JP5013487B2 - Video objective image quality evaluation system - Google Patents
Video objective image quality evaluation system Download PDFInfo
- Publication number
- JP5013487B2 JP5013487B2 JP2008294359A JP2008294359A JP5013487B2 JP 5013487 B2 JP5013487 B2 JP 5013487B2 JP 2008294359 A JP2008294359 A JP 2008294359A JP 2008294359 A JP2008294359 A JP 2008294359A JP 5013487 B2 JP5013487 B2 JP 5013487B2
- Authority
- JP
- Japan
- Prior art keywords
- image quality
- objective
- block
- quality evaluation
- video
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
- Compression Or Coding Systems Of Tv Signals (AREA)
Description
本発明は映像の客観画質評価装置に関し、特に動画像の圧縮符号化により劣化した画像の品質を参照画像なしに評価する映像の客観画質評価装置に関するものである。 The present invention relates to a video objective image quality evaluation apparatus, and more particularly to a video objective image quality evaluation apparatus that evaluates the quality of an image deteriorated by compression encoding of a moving image without a reference image.
デジタル映像の蓄積、伝送に際しては、通常圧縮符号化による情報量の削減が行われる。ここで、圧縮符号化とは、一般に非可逆圧縮を意味する。非可逆圧縮とは、符号化情報(エンコードされたビットストリーム)を復号した際に符号化前の原画像を完全に再構築せず、視覚的な劣化を十分に抑える、すなわち画質を十分に高く保つという条件のもとで、情報量を削減する圧縮形式である。非可逆圧縮の典型的な例としては、MPEG-2、 H.264などが挙げられる(下記の非特許文献1,2)。
When storing and transmitting digital video, the amount of information is usually reduced by compression encoding. Here, compression coding generally means lossy compression. Lossy compression means that when the encoded information (encoded bitstream) is decoded, the original image before encoding is not completely reconstructed and the visual deterioration is sufficiently suppressed, that is, the image quality is sufficiently high. It is a compression format that reduces the amount of information under the condition of keeping. Typical examples of lossy compression include MPEG-2 and H.264 (
これらの非可逆圧縮においては、前述のとおり視覚的な劣化を十分に抑制した上で符号化が行われるが、圧縮率が高くなる、すなわちビットレートが低下するにつれて、劣化が視覚的に認識されるようになる。また、圧縮率が同じであっても画面内の物体の精細さや動きの大きさ、複雑さなどの映像の特徴によっても視覚的に認識される劣化の程度が異なるなどの性質がある。このため、非可逆圧縮に伴う画質劣化を定量的に測定する技術が求められている。 In these lossy compressions, encoding is performed after sufficiently suppressing visual deterioration as described above, but the deterioration is visually recognized as the compression rate increases, that is, as the bit rate decreases. Become so. Further, even if the compression rate is the same, there is a property that the degree of degradation visually recognized varies depending on the characteristics of the image such as the fineness, the magnitude of movement, and the complexity of the object in the screen. For this reason, there is a need for a technique for quantitatively measuring image quality degradation accompanying lossy compression.
従来の画質の測定は、主観評価と呼ばれる手法で行われていた。これは、20名程度の被験者を集め、被験者に映像を提示し、被験者の主観により評点を付け、その評点を統計的に処理した数値(例:評点の平均)を映像の品質として定義するものである。主観評価法の代表的な手法は、ITU-R勧告BT.500-11、ITU-T勧告P.910などに規定されている(非特許文献3,4)。しかし、主観評価は勧告が規定する厳しい視聴条件を満たすほか、多数の被験者を募集しなければならないなど、決して簡易に映像品質を評価する手段とはいえない。
Conventional measurement of image quality has been performed by a technique called subjective evaluation. This is a collection of about 20 subjects, video is presented to the subjects, a score is assigned according to the subjectivity of the subject, and a numerical value obtained by statistically processing the score (eg average of the scores) is defined as the quality of the video. It is. Representative methods of the subjective evaluation method are defined in ITU-R recommendation BT.500-11, ITU-T recommendation P.910, etc. (Non-Patent
そこで、映像信号の分析により、映像特徴量と呼ばれるその映像の特徴を示す1つまたは複数の数値的指標を抽出し、その映像特徴量から当該映像の品質を導出する客観画質評価が検討されている。客観画質評価により導出される画質は主観画質を推定したものであり、主観画質評価の代替として用いることを目指している。 Therefore, objective image quality evaluation for extracting one or a plurality of numerical indexes indicating the feature of the video, which is called a video feature amount, by analyzing the video signal and deriving the quality of the video from the video feature amount has been studied. Yes. The image quality derived by objective image quality evaluation is an estimate of subjective image quality, and is intended to be used as an alternative to subjective image quality evaluation.
ITU-T J.143(非特許文献5)では客観画質評価法のフレームワークを規定している。客観評価法のフレームワークは、評価のために伝送、蓄積のどの段階の映像を使用するかによって、以下の3つに分類される。 ITU-T J.143 (Non-Patent Document 5) defines a framework for objective image quality evaluation methods. The objective evaluation method framework is classified into the following three categories depending on which stage of transmission or storage is used for evaluation.
(1)Full Reference(FR)型: 圧縮符号化前の原画像および復号画像(蓄積の場合)、又は送信画像および受信画像(伝送の場合)のベースバンド情報を使用する方法。 (1) Full Reference (FR) type: A method of using baseband information of an original image and a decoded image (when stored) before compression encoding, or a transmitted image and a received image (when transmitted).
(2)No Reference(NR)型: 復号画像又は受信画像 のベースバンド情報のみを使用する方法(原画又は送信画像の情報は使用しない)。 (2) No Reference (NR) type: A method that uses only baseband information of a decoded image or received image (information of an original image or a transmitted image is not used).
(3)Reduced Reference(RR)型: 情報量が制限された原画像又は送信画像の画像特徴量、および復号画像又は受信画像のベースバンド情報を利用する方法。 (3) Reduced Reference (RR) type: A method of using an image feature amount of an original image or transmission image with limited information amount and baseband information of a decoded image or reception image.
Full Reference型は、蓄積又は伝送の前後のベースバンド画像を利用することができるため、主観画質の推定精度は3つのフレームワークの中ではもっとも高い。一方、No Reference型は蓄積又は伝送後のベースバンド画像のみを使用するため、精度の面ではFull Referenceには劣る。Reduced Reference型はNo Reference型で利用する復号画像又は受信画像のベースバンド情報に加えて、原画像又は送信画像の画像特徴量を利用する。ここで、画像特徴量は、数十〜数百kbps程度で、原画像のベースバンド情報に比べて十分に少ない情報量に制限されたものである。RR型では、主観画質の推定精度をNR型よりも高めるという目的で、映像伝送の際この送信側の画像特徴量を映像回線とは別に用意されたデータ回線を用いて受信側に送信している。 Since the full reference type can use baseband images before and after storage or transmission, the subjective image quality estimation accuracy is the highest among the three frameworks. On the other hand, since the No Reference type uses only the baseband image after storage or transmission, it is inferior to Full Reference in terms of accuracy. The Reduced Reference type uses the image feature quantity of the original image or transmission image in addition to the baseband information of the decoded image or reception image used in the No Reference type. Here, the image feature amount is about several tens to several hundred kbps, and is limited to an information amount that is sufficiently smaller than the baseband information of the original image. In the RR type, for the purpose of improving the estimation accuracy of subjective image quality compared to the NR type, the image feature quantity on the transmitting side is transmitted to the receiving side using a data line prepared separately from the video line during video transmission. Yes.
上記3種のフレームワークのうち、FR型に基づく客観評価方式としては、ITU-T勧告J.144(非特許文献6)、ITU-T勧告J.267(非特許文献7)および特開2008-35357号公報(特許文献11)などが存在する。非特許文献6は、標準テレビ方式(SDTV)の符号化劣化を対象とした客観画質評価方式を、非特許文献7、特許文献11 はマルチメディアアプリケーションでよく用いられる映像フォーマットを対象とした客観画質評価方式を示している。
Among the above three types of frameworks, the objective evaluation method based on the FR type includes ITU-T recommendation J.144 (Non-patent document 6), ITU-T recommendation J.267 (Non-patent document 7), and JP2008. -35357 (Patent Document 11) and the like exist. Non-Patent
RR型に基づく客観評価方式としては、ITU-T勧告J.246(非特許文献8)が知られている。非特許文献8は、マルチメディアアプリケーションの映像フォーマットを前提とした客観評価方式について開示している。
As an objective evaluation method based on the RR type, ITU-T recommendation J.246 (Non-Patent Document 8) is known. Non-Patent
一方、NR型に基づく客観評価方式については、静止画圧縮画像に対する方式が川除ら(非特許文献9)、Fariasら(非特許文献10)などにより提案されているが、動画像のNR型評価に関してはいまだ確立された方式が存在しない。
上記のとおり、NR型画質評価は主観画質の推定精度の面で、FR型に劣るが、復号画像又は受信画像のみを入力とするため、システム構成が容易であるなどの利点もあり、特に伝送映像監視の目的で実用化が期待される方式である。このNR型画質評価では、動画像を対象としたNR型評価技術の確立が課題となっている。 As described above, the NR type image quality evaluation is inferior to the FR type in terms of subjective image quality estimation accuracy. However, since only the decoded image or the received image is input, there is an advantage that the system configuration is easy. This method is expected to be put to practical use for the purpose of video surveillance. In this NR type image quality evaluation, the establishment of an NR type evaluation technique for moving images is an issue.
本発明は、前記の課題に鑑み、非可逆符号化された映像の復号画像のベースバンド信号のみから主観画質を高精度で推定する映像のNR型の客観画質評価装置を提供することを目的としている。 In view of the above problems, the present invention has an object to provide an NR-type objective image quality evaluation device for video that accurately estimates subjective image quality from only a baseband signal of a lossy-encoded video image. Yes.
前記目的を達成するために、本発明は、参照画像を用いず復号画像のみを使って主観画質を推定する映像の客観画質評価装置において、復号画像の画素ブロックに対しアダマール変換を施し、その変換係数のうち符号化ブロック境界における信号変化を表す成分の電力からブロック歪特徴量を求めるブロック歪特徴量計算部と、前記復号画像の画素ブロック内の画素分散が所与の閾値より低い場合に、当該画素ブロックにおけるフレーム間差分を計算するフリッカ特徴量計算部と、前記復号画像内の各画素ブロックのブロック歪特徴量の平均およびフリッカ特徴量の総和の2つを引数とする近似関数に基づき客観画質を導出する客観評価尺度計算部とを具備した点に特徴がある。 In order to achieve the above object, the present invention performs Hadamard transform on a pixel block of a decoded image in an objective image quality evaluation apparatus for video that estimates subjective image quality using only a decoded image without using a reference image, and the conversion A block distortion feature amount calculation unit for obtaining a block distortion feature amount from power of a component representing a signal change at a coding block boundary of coefficients, and a pixel variance in a pixel block of the decoded image is lower than a given threshold, Objectively based on a flicker feature quantity calculation unit for calculating the inter-frame difference in the pixel block, and an approximation function having two arguments, the average of the block distortion feature quantity of each pixel block in the decoded image and the sum of the flicker feature quantities. It is characterized in that it has an objective evaluation scale calculator for deriving image quality.
本発明によれば、参照画像(送信画像または原画像)を用いることなく符号化映像の主観画質を精度良く推定するNR型客観画質評価が可能となる。これにより、より簡易なシステム構成での高精度の画質評価や画質監視等を実現することが可能となる。 According to the present invention, it is possible to perform NR objective image quality evaluation that accurately estimates the subjective image quality of an encoded video without using a reference image (transmission image or original image). Thereby, it is possible to realize high-accuracy image quality evaluation and image quality monitoring with a simpler system configuration.
以下に、図面を参照して、本発明を詳細に説明する。図1は、本発明の一実施形態の構成を示す機能ブロック図である。以下では、16×16画素ブロックに分割された復号画像の輝度信号を入力として客観評価尺度を出力する例で本発明を説明するが、本発明は、16×16画素ブロックに限定されず、他のサイズのブロックにも適用することができる。 Hereinafter, the present invention will be described in detail with reference to the drawings. FIG. 1 is a functional block diagram showing the configuration of an embodiment of the present invention. In the following, the present invention will be described with an example in which an objective evaluation scale is output using the luminance signal of the decoded image divided into 16 × 16 pixel blocks as an input, but the present invention is not limited to 16 × 16 pixel blocks, and other It can also be applied to blocks of the size.
図示されているように、本実施形態の自動監視装置は、ブロック歪特徴量計算部1,フリッカ特徴量計算部2および客観評価尺度計算部3から構成される。
As shown in the figure, the automatic monitoring apparatus according to the present embodiment includes a block distortion feature
まず、ブロック歪特徴量計算部1の機能について説明する。ブロック歪は、MPEG-2, H.264 などブロック単位の処理を行う符号化画像における共通の劣化要素であり、その劣化度は主観画質と高い相関を持つと考えられる。ブロック歪みは、ブロック境界で信号値が大きく変化することにより発生する。ブロック境界で輝度信号が階段状の波形成分を多く含む場合にブロックが劣化として認識されるといえる。
First, the function of the block distortion feature
そこで、本実施形態では、評価画像を16×16画素ブロックに分割し、各ブロックに対してアダマール変換を施した際の[8,8]成分の電力をブロック歪尺度として用いる。評価画像のフレームf 、ブロックBの画素値の行列表現をXf, Bとすると、X f, Bの変換係数P f, Bは以下の通り求められる。
P f, B =H16 X f, B H16 T
Therefore, in this embodiment, the evaluation image is divided into 16 × 16 pixel blocks, and the power of the [8, 8] component when the Hadamard transform is applied to each block is used as a block distortion measure. Frame f of the evaluation image, a matrix representing the X f of the pixel values of the block B, and the B, X f, transform coefficient P f of B, B is determined as follows.
P f, B = H 16 X f, B H 16 T
ここで、H16は16×16のアダマール行列である。アダマール行列は、基本行列を Here, H 16 is a 16 × 16 Hadamard matrix. Hadamard matrix is the basic matrix
H16の基底画像は、図2に示すように、様々な細かさを持った矩形画像の集合となっている。ここで、白色が画素値 +1/16、黒色が画素値 -1/16を示している。
As shown in FIG. 2, the base image of H 16 is a set of rectangular images having various finenesses. Here, white indicates a pixel value of +1/16, and black indicates a pixel value of −1/16.
このうち、(8,8)成分は、図3に示すように、ブロック内の8ラインおよび8画素目をそれぞれ境界とするため、8×8画素ブロック境界での信号値の階段状の変化の大きさを表しており、ブロック歪尺度として適している。 Among these, the (8,8) component has a boundary of the 8th line and the 8th pixel in the block, as shown in FIG. 3, so that the signal value changes stepwise at the 8 × 8 pixel block boundary. It represents the size and is suitable as a block distortion measure.
最終的に、当該ブロックにおけるブロック歪特徴量Blkf,bは以下のように定義される。 Finally, the block distortion feature amount Blk f, b in the block is defined as follows.
上式において直流成分P f, b [0,0]で正規化を行うのは、圧縮率向上によるぼけの発生とそれによる直流成分の増加を考慮したものである。 In the above equation, normalization is performed with the DC component P f, b [0, 0] in consideration of the occurrence of blur due to the improvement of the compression ratio and the increase of the DC component due thereto.
ブロック歪特徴量計算部1では上記の処理が行われ、該ブロック歪特徴量計算部1からは、ブロック歪特徴量Blkf,bが出力される。
The block distortion feature
次に、フリッカ特徴量計算部2の機能について説明する。フリッカは、動き補償予測符号化のイントラフレーム挿入の周期ごとに大きな品質変動がある場合などに検知される劣化であり、連続するフレーム間での輝度変化が急激に発生することにより知覚される。ブロック歪と同様主観画質との相関が高い映像特徴の一つである。
Next, the function of the flicker feature
本実施形態では、16×16画素ブロック内の時間的な輝度値の変化を捉えるため、各画素ブロックにおける輝度のフレーム間差分をフリッカ特徴量として定義する。ただし、フリッカは平坦な絵柄においては視覚的に検知されやすい一方、複雑な絵柄の領域では同一の輝度値変化があった場合でも平坦領域よりも検知されにくい傾向が知られている。よって、本実施形態では、輝度信号の分散varが所与の閾値Vth以下のブロックのフレーム間差分信号のシーケンス内平均値(例えば、10〜15秒間の平均値)をフリッカ特徴量として抽出する。16×16画素ブロック内の信号Xf, b内の(i,j) 要素をXf, b[i,j] と表すとき、フレームf, ブロックbのフリッカ特徴量Flkf,bは以下のとおり定義される。 In the present embodiment, in order to capture a temporal change in luminance value in a 16 × 16 pixel block, the luminance inter-frame difference in each pixel block is defined as a flicker feature amount. However, it is known that flicker tends to be visually detected in a flat pattern, but is less likely to be detected in a complex pattern area than the flat area even when the same luminance value change occurs. Therefore, in this embodiment, the average value in the sequence (for example, the average value for 10 to 15 seconds) of the inter-frame difference signal of the block whose luminance signal variance var is equal to or less than the given threshold V th is extracted as the flicker feature amount. . When the (i, j) element in the signal X f, b in the 16 × 16 pixel block is expressed as X f, b [i, j], the flicker feature amount Flk f, b of the frame f, block b is Are defined as follows.
ここで、前記分散値varは例えば次のように設定することができる。1画素が8ビットで表現される場合、画素値は0〜255の範囲を持つ。ブロック内の画素値の変動が画素値の全体幅(256レベル)の10%程度、すなわち25レベル程度に収まる場合、視覚的には平坦な絵柄として認識される。この場合、ブロック内の分散値varは、通常100〜1000程度の範囲となるため、閾値としてはこの範囲内の適当な値に設定するのが好適である。 Here, the variance value var can be set as follows, for example. When one pixel is expressed by 8 bits, the pixel value has a range of 0 to 255. When the fluctuation of the pixel value in the block falls within about 10% of the entire width (256 levels) of the pixel value, that is, about 25 levels, it is visually recognized as a flat picture. In this case, since the dispersion value var in the block is usually in the range of about 100 to 1000, it is preferable to set the threshold value to an appropriate value within this range.
次に、客観評価尺度計算部3の機能について説明する。客観評価尺度計算部3は、ブロック歪特徴量のシーケンス内平均値とフリッカ特徴量のシーケンス内平均値を入力とし、客観評価尺度を出力とする。
Next, the function of the objective evaluation
該客観評価尺度計算部3では、まず、ブロック歪特徴量のシーケンス内平均値(Blockiness) およびフリッカ特徴量のシーケンス内総和平均値(Flickerness)を以下で定義する。
In the objective evaluation
ここで、NB, NFはフレーム内の16×16画素ブロックの総数およびシーケンス内のフレーム数の総数である。次いで、Blockiness, Flickernessを用いて、客観評価値Qobjを近似する。一般に、客観評価値は以下の形式で近似される。 Here, N B and N F are the total number of 16 × 16 pixel blocks in the frame and the total number of frames in the sequence. Next, the objective evaluation value Q obj is approximated using Blockiness and Flickerness. In general, the objective evaluation value is approximated in the following format.
ここで、f() は所与の関数を表す。最適な近似式は、評価対象の画像フォーマット、符号化方式、符号化ビットレートなどの条件によって異なるため、これらの条件のもとで主観評価値との相関が最大となる値が選ばれる。 Where f () represents a given function. Since the optimum approximate expression varies depending on conditions such as the image format to be evaluated, the encoding method, and the encoding bit rate, a value that maximizes the correlation with the subjective evaluation value is selected under these conditions.
f()の定義の一例としては、a , b を定数として、下式のように重み付き和で表す方法がある。 As an example of the definition of f (), there is a method in which a and b are constants and expressed by a weighted sum as in the following equation.
また、別の方法として、a , b , g1, g2 を定数とするとき、以下の式を用いた近似がある。 As another method, when a, b, g 1 and g 2 are constants, there is an approximation using the following equation.
上式における定数a , b , g1, g2 は、客観評価値Qobjと主観評価値の相関が最大になるように設定される。客観評価値と主観評価値の相関は、複数の評価映像用いて得た客観評価値の系列と主観評価値の系列を回帰分析することにより得られる。 Constants a 1 , b 2 , g 1 , and g 2 in the above equation are set so that the correlation between the objective evaluation value Q obj and the subjective evaluation value is maximized. The correlation between the objective evaluation value and the subjective evaluation value is obtained by performing regression analysis on a series of objective evaluation values and a series of subjective evaluation values obtained using a plurality of evaluation videos.
図4に回帰分析の一例を示す。上述の客観評価値を横軸に、主観評価値を縦軸にして、各データ系列をプロットした場合、両者はある回帰曲線で近似することが可能となる。回帰曲線としては、1次関数のほか、高次多項式やロジスティック関数などの非線形関数が適用される。客観画質評価の目的は主観評価値の推定であり、回帰曲線による近似の精度が高い(すなわち、グラフ上の各プロット点と回帰曲線の距離が短い)ほどその性能が高いといえる。 FIG. 4 shows an example of regression analysis. When each data series is plotted with the objective evaluation value on the horizontal axis and the subjective evaluation value on the vertical axis, both can be approximated by a certain regression curve. As a regression curve, in addition to a linear function, a nonlinear function such as a high-order polynomial or a logistic function is applied. The objective of objective image quality evaluation is to estimate the subjective evaluation value, and the higher the accuracy of approximation by the regression curve (that is, the shorter the distance between each plot point on the graph and the regression curve), the higher the performance.
次に、本発明者による実験結果の一例を図5に示す。図5は、H.264 4.0, 6.0 ,8.0Mbpsで符号化したHDTV(1920×1080画素、30フレーム/秒)画像における主観画質と本発明による客観評価値の関係を示している。 Next, an example of an experimental result by the present inventor is shown in FIG. FIG. 5 shows the relationship between the subjective image quality and the objective evaluation value according to the present invention in an HDTV (1920 × 1080 pixels, 30 frames / second) image encoded at H.264 4.0, 6.0, and 8.0 Mbps.
客観評価値を、 Objective evaluation value
1・・・ブロック歪特徴量計算部、2・・・フリッカ特徴量計算部、3・・・客観評価尺度計算部
DESCRIPTION OF
Claims (5)
復号画像の画素ブロックに対しアダマール変換を施し、その変換係数のうち符号化ブロック境界における信号変化を表す成分の電力からブロック歪特徴量を求めるブロック歪特徴量計算部と、
前記復号画像の画素ブロック内の画素分散が所与の閾値より低い場合に、当該画素ブロックにおけるフレーム間差分を計算するフリッカ特徴量計算部と、
前記復号画像内の各画素ブロックのブロック歪特徴量の平均およびフリッカ特徴量の総和の2つを引数とする近似関数に基づき客観画質を導出する客観評価尺度計算部とを具備したことを特徴とする映像の客観画質評価装置。 In an objective image quality evaluation apparatus for video that estimates subjective image quality using only decoded images without using reference images,
A block distortion feature amount calculation unit that performs Hadamard transform on a pixel block of a decoded image and obtains a block distortion feature amount from power of a component that represents a signal change at an encoding block boundary among the transform coefficients;
A flicker feature amount calculation unit that calculates an inter-frame difference in the pixel block when the pixel variance in the pixel block of the decoded image is lower than a given threshold;
An objective evaluation scale calculation unit for deriving an objective image quality based on an approximate function having two arguments, an average of block distortion feature values and a sum of flicker feature values of each pixel block in the decoded image. An objective image quality evaluation device for video.
前記ブロック歪特徴量計算部は、ブロック歪特徴量の計算のために、アダマール変換を16×16画素ブロック単位で行い、(8,8)成分と(0,0)成分の比の2乗をブロック歪み特徴量とすることを特徴とする映像の客観画質評価装置。 The objective image quality evaluation device for video according to claim 1,
The block distortion feature amount calculation unit performs a Hadamard transform in units of 16 × 16 pixel blocks to calculate a block distortion feature amount, and calculates a square of a ratio between the (8,8) component and the (0,0) component. An objective image quality evaluation apparatus for video, characterized by using block distortion feature quantities.
前記フリッカ特徴量計算部は、復号画像の輝度信号のブロック内分散が所与の閾値以下の場合に、フレーム間差分信号のシーケンス内平均値をフリッカ特徴量とすることを特徴とする映像の客観画質評価装置。 The objective image quality evaluation device for video according to claim 1 or 2,
The flicker feature quantity calculation unit uses the average value in the sequence of the inter-frame difference signal as the flicker feature quantity when the intra-block variance of the luminance signal of the decoded image is a given threshold value or less. Image quality evaluation device.
前記客観評価尺度計算部は、客観画質導出のための近似関数として、復号画像内の各画素ブロックのブロック歪特徴量の平均およびフリッカ特徴量の総和の重み付き和を用いることを特徴とする映像の客観画質評価装置。 The objective image quality evaluation apparatus for video according to any one of claims 1 to 3,
The objective evaluation scale calculation unit uses a weighted sum of an average of block distortion feature values and a sum of flicker feature values of each pixel block in a decoded image as an approximate function for deriving an objective image quality. Objective image quality evaluation device.
前記客観評価尺度計算部は、客観画質導出のための近似関数として、復号画像の各画素ブロックのブロック歪特徴量の平均を所定のべき指数でべき乗した数および復号画像の各画素ブロックのフリッカ特徴量の総和を所定のべき指数でべき乗した数の重み付き和を、さらに前記のべき指数とは異なる所定のべき指数でべき乗した数を用いることを特徴とする映像の客観画質評価装置。 The objective image quality evaluation apparatus for video according to any one of claims 1 to 3,
The objective evaluation scale calculation unit, as an approximation function for derivation of objective image quality, is a number obtained by raising the average of block distortion feature values of each pixel block of a decoded image to a power that is a predetermined power and a flicker feature of each pixel block of the decoded image. An objective image quality evaluation apparatus for video, characterized by using a weighted sum of numbers obtained by raising a sum of quantities to a power that is a predetermined power and further using a power that is a power that is different from the power.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008294359A JP5013487B2 (en) | 2008-11-18 | 2008-11-18 | Video objective image quality evaluation system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008294359A JP5013487B2 (en) | 2008-11-18 | 2008-11-18 | Video objective image quality evaluation system |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010124104A JP2010124104A (en) | 2010-06-03 |
JP5013487B2 true JP5013487B2 (en) | 2012-08-29 |
Family
ID=42325062
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008294359A Expired - Fee Related JP5013487B2 (en) | 2008-11-18 | 2008-11-18 | Video objective image quality evaluation system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5013487B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102984541A (en) * | 2012-12-07 | 2013-03-20 | 浙江大学 | Video quality assessment method based on pixel domain distortion factor estimation |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5484140B2 (en) | 2010-03-17 | 2014-05-07 | Kddi株式会社 | Objective image quality evaluation device for video quality |
JP2012156650A (en) * | 2011-01-24 | 2012-08-16 | Panasonic Corp | Moving image transmission system |
JP2014527778A (en) * | 2011-08-29 | 2014-10-16 | アイ.シー.ブイ.ティー リミテッド | Control of video content system |
JP5982240B2 (en) * | 2012-09-24 | 2016-08-31 | Kddi株式会社 | Objective video quality evaluation system |
JP6415866B2 (en) * | 2014-06-09 | 2018-10-31 | 日本放送協会 | Image quality evaluation apparatus and program |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07203444A (en) * | 1993-12-29 | 1995-08-04 | Matsushita Electric Ind Co Ltd | Method for extracting distorted image region |
JP3717858B2 (en) * | 2002-03-06 | 2005-11-16 | シャープ株式会社 | Image encoding apparatus, image encoding method, program, and computer-readable recording medium |
JP4194029B2 (en) * | 2003-02-26 | 2008-12-10 | Kddi株式会社 | Automatic image degradation detection device |
JP4755012B2 (en) * | 2005-06-29 | 2011-08-24 | 株式会社エヌ・ティ・ティ・ドコモ | Video evaluation device, spatio-temporal frequency analysis device, video evaluation method, spatio-temporal frequency analysis method, video evaluation program, and spatio-temporal frequency analysis program |
JP4817246B2 (en) * | 2006-07-31 | 2011-11-16 | Kddi株式会社 | Objective video quality evaluation system |
-
2008
- 2008-11-18 JP JP2008294359A patent/JP5013487B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102984541A (en) * | 2012-12-07 | 2013-03-20 | 浙江大学 | Video quality assessment method based on pixel domain distortion factor estimation |
Also Published As
Publication number | Publication date |
---|---|
JP2010124104A (en) | 2010-06-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8737486B2 (en) | Objective image quality assessment device of video quality and automatic monitoring device | |
Thung et al. | A survey of image quality measures | |
US7038710B2 (en) | Method and apparatus for measuring the quality of video data | |
JP5013487B2 (en) | Video objective image quality evaluation system | |
Kawano et al. | No reference video-quality-assessment model for video streaming services | |
US10085015B1 (en) | Method and system for measuring visual quality of a video sequence | |
US20130195206A1 (en) | Video coding using eye tracking maps | |
US20090060027A1 (en) | Compressed Signal Subjective Quality Ratings Prediction | |
Sugimoto et al. | Objective perceptual video quality measurement method based on hybrid no reference framework | |
Konuk et al. | A spatiotemporal no-reference video quality assessment model | |
WO2010103112A1 (en) | Method and apparatus for video quality measurement without reference | |
JP6087779B2 (en) | Objective image quality evaluation apparatus, automatic monitoring apparatus, objective image quality evaluation method, and program | |
Aggarwal | A review on video quality assessment | |
Uzair et al. | An efficient no-reference blockiness metric for intra-coded video frames | |
JP6373681B2 (en) | Objective image quality evaluation apparatus, objective image quality evaluation method, and program | |
JP6253944B2 (en) | Objective image quality evaluation apparatus, objective image quality evaluation method, and program | |
US8204335B2 (en) | Method and apparatus for measuring blockiness in video images | |
Satti et al. | Video Encoding Complexity Characterization | |
Al-Juboori et al. | Content characterization for live video compression optimization | |
Shi et al. | A user-perceived video quality assessment metric using inter-frame redundancy | |
Liu et al. | Perceptual quality measurement of video frames affected by both packet losses and coding artifacts | |
Yang et al. | Objective quality metric based on perception for video | |
Cheng et al. | HDTV Video Quality Objective Assessment Based on H. 264 Compressed Domain | |
Singhal et al. | Machine learning based subjective quality estimation for video streaming over wireless networks | |
Choi et al. | Extending the validity scope of ITU-T P. 1202.2 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110822 |
|
TRDD | Decision of grant or rejection written | ||
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120523 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120530 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150615 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |