた場合においても、超電導ケーブルが常電導転移することなく、事故除去後にすぐに運転が再開される状態をいう。Y系超電導薄膜線材は、Bi系超電導テープ線材よりも瞬時復帰を可能とする許容温度上昇幅も小さい。許容温度上昇幅とは、運転時における冷媒の設定温度から、瞬時復帰できる最大の温度に至るまでの温度上昇幅をいう。 Due to the difference in the critical current density (Jc) vs. temperature characteristics of both wires, there is a large difference in the temperature rise that can be instantaneously restored when a large current flows temporarily during a short-circuit accident. It is done. Normally, when a large short-circuit current flows in the transmission line system, the cable is disconnected from the line after a predetermined time determined by the specifications of the circuit breaker, but the cable is caused by the short-circuit current flowing in the superconducting cable before it is disconnected. Temperature rises. Instantaneous recovery refers to a state in which operation is resumed immediately after the accident is removed without causing the superconducting cable to transition to normal conduction even when such a large current flows. The Y-based superconducting thin film wire has a smaller allowable temperature rise that enables instantaneous recovery than the Bi-based superconducting tape wire. The allowable temperature increase range refers to the temperature increase range from the set temperature of the refrigerant during operation to the maximum temperature that can be instantaneously restored.

従来、このようなBi系超電導テープ線材又はY系超電導薄膜線材により、例えば交流用の超電導ケーブルを構成する場合、超電導導体層と超電導シールド層は、Bi系超電導テープ線材又はY系超電導薄膜線材の何れか1種類の線材のみで構成されていた。つまり、Bi系超電導ケーブルでは、Bi系超電導テープ線材のみによって超電導導体層と超電導シールド層が形成されていた(例えば特許文献2参照)。また、Y系超電導ケーブルでは、Y系超電導薄膜線材のみによって超電導導体層と超電導シールド層が形成されていた(例えば特許文献3参照)。
特開2001-31418号公報 特開2006-331893号公報 特開2007-188844号公報
Conventionally, when a superconducting cable for AC, for example, is constituted by such a Bi-based superconducting tape wire or Y-based superconducting thin film wire, the superconducting conductor layer and the superconducting shield layer are made of Bi-based superconducting tape wire or Y-based superconducting thin-film wire. It was comprised only with any one type of wire. That is, in the Bi-based superconducting cable, the superconducting conductor layer and the superconducting shield layer are formed only by the Bi-based superconducting tape wire (see, for example, Patent Document 2). Further, in a Y-based superconducting cable, a superconducting conductor layer and a superconducting shield layer are formed only by a Y-based superconducting thin film wire (see, for example, Patent Document 3).
JP 2001-31418 JP 2006-331893 JP JP 2007-188844

Y系超電導ケーブルは、Bi系超電導ケーブルに比して、運転温度から常電導転移するまでの温度幅が小さいため、送電線路システムの中間ジョイント部や端末接続部での発熱によりクエンチが発生しやすい。また、短絡電流に対して瞬時復帰を可能とする許容温度上昇幅が小さく、瞬時復帰しない場合でも、回復するまでに要する時間が長くなる。従って、Y系超電導ケーブルでは、システムの安定性を確保するための対策が望まれていた。   Y-based superconducting cable has a smaller temperature range from the operating temperature to the normal conducting transition than Bi-based superconducting cable, so quenching is likely to occur due to heat generation at the intermediate joint part and terminal connection part of the transmission line system. . In addition, the allowable temperature rise that enables instantaneous recovery with respect to the short-circuit current is small, and even when the instantaneous recovery does not occur, the time required for recovery becomes longer. Therefore, in the Y-based superconducting cable, a countermeasure for ensuring the stability of the system has been desired.

本発明は、このような事情に鑑みてなされ、臨界電流密度の対温度特性を安定化させた超電導ケーブルを提供することを目的とする。   This invention is made | formed in view of such a situation, and it aims at providing the superconducting cable which stabilized the temperature characteristic with respect to a critical current density.

本発明は、超電導導体層と超電導シールド層を備えた超電導ケーブルであって、
前記超電導導体層が、超電導薄膜線材に異種の超電導線材を含めて形成され、前記超電導線材が、Bi系超電導テープ線材で形成されることを特徴とする。
The present invention is a superconducting cable comprising a superconducting conductor layer and a superconducting shield layer,
The superconducting conductor layer is formed of a superconducting thin film wire including a different kind of superconducting wire, and the superconducting wire is formed of a Bi-based superconducting tape wire.

このような構成によれば、運転温度が上昇した際の臨界電流密度(Jc)の減少率が大きいというY系超電導薄膜線材の難点を、Bi系超電導テープ線材によって補うことができる。即ち、超電導導体層に、Bi系超電導テープ線材が含まれるので、運転温度が上昇した際の臨界電流密度(Jc)の減少率が少ないというBi系超電導テープ線材の特性を超電導導体層に加味することができる。これにより、超電導導体層全体として、運転温度が上昇した際の臨界電流密度(Jc)の減少率を小さくすることができ、超電導導体層における臨界電流密度(Jc)の対温度特性を改善することができる。   According to such a configuration, the difficulty of the Y-based superconducting thin film wire that the reduction rate of the critical current density (Jc) when the operating temperature rises is large can be compensated by the Bi-based superconducting tape wire. That is, since the superconducting conductor layer contains Bi-based superconducting tape wire, the characteristic of Bi-based superconducting tape wire that the rate of decrease in critical current density (Jc) when the operating temperature is increased is added to the superconducting conductor layer. be able to. This makes it possible to reduce the decrease rate of the critical current density (Jc) when the operating temperature rises for the entire superconducting conductor layer, and to improve the temperature characteristics of the critical current density (Jc) in the superconducting conductor layer. Can do.

前記Bi系超電導テープ線材は、前記超電導導体層の内側の層に配設されるようにしてもよい。超電導導体層は、外層ほど外部平行磁場が大きくなるため、Bi系超電導テープ線材を超電導導体層の内側の層に配設することによって、外部平行磁場に対する交流損失が少なく外部平行磁場に対する臨界電流の減少が少ない超電導薄膜線材を外層側に配置することができる。従って、全体として、交流損失が少なく大容量な超電導導体層を形成することができる。その超電導薄膜線材には、例えばY系超電導薄膜線材を用いることができる。   The Bi-based superconducting tape wire may be disposed in a layer inside the superconducting conductor layer. Since the external parallel magnetic field of the superconducting conductor layer increases as the outer layer increases, by arranging the Bi-based superconducting tape wire on the inner layer of the superconducting conductor layer, the AC current with respect to the external parallel magnetic field is reduced, and the critical current for the external parallel magnetic field is reduced. A superconducting thin film wire with little decrease can be arranged on the outer layer side. Therefore, as a whole, a superconducting conductor layer with a low AC loss and a large capacity can be formed. For example, a Y-based superconducting thin film wire can be used as the superconducting thin film wire.

また、別の発明は、超電導導体層と超電導シールド層を備えた超電導ケーブルであって、
前記超電導シールド層が、超電導薄膜線材に異種の超電導線材を含めて形成され、前記超電導線材が、Bi系超電導テープ線材で形成されることを特徴とする。
Another invention is a superconducting cable including a superconducting conductor layer and a superconducting shield layer,
The superconducting shield layer is formed of a superconducting thin film wire including a different kind of superconducting wire, and the superconducting wire is formed of a Bi-based superconducting tape wire.

このような構成によれば、運転温度が上昇した際の臨界電流密度(Jc)の減少率が大きいというY系超電導薄膜線材の難点を、Bi系超電導テープ線材によって補うことができる。即ち、超電導シールド層にBi系超電導テープ線材が含まれるので、運転温度が上昇した際の臨界電流密度(Jc)の減少率が少ないというBi系超電導テープ線材の特性を超電導シールド層に加味することができる。これにより、超電導シールド層全体として、運転温度が上昇した際の臨界電流密度(Jc)の減少率を小さくすることができ、超電導シールド層における臨界電流密度(Jc)の対温度特性を改善することができる。   According to such a configuration, the difficulty of the Y-based superconducting thin film wire that the reduction rate of the critical current density (Jc) when the operating temperature rises is large can be compensated by the Bi-based superconducting tape wire. That is, since the superconducting shield layer contains Bi-based superconducting tape wire, the characteristic of Bi-based superconducting tape wire that the rate of decrease in critical current density (Jc) when the operating temperature is increased is added to the superconducting shield layer. Can do. As a result, the reduction rate of the critical current density (Jc) when the operating temperature rises can be reduced as a whole of the superconducting shield layer, and the temperature characteristics of the critical current density (Jc) in the superconducting shield layer can be improved. Can do.

前記Bi系超電導テープ線材は、前記超電導シールド層の外側の層に配設されるようにしてもよい。超電導シールド層は、内層ほど外部平行磁場が大きくなるため、Bi系超電導テープ線材を超電導シールド層の外側の層に配設することによって、外部平行磁場に対する交流損失が少なく外部平行磁場に対する臨界電流の減少が少ない超電導薄膜線材を内層側に配置することができる。従って、全体として、交流損失が少なく大容量な超電導シールド層を形成することができる。その超電導薄膜線材には、例えばY系超電導薄膜線材を用いることができる。   The Bi-based superconducting tape wire may be disposed on the outer layer of the superconducting shield layer. The superconducting shield layer has a larger external parallel magnetic field as the inner layer. Therefore, by arranging the Bi-based superconducting tape wire on the outer layer of the superconducting shield layer, the AC current loss with respect to the external parallel magnetic field is reduced and the critical current with respect to the external parallel magnetic field is reduced. A superconducting thin film wire with little decrease can be arranged on the inner layer side. Therefore, as a whole, a superconducting shield layer having a small amount of AC loss and a large capacity can be formed. For example, a Y-based superconducting thin film wire can be used as the superconducting thin film wire.

本発明の超電導ケーブルは、超電導導体層の少なくとも1層がBi系超電導テープ線材で形成されるので、超電導導体層における臨界電流密度(Jc)の対温度特性が改善され、事故電流に対して瞬時復帰しうる許容温度上昇幅が拡大された送電線路システムを構築することができる。   In the superconducting cable of the present invention, since at least one of the superconducting conductor layers is formed of a Bi-based superconducting tape wire, the critical current density (Jc) with respect to temperature characteristics in the superconducting conductor layer is improved, and the instantaneous current against the accident current is improved. It is possible to construct a transmission line system in which the allowable temperature rise that can be restored is expanded.

本発明の別の超電導ケーブルは、超電導シールド層の少なくとも1層がBi系超電導テープ線材で形成されるので、超電導シールド層における臨界電流密度(Jc)の対温度特性が改善され、事故電流に対して瞬時復帰しうる許容温度上昇幅が拡大された送電線路システムを構築することができる。   In another superconducting cable of the present invention, since at least one of the superconducting shield layers is formed of a Bi-based superconducting tape wire, the critical current density (Jc) with respect to temperature characteristics in the superconducting shield layer is improved, and the accident current is reduced. Thus, it is possible to construct a transmission line system in which the allowable temperature rise that can be instantaneously recovered is expanded.

以下に、本発明の実施の形態に係る超電導ケーブルについて図面を参照しつつ詳細に説明する。   Hereinafter, a superconducting cable according to an embodiment of the present invention will be described in detail with reference to the drawings.

図1は、超電導ケーブルのケーブルコアの主要な構成を示す斜視図である。このケーブルコアは、中心から順に、フォーマ1と、超電導導体層2と、絶縁層3と、超電導シールド層4と、を備えている。フォーマ1は、Cuなどの常電導材料からなる素線を撚り合せた撚り線又は中空パイプ等で形成され、絶縁層3は、クラフト紙やクラフト紙とポリオレフィンフィルムをラミネートした複合紙等で形成される。そして、超電導導体層2は、例えば図3に示すようなBi系超電導テープ線材21で形成される内側層と、Y系超電導薄膜線材11で形成される中間層と外側層と、を備えている。また、超電導シールド層4は、Y系超電導薄膜線材11で形成される内側層と、Bi系超電導テープ線材21で形成される外側層と、を備えている。   FIG. 1 is a perspective view showing a main configuration of a cable core of a superconducting cable. This cable core includes a former 1, a superconducting conductor layer 2, an insulating layer 3, and a superconducting shield layer 4 in order from the center. The former 1 is formed of a stranded wire or a hollow pipe formed by twisting strands made of a normal conducting material such as Cu, and the insulating layer 3 is formed of kraft paper or composite paper obtained by laminating kraft paper and a polyolefin film. The The superconducting conductor layer 2 includes, for example, an inner layer formed of a Bi-based superconducting tape wire 21 as shown in FIG. 3, and an intermediate layer and an outer layer formed of a Y-based superconducting thin film wire 11. . Superconducting shield layer 4 includes an inner layer formed of Y-based superconducting thin film wire 11 and an outer layer formed of Bi-based superconducting tape wire 21.

このようなケーブルコアを備えた超電導ケーブルにおける超電導導体層2では、外層ほど外部平行磁場が大きくなるため、その中間層と外側層は、外部平行磁場に対する交流損失が少なく外部平行磁場に対する臨界電流(Ic)の減少が少ないY系超電導薄膜線材11で形成している。そして、その内側層(例えば層数で1〜2層)を、温度上昇に対して臨界電流密度(Jc)の減少が少ないBi系超電導テープ線材21で形成している。このような構成によって、磁場による臨界電流(Ic)の低下が少なく磁場特性に優れているY系超電導薄膜線材11の特徴を生かしつつ、超電導導体層2における臨界電流密度(Jc)の対温度特性を改善することができ、かつ、交流損失を少なくして大容量を確保することができる。   In the superconducting conductor layer 2 in the superconducting cable having such a cable core, the outer parallel magnetic field becomes larger in the outer layer, so that the intermediate layer and the outer layer have less AC loss with respect to the external parallel magnetic field, and the critical current ( The Y-type superconducting thin film wire 11 has a small decrease in Ic). And the inner layer (for example, 1-2 layers by the number of layers) is formed with the Bi type superconducting tape wire 21 in which the critical current density (Jc) decreases little with respect to the temperature rise. With such a configuration, the critical current density (Jc) versus temperature characteristics in the superconducting conductor layer 2 while taking advantage of the characteristics of the Y-based superconducting thin film wire 11 that is excellent in the magnetic field characteristics with little decrease in the critical current (Ic) due to the magnetic field. And a large capacity can be secured by reducing AC loss.

また、超電導シールド層4では、内層ほど外部平行磁場が大きくなるため、その内側層を、外部平行磁場に対する交流損失が少なく外部平行磁場に対する臨界電流(Ic)の減少が少ないY系超電導薄膜線材11で形成している。そして、その外側層を、温度上昇に対して臨界電流密度(Jc)の減少が少ないBi系超電導テープ線材21で形成している。このような構成により、外部平行磁場による臨界電流(Ic)の低下が少なく磁場特性に優れているY系超電導薄膜線材11の特徴を生かしつつ、超電導シールド層4における臨界電流密度(Jc)の対温度特性を改善することができ、かつ、交流損失を少なくして大容量を確保することができる。   In the superconducting shield layer 4, the inner parallel layer has a larger external parallel magnetic field. Therefore, the inner layer of the Y-type superconducting thin film wire 11 has less AC loss with respect to the external parallel magnetic field and less critical current (Ic) with respect to the external parallel magnetic field. It is formed with. The outer layer is formed of a Bi-based superconducting tape wire 21 in which the critical current density (Jc) decreases little with increasing temperature. With such a configuration, a critical current density (Jc) pair in the superconducting shield layer 4 is utilized while taking advantage of the characteristics of the Y-based superconducting thin film wire 11 that has a small decrease in critical current (Ic) due to an external parallel magnetic field and is excellent in magnetic field characteristics. The temperature characteristics can be improved, and a large capacity can be secured by reducing AC loss.

従って、上述のようなBi系超電導テープ線材を混用した超電導導体層2と超電導シールド層4を備えた超電導ケーブルによって送電線路システムを構成した場合、事故電流に対して瞬時復帰が可能となる温度領域も拡大される。また、瞬時復帰が許容されず送電停止状態(シャットダウン)になった場合であっても、運転を再開までの冷却に要する時間が短縮化される。   Therefore, when a power transmission line system is constituted by a superconducting cable including the superconducting conductor layer 2 and the superconducting shield layer 4 mixed with the Bi-based superconducting tape wire as described above, a temperature region in which an instantaneous return to an accident current is possible. Is also expanded. Further, even when the instantaneous return is not permitted and the power transmission is stopped (shutdown), the time required for cooling to restart the operation is shortened.

このような超電導ケーブルの対温度特性については、Bi系超電導テープ線材とY系超電導薄膜線材の臨界電流密度(Jc)の対温度特性を比較して示す図2のグラフによって確認することができる。尚、図2では、横軸に冷媒の温度(絶対温度K)、縦軸にY系超電導薄膜線材とBi系超電導テープ線材の臨界電流密度(Jc)を、冷媒の沸点77Kにおける値を基準値(=1.0)として、その基準値に対する比率で表示している。図示のように、77K付近では、Y系超電導薄膜線材の臨界電流密度曲線の勾配がBi系超電導テープ線材よりもかなり大きいことが判る。つまり、Y系超電導薄膜線材は、冷媒温度を下げれば、臨界電流密度(Jc)が大きく上昇し、温度変化に対する臨界電流密度(Jc)の変化率が大きい。従って、冷媒温度を下げることによって臨界電流密度(Jc)を大きく上昇させることができる反面、運転温度が上昇した場合の臨界電流密度(Jc)の減少が大きいため、事故電流に対して瞬時復帰を可能とする許容温度上昇幅も小さい。これに対して、Bi系超電導テープ線材は、運転温度が上昇した場合の臨界電流密度(Jc)の減少率が少なく、臨界温度も高いことから、事故電流に対して瞬時復帰を可能とする許容温度上昇幅も大きい。   The temperature characteristics of such a superconducting cable can be confirmed by comparing the temperature characteristics of the critical current density (Jc) of the Bi-based superconducting tape wire and the Y-based superconducting thin film wire with reference to the graph of FIG. In FIG. 2, the horizontal axis represents the temperature of the refrigerant (absolute temperature K), the vertical axis represents the critical current density (Jc) of the Y-based superconducting thin film wire and Bi-based superconducting tape wire, and the value at the boiling point of the refrigerant 77K is the reference value. (= 1.0) is displayed as a ratio to the reference value. As shown in the figure, it can be seen that the slope of the critical current density curve of the Y-based superconducting thin film wire is considerably larger than that of the Bi-based superconducting tape wire at around 77K. That is, in the Y-based superconducting thin film wire, when the refrigerant temperature is lowered, the critical current density (Jc) increases greatly, and the rate of change of the critical current density (Jc) with respect to the temperature change is large. Therefore, the critical current density (Jc) can be greatly increased by lowering the refrigerant temperature, but on the other hand, the critical current density (Jc) decreases greatly when the operating temperature rises. Allowable temperature rise is also small. On the other hand, Bi-based superconducting tape wire has a low rate of decrease in critical current density (Jc) when the operating temperature rises, and the critical temperature is also high. The temperature rise is large.

例えば、送電線路システムで、短絡事故等の原因で、超電導ケーブルに一時的に大電流が流れると、超電導ケーブルの温度が上昇するが、その上昇幅が、常電導転移しない温度範囲内であれば、瞬時復帰が可能となり、継続的に超電導状態を維持して送電を継続することができる。従来のY系超電導薄膜線材のみで超電導層が形成されるY系超電導ケーブルでは、瞬時復帰を可能とする許容温度上昇幅が小さいため、送電停止状態に至るケースが多くなる。これに対して、従来のBi系超電導テープ線材のみで超電導層を形成したBi系超電導ケーブルでは、瞬時復帰を可能とする許容温度上昇幅も比較的大きいため、Y系超電導ケーブルよりも送電停止状態になるケースは少なくなる。   For example, in a power transmission line system, if a large current temporarily flows in the superconducting cable due to a short circuit accident or the like, the temperature of the superconducting cable will rise, but if the rise is within the temperature range where normal conduction transition does not occur Instantaneous recovery is possible, and power transmission can be continued while maintaining the superconducting state continuously. In a conventional Y-based superconducting cable in which a superconducting layer is formed only with a Y-based superconducting thin film wire, the allowable temperature rise that enables instantaneous recovery is small, and thus there are many cases where power transmission is stopped. On the other hand, the Bi-based superconducting cable in which the superconducting layer is formed only with the conventional Bi-based superconducting tape wire has a relatively large allowable temperature rise that enables instantaneous recovery, so that the power transmission is stopped more than the Y-based superconducting cable. There will be fewer cases.

Y系超電導ケーブルで構築された送電線路システムでBi系超電導ケーブルと同等の許容温度上昇幅を確保するためには、線材量を増やすことで負荷率を低下させて運転せざるを得ない。しかし、このような対応をとれば、コンパクトで高密度送電という超電導ケーブルの特徴が失われ、ケーブルのコストも増加してしまう。そこで、本発明の超電導ケーブルでは、超電導導体層2と超電導シールド層4に、運転温度が上昇した際の臨界電流密度(Jc)の減少率が小さいBi系超電導テープ線材21をそれぞれ混用した構成として、Y系超電導薄膜線材11の特徴を生かしつつ、臨界電流密度(Jc)の対温度特性の改善を図り、事故電流に対して瞬時復帰が可能な許容温度上昇幅の大きい送電線路システムを構築できるようにしている。尚、本発明は、実施の形態に限定されることなく、発明の要旨を逸脱しない限りにおいて、適宜、必要に応じて改良、変更等は自由である。   In order to ensure an allowable temperature increase range equivalent to that of a Bi superconducting cable in a transmission line system constructed with a Y superconducting cable, the load factor must be reduced by increasing the amount of wire. However, if such measures are taken, the characteristics of the superconducting cable, which is compact and high-density power transmission, are lost, and the cost of the cable also increases. Therefore, in the superconducting cable of the present invention, the superconducting conductor layer 2 and the superconducting shield layer 4 are combined with the Bi-based superconducting tape wire 21 having a small reduction rate of the critical current density (Jc) when the operating temperature rises. By utilizing the characteristics of the Y-based superconducting thin film wire 11, it is possible to improve the temperature characteristics of the critical current density (Jc) and to construct a transmission line system with a large allowable temperature rise that can be instantaneously restored to the accident current I am doing so. It should be noted that the present invention is not limited to the embodiment, and can be freely improved, changed, etc. as necessary without departing from the gist of the invention.

本発明の超電導ケーブルは、臨界電流密度(Jc)の対温度特性が安定化されているので、システムの安定化や大容量化が求められる送電線路システムの構築に好適に採用することができる。   Since the superconducting cable of the present invention has a stabilized temperature characteristic of critical current density (Jc), it can be suitably used for construction of a transmission line system that requires stabilization of the system and increase in capacity.

本発明の実施の形態に係る超電導ケーブルのケーブルコアの要部構成を示す斜視図である。It is a perspective view which shows the principal part structure of the cable core of the superconducting cable which concerns on embodiment of this invention. Bi系超電導テープ線材とY系超電導薄膜線材の臨界電流密度(Jc)の対温度特性を比較して示すグラフである。It is a graph which compares and shows the temperature characteristic of the critical current density (Jc) of a Bi-type superconducting tape wire and a Y-type superconducting thin film wire. Bi系超電導テープ線材の断面図である。It is sectional drawing of a Bi type superconducting tape wire. Y系超電導薄膜線材の破断した構成説明図である。It is the structure explanatory drawing which fractured | ruptured the Y type superconducting thin film wire. Y系超電導薄膜線材とBi系超電導テープ線材の臨界電流密度(Jc)の対温度特性を示すグラフである。It is a graph which shows the temperature characteristic of the critical current density (Jc) of a Y-type superconducting thin film wire and a Bi-type superconducting tape wire.

符号の説明Explanation of symbols

1 フォーマ 2 超電導導体層 3 絶縁層 4 超電導シールド層
11 Y系超電導薄膜線材 12 金属基板 13 中間層
14 超電導薄膜 15 保護層 21 Bi系超電導テープ線材
21a 超電導フィラメント 21b 金属シース
DESCRIPTION OF SYMBOLS 1 Former 2 Superconducting conductor layer 3 Insulating layer 4 Superconducting shield layer 11 Y system superconducting thin film wire 12 Metal substrate 13 Intermediate layer 14 Superconducting thin film 15 Protective layer 21 Bi system superconducting tape wire 21a Superconducting filament 21b Metal sheath

Claims (4)

超電導導体層と、その外側に絶縁層を介して形成される超電導シールド層を備えた超電導ケーブルであって、
前記超電導導体層が、Y系超電導薄膜線材の層とBi系超電導テープ線材の層で形成されることを特徴とする超電導ケーブル。
A superconducting cable having a superconducting conductor layer and a superconducting shield layer formed on the outside through an insulating layer ,
A superconducting cable, wherein the superconducting conductor layer is formed of a layer of a Y-based superconducting thin film wire and a layer of a Bi-based superconducting tape wire .
前記Bi系超電導テープ線材は、前記超電導導体層の内側の層に配設されることを特徴とする請求項1に記載の超電導ケーブル。   The superconducting cable according to claim 1, wherein the Bi-based superconducting tape wire is disposed in a layer inside the superconducting conductor layer. 超電導導体層と、その外側に絶縁層を介して形成される超電導シールド層を備えた超電導ケーブルであって、
前記超電導シールド層が、Y系超電導薄膜線材の層とBi系超電導テープ線材の層で形成されることを特徴とする超電導ケーブル。
A superconducting cable having a superconducting conductor layer and a superconducting shield layer formed on the outside through an insulating layer ,
A superconducting cable, wherein the superconducting shield layer is formed of a layer of a Y-based superconducting thin film wire and a layer of a Bi-based superconducting tape wire .
前記Bi系超電導テープ線材は、前記超電導シールド層の外側の層に配設されることを特徴とする請求項3に記載の超電導ケーブル。   The superconducting cable according to claim 3, wherein the Bi-based superconducting tape wire is disposed in a layer outside the superconducting shield layer.
JP2008009800A 2008-01-18 2008-01-18 Superconducting cable Expired - Fee Related JP5018502B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008009800A JP5018502B2 (en) 2008-01-18 2008-01-18 Superconducting cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008009800A JP5018502B2 (en) 2008-01-18 2008-01-18 Superconducting cable

Publications (2)

Publication Number Publication Date
JP2009170364A JP2009170364A (en) 2009-07-30
JP5018502B2 true JP5018502B2 (en) 2012-09-05

Family

ID=40971294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008009800A Expired - Fee Related JP5018502B2 (en) 2008-01-18 2008-01-18 Superconducting cable

Country Status (1)

Country Link
JP (1) JP5018502B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE502008002580D1 (en) * 2008-12-15 2011-03-24 Nexans Arrangement with a superconducting cable

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06275146A (en) * 1993-03-18 1994-09-30 Hitachi Ltd Composite superconducting wire
JP3342739B2 (en) * 1993-05-10 2002-11-11 株式会社フジクラ Oxide superconducting conductor, method of manufacturing the same, and oxide superconducting power cable having the same
JP3283106B2 (en) * 1993-06-22 2002-05-20 中部電力株式会社 Structure of current supply terminal for oxide superconducting conductor
JP3363948B2 (en) * 1993-06-22 2003-01-08 中部電力株式会社 Oxide superconducting power cable
JP3144990B2 (en) * 1994-08-10 2001-03-12 株式会社フジクラ Conductor structure of oxide superconducting power cable

Also Published As

Publication number Publication date
JP2009170364A (en) 2009-07-30

Similar Documents

Publication Publication Date Title
JP4300517B2 (en) Superconducting cable
KR101968074B1 (en) Structure to reduce electroplated stabilizer content
JP4835821B2 (en) Superconducting cable
KR100938357B1 (en) Superconducting cable and superconducting cable line
KR101057246B1 (en) Superconducting cable operation method and superconducting cable system
US8948831B2 (en) Transmission system with a superconducting cable
CN106716558A (en) Superconducting cable
US8923940B2 (en) System with a three phase superconductive electrical transmission element
KR101615667B1 (en) Superconducting fault current limiter
JP4671111B2 (en) Superconducting cable
JP4843937B2 (en) Superconducting cable
JP4936858B2 (en) Superconducting current lead and manufacturing method thereof
JP5018502B2 (en) Superconducting cable
JP5910996B2 (en) Superconducting cable and method of manufacturing superconducting cable
JP2014146585A (en) Superconductive cable and superconductive cable rail track
KR100777182B1 (en) High temperature superconducting power cable
JP2009048792A (en) Superconducting cable
JPH10312718A (en) Superconductive cable conductor
JP2015035308A (en) Connection structure of oxide superconductive wire and superconductive apparatus provided with the same
JP2012174403A (en) Normal temperature insulating type superconducting cable and method for manufacturing the same
SU714510A1 (en) Sectionized superconducting ac cable
KR100722367B1 (en) Superconducting power cable and a manufacturing method thereof
Ren et al. Research of HTS application on tokamak magnets
JP5115245B2 (en) Superconducting current lead
Stephens et al. High efficiency magnet down-leads of weak-linked REBa2Cu3O7 fibres

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100716

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120515

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120528

R150 Certificate of patent or registration of utility model

Ref document number: 5018502

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees