JP5013448B2 - Combination of multiple gene disruptions to improve lactate tolerance or productivity of budding yeast - Google Patents

Combination of multiple gene disruptions to improve lactate tolerance or productivity of budding yeast Download PDF

Info

Publication number
JP5013448B2
JP5013448B2 JP2006211210A JP2006211210A JP5013448B2 JP 5013448 B2 JP5013448 B2 JP 5013448B2 JP 2006211210 A JP2006211210 A JP 2006211210A JP 2006211210 A JP2006211210 A JP 2006211210A JP 5013448 B2 JP5013448 B2 JP 5013448B2
Authority
JP
Japan
Prior art keywords
lactic acid
gene
yeast
budding yeast
strain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006211210A
Other languages
Japanese (ja)
Other versions
JP2008035727A (en
Inventor
浩美 神戸
充生 小畑
俊 原島
嘉信 金子
峰崇 杉山
治雄 高橋
亘広 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Toyota Central R&D Labs Inc
Original Assignee
Teijin Ltd
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd, Toyota Central R&D Labs Inc filed Critical Teijin Ltd
Priority to JP2006211210A priority Critical patent/JP5013448B2/en
Publication of JP2008035727A publication Critical patent/JP2008035727A/en
Application granted granted Critical
Publication of JP5013448B2 publication Critical patent/JP5013448B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

本発明は乳酸耐性又は乳酸生成能を有する出芽酵母に関する。   The present invention relates to a budding yeast having lactic acid tolerance or lactic acid production ability.

遺伝子組み換えにより乳酸生成能を有するように改変された酵母を乳酸の製造において使用する方法が知られている(特許文献1〜4参照)。しかしながら、乳酸発酵が進むにつれて乳酸濃度が増加して培養液のpHが低下し、pH2〜3程度になると酵母の乳酸生産効率が低くなる。このため、乳酸生産効率を高く保持するためには培養液の中和工程及び脱塩、精製工程が必要となり製造コストが高くなるという問題があった。特許文献5には、乳酸生成能を有する酵母等の耐酸性を向上させる技術が開示されているが、耐酸性は十分なものではなかった。また、2005年日本農芸化学会大会演題番号30F105α(株式会社アンデルセンサービス、酒類総合研究所)では酵母の遺伝子(SED1、EGT2、DSE2、SCW11、HOC1、SUN4、EAF3)をそれぞれ単独で破壊した株が6.1%乳酸(pH2.5)、0.7%酢酸(pH4.1)、0.3%塩酸(pH2.2)に対して耐性を示すことが報告されている。しかしながら酵母を用いて乳酸を効率的に生産するためには耐酸性をより一層向上させることが望まれる。   A method is known in which yeast that has been modified to have lactic acid-producing ability by genetic recombination is used in the production of lactic acid (see Patent Documents 1 to 4). However, as the lactic acid fermentation progresses, the lactic acid concentration increases and the pH of the culture solution decreases, and when it reaches about pH 2 to 3, the lactic acid production efficiency of the yeast decreases. For this reason, in order to keep lactic acid production efficiency high, there existed a problem that the neutralization process of a culture solution, the desalting, and the refinement | purification process were needed and the manufacturing cost became high. Patent Document 5 discloses a technique for improving acid resistance of yeast or the like having lactic acid-producing ability, but acid resistance is not sufficient. In addition, at the 2005 Agricultural Chemistry Society conference agenda number 30F105α (Andersen Service Co., Ltd., Liquor Research Institute), there are strains in which yeast genes (SED1, EGT2, DSE2, SCW11, HOC1, SUN4, EAF3) have been destroyed individually. It has been reported to be resistant to 6.1% lactic acid (pH 2.5), 0.7% acetic acid (pH 4.1), and 0.3% hydrochloric acid (pH 2.2). However, in order to efficiently produce lactic acid using yeast, it is desired to further improve acid resistance.

特許文献6及び7には、バチルス属に属する乳酸生産菌を用いて乳酸を製造する方法が開示されている。バチルス属等のバクテリアを培養するためには培養液のpHを6〜8に保つ必要があることから、特許文献6及び7記載の方法による乳酸の製造効率は特許文献1〜4記載の方法よりもより低いものであった。   Patent Documents 6 and 7 disclose a method for producing lactic acid using a lactic acid-producing bacterium belonging to the genus Bacillus. In order to culture bacteria such as Bacillus genus, it is necessary to maintain the pH of the culture solution at 6-8, so that the production efficiency of lactic acid by the methods described in Patent Documents 6 and 7 is higher than that described in Patent Documents 1-4. Was even lower.

特許文献8には、乳酸菌の増殖性及び抗菌性物質生産性を増大するための方法が開示されている。特許文献8記載の方法では鉄ポルフィリン、ヘム蛋白質等の添加物を使用する必要があり、培養コストが高くなるという問題があった。   Patent Document 8 discloses a method for increasing the growth and antibacterial substance productivity of lactic acid bacteria. In the method described in Patent Document 8, it is necessary to use additives such as iron porphyrin and heme protein, and there is a problem that the culture cost is increased.

特開2006−6271号公報JP 2006-6271 A 特開2006−20602号公報JP 2006-20602 A 特表2001−516584号公報Special table 2001-51658 gazette 特表2005−528106号公報JP 2005-528106 A 特開2001−204464号公報JP 2001-204464 A 特許第3682679号公報Japanese Patent No. 3682679 特開平9−121844号公報JP-A-9-121844 特許第2991458号公報Japanese Patent No. 2991458

以上の通り、遺伝子組み換えにより乳酸生成能を有するように改変された酵母を用いて乳酸を製造する方法では、乳酸発酵が進むにつれて乳酸濃度が増加するため、培養液のpHが低下して酵母の培養に適したpH領域(通常4〜6程度)から外れ、乳酸の効率的な製造を行うことが困難であるという問題があった。   As described above, in the method of producing lactic acid using yeast modified so as to have lactic acid-producing ability by genetic recombination, the lactic acid concentration increases as lactic acid fermentation proceeds, so the pH of the culture solution decreases and the yeast There was a problem that it was difficult to carry out efficient production of lactic acid because it was out of the pH range (usually about 4 to 6) suitable for culture.

そこで本発明は、酵母の乳酸耐性を向上させることを目的とする。本発明はまた乳酸生成能を有する酵母において乳酸生産が進んだ後も乳酸生産性を維持又は向上させることを目的とする。   Then, this invention aims at improving the lactic acid tolerance of yeast. Another object of the present invention is to maintain or improve lactic acid productivity even after lactic acid production has progressed in yeast having lactic acid-producing ability.

本発明は以下の発明を包含する。
(1)乳酸耐性に関与する遺伝子が2つ以上破壊されていることを特徴とする出芽酵母。
(2)乳酸耐性に関与する遺伝子が、DSE2、SCW11、EAF3及びSED1からなる群から選択される少なくとも2つの遺伝子であることを特徴とする(1)記載の出芽酵母。
(3)乳酸耐性を有することを特徴とする(1)記載の出芽酵母。
(4)Δdse2Δeaf3、Δscw11Δeaf3、Δdse2Δeaf3Δsed1、Δscw11Δeaf3Δsed1、又はΔdse2Δscw11Δeaf3Δsed1である多重遺伝子破壊株であることを特徴とする(3)記載の出芽酵母。
(5)乳酸生成に関与する遺伝子が導入されており、かつ乳酸生成能を有することを特徴とする(1)記載の出芽酵母。
(6)乳酸耐性に関与する遺伝子が破壊されておらず、かつ乳酸生成に関与する遺伝子が導入されている乳酸生成能を有する出芽酵母と比較して乳酸生産量が10%以上高いことを特徴とする(5)記載の出芽酵母。
(7)Δdse2Δeaf3、Δdse2Δscw11、Δscw11Δsed1、Δeaf3Δsed1、Δscw11Δeaf3Δsed1、又はΔdse2Δscw11Δeaf3Δsed1である多重遺伝子破壊株であることを特徴とする(6)記載の出芽酵母。
(8)出芽酵母において乳酸耐性に関与する遺伝子を2つ以上破壊することにより出芽酵母に乳酸耐性を付与する方法。
(9)出芽酵母において乳酸耐性に関与する遺伝子を2つ以上破壊するとともに乳酸生成に関与する遺伝子を導入することにより出芽酵母に乳酸生産性を付与する方法。
The present invention includes the following inventions.
(1) A budding yeast, wherein two or more genes involved in lactic acid resistance are disrupted.
(2) The budding yeast according to (1), wherein the genes involved in lactic acid resistance are at least two genes selected from the group consisting of DSE2, SCW11, EAF3 and SED1.
(3) The budding yeast according to (1), which has lactic acid resistance.
(4) The budding yeast according to (3), which is a multigene disruption strain which is Δdse2Δeaf3, Δscw11Δeaf3, Δdse2Δeaf3Δsed1, Δscw11Δeaf3Δsed1, or Δdse2Δscw11Δeaf3Δsed1.
(5) The budding yeast according to (1), wherein a gene involved in lactic acid production is introduced and has lactic acid production ability.
(6) A gene involved in lactic acid resistance is not destroyed, and the amount of lactic acid produced is 10% or more higher than that of a budding yeast having a lactic acid producing ability into which a gene involved in lactic acid production is introduced. And the budding yeast according to (5).
(7) The budding yeast according to (6), which is a multigene-disrupted strain that is Δdse2Δeaf3, Δdse2Δscw11, Δscw11Δsed1, Δeaf3Δsed1, Δscw11Δeaf3Δsed1, or Δdse2Δscw11Δeaf3Δsed1.
(8) A method of imparting lactic acid resistance to budding yeast by destroying two or more genes involved in lactic acid resistance in budding yeast.
(9) A method of imparting lactic acid productivity to a budding yeast by destroying two or more genes involved in lactic acid resistance in the budding yeast and introducing a gene involved in lactic acid production.

本発明により、酵母の乳酸耐性を向上させることができる。また本発明により、乳酸生成能を有する酵母において乳酸生産が進んだ後も乳酸生産性を維持又は向上させることができる。   According to the present invention, the lactic acid resistance of yeast can be improved. Furthermore, according to the present invention, lactic acid productivity can be maintained or improved even after lactic acid production has progressed in yeast having lactic acid-producing ability.

(出芽酵母)
本発明に使用される出芽酵母はサッカロミセス・セレビシエに分類される株である限り特に限定されない。
(Budding yeast)
The budding yeast used in the present invention is not particularly limited as long as it is a strain classified as Saccharomyces cerevisiae.

(乳酸生成に関与する遺伝子)
当該出芽酵母には乳酸生成に関与する遺伝子が導入されていてもよい。乳酸生成に関与する遺伝子としては乳酸デヒドロゲナーゼ(LDH)遺伝子が挙げられる。乳酸生成に関与する遺伝子の採取源は特に限定されず、例えばウシ、ヒトのような動物、大腸菌、乳酸菌のような原核生物、植物を含め、ほとんどの生物から乳酸生成に関与する遺伝子を得ることができる。遺伝子採取源である生物からのmRNAの抽出及びcDNAライブラリーの作製は常法により行うことができる。
(Genes involved in lactic acid production)
A gene involved in lactic acid production may be introduced into the budding yeast. Examples of genes involved in lactic acid production include lactate dehydrogenase (LDH) gene. The collection source of the gene involved in lactic acid production is not particularly limited. For example, the gene involved in lactic acid production is obtained from most organisms including animals such as cattle and humans, prokaryotes such as E. coli and lactic acid bacteria, and plants. Can do. Extraction of mRNA from the organism from which the gene is collected and preparation of a cDNA library can be performed by conventional methods.

乳酸生成に関与する遺伝子の出芽酵母への導入は常法により行うことができる。例えば、当該遺伝子を組み込んだ組換えベクターにより出芽酵母を形質転換することにより導入が可能である。当該組換えベクターは、適当なベクターに乳酸生成に関与する遺伝子を連結(挿入)することにより得ることができる。乳酸生成に関与する遺伝子を挿入するためのベクターは宿主である出芽酵母中で複製可能なものであれば特に限定されないが、例えばYEp型、YRp型、YCp型のベクターを使用できる。さらに、核外遺伝子として複製しなくとも、染色体に組み込むことにより複製を可能にするベクターであってもよい。染色体への組み込みを効率よく行うためには、YIp型のベクターが利用できる。また、レトロトランスポゾンにより染色体へ組み込むこともできる。   Introduction of genes involved in lactic acid production into budding yeast can be performed by conventional methods. For example, it can be introduced by transforming budding yeast with a recombinant vector incorporating the gene. The recombinant vector can be obtained by linking (inserting) a gene involved in lactic acid production into an appropriate vector. The vector for inserting a gene involved in lactic acid production is not particularly limited as long as it can be replicated in the budding yeast as a host. For example, YEp type, YRp type, and YCp type vectors can be used. Furthermore, the vector may be a vector that enables replication by integrating into a chromosome without replicating as an extranuclear gene. For efficient integration into the chromosome, a YIp type vector can be used. It can also be integrated into the chromosome by retrotransposon.

乳酸生成に関与する遺伝子をベクターに挿入するには、まず、精製されたDNAを適当な制限酵素で切断し、適当なベクターDNAの制限酵素部位又はマルチクローニングサイトに挿入してベクターに連結する方法などが採用される。   In order to insert a gene involved in lactic acid production into a vector, first, the purified DNA is cleaved with a suitable restriction enzyme, inserted into a restriction enzyme site or a multicloning site of a suitable vector DNA, and ligated to the vector. Etc. are adopted.

乳酸生成に関与する遺伝子は、その遺伝子の機能が発揮されるようにベクターに組み込まれることが必要である。そこで、本発明のベクターには、プロモーター、乳酸生成に関与する遺伝子、ターミネーターのほか、所望によりエンハンサーなどのシスエレメント、スプライシングシグナル、ポリA付加シグナル、選択マーカー、リボソーム結合配列(SD配列)などを連結することができる。なお、選択マーカーとしては、例えばLEU2、HIS3、URA3遺伝子などの各種栄養要求性マーカー、ジェネティシン耐性遺伝子、メトトレキセート耐性遺伝子、ゼオシン耐性遺伝子、オーレオバシジンが挙げられる。   A gene involved in lactic acid production needs to be incorporated into a vector so that the function of the gene is exhibited. Therefore, the vector of the present invention includes, in addition to a promoter, a gene involved in lactic acid production, a terminator, a cis element such as an enhancer, a splicing signal, a poly A addition signal, a selection marker, a ribosome binding sequence (SD sequence) and the like. Can be linked. Examples of selectable markers include various auxotrophic markers such as LEU2, HIS3, and URA3 genes, geneticin resistance genes, methotrexate resistance genes, zeocin resistance genes, and aureobasidin.

乳酸生成に関与する遺伝子を組み込んだ組換えベクターの具体例としては特願2003−334092号において構築されたpBTrp−PDC1P−LDHKCBベクターのようなものがある。   A specific example of a recombinant vector incorporating a gene involved in lactic acid production is the pBTrp-PDC1P-LDHKCB vector constructed in Japanese Patent Application No. 2003-334092.

本発明において使用される乳酸生成能を有する出芽酵母は、上記組換えベクターを、目的遺伝子が発現し得るように宿主中に導入することにより得ることができる。   The budding yeast having the ability to produce lactic acid used in the present invention can be obtained by introducing the above recombinant vector into a host so that the target gene can be expressed.

本発明の耐酸性乳酸生成微生物を得るための形質転換は、上記手法により得られた耐酸性微生物に、乳酸生成に関与する遺伝子を含む本発明の組換えベクターを導入し得る方法であれば特に限定されるものではない。例えば、酢酸リチウム法、カルシウムイオンを用いる方法(Proc.Natl.Acad.Sci.,USA,69,2110,1972)、エレクトロポレーション法等の通常行われる遺伝子工学的手法により形質転換を行う。   The transformation for obtaining the acid-resistant lactic acid-producing microorganism of the present invention is particularly a method that can introduce the recombinant vector of the present invention containing a gene involved in lactic acid production into the acid-resistant microorganism obtained by the above method. It is not limited. For example, transformation is performed by a commonly used genetic engineering technique such as a lithium acetate method, a method using calcium ions (Proc. Natl. Acad. Sci., USA, 69, 2110, 1972), an electroporation method, or the like.

(乳酸耐性に関与する遺伝子の破壊)
本発明において「乳酸耐性に関与する遺伝子」とは、出芽酵母の遺伝子であって、それを破壊した場合に出芽酵母の乳酸耐性が向上する遺伝子を意味する。乳酸耐性に関与する遺伝子としては、具体的にはDSE2、SCW11、EAF3及びSED1が挙げられる。
(Damage of genes involved in lactate tolerance)
In the present invention, the “gene involved in lactic acid resistance” means a budding yeast gene that, when destroyed, improves the lactic acid resistance of the budding yeast. Specific examples of genes involved in lactic acid resistance include DSE2, SCW11, EAF3, and SED1.

これらの遺伝子をそれぞれ単独で破壊した場合に酵母の乳酸耐性が向上することは、背景技術の章で示したとおり本願出願前に公知であった。本発明者らは驚くべきことに、これらの遺伝子のうち2種以上を組み合わせて破壊した場合に、単独で破壊した場合と比較して出芽酵母の乳酸耐性及び/又は乳酸生産性が顕著に向上することを見出した。   It has been known before the filing of the present application that the lactic acid tolerance of yeast is improved when each of these genes is destroyed alone, as shown in the background section. The present inventors have surprisingly found that when two or more of these genes are disrupted in combination, the lactic acid tolerance and / or lactic acid productivity of the budding yeast is significantly improved compared to when the genes are disrupted alone. I found out.

本発明に係る出芽酵母の好ましい形態は、DSE2、SCW11、EAF3及びSED1からなる群から選択される少なくとも2つ、好ましくは3つ、特に好ましくは4つの遺伝子が破壊されている出芽酵母である。   A preferred form of the budding yeast according to the present invention is a budding yeast in which at least 2, preferably 3, and particularly preferably 4 genes selected from the group consisting of DSE2, SCW11, EAF3 and SED1 are disrupted.

本発明に係る出芽酵母の好ましい形態は、乳酸耐性が顕著に向上した出芽酵母であり、具体的には8(w/v)%乳酸を含む寒天培地におけるコロニー形成能を有する出芽酵母である。寒天培地の具体的な組成としては、YPDA培地(5% YPD Broth(SIGMA;2%グルコース、2%バクトペプトン、1%イーストエキストラクト含有)、0.04%アデニン)に8w/v%になるようにL−乳酸(ナカライテスク株式会社製)を加えたものが挙げられる。コロニー形成能を評価する培養条件は、培養温度30℃、培養時間264時間、初菌濃度5μLあたり10個である。このような性質を有する出芽酵母としては、Δdse2Δeaf3又はΔscw11Δeaf3である二重遺伝子破壊株、Δdse2Δeaf3Δsed1又はΔscw11Δeaf3Δsed1である三重遺伝子破壊株、或いはΔdse2Δscw11Δeaf3Δsed1である四重遺伝子破壊株が挙げられる。ここで、Δdse2Δeaf3という表記は、DSE2遺伝子とEAF3遺伝子とが共に破壊された株であることを意味する。他の破壊株の表記についても同様にして解釈する。 A preferred form of the budding yeast according to the present invention is a budding yeast having significantly improved lactic acid resistance, and specifically, a budding yeast having colony forming ability in an agar medium containing 8 (w / v)% lactic acid. The specific composition of the agar medium is 8 w / v% in YPDA medium (5% YPD Broth (SIGMA; 2% glucose, 2% bactopeptone, 1% yeast extract), 0.04% adenine). As described above, L-lactic acid (manufactured by Nacalai Tesque Co., Ltd.) is added. The culture conditions for evaluating the colony forming ability are 10 6 cells at a culture temperature of 30 ° C., a culture time of 264 hours, and a primary cell concentration of 5 μL. Examples of the budding yeast having such properties include a double gene disruption strain that is Δdse2Δeaf3 or Δscw11Δeaf3, a triple gene disruption strain that is Δdse2Δeaf3Δsed1 or Δscw11Δeaf3Δsed1, or a quadruple gene disruption strain that is Δdse2Δscw11Δeaf3Δsed1. Here, the notation Δdse2Δeaf3 means that the DSE2 gene and the EAF3 gene are both disrupted. The notation of other destroyed strains is interpreted in the same way.

本発明に係る出芽酵母の他の好ましい形態は、乳酸生成に関与する遺伝子が導入された乳酸生成能を有する出芽酵母であって、乳酸存在下での乳酸生産性が顕著に向上した出芽酵母である。具体的には、乳酸耐性に関与する遺伝子が破壊されておらず、かつ乳酸生成に関与する遺伝子が導入されている出芽酵母(本明細書において「親株」と表記することがある)と比較して乳酸生産量が10%以上高い出芽酵母である。この比較は次のような手順で行う。乳酸耐性に関与する遺伝子が2つ以上破壊されており、かつ乳酸生成に関与する遺伝子が導入された乳酸生成能を有する出芽酵母の培養は100ml三角フラスコを用い、10%YPD培地(1% Bacto Yeast extract, 2% Bacto peptone、10%D−グルコース)40mlに前培養した菌液2mlを添加して30℃にて72時間静置培養したのち、培地中のL−乳酸濃度(w/v%)を測定する。そして、対照である親株の培地中のL−乳酸濃度の値を100としたときに、培地中のL−乳酸濃度の値が110以上である出芽酵母を、乳酸生産量が10%以上高いものとして判別する。このような性質を有する出芽酵母としては、Δdse2Δeaf3、Δdse2Δscw11、Δscw11Δsed1又はΔeaf3Δsed1である二重遺伝子破壊株、Δscw11Δeaf3Δsed1である三重遺伝子破壊株、或いはΔdse2Δscw11Δeaf3Δsed1である四重遺伝子破壊株が挙げられる。   Another preferred form of the budding yeast according to the present invention is a budding yeast having a lactic acid-producing ability into which a gene involved in lactic acid production has been introduced, wherein the lactic acid productivity in the presence of lactic acid is significantly improved. is there. Specifically, it is compared with a budding yeast in which a gene involved in lactic acid resistance has not been destroyed and a gene involved in lactic acid production has been introduced (sometimes referred to as “parent strain” in this specification). This is a budding yeast having a lactic acid production amount of 10% or more. This comparison is performed by the following procedure. A 100 ml Erlenmeyer flask is used for culture of budding yeast having lactic acid-producing ability into which two or more genes involved in lactic acid resistance have been disrupted and a gene involved in lactic acid production is introduced. 10% YPD medium (1% Bacto Yeast extract, 2% Bacto peptone, 10% D-glucose) 40 ml of pre-cultured bacterial solution was added and left to stand at 30 ° C. for 72 hours, followed by L-lactic acid concentration in the medium (w / v%) ). And, when the value of L-lactic acid concentration in the medium of the parent strain as a control is 100, a budding yeast having a L-lactic acid concentration value of 110 or more in the medium has a lactic acid production amount higher by 10% or more. It is determined as Saccharomyces cerevisiae having such properties include a double gene disruption strain that is Δdse2Δeaf3, Δdse2Δscw11, Δscw11Δsed1, or Δeaf3Δsed1, a triple gene disruption strain that is Δscw11Δeaf3Δsed1, or a quadruple strain that is a quadruple strain that is Δdse2Δscw11Δeaf3Δsed1.

本発明に係る出芽酵母の最も好ましい形態は、乳酸耐性と、乳酸生成に関与する遺伝子が導入されて乳酸生成能を持たせた場合の乳酸生産性とが両方とも向上した出芽酵母である。より具体的には、8(w/v)%乳酸を含む寒天培地におけるコロニー形成能を有するとともに、親株と比較して乳酸生産量が10%以上高い出芽酵母である。このような性質を有する出芽酵母としては、Δdse2Δeaf3である二重遺伝子破壊株、Δscw11Δeaf3Δsed1である三重遺伝子破壊株、或いはΔdse2Δscw11Δeaf3Δsed1である四重遺伝子破壊株が挙げられる。   The most preferred form of the budding yeast according to the present invention is a budding yeast in which both lactic acid resistance and lactic acid productivity when a gene involved in lactic acid production is introduced to give lactic acid production ability are improved. More specifically, it is a budding yeast having colony forming ability in an agar medium containing 8 (w / v)% lactic acid and having a lactic acid production amount of 10% or more higher than that of the parent strain. Examples of the budding yeast having such properties include a double gene disruption strain that is Δdse2Δeaf3, a triple gene disruption strain that is Δscw11Δeaf3Δsed1, or a quadruple gene disruption strain that is Δdse2Δscw11Δeaf3Δsed1.

遺伝子の破壊方法として、本明細書の実施例では、LEU2遺伝子(CgLEU2)、HIS3遺伝子(CgHIS3)などのマーカー遺伝子を該遺伝子の一部を含むような長いプライマーを用いて増幅したPCR産物(遺伝子破壊用DNA断片)で、相同組換えにより遺伝子破壊を行った。   As a gene disruption method, in the examples of the present specification, PCR products (genes) obtained by amplifying marker genes such as the LEU2 gene (CgLEU2) and the HIS3 gene (CgHIS3) using a long primer containing a part of the gene. The DNA fragment for disruption) was subjected to gene disruption by homologous recombination.

しかし,その他の相同組換えによる遺伝子の破壊方法も使用可能である。以下にその例を示す。   However, other gene disruption methods by homologous recombination can also be used. An example is shown below.

(代替方法1)乳酸生成に関与する遺伝子の出芽酵母染色体への導入と同様にして破壊したい遺伝子断片を組み込んだ、出芽酵母中で自立複製不可能な組換えベクター(出芽酵母自立被製配列を保持していないベクター、例えば、YIpベクターや大腸菌由来のプラスミド)を構築する。この際、標的遺伝子のN末端及びC末端を一部削除した遺伝子断片を持つ不完全な組換えベクターを構築し標的遺伝子座に挿入すると、染色体上で2コピーの標的遺伝子が生成するが、いずれもN末端又はC末端コード部に欠失を持つようになることから、特定遺伝子の機能を失わせることが可能である。   (Alternative method 1) Recombinant vector that is capable of autonomous replication in Saccharomyces cerevisiae, incorporating a gene fragment to be disrupted in the same manner as the introduction of a gene involved in lactic acid production into Saccharomyces cerevisiae chromosome. An unretained vector such as a YIp vector or a plasmid derived from E. coli is constructed. At this time, when an incomplete recombinant vector having a gene fragment in which the N-terminus and C-terminus of the target gene are partially deleted is constructed and inserted into the target locus, two copies of the target gene are generated on the chromosome. Since it also has a deletion at the N-terminal or C-terminal coding part, it is possible to lose the function of a specific gene.

(代替方法2)同様に標的遺伝子の機能を失わせる点変異を両端に1箇所以上持つ標的遺伝子断片を保持した組換えベクターを標的遺伝子座に導入する。染色体上で2コピーの標的遺伝子が生成するが、いずれもコード部に点変異を持つようになることから、標的遺伝子の機能を失わせることができる。   (Alternative method 2) Similarly, a recombinant vector carrying a target gene fragment having at least one point mutation at both ends that causes loss of the function of the target gene is introduced into the target locus. Although two copies of the target gene are generated on the chromosome, each of them has a point mutation in the coding part, so that the function of the target gene can be lost.

(代替方法3)本明細書中の実施例では破壊対象遺伝子の配列の45bpの部分配列を持つ組換えDNA断片を使用したが、部分配列の長さは45bpには限定されない。すなわち、45bpよりも長い破壊対象遺伝子の部分配列あるいは45bpよりも短い破壊対象遺伝子の部分配列を持つ組換えDNA断片をベクター上で構築した後、制限酵素処理で切り出して回収する、あるいはPCRを繰り返して行い、破壊対象遺伝子のより長いあるいは短い部分配列を付与した細換えDNA断片を作製し、出芽酵母に導入して遺伝子破壊を行う方法を採用してもよい。   (Alternative method 3) In the examples in this specification, a recombinant DNA fragment having a partial sequence of 45 bp of the sequence of the gene to be disrupted was used, but the length of the partial sequence is not limited to 45 bp. That is, a recombinant DNA fragment having a partial sequence of a gene to be disrupted longer than 45 bp or a partial sequence of a gene to be disrupted shorter than 45 bp is constructed on a vector, and then excised and recovered by restriction enzyme treatment, or PCR is repeated. It is also possible to adopt a method in which a fragmented DNA fragment to which a longer or shorter partial sequence of a gene to be disrupted is added is prepared and introduced into a budding yeast to perform gene disruption.

(代替方法4)また、相同組換え以外の方法でも該遺伝子の機能を欠失できれば使用可能である。これらには(1)突然変異剤を用いて点変異体を作製しスクリーニングする方法、(2)トランスポゾンを用いた挿入ライブラリーからスクリーニングする方法等がある。   (Alternative method 4) Further, methods other than homologous recombination can be used if the function of the gene can be deleted. These include (1) a method of screening a point mutant using a mutation agent and (2) a method of screening from an insertion library using a transposon.

遺伝子破壊の際に、破壊対象の遺伝子に挿入する遺伝子としては、遺伝子破壊株を選別するための、マーカーとなる遺伝子を用いるのが良い。これらには抗生物質耐性遺伝子、栄養要求性変異を相補する(その栄養源を必要としなくなる)遺伝子などが挙げられる。   As a gene to be inserted into a gene to be disrupted at the time of gene disruption, a gene serving as a marker for selecting a gene disruption strain is preferably used. These include antibiotic resistance genes, genes that complement auxotrophic mutations (which no longer require that nutrient source), and the like.

以下に本発明を実施例に基づいて説明するが、本発明は以下の実施例には限定されない。   The present invention will be described below based on examples, but the present invention is not limited to the following examples.

1.遺伝破壊株の作製方法
DSE2、SCW11、EAF3及びSED1からなる群から選択される遺伝子が1〜4個破壊された株の組み合わせは15通りある。これら15種類すべての組み合わせの多重破壊株を以下のように作製した。実験は、Method in yeast genetics 2005(Cold spring harbor press, Cold spring harbor, NY, USA)に記載されている方法に従って行った。
1. Methods for preparing genetically disrupted strains There are 15 combinations of strains in which 1 to 4 genes selected from the group consisting of DSE2, SCW11, EAF3 and SED1 are disrupted. Multiple disruptions of all 15 of these combinations were prepared as follows. The experiment was performed according to the method described in Method in yeast genetics 2005 (Cold spring harber press, Cold spring harbor, NY, USA).

1.1.α型のBY4742株由来Δdse2破壊株からΔdse2Δscw11二重破壊株の構築
図2−1に示すプラスミドp3008(pUG−CgLEU2)上の選択マーカーの上流と下流の配列を一部に持つDNA断片であるSCW11フォワード(配列番号3)とSCW11リバース(配列番号4)を合成した。p3008を鋳型として、SCW11フォワードとSCW11リバースをプライマーとして、PCR法で増幅してSCW11遺伝子破壊用DNA断片を作製した。なおプラスミドp3008はBiotechniques,38(6),909−914,2005に基づき作製したものである。
1.1. Construction of a Δdse2Δscw11 double disruption strain from an α-type BY4742 strain-derived Δdse2 disruption strain SCW11, which is a DNA fragment partially comprising upstream and downstream sequences of a selection marker on the plasmid p3008 (pUG-CgLEU2) shown in FIG. Forward (SEQ ID NO: 3) and SCW11 reverse (SEQ ID NO: 4) were synthesized. A DNA fragment for SCW11 gene disruption was prepared by PCR amplification using p3008 as a template and SCW11 forward and SCW11 reverse as primers. The plasmid p3008 was prepared based on Biotechniques, 38 (6), 909-914, 2005.

得られた破壊用DNA断片を用いてΔdse2破壊株を形質転換した。Δdse2破壊株は、BY4742株(MATα leu2Δ0 his3Δ1 ura3Δ0 lys2Δ0)のDSE2遺伝子がジェネティシン耐性遺伝子であるkanMX(Wach,A.etal.;New heterologous modules for classical or PCR−based gene disruptions in Saccharomyces cerevisiae. Yeast. 10(13), 1793−1808(1994))で破壊された株であり、破壊株セット(BY4742株由来非必須遺伝子破壊ライブラリー(Invitrogen社製))由来の株をそのまま使用した。ロイシン非要求性の株を選抜することにより、Δdse2Δscw11二重破壊株を得た。選抜した株は、ゲノムDNAを調製し、図1−2に示すようなSCW11遺伝子の上流と下流に相同性を持つSCW11F1(配列番号11)とSCW11R1(配列番号12)をプライマーとしたPCRによりSCW11遺伝子の破壊を確認した。   A Δdse2 disrupted strain was transformed with the obtained DNA fragment for disruption. Δdse2 disrupted strain, BY4742 strain (MATα leu2Δ0 his3Δ1 ura3Δ0 lys2Δ0) DSE2 gene is a geneticin resistance gene kanMX (Wach, A.etal;... New heterologous modules for classical or PCR-based gene disruptions in Saccharomyces cerevisiae Yeast 10 (13), 1793-1808 (1994)), and a strain derived from the disrupted strain set (BY4742 strain-derived non-essential gene disruption library (manufactured by Invitrogen)) was used as it was. A leucine non-requiring strain was selected to obtain a Δdse2Δscw11 double disruption strain. The selected strain was prepared by preparing genomic DNA and performing PCR using PCR with primers SCW11F1 (SEQ ID NO: 11) and SCW11R1 (SEQ ID NO: 12) having homology upstream and downstream of the SCW11 gene as shown in FIG. Confirmed gene disruption.

1.2.a型のBY4741株からΔeaf3Δsed1二重破壊株の構築
図2−2に示すプラスミドp3009(pUG−CgHIS3)上の選択マーカーの上流と下流の配列を一部に持つDNA断片であるEAF3フォワード(配列番号5)とEAF3リバース(配列番号6)を合成した。それら合成DNAをプライマーとして、p3009を鋳型にしてPCR法で増幅することにより、EAF3遺伝子破壊用のDNA断片を作製した。なおプラスミドp3009はBiotechniques,38(6),909−914,2005に基づき作製したものである。
1.2. Construction of Δeaf3Δsed1 double disruption strain from a-type BY4741 strain EAF3 forward (SEQ ID NO: 2), which is a DNA fragment partially containing upstream and downstream sequences of the selection marker on plasmid p3009 (pUG-CgHIS3) shown in FIG. 5) and EAF3 reverse (SEQ ID NO: 6) were synthesized. A DNA fragment for disrupting the EAF3 gene was prepared by amplifying by PCR using these synthetic DNAs as primers and p3009 as a template. The plasmid p3009 was prepared based on Biotechniques, 38 (6), 909-914, 2005.

得られた破壊用DNA断片でBY4741株(MATa leu2Δ0 his3Δ1 ura3Δ0 met15Δ0)(Invitrogen社製)を形質転換して、ヒスチジン非要求性となった株を選抜することによりΔeaf3破壊株を得た。選抜した株は、ゲノムDNAを調製し、図1−2に示すようなEAF3遺伝子の上流と下流に相同性を持つEAF3F1(配列番号13)とEAF3R1(配列番号14)をプライマーとしたPCRによりEAF3遺伝子の破壊を確認した。   The BY4741 strain (MATa leu2Δ0 his3Δ1 ura3Δ0 met15Δ0) (manufactured by Invitrogen) was transformed with the obtained DNA fragment for disruption, and a strain that became histidine-unrequired was selected to obtain a Δeaf3 disruption strain. The selected strain was prepared by preparing genomic DNA, and by PCR using EAF3F1 (SEQ ID NO: 13) and EAF3R1 (SEQ ID NO: 14) having homology upstream and downstream of the EAF3 gene as shown in FIG. Confirmed gene disruption.

次に、プラスミド(pUG6−zeocin)上の選択マーカーの上流と下流の配列を一部に持つDNA断片であるSED1フォワード(配列番号7)とSED1リバース(配列番号8)を合成した。それら合成DNAをプライマーとして、pUG6−zeocinを鋳型にしてPCR法で増幅することにより、SED1遺伝子破壊用のDNA断片を作製した。なおプラスミド(pUG6−zeocin)は次の手順で調製したものである。ゼオシン フォワード(配列番号17)とゼオシン リバース(配列番号18)をプライマーとし、pPICZ−α(Invitrogen;V195−20)を鋳型としたPCRによってzeocin遺伝子(ゼオシン耐性遺伝子)を含む約1.2kbのDNA断片を回収した。次に、回収した断片をXhoI/Bg1IIで消化し、pUG6のXhoI/BglIIギャップに挿入してpUG6−zeocinを構築した。 Next, SED1 forward (SEQ ID NO: 7) and SED1 reverse (SEQ ID NO: 8), which are DNA fragments having in part the upstream and downstream sequences of the selection marker on the plasmid (pUG6-zeocin r ), were synthesized. A DNA fragment for SED1 gene disruption was prepared by amplifying by PCR using these synthetic DNAs as primers and pUG6-zeocin r as a template. The plasmid (pUG6-zeocin r ) was prepared by the following procedure. About 1.2 kb containing a zeocin r gene (zeocin resistance gene) by PCR using zeocin forward (SEQ ID NO: 17) and zeocin reverse (SEQ ID NO: 18) as primers and pPICZ-α (Invitrogen; V195-20) as a template DNA fragments were recovered. Next, the recovered fragment was digested with XhoI / BgII and inserted into the XhoI / BglII gap of pUG6 to construct pUG6-zeocin r .

得られたSED1遺伝子破壊用DNA断片で構築したΔeaf3破壊株を形質転換して、ゼオシン耐性の株を選抜することによりΔeaf3Δsed1二重破壊株を得た。選抜した株は、ゲノムDNAを調製し、図1−2に示すようなSED1遺伝子の上流と下流に相同性を持つSED1F1(配列番号15)とSED1R1(配列番号16)をプライマーとしたPCRによりSED1遺伝子の破壊を確認した。   A Δeaf3 disruption strain constructed with the obtained SED1 gene disruption DNA fragment was transformed, and a strain resistant to zeocin was selected to obtain a Δeaf3Δsed1 double disruption strain. The selected strain was prepared by preparing genomic DNA and PCR using SED1F1 (SEQ ID NO: 15) and SED1R1 (SEQ ID NO: 16) having homology upstream and downstream of the SED1 gene as shown in FIG. Confirmed gene disruption.

1.3.多重破壊株の作製
1.1.および1.2.で得られた2種類の一倍体の二重破壊株どうしをYPDA寒天培地上で24時間交雑させ、ジェネティシン耐性、ロイシン非要求性、ヒスチジン非要求性且つゼオシン耐性となる株を選抜することにより二倍体を単離した。
そして得られた二倍体を12時間YPDA寒天培地上で生育させ、その後胞子形成培地(0.5%酢酸ナトリウム、2%アガー)に塗布し、23℃で4日間培養して胞子形成させた。
1.3. Production of multiple disruption strain 1.1. And 1.2. By crossing the two haploid double disruption strains obtained in 1) on a YPDA agar medium for 24 hours, and selecting strains that are geneticin resistant, leucine non-requiring, histidine non-requiring and zeocin resistant A diploid was isolated.
The resulting diploid was grown on a YPDA agar medium for 12 hours, then applied to a spore formation medium (0.5% sodium acetate, 2% agar), and cultured at 23 ° C. for 4 days to form spores. .

次に「微生物遺伝学実験法」(共立出版)に記載されている方法に従って以下の操作を行った。
プレート上の菌体をかきとり0.3mg/mlのZymolyase(ZYMORESEARCH社製)溶液中で5分間処理して子嚢壁を消化した。次にマイクロマニピュレータ(SYNGER MSM STSTEM SERIES 200、SINGER Instruments社製)を用いて胞子を解剖し、YPDAプレート上で分離し30℃で3日間培養した。このようにして合計29子嚢108胞子を得た。得られた胞子を、マーカー(ロイシン要求性、ヒスチジン要求性、カナマイシン耐性、ゼオシン耐性)を指標として分類した。
Next, the following operations were performed according to the method described in “Microbial Genetics Experimental Method” (Kyoritsu Shuppan).
The cells on the plate were scraped off and treated in a 0.3 mg / ml Zymolase (manufactured by ZYMORESEARCH) solution for 5 minutes to digest the ascending wall. Next, spores were dissected using a micromanipulator (SYNGER MSM STEST SERIES 200, manufactured by SINGER Instruments), separated on a YPDA plate, and cultured at 30 ° C. for 3 days. In this way, a total of 29 ascospore 108 spores were obtained. The obtained spores were classified using markers (leucine requirement, histidine requirement, kanamycin resistance, zeocin resistance) as an index.

その結果、表1のように全15種類のΔdse2、Δscw11、Δeaf3、Δsed1の単一又は多重破壊株が得られた。   As a result, as shown in Table 1, 15 types of single or multiple disrupted strains of Δdse2, Δscwl1, Δeaf3, and Δsed1 were obtained.

Figure 0005013448
Figure 0005013448

2. 6、7、8w/v%乳酸添加平板培地での耐性試験
表1に示す菌株を5mlのYPDA液体培地(5% YPD Broth (SIGMA;2%グルコース、2%バクトペプトン、1%イーストエキストラクト含有)、0.04%アデニン)に植菌して30℃、170rpm振とうで終夜培養した。次に、5mlYPDA液体培地に再度植菌し、OD[660nm]で約1.0になるまで同様に振とう培養した。その後、Method in yeast genetics(Cold Spring Harbor Laboratory)に従ってODから細胞濃度を算出し、1x10細胞/5μlから1x10細胞/5μlまでの10希釈系列の細胞溶液を調製した。その後、YPDA寒天培地(YPDA培地に2%アガー添加)に0、6、7、8w/v%となるようにL−乳酸(ナカライテスク)を添加した平板培地に、それぞれの細胞溶液を5μlずつスポットして、30℃で24時間(0w/v%)、96時間(6w/v%)、264時間(7w/v%)、264時間(8w/v%)保温して、乳酸耐性を確認した。
その結果を図3に示す。
2. Resistance test in 6, 7, 8 w / v% lactic acid-added flat plate medium The strains shown in Table 1 were mixed with 5 ml of YPDA liquid medium (5% YPD Broth (SIGMA; containing 2% glucose, 2% bactopeptone, 1% yeast extract). ), 0.04% adenine), and cultured overnight at 30 ° C. and 170 rpm shaking. Next, the cells were inoculated again in a 5 ml YPDA liquid medium and cultured in the same manner until the OD [660 nm] reached about 1.0. Then, the cell concentration was calculated from OD according to Method in yeast genetics (Cold Spring Harbor Laboratory), and 10 dilution series of cell solutions from 1 × 10 6 cells / 5 μl to 1 × 10 1 cells / 5 μl were prepared. Thereafter, 5 μl of each cell solution was added to a plate medium in which L-lactic acid (Nacalai Tesque) was added to YPDA agar medium (2% agar added to YPDA medium) to 0, 6, 7, 8 w / v%. Spot and heat retention at 30 ° C. for 24 hours (0 w / v%), 96 hours (6 w / v%), 264 hours (7 w / v%), 264 hours (8 w / v%) to confirm lactic acid resistance did.
The result is shown in FIG.

3. 6w/v%乳酸添加液体培地での生育挙動試験
それぞれの菌株を5mlの試験管YPDA液体培地に植菌して30℃、170rpm振とうで終夜培養した。次に、8mlのYPDA液体培地或いは6%L−乳酸添加YPDA液体培地を含むφ16mm試験管にOD[600nm]で0.1となるように植菌した。そして、30℃、170rpm振とう培養し、培養液用比色計CO8000 Biowave(WPA Biochrom Limited, Cambridge Science park, Cambridge, UK)を用いて経時的に培養液のOD[600nm]を測定した。
その結果を図4に示す。
3. Growth Behavior Test on 6 w / v% Lactic Acid-Added Liquid Medium Each strain was inoculated into a 5 ml test tube YPDA liquid medium and cultured overnight at 30 ° C. and 170 rpm shaking. Next, it inoculated so that it might be set to 0.1 by OD [600nm] to the (phi) 16mm test tube containing 8 ml YPDA liquid culture medium or 6% L-lactic acid addition YPDA liquid culture medium. The culture was shaken at 30 ° C. and 170 rpm, and the OD [600 nm] of the culture solution was measured over time using a culture colorimeter CO8000 Biowave (WPA Biochrom Limited, Cambridge Science park, Cambridge, UK).
The result is shown in FIG.

表1に示す全15種類Δdse2、Δscw11、Δeaf3、Δsed1の単一又は多重破壊株について乳酸生産能を検証するため、組換えベクターの構築、形質転換酵母の作製は以下の方法で行った。   In order to verify the lactic acid-producing ability of single or multiple disruption strains of all 15 types Δdse2, Δscw11, Δeaf3, and Δsed1 shown in Table 1, the construction of recombinant vectors and the production of transformed yeast were carried out by the following methods.

本出芽酵母中でL−乳酸脱水素酵素遺伝子(L−Lactate dehydrogenase遺伝子、以下、L−LDH遺伝子と称す)が発現可能な染色体導入用ベクター構築を行った。本実施例で検討したベクターをpBHPH−LDHKCBベクターと名づけた。以下、本実施例におけるベクター構築工程の詳細を図6に基づいて説明するが、ベクター構築の手順はこれに限定されるものではない。なお、エタノール沈殿処理、制限酵素処理等のDNAサブクローニングに関わる一連操作の詳細は、Molecular Cloning ‘A Laboratory Manual second edition’(Maniatis et al., Cold Spring Harbor Laboratory press. 1989)に従った。また、反応に使用した一連の酵素類は、特に限定しない限りにおいては、タカラバイオ社製のものを使用した。   A vector for chromosomal introduction capable of expressing an L-lactate dehydrogenase gene (L-Lactate dehydrogenase gene, hereinafter referred to as L-LDH gene) in this budding yeast was constructed. The vector examined in this example was named pBHPH-LDHKCB vector. Hereinafter, although the detail of the vector construction process in a present Example is demonstrated based on FIG. 6, the procedure of vector construction is not limited to this. Details of a series of operations related to DNA subcloning such as ethanol precipitation and restriction enzyme treatment were in accordance with Molecular Cloning 'A Laboratory Manual second edition' (Maniatis et al., Cold Spring Harbor press. 1989). In addition, a series of enzymes used in the reaction were those manufactured by Takara Bio Inc. unless otherwise limited.

一般的なDNAサブクローニング法に従って、プレベクターpHPH−LDHKCBベクターの構築を行った。特願2003−334092号において構築したpBTrp−PDC1P−LDHKCBベクターを制限酵素PstI処理を行い、T4 DNA ポリメラーゼ反応により、切断末端を平滑末端化した。続いて、制限酵素ClaI処理を行った試料を電気泳動(GelMate2000、東洋紡)し、TaKaRa RECOCHIP(タカラバイオ)によって、ベクター部分をアガロースゲルより回収した。続いて次に記載するように同様の操作により、インサート部分を回収した。具体的には、ハイグロマイシン遺伝子が酵母内で発現できるよう構築したpBHPH−PTベクターを、制限酵素SpeI、T4 DNA Polymerase、制限酵素ClaIの順で反応させ、本試料を電気泳動、TaKaRa RECOCHIPによって、インサート部分を回収した。   A prevector pHPH-LDHKCB vector was constructed according to a general DNA subcloning method. The pBTrp-PDC1P-LDHKCB vector constructed in Japanese Patent Application No. 2003-334092 was treated with a restriction enzyme PstI, and the cut ends were blunt-ended by T4 DNA polymerase reaction. Subsequently, the sample treated with the restriction enzyme ClaI was electrophoresed (GelMate 2000, Toyobo), and the vector portion was recovered from the agarose gel by TaKaRa RECOCHIP (Takara Bio). Subsequently, the insert portion was recovered by the same operation as described below. Specifically, a pBHPH-PT vector constructed so that the hygromycin gene can be expressed in yeast is reacted in the order of the restriction enzyme SpeI, T4 DNA Polymerase, and the restriction enzyme ClaI, and this sample is subjected to electrophoresis, TaKaRa RECOCHIP, The insert part was collected.

上記にて回収したベクターおよびインサート断片を、T4 DNA リガーゼによって連結させた。DNA連結反応は、LigaFast Rapid DNA Ligation(プロメガ社製)を用い、詳細は付属のプロトコールに従った。また、Ligetion反応溶液のコンピテント細胞への形質転換には、大腸菌JM109株(東洋紡社製)を使用した。いずれの場合も、抗生物質アンピシリン100μg/mlを含有したLBプレート下でコロニー選抜を行い、各コロニー用いたコロニーPCR反応を行うことで、目的のベクターであるかを確認した。PCR反応のプライマーは、下記の合成DNA(キアゲン社製)を用い、反応粂伴は96℃5分の処理の後、96℃30秒、55℃30秒、72℃60秒のサイクルで25サイクル反応させ、72℃5分ののち、4℃で終了とした。反応液に色素を添加後、電気泳動にて増幅断片の有無を確認した。   The vector and insert fragment collected above were ligated with T4 DNA ligase. For the DNA ligation reaction, LigaFast Rapid DNA Ligation (manufactured by Promega) was used, and the details followed the attached protocol. In addition, Escherichia coli JM109 strain (manufactured by Toyobo Co., Ltd.) was used for transformation of the Ligation reaction solution into competent cells. In either case, colonies were selected under an LB plate containing 100 μg / ml of the antibiotic ampicillin, and colony PCR reaction using each colony was performed to confirm whether the target vector was obtained. The following synthetic DNA (manufactured by Qiagen) was used as a primer for the PCR reaction, and the reaction was performed at 96 ° C for 5 minutes, followed by 25 cycles of 96 ° C for 30 seconds, 55 ° C for 30 seconds, 72 ° C for 60 seconds. The reaction was allowed to proceed at 72 ° C for 5 minutes and then at 4 ° C. After adding a dye to the reaction solution, the presence or absence of the amplified fragment was confirmed by electrophoresis.

上記PCR反応には、以下の合成DNAをプライマーとして利用した。
TDH3P−F;5’−AGCGTTGAATGTTAGCGTCAAC−3’(22mer)(配列番号19)
CYC1T−R;5’−ACATGCGTACACGCGTTTGTAC−3’(22mer)(配列番号20)
In the PCR reaction, the following synthetic DNA was used as a primer.
TDH3P-F; 5'-AGCGTTGAATGTTAGCGCACA-3 '(22mer) (SEQ ID NO: 19)
CYC1T-R; 5′-ACATGCCGTACACCGCGTTTGTAC-3 ′ (22mer) (SEQ ID NO: 20)

構繁したベクターの塩基配列を決定した。LB培養液にて37℃、18時間培養した上記プラスミドを含む大腸菌を集菌し、アルカリ抽出法によってプラスミドDNAを調製した。これをGFX DNA Purification kit(Amercham Pharmacia Biotech社製)にてカラム精製した。次に、分光光度計Ultro spec 3000(Amercham Pharmacia Biotech社製)にてDNA濃度を測定し、DNA塩基配列キットBigDye Terminator Cycle Sequencing Ready Reaction Kit(PE Applied Biosystem社製)に従ってシークエンシング反応を行った。反応試料を塩基配列解析装置ABI PRISM 310 Genetic Analyzer(PE Applied Biosystem社製)にセットし、構築ベクターの塩基配列を決定した。なお、機器の使用方法の詳細は本装置付属のマニュアルに従った。   The base sequence of the prosperous vector was determined. Escherichia coli containing the plasmid was cultured in an LB medium at 37 ° C. for 18 hours, and plasmid DNA was prepared by an alkali extraction method. This was subjected to column purification using GFX DNA Purification kit (Amercham Pharmacia Biotech). Next, the DNA concentration was measured with a spectrophotometer Ultra spec 3000 (manufactured by Amercham Pharmacia Biotech), and the DNA base sequence kit BigDye Terminator Cycle Sequencing Ready Reaction Kit (manufactured by PE Applied Bioscience) was used. The reaction sample was set in the base sequence analyzer ABI PRISM 310 Genetic Analyzer (manufactured by PE Applied Biosystem), and the base sequence of the construction vector was determined. The details of how to use the equipment were in accordance with the manual attached to this device.

構築したプラスミドベクターpBHPH−LDHKCBのマップを図7に示す。
乳酸耐性向上への関与が確認された出芽酵母へLDH遺伝子が導入された形質転換体の作製は次のように行った。各酵母をYPD培養液5mlにて、30℃で対数増殖期(OD600nm=0.8)まで培養した。これにFrozen−EZ Yeast Transformetion IIキット(ZYMO RESEARCH社製)を用いてコンピテントセルを作製した。キット添付のプロトコールに従い、本コンピテントセルに上述のpBHPH−LDHKCBを制限酵素ApaI、SacI処理し、遺伝子導入した。これらの形質転換試料を洗浄後、1 mlのYPD培養液にて一晩、回復培養を実施し、これを集菌、洗浄後、100μlの減菌水に溶解させた。本試料をハイグロマイシン濃度150μg/mlのYPD培地に塗沫し、それぞれについて30℃静置培養下で形質転換体の選抜を行った。
A map of the constructed plasmid vector pBHPH-LDHKCB is shown in FIG.
A transformant in which the LDH gene was introduced into a budding yeast that was confirmed to be involved in improving lactic acid resistance was prepared as follows. Each yeast was cultured in 5 ml of YPD culture solution at 30 ° C. until the logarithmic growth phase (OD600 nm = 0.8). A competent cell was prepared using a Frozen-EZ Yeast Transformation II kit (manufactured by ZYMO RESEARCH). According to the protocol attached to the kit, the above-described pBHPH-LDHKCB was treated with the restriction enzymes ApaI and SacI, and the gene was introduced into this competent cell. After washing these transformed samples, recovery culture was carried out overnight in 1 ml of YPD medium, and these were collected and washed, and then dissolved in 100 μl of sterilized water. This sample was smeared on a YPD medium having a hygromycin concentration of 150 μg / ml, and a transformant was selected under static culture at 30 ° C. for each.

得られたそれぞれのコロニーを同濃度のハイグロマイシン選抜培地で再度単離し、生育能を安定に保持している株を形質転換候補株とした。次に、これらの候補株をYPD培養液2mlで一晩培養し、これにゲノムDNA調製キット、GENとるくんTM−酵母用−(タカラバイオ社製)を用いてゲノムDNAを調製した。調製した各ゲノムDNAを鋳型にPCR解析を行い、導入遺伝子の有無が確認できたものを形質転換株とした。PCR反応のプライマーは、下記の合成DNA(キアゲン社製)を用い、反応条件は96℃5分の処理の後、96℃30秒、53℃30秒、72℃60秒のサイクルで40サイクル反応させ、72℃5分ののち4℃で終了とした。反応液に色素を添加後、電気泳動にて増幅断片の有無を確認した。 Each of the obtained colonies was isolated again with a hygromycin selection medium at the same concentration, and a strain stably maintaining the growth ability was used as a transformation candidate strain. Next, these candidate strains were cultured overnight in 2 ml of YPD culture solution, and then genomic DNA was prepared using a genomic DNA preparation kit, GEN Torukun TM for Yeast (manufactured by Takara Bio Inc.). PCR analysis was performed using each of the prepared genomic DNAs as a template, and a transformant was confirmed if the presence or absence of the transgene was confirmed. The following synthetic DNA (Qiagen) was used as a primer for the PCR reaction, and the reaction conditions were 96 ° C for 5 minutes after treatment at 96 ° C for 30 seconds, 53 ° C for 30 seconds, and 72 ° C for 60 seconds. And finished at 4 ° C. after 5 minutes at 72 ° C. After adding a dye to the reaction solution, the presence or absence of the amplified fragment was confirmed by electrophoresis.

上記PCR反応には、以下の合成DNAをプライマーとして利用した。
LDH−F;5’−ATGGCTACTTTGAAAGATC−3’(19mer)(配列番号21)
LDH−R;5’−TTATTAAAATTGCAATTCTTTTTG−3’(24mer)(配列番号22)
In the PCR reaction, the following synthetic DNA was used as a primer.
LDH-F; 5′-ATGGCTACTTTGAAAGATC-3 ′ (19mer) (SEQ ID NO: 21)
LDH-R; 5'-TTATTAAAAATTGCAATTCTTTTG-3 '(24mer) (SEQ ID NO: 22)

以上のようにして作製した形質転換酵母をそれぞれYPD液体培地5mlに植菌し、30℃、130rpmにて一晩、振盪培養を行い、OD600nm=1.2のものを初発菌体とした。このうちの2mlを10%グルコース含有YPD培養液40mlにそれぞれ植菌し、30℃の恒温槽(ヤマト社製)にて、3日間、静置条件下で発酵させた。   Each of the transformed yeasts prepared as described above was inoculated into 5 ml of YPD liquid medium, and cultured overnight at 30 ° C. and 130 rpm, and those having an OD of 600 nm = 1.2 were used as the initial cells. Of these, 2 ml was inoculated into 40 ml of 10% glucose-containing YPD culture solution and fermented in a thermostatic bath (manufactured by Yamato) at 30 ° C. for 3 days under stationary conditions.

72時間後の発酵液を採取し、本溶液中に含まれるL−乳酸生産量(w/v%)、エタノール生産量およびグルコース残存量を測定した。測定には、多機能バイオセンサBF−5装置(王子計測機器社製)を用い、仕様の詳細は付属のマニュアルに従った。
測定の結果を図5に示す。
The fermentation broth after 72 hours was collected, and the L-lactic acid production (w / v%), ethanol production and glucose residual contained in this solution were measured. For the measurement, a multi-function biosensor BF-5 device (manufactured by Oji Scientific Instruments) was used, and the details of the specifications were in accordance with the attached manual.
The measurement results are shown in FIG.

各遺伝子を破壊するための断片を作製するためのプライマーを示す図である。下線部は鋳型プラスミドとのアニーリング部位を指す。It is a figure which shows the primer for producing the fragment for destroying each gene. The underlined portion indicates the annealing site with the template plasmid. 各遺伝子が破壊されているか否かを確認するために使用する、各遺伝子を増幅するためのプライマーを示す図である。It is a figure which shows the primer for amplifying each gene used in order to confirm whether each gene is destroyed. pUG−zeosin構築用プライマーを示す図である。It is a figure which shows the primer for pUG-zeosin r construction | assembly. プラスミドp3008(pUG−CgLEU2)の構築図である。It is a construction figure of plasmid p3008 (pUG-CgLEU2). プラスミドp3009(pUG−CgHIS3)の構築図である。It is a construction figure of plasmid p3009 (pUG-CgHIS3). 培地中の乳酸濃度とコロニーの形成との関係を示す図である。It is a figure which shows the relationship between the lactic acid density | concentration in a culture medium, and formation of a colony. 各遺伝子破壊株の増殖の経時変化を示す図である。It is a figure which shows the time-dependent change of the proliferation of each gene disruption strain. 乳酸生成能を有する各遺伝子破壊株のL-乳酸生産量を示す図である。It is a figure which shows the L-lactic acid production amount of each gene disruption strain | stump | stock which has lactic acid production ability. プラスミドベクターの構築方法を示す図である。It is a figure which shows the construction method of a plasmid vector. プラスミドベクターpBHPH−LDHKCBのマップを示す図である。It is a figure which shows the map of plasmid vector pBHPH-LDHKCB.

配列番号1〜22:合成DNA:プライマー   Sequence number 1-22: Synthetic DNA: Primer

Claims (4)

Δdse2Δeaf3、Δscw11Δeaf3、Δdse2Δeaf3Δsed1、Δscw11Δeaf3Δsed1、又はΔdse2Δscw11Δeaf3Δsed1である多重遺伝子破壊株であることを特徴とする芽酵母。 Δdse2Δeaf3, Δscw11Δeaf3, Δdse2Δeaf3Δsed1, out bud yeast, characterized in that Derutascw11derutaeaf3derutased1, or a multi-gene-disrupted strain is Derutadse2derutascw11derutaeaf3derutased1. 乳酸生成に関与する遺伝子が導入されており、かつΔdse2Δeaf3、Δdse2Δscw11、Δscw11Δsed1、Δeaf3Δsed1、Δscw11Δeaf3Δsed1、又はΔdse2Δscw11Δeaf3Δsed1である多重遺伝子破壊株であることを特徴とする芽酵母。 Genes involved in lactic acid production is introduced, and Δdse2Δeaf3, Δdse2Δscw11, Δscw11Δsed1, Δeaf3Δsed1, out bud yeast, characterized in that Derutascw11derutaeaf3derutased1, or a multi-gene-disrupted strain is Derutadse2derutascw11derutaeaf3derutased1. 出芽酵母においてΔdse2Δeaf3、Δscw11Δeaf3、Δdse2Δeaf3Δsed1、Δscw11Δeaf3Δsed1、又はΔdse2Δscw11Δeaf3Δsed1となるように遺伝子を破壊することにより出芽酵母に乳酸耐性を付与する方法。 A method of imparting lactic acid resistance to a budding yeast by disrupting a gene so that it becomes Δdse2Δeaf3, Δscw11Δeaf3, Δdse2Δeaf3Δsed1, Δscw11Δeaf3Δsed1, or Δdse2Δscw11Δeaf3Δsed1 in budding yeast. 出芽酵母においてΔdse2Δeaf3、Δdse2Δscw11、Δscw11Δsed1、Δeaf3Δsed1、Δscw11Δeaf3Δsed1、又はΔdse2Δscw11Δeaf3Δsed1となるように遺伝子を破壊するとともに乳酸生成に関与する遺伝子を導入することにより出芽酵母に乳酸生産性を付与する方法。 In budding yeast, a method for disrupting the gene to produce Δdse2Δeaf3, Δdse2Δscw11, Δscw11Δsed1, Δeaf3Δsed1, Δscw11Δeaf3Δsed1, or Δdse2Δscw11Δeaf3Δsed1 and introducing a gene involved in lactic acid production into lactic acid-producing yeast.
JP2006211210A 2006-08-02 2006-08-02 Combination of multiple gene disruptions to improve lactate tolerance or productivity of budding yeast Expired - Fee Related JP5013448B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006211210A JP5013448B2 (en) 2006-08-02 2006-08-02 Combination of multiple gene disruptions to improve lactate tolerance or productivity of budding yeast

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006211210A JP5013448B2 (en) 2006-08-02 2006-08-02 Combination of multiple gene disruptions to improve lactate tolerance or productivity of budding yeast

Publications (2)

Publication Number Publication Date
JP2008035727A JP2008035727A (en) 2008-02-21
JP5013448B2 true JP5013448B2 (en) 2012-08-29

Family

ID=39171494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006211210A Expired - Fee Related JP5013448B2 (en) 2006-08-02 2006-08-02 Combination of multiple gene disruptions to improve lactate tolerance or productivity of budding yeast

Country Status (1)

Country Link
JP (1) JP5013448B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101483470B1 (en) * 2008-02-04 2015-01-16 도레이 카부시키가이샤 Method of producing lactic acid by continuous fermentation
BRPI0913906A2 (en) * 2008-06-30 2016-11-01 Toyota Motor Co Ltd process to produce organic acid
BR112017004069B1 (en) 2014-08-29 2024-02-06 Sk Innovation Co., Ltd RECOMBINANT YEAST PRODUCING 3-HYDROXYPROPIONIC ACID AND METHOD FOR PRODUCING 3-HYDROXYPROPIONIC ACID USING THE SAME
CN113980827B (en) * 2021-11-18 2023-07-25 江南大学 Method for promoting non-preferential nitrogen source utilization of saccharomyces cerevisiae by over-expressing Eaf p

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001204464A (en) * 2000-01-27 2001-07-31 Toyota Motor Corp Method of producing lactic acid

Also Published As

Publication number Publication date
JP2008035727A (en) 2008-02-21

Similar Documents

Publication Publication Date Title
JP3756180B2 (en) Riboflavin biosynthesis in fungi
US20170088845A1 (en) Vectors and methods for fungal genome engineering by crispr-cas9
US11655478B2 (en) Promoter derived from organic acid-resistant yeast and method for expression of target gene by using same
WO2007043253A1 (en) Yeast and method of producing l-lactic acid
Lin et al. Meiotically induced rec7 and rec8 genes of Schizosaccharomyces pombe.
JPH08505522A (en) Recombinant method and host for the production of xylitol
JP5013448B2 (en) Combination of multiple gene disruptions to improve lactate tolerance or productivity of budding yeast
EP1709182B1 (en) Generation of recombinant genes in saccharomyces cerevisiae
JP2016538865A (en) New genome modification system for microorganisms
JP6864308B2 (en) Isoamyl Acetate High Productivity, Acetic Acid Productivity Low Productivity and Isoamyl Alcohol High Productivity Method for Producing Brewed Yeast
JP2024107307A (en) Plasmid for transformation, method for producing transformant using the same, and method of transformation
EP1437405B1 (en) Gene overexpression system
EP2548957B1 (en) Method for producing kluyveromyces marxianus transformant
Walker et al. PCR-based gene disruption and recombinatory marker excision to produce modified industrial Saccharomyces cerevisiae without added sequences
EP4008771A1 (en) Synthetic promoter based on gene from acid-resistant yeast
JP2010115112A (en) Method of preparing yeast, the yeast, and method of producing lactic acid
JP2018533932A (en) New episomal plasmid vector
JP4487046B2 (en) Eukaryotic microorganism having high lipid content and method for producing lipid using the microorganism
JP5137506B2 (en) Yeast with increased rRNA content
Tang et al. A transformation system for the nonuniversal CUGSer codon usage species Candida rugosa
JP4587750B2 (en) Candida utilis-derived gene encoding transcriptional activation protein
JP5565992B2 (en) Transformation method of yeast Candida utilis
JP2009178104A (en) Method for homogenizing specific region of diploid cell chromosome using lose of heterozygosity
Jayaprakash et al. Establishment of a novel CRISPR-Cas9 system in the hybrid yeast Zygosaccharomyces parabailii reveals allele exchange mechanism
JP2006101867A (en) Ars gene derived from candida utilis

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090727

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20091119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20091119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120315

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20120327

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120508

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313118

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees