JP5017987B2 - Optical film - Google Patents

Optical film Download PDF

Info

Publication number
JP5017987B2
JP5017987B2 JP2006260319A JP2006260319A JP5017987B2 JP 5017987 B2 JP5017987 B2 JP 5017987B2 JP 2006260319 A JP2006260319 A JP 2006260319A JP 2006260319 A JP2006260319 A JP 2006260319A JP 5017987 B2 JP5017987 B2 JP 5017987B2
Authority
JP
Japan
Prior art keywords
layer
fine concavo
convex structure
refractive index
optical film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006260319A
Other languages
Japanese (ja)
Other versions
JP2008083148A (en
Inventor
城 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Inc filed Critical Toppan Inc
Priority to JP2006260319A priority Critical patent/JP5017987B2/en
Publication of JP2008083148A publication Critical patent/JP2008083148A/en
Application granted granted Critical
Publication of JP5017987B2 publication Critical patent/JP5017987B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Optical Elements Other Than Lenses (AREA)
  • Electroluminescent Light Sources (AREA)

Description

本発明は有機ELに関し、有機EL素子の光取り出し効率を向上させる構造を有する有機EL用光学フィルムおよびそれを用いた光学用転写シートに関する。   The present invention relates to an organic EL, and relates to an organic EL optical film having a structure that improves the light extraction efficiency of an organic EL element, and an optical transfer sheet using the same.

有機EL素子は、自発光による広視野角、高速応答も可能、薄型軽量なことからディスプレイや照明として期待されている。近年携帯電話やデジタルカメラのディスプレイとして実用化され盛んに開発が行われている。   The organic EL element is expected as a display or illumination because it has a wide viewing angle by self-emission, a high-speed response, and is thin and light. In recent years, it has been put into practical use as a display for mobile phones and digital cameras and has been actively developed.

有機EL素子は一般的に正孔輸送層、発光層、電子輸送層を電極で挟んだ構造である。電極間に電界をかけ、電子、正孔を注入し発光層で励起子を生成し、再結合することで発光する。励起子には一重項状態と三重項状態があり、一重項状態と三重項状態の発生確率は量子的に1:3であり、三重項状態の発光を利用する燐光発光材料を用いた場合でも発光効率は最大75%となってしまう。更に、屈折率は有機層が1.7程度、透明電極は2.0、空気が1.0であるので素子界面での全反射が起こり、実際に素子外部に取り出せる光は発光する光の20%程度になってしまい、合わせるとエネルギー変換効率として15%が上限となってしまう。   An organic EL element generally has a structure in which a hole transport layer, a light emitting layer, and an electron transport layer are sandwiched between electrodes. An electric field is applied between the electrodes, electrons and holes are injected, excitons are generated in the light emitting layer, and light is emitted by recombination. The exciton has a singlet state and a triplet state, the generation probability of the singlet state and the triplet state is 1: 3, and even when a phosphorescent material that uses triplet state emission is used. The luminous efficiency is 75% at the maximum. Further, since the refractive index is about 1.7 for the organic layer, 2.0 for the transparent electrode, and 1.0 for air, total reflection occurs at the element interface, and light that can actually be extracted outside the element is 20 of the emitted light. When combined, the upper limit is 15% as the energy conversion efficiency.

この取り出し効率を改善する方法としては、素子側面に反射面を形成し全反射により素子側面方向に進む光を前方に反射させる方法、例えば特許文献1があるが、大面積に形成することが困難で実用的ではない。他には、回折格子やゾーンプレートを用いて、屈折、回折により、光の進行方向を変える、例えば特許文献2があるが、ある程度の効果はあるものの全反射を完全には防ぐことは出来ない。したがって、有機ELの光取り出し方法は未だ不十分であり、取り出し方法の更なる改善が高効率化には不可欠である。
特開2005−327522号公報 特許第2991183号公報
As a method for improving the extraction efficiency, there is a method of forming a reflection surface on the side surface of the element and reflecting light traveling forward in the direction of the element side surface by total reflection, for example, Patent Document 1, but it is difficult to form a large area. It is not practical. In addition, there is, for example, Patent Document 2 that uses a diffraction grating or a zone plate to change the traveling direction of light by refraction and diffraction. However, although there is some effect, total reflection cannot be completely prevented. . Therefore, the light extraction method of organic EL is still insufficient, and further improvement of the extraction method is indispensable for high efficiency.
JP 2005-327522 A Japanese Patent No. 2911183

本発明は、上記の技術的背景を考慮してなされたものであって、有機EL素子の光取り出し効率を向上させる構造を有する有機EL用光学フィルムおよびそれを用いた光学用転写シートを提供することを課題とするものである。   The present invention has been made in consideration of the above technical background, and provides an organic EL optical film having a structure for improving the light extraction efficiency of an organic EL element, and an optical transfer sheet using the same. This is a problem.

上記の課題の解決手段として、請求項1に係る発明は、基材上に微細凹凸構造層を有する光学フィルムであって、前記基材上の前記微細凹凸構造層の凹凸形成面上に、表面保護層が形成されており、前記表面保護層の屈折率が、前記微細凹凸構造層の屈折率よりも小さく、前記微細凹凸構造が基材から遠ざかる方向に向かって断面積が減少し、前記表面保護層が、フッ素樹脂からなり、前記微細凹凸構造のピッチが50nmから350nmであり、前記微細凹凸構造の高低差が50nmから5μmであり、前記表面保護層側の面上に粘着層、保護フィルムが順次積層され、前記表面保護層側とは他方の材面上に平坦化層、バリア層、透明電極層が順次積層されたことを特徴とする光学フィルムである。 As a means for solving the above problems, the invention according to claim 1 is an optical film having a fine concavo-convex structure layer on a substrate, wherein the surface is formed on the concavo-convex formation surface of the fine concavo-convex structure layer on the substrate. A protective layer is formed, a refractive index of the surface protective layer is smaller than a refractive index of the fine concavo-convex structure layer, and a cross-sectional area decreases in a direction in which the fine concavo-convex structure moves away from the substrate, and the surface The protective layer is made of a fluororesin, the pitch of the fine concavo-convex structure is from 50 nm to 350 nm, the height difference of the fine concavo-convex structure is from 50 nm to 5 μm, and the adhesive layer and the protective film are on the surface on the surface protective layer side Are sequentially laminated, and the surface protective layer side is an optical film characterized in that a planarizing layer, a barrier layer, and a transparent electrode layer are sequentially laminated on the other substrate surface .

本発明の光学フィルムを貼り付けるまたは基板とすることで光取り出し効率を容易に向上することが可能である。また、ELの発光波長により凹凸のピッチを最適に設定することでその光に最適な光の取出しが可能になる。さらに、取り出し効率が高くなると、同じ輝度を得るのに、本発明の光学フィルムを用いることで低い電力で負荷をかけずに寿命を延ばすことが可能になることや、低い輝度の材料の使用も可能になり、高輝度、長寿命という問題に発光材料以外から貢献できること、そして低消費電力化できることはデバイスとして魅力があり非常に有効である。   The light extraction efficiency can be easily improved by attaching the optical film of the present invention or using the substrate. In addition, by setting the concave / convex pitch optimally according to the emission wavelength of the EL, it is possible to extract the light optimal for the light. Furthermore, when the extraction efficiency is increased, the same brightness can be obtained by using the optical film of the present invention to extend the life without applying a load with low power, and the use of a material with low brightness. Being able to contribute to the problems of high brightness and long life from other than the light emitting material, and being able to reduce power consumption is attractive and extremely effective as a device.

以下、本発明の実施形態の一例について図面を参照して説明する。本発明の光学フィルムは、微細凹凸構造のピッチを可視光の波長より小さい50nmから350nmにし、基材フィルム4から遠ざかる方向に向かって断面積が減少する構造にすることで、可視光にとって明確な屈折率差を有する界面がなくなり、膜厚方向に連続的に屈折率が変化している状態を作り出せ、全反射を抑えることが可能になる。保護フィルム1,6は実際の使用時には剥がすため、本発明の光学フィルムの表面は微細凹凸構造または微細凹凸構造層上に積層された低屈折率の表面保護層2である。表面保護層2は防汚性、耐薬品性を付加し微細凹凸構造を保護するために用い、フッ素樹脂はその特性がよく、透明で低屈折率の材料であり適している。できるだけ屈折率の低い材料を用いることで、表面保護層と空気との界面で全反射が起こりにくくし、取り出し効率を大きく低下させず表面を保護する効果が得られる。さらに両面に微細凹凸構造を形成することで基材フィルムから空気まで連続に屈折率が変化するだけでなく、この光学フィルムを基板とする有機EL素子から空気まで屈折率が連続的に変化するようになり、取り出し効率が改善する。基材フィルムの両面にある微細凹凸構造は同じ形状でも異なるものでも良い。有機EL素子は凹凸に影響を受けるので平坦化層を導入している。また、有機層は酸素に影響を受けるため、バリア層を設けている。バリア層はSiNやSiO、SiO2等が有効であるが特に指定するものではない。 Hereinafter, an example of an embodiment of the present invention will be described with reference to the drawings. In the optical film of the present invention, the pitch of the fine concavo-convex structure is changed from 50 nm to 350 nm, which is smaller than the wavelength of visible light, and the cross-sectional area decreases in the direction away from the base film 4. An interface having a difference in refractive index is eliminated, and a state in which the refractive index continuously changes in the film thickness direction can be created, and total reflection can be suppressed. Since the protective films 1 and 6 are peeled off during actual use, the surface of the optical film of the present invention is the surface protective layer 2 having a low refractive index laminated on the fine concavo-convex structure or the fine concavo-convex structure layer. The surface protective layer 2 is used to add antifouling properties and chemical resistance to protect the fine concavo-convex structure, and the fluororesin has good characteristics and is a transparent, low refractive index material and suitable. By using a material having a refractive index as low as possible, total reflection hardly occurs at the interface between the surface protective layer and air, and the effect of protecting the surface can be obtained without greatly reducing the extraction efficiency. Furthermore, by forming fine concavo-convex structures on both sides, not only the refractive index continuously changes from the base film to the air, but also the refractive index continuously changes from the organic EL element using this optical film as a substrate to the air. Thus, the extraction efficiency is improved. The fine concavo-convex structure on both surfaces of the base film may be the same shape or different. Since the organic EL element is affected by unevenness, a planarization layer is introduced. In addition, since the organic layer is affected by oxygen, a barrier layer is provided. As the barrier layer, SiN, SiO, SiO 2 or the like is effective, but is not particularly specified.

図1に微細凹凸構造を形成した光学フィルムの構造を示す。基材フィルムは透明であることと微細構造を成形する材料との密着性が良いことが必要である。また微細凹凸構造形成にUVや熱を使う場合、UV透過性や耐熱性が必要である。屈折率は成形樹脂と基材フィルムが近い方がその界面での反射、屈折が少なく取り出し効果は大きくなる。構造について、ピッチは可視光よりも狭くする必要があり、少なくとも350nmよりも狭い必要がある。逆に50nmより狭いと屈折率を連続的に変化させるための凹凸を高くしなければならず、アスペクト比が大きくなり、成形が難しく実用的ではない。高さに関しては屈折率を連続的に変化させるため少なくとも50nm以上が必要で、成形性、実用性から5μm以下が適当である。実際には有機ELの発光波長により最適に適宜決定する必要がある。微細凹凸構造は屈折率を連続的に変化させるため、断面形状は凸部が底部から上部に向かい断面積が減少するものが好適であり、円錐が望ましいが特に限定するものではない。また、面内の配置についても特に指定するものではない。粘着材、保護フィルムについては、剥離性がよく粘着材が微細構造、基材フィルムに糊残りがないものである必要がある。表面保護層について、微細構造層とは屈折率が連続的に変化していて全反射が抑えられているが、空気との界面では全反射が起こってしまうので、できるだけ屈折率が空気に近いすなわち屈折率が低い材料が必要である。   FIG. 1 shows the structure of an optical film having a fine relief structure. The base film must be transparent and have good adhesion to the material for forming the microstructure. Further, when UV or heat is used for forming the fine concavo-convex structure, UV transparency and heat resistance are required. The closer the molding resin and the base film are to the refractive index, the less the reflection and refraction at the interface, and the greater the extraction effect. For the structure, the pitch should be narrower than visible light, and at least narrower than 350 nm. Conversely, if it is narrower than 50 nm, the unevenness for continuously changing the refractive index must be increased, the aspect ratio becomes large, and molding is difficult and impractical. The height is required to be at least 50 nm in order to continuously change the refractive index, and is preferably 5 μm or less in view of moldability and practicality. Actually, it is necessary to determine the optimum optimally according to the emission wavelength of the organic EL. Since the fine concavo-convex structure continuously changes the refractive index, the cross-sectional shape is preferably such that the convex portion decreases from the bottom toward the top and the cross-sectional area decreases, and a cone is desirable, but is not particularly limited. Also, there is no particular designation for the in-plane arrangement. About an adhesive material and a protective film, it is necessary for the adhesive material to have good releasability, the adhesive material has a fine structure, and the base film has no adhesive residue. Regarding the surface protective layer, the refractive index is continuously changed from that of the microstructure layer and total reflection is suppressed, but total reflection occurs at the interface with air, so that the refractive index is as close to air as possible. A material with a low refractive index is required.

以下、具体的な実施例を挙げて本発明を説明する。   Hereinafter, the present invention will be described with specific examples.

微細凹凸構造はピッチ200nm高さ300nmの構造で電子線描画により形成したレジスト版から電鋳によりNi原版を作製した。易接着PETフィルム東洋紡製A4300を基材フィルムとして、基材フィルムとNi原版の間にアクリル系UV硬化樹脂を挟み密着させUVを照射することで微細凹凸構造を基材フィルム上に転写した。保護フィルムは日東電工製R−100を使用し、微細凹凸構造を転写したフィルムに貼り付けた。
この光学フィルムをSiNバリア層/ITO透明電極/有機層(赤色発光、波長620nm)/Ag合金電極/ガラスの有機EL素子上に貼り付け評価したところ、光学フィルムのない状態に比べると外部量子効率が2倍に改善した。
The fine concavo-convex structure was a structure having a pitch of 200 nm and a height of 300 nm, and a Ni original plate was produced by electroforming from a resist plate formed by electron beam drawing. An easy-adhesion PET film A4300 manufactured by Toyobo was used as a base film, and an acrylic UV curable resin was sandwiched between the base film and the Ni original plate, and the fine concavo-convex structure was transferred onto the base film by irradiation with UV. The protective film used was R-100 manufactured by Nitto Denko, and was attached to the film to which the fine concavo-convex structure was transferred.
When this optical film was attached and evaluated on an organic EL element of SiN barrier layer / ITO transparent electrode / organic layer (red light emission, wavelength 620 nm) / Ag alloy electrode / glass, the external quantum efficiency was compared with the state without the optical film. Improved twice.

本発明の光学フィルムの一例の一部を示す断面図である。It is sectional drawing which shows a part of example of the optical film of this invention. 本発明の光学フィルムの他の例の一部を示す断面図である。It is sectional drawing which shows a part of other example of the optical film of this invention.

符号の説明Explanation of symbols

1 保護フィルム
2 表面保護層
3 微細凹凸構造層
4 基材フィルム
5 粘着材層
6 保護フィルム
7 微細凹凸構造層
8 平坦化層
9 バリア層
10 透明電極
DESCRIPTION OF SYMBOLS 1 Protective film 2 Surface protective layer 3 Fine uneven structure layer 4 Base film 5 Adhesive material layer 6 Protective film 7 Fine uneven structure layer 8 Planarizing layer 9 Barrier layer 10 Transparent electrode

Claims (1)

基材上に微細凹凸構造層を有する光学フィルムであって、前記基材上の前記微細凹凸構造層の凹凸形成面上に、表面保護層が形成されており、前記表面保護層の屈折率が、前記微細凹凸構造層の屈折率よりも小さく、前記微細凹凸構造が基材から遠ざかる方向に向かって断面積が減少し、前記表面保護層が、フッ素樹脂からなり、前記微細凹凸構造のピッチが50nmから350nmであり、前記微細凹凸構造の高低差が50nmから5μmであり、前記表面保護層側の面上に粘着層、保護フィルムが順次積層され、前記表面保護層側とは他方の材面上に平坦化層、バリア層、透明電極層が順次積層されたことを特徴とする光学フィルム。 An optical film having a fine concavo-convex structure layer on a substrate, wherein a surface protective layer is formed on the concavo-convex formation surface of the fine concavo-convex structure layer on the substrate, and the refractive index of the surface protective layer is The refractive index of the fine concavo-convex structure layer is smaller than the refractive index of the fine concavo-convex structure layer, the cross-sectional area decreases in a direction away from the substrate, the surface protective layer is made of a fluororesin, and the pitch of the fine concavo-convex structure is 50 nm to 350 nm, the height difference of the fine concavo-convex structure is 50 nm to 5 μm, an adhesive layer and a protective film are sequentially laminated on the surface of the surface protective layer side, and the surface protective layer side is the other substrate optical film characterized in that a planarizing layer on the surface, the barrier layer, the transparent electrode layer are sequentially stacked.
JP2006260319A 2006-09-26 2006-09-26 Optical film Expired - Fee Related JP5017987B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006260319A JP5017987B2 (en) 2006-09-26 2006-09-26 Optical film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006260319A JP5017987B2 (en) 2006-09-26 2006-09-26 Optical film

Publications (2)

Publication Number Publication Date
JP2008083148A JP2008083148A (en) 2008-04-10
JP5017987B2 true JP5017987B2 (en) 2012-09-05

Family

ID=39354124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006260319A Expired - Fee Related JP5017987B2 (en) 2006-09-26 2006-09-26 Optical film

Country Status (1)

Country Link
JP (1) JP5017987B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5515237B2 (en) * 2008-05-14 2014-06-11 セイコーエプソン株式会社 LIGHT EMITTING DEVICE AND ELECTRONIC DEVICE
JP2009282300A (en) * 2008-05-22 2009-12-03 Fujifilm Corp Optical sheet and method of manufacturing the same
GB2464111B (en) * 2008-10-02 2011-06-15 Cambridge Display Tech Ltd Organic electroluminescent device
JP2010230714A (en) * 2009-03-25 2010-10-14 Fujifilm Corp Optical sheet and method for manufacturing the same
US8427747B2 (en) * 2010-04-22 2013-04-23 3M Innovative Properties Company OLED light extraction films laminated onto glass substrates
JP5560359B2 (en) * 2013-03-01 2014-07-23 株式会社日立製作所 Organic light emitting diode and light source device using the same
WO2015115045A1 (en) * 2014-01-28 2015-08-06 パナソニックIpマネジメント株式会社 Light-emitting device and light-extracting sheet
EP3220718A4 (en) 2014-11-14 2018-05-30 Lintec Corporation Sealing sheet, member for electronic devices, and electronic device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004031221A (en) * 2002-06-27 2004-01-29 Fuji Photo Film Co Ltd Organic electroluminescent element
JP2004039272A (en) * 2002-06-28 2004-02-05 Fuji Photo Film Co Ltd Organic electroluminescent element

Also Published As

Publication number Publication date
JP2008083148A (en) 2008-04-10

Similar Documents

Publication Publication Date Title
JP5017987B2 (en) Optical film
JP4822243B2 (en) LIGHT EMITTING ELEMENT AND ORGANIC ELECTROLUMINESCENT LIGHT EMITTING ELEMENT
US20040217702A1 (en) Light extraction designs for organic light emitting diodes
EP3018721B1 (en) Substrate for organic light emitting device and organic light emitting device comprising same
US6924160B2 (en) Manufacturing method of organic flat light-emitting devices
KR20050121691A (en) Light-emitting device and organic electroluminescence light-emitting device
JP2008066027A (en) Substrate having concavo-convex front surface, and organic el element using it
KR20130061126A (en) Light-emitting device and article
US20080100201A1 (en) Organic electroluminescence device and fabricating method thereof
JP5763517B2 (en) Organic EL device
JP2011165444A (en) Light emitting device
JP2009146654A (en) Surface light source device, and manufacturing method thereof
EP2715827B1 (en) Organic light emitting device with improved light extraction
KR100793546B1 (en) Organic light emitting display device and method for fabricating the same
JP4873099B2 (en) EL panel and illumination device and display device using the same
JP2015191787A (en) Substrate for organic electroluminescent element, organic electroluminescent element, illuminating device, and display device
JP5452691B2 (en) Light emitting device
US10211429B2 (en) Enhancing light extraction of organic light emitting diodes via nanoscale texturing of electrode surfaces
JP2015156275A (en) Electroluminescent light-emitting unit, display device, optical sheet and method of manufacturing electroluminescent light-emitting unit
WO2009064021A1 (en) Display apparatus and method of producing same
KR101762642B1 (en) Light extraction substrate for oled and oled including the same
JP2014116221A (en) El element and method for manufacturing el element
JP5216112B2 (en) Planar light emitter
US20130270542A1 (en) Method for producing an optoelectronic component and optoelectronic component
JP2010140742A (en) Organic el planar light emitting body and organic electroluminescent display device and organic el lighting device using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120515

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120528

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees