JP5013173B2 - Organometallic complex, occlusion material and catalyst using the same - Google Patents

Organometallic complex, occlusion material and catalyst using the same Download PDF

Info

Publication number
JP5013173B2
JP5013173B2 JP2006314501A JP2006314501A JP5013173B2 JP 5013173 B2 JP5013173 B2 JP 5013173B2 JP 2006314501 A JP2006314501 A JP 2006314501A JP 2006314501 A JP2006314501 A JP 2006314501A JP 5013173 B2 JP5013173 B2 JP 5013173B2
Authority
JP
Japan
Prior art keywords
organometallic complex
general formula
group
atom
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006314501A
Other languages
Japanese (ja)
Other versions
JP2007169267A (en
Inventor
哲賜 大村
健三 福森
有光 臼杵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2006314501A priority Critical patent/JP5013173B2/en
Publication of JP2007169267A publication Critical patent/JP2007169267A/en
Application granted granted Critical
Publication of JP5013173B2 publication Critical patent/JP5013173B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

本発明は、有機金属錯体、並びにそれを用いた吸蔵物質及び触媒に関する。   The present invention relates to an organometallic complex, and an occlusion material and catalyst using the same.

従来から、吸蔵物質や触媒として利用することが可能な有機金属錯体が種々報告されてきている(例えば、Tomohiko Sato.et al.,Microporous Rhodiumu(II)4,4’,4”,4'”−(21H,23H−porphin−5,10,15,20−tetrayl)tetrakisbenzoate.,Chemistry Letter,2003年発行,Vol.32,No.9,p854−p855(非特許文献1)、及びTomohiko Sato.et al.,Novel microporous rhodiumu(II)carboxylate polymer complexes containing metalloporphyrin.,Journal of Catalysis,2005年発行,Vol.232,p186−p198(非特許文献2)参照)。   Conventionally, various organometallic complexes that can be used as storage materials and catalysts have been reported (for example, Tomohiko Sato. Et al., Microporous Rhodium (II) 4, 4 ′, 4 ″, 4 ′ ″). -(21H, 23H-porphin-5,10,15,20-tetrayl) tetrakisbenzoate., Chemistry Letter, published in 2003, Vol. et al., Novel microporous rhodium (II) carbohydrate polymer complexes consolidating metallophyrin., Journal of Ca. Alysis, published 2005, Vol.232, reference P186-P198 (Non-Patent Document 2)).

このような有機金属錯体として、例えば、特開2004−238347号公報(特許文献1)や特開2004−67596号公報(特許文献2)においては、金属原子と、その金属原子に配位した金属ポルフィリン構造を有する配位子とからなる特定の2次元格子構造を繰り返し単位として有する有機金属錯体が開示されており、更に、特開2000−63385号公報(特許文献3)においては、特定のジカルボン酸を、銅、クロム、モリブデン、ロジウム、パラジウム及びタングステンから選択される少なくとも1種の2価の金属イオンに配位してなるジカルボン酸金属錯体が開示されている。   As such an organometallic complex, for example, in Japanese Patent Application Laid-Open No. 2004-238347 (Patent Document 1) and Japanese Patent Application Laid-Open No. 2004-67596 (Patent Document 2), a metal atom and a metal coordinated to the metal atom are disclosed. An organometallic complex having a specific two-dimensional lattice structure consisting of a ligand having a porphyrin structure as a repeating unit is disclosed. Further, in JP-A-2000-63385 (Patent Document 3), a specific dicarboxylic acid is disclosed. A dicarboxylic acid metal complex is disclosed in which an acid is coordinated to at least one divalent metal ion selected from copper, chromium, molybdenum, rhodium, palladium and tungsten.

しかしながら、従来のポルフィリン構造を有する有機金属錯体においては吸蔵特性や触媒作用が未だ十分なものでなかった。
特開2004−238347号公報 特開2004−67596号公報 特開2000−63385号公報 Tomohiko Sato.et al.,Microporous Rhodiumu(II)4,4’,4”,4'”−(21H,23H−porphin−5,10,15,20−tetrayl)tetrakisbenzoate.,Chemistry Letter,2003年発行,Vol.32,No.9,p854−p855 Tomohiko Sato.et al.,Novel microporous rhodiumu(II)carboxylate polymer complexes containing metalloporphyrin.,Journal of Catalysis,2005年発行,Vol.232,p186−p198
However, the conventional organometallic complexes having a porphyrin structure have not yet sufficient storage characteristics and catalytic action.
JP 2004-238347 A Japanese Patent Laid-Open No. 2004-67596 JP 2000-63385 A Tomohiko Sato. et al. , Microporous Rhodium (II) 4, 4 ′, 4 ″, 4 ′ ″-(21H, 23H- porphin-5, 10, 15, 20-tetrayl) tetrakisbenzoate. , Chemistry Letter, published 2003, Vol. 32, no. 9, p854-p855 Tomohiko Sato. et al. , Novel microporous rhodium (II) carboxylate polymer complexes containing metallophyrin. , Journal of Catalysis, 2005, Vol. 232, p186-p198

本発明は、上記従来技術の有する課題に鑑みてなされたものであり、ポルフィリン構造を有する有機金属錯体であって、高度な吸蔵特性と優れた触媒作用とを発揮することが可能な有機金属錯体、並びに、それを用いた吸蔵物質及び触媒を提供することを目的とする。   The present invention has been made in view of the above-described problems of the prior art, and is an organometallic complex having a porphyrin structure, which can exhibit high occlusion characteristics and excellent catalytic action. And an occlusion substance and a catalyst using the same.

本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、特定のポルフィリン誘導体が特定のカルボン酸金属錯体を介して結合されている有機金属錯体によって、高度な吸蔵特性と優れた触媒作用とを発揮することが可能なポルフィリン構造を有する有機金属錯体が得られることを見出し、本発明を完成するに至った。   As a result of intensive studies to achieve the above object, the present inventors have achieved a high level of occlusion characteristics and an excellent catalyst by using an organometallic complex in which a specific porphyrin derivative is bound via a specific carboxylic acid metal complex. The present inventors have found that an organometallic complex having a porphyrin structure capable of exhibiting an action can be obtained, and the present invention has been completed.

すなわち、本発明の有機金属錯体は、下記一般式(1):   That is, the organometallic complex of the present invention has the following general formula (1):

[式(1)中、Mは窒素原子に配位している金属原子を示すか、或いは窒素原子に結合している2個の水素原子を示し、R〜R はそれぞれ水素原子を示す。]
で表されるポルフィリン誘導体が、下記一般式(2):
Wherein (1), M 1 is either indicates a metal atom coordinated to a nitrogen atom, or indicate two hydrogen atoms attached to the nitrogen atom, R 1 to R 8 Waso respectively Indicates a hydrogen atom . ]
A porphyrin derivative represented by the following general formula (2):

[式(2)中、Rは同一でも異なっていてもよく、それぞれアルキル基及びアリール基からなる群から選択される一価の有機置換基を示し、Mは同一でも異なっていてもよく、それぞれ金属原子を示す。]
で表されるカルボン酸金属錯体を介して結合されており、
下記一般式(3):
[式(3)中、M は同一でも異なっていてもよく、それぞれ前記一般式(1)中のM と同義であり、R 〜R は前記一般式(1)中のR 〜R と同義であり、Xは前記一般式(2)で表されるカルボン酸金属錯体を示す。]
で表される2次元格子構造を繰り返し単位として有すること、
を特徴とするものである。
[In Formula (2), R 9 may be the same or different, each represents a monovalent organic substituent selected from the group consisting of an alkyl group and an aryl group , and M 2 may be the same or different. , Each represents a metal atom. ]
Is coupled in via the carboxylic acid metal complex represented,
The following general formula (3):
Wherein (3), M 1 may be the same or different, have the same meanings as M 1 in the general formula (1), R 1 of R 1 to R 8 are in the general formula (1) to R 8 in the above formula, X is illustrates a carboxylic acid metal complex represented by the general formula (2). ]
Having a two-dimensional lattice structure represented by
It is characterized by.

上記本発明の有機金属錯体としては、前記一般式(1)中のMが、銅、ルテニウム、ロジウム、モリブデン、亜鉛、チタン、バナジウム、アルミニウム、マグネシウム、セリウム、タングステン、レニウム及び鉄からなる群から選択される金属原子又は2個の水素原子であることが好ましい。 In the organometallic complex of the present invention, M 1 in the general formula (1) is a group consisting of copper, ruthenium, rhodium, molybdenum, zinc, titanium, vanadium, aluminum, magnesium, cerium, tungsten, rhenium and iron. It is preferably a metal atom selected from or two hydrogen atoms.

上記本発明の有機金属錯体としては、前記一般式(2)中のMが、それぞれ、銅、ルテニウム、ロジウム、モリブデン、クロム、亜鉛、タングステン、レニウム、テクネチウム及び鉄からなる群から選択される二核構造を形成できる金属原子であることが好ましい。 In the organometallic complex of the present invention, M 2 in the general formula (2) is selected from the group consisting of copper, ruthenium, rhodium, molybdenum, chromium, zinc, tungsten, rhenium, technetium and iron, respectively. It is preferably a metal atom that can form a binuclear structure.

上記本発明の有機金属錯体としては、前記2次元格子構造の繰り返し単位が有する径の異なる複数の細孔のうち最大の細孔の細孔径が0.6〜2.5nmであることが好ましい。   The organometallic complex of the present invention preferably has a maximum pore diameter of 0.6 to 2.5 nm among a plurality of pores having different diameters in the repeating unit of the two-dimensional lattice structure.

また、本発明の吸蔵物質は上記本発明の有機金属錯体を含有することを特徴とするものである。   The occlusion material of the present invention contains the organometallic complex of the present invention.

さらに、本発明の触媒は上記本発明の有機金属錯体を含有することを特徴とするものである。   Furthermore, the catalyst of the present invention is characterized by containing the organometallic complex of the present invention.

本発明によれば、高度な吸蔵特性と優れた触媒作用とを発揮することが可能なポルフィリン構造を有する有機金属錯体、並びに、それを用いた吸蔵物質及び触媒を提供することが可能となる。   ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to provide the organometallic complex which has a porphyrin structure which can exhibit a high occlusion characteristic and the outstanding catalytic action, and an occlusion substance and a catalyst using the same.

以下、本発明をその好適な実施形態に即して詳細に説明する。   Hereinafter, the present invention will be described in detail with reference to preferred embodiments thereof.

先ず、本発明の有機金属錯体について説明する。すなわち、本発明の有機金属錯体は、下記一般式(1):   First, the organometallic complex of the present invention will be described. That is, the organometallic complex of the present invention has the following general formula (1):

[式(1)中、Mは窒素原子に配位している金属原子を示すか、或いは窒素原子に結合している2個の水素原子を示し、R〜Rは同一でも異なっていてもよく、それぞれ一価の置換基を示す。]
で表されるポルフィリン誘導体が、下記一般式(2):
[In formula (1), M 1 represents a metal atom coordinated to a nitrogen atom, or two hydrogen atoms bonded to the nitrogen atom, and R 1 to R 8 are the same or different. And each represents a monovalent substituent. ]
A porphyrin derivative represented by the following general formula (2):

[式(2)中、Rは同一でも異なっていてもよく、それぞれ一価の有機置換基を示し、Mは同一でも異なっていてもよく、それぞれ金属原子を示す。]
で表されるカルボン酸金属錯体を介して結合されていることを特徴とするものである。
[In Formula (2), R 9 may be the same or different and each represents a monovalent organic substituent, M 2 may be the same or different, and each represents a metal atom. ]
It couple | bonds through the carboxylic acid metal complex represented by these.

本発明にかかるポルフィリン誘導体中のMは、窒素原子に配位している金属原子又は窒素原子に結合している2個の水素原子である。Mが窒素原子に結合している2個の水素原子である場合にはポルフィリン誘導体は下記一般式(4): M 1 in the porphyrin derivative according to the present invention is a metal atom coordinated to a nitrogen atom or two hydrogen atoms bonded to the nitrogen atom. When M 1 is two hydrogen atoms bonded to a nitrogen atom, the porphyrin derivative is represented by the following general formula (4):

で表されるような構造を有する。 It has a structure represented by.

また、上述のようにMは、2個の水素原子又は金属原子を示す。このようなMとして選択され得る金属原子としては、ポルフィリン環の内部の窒素原子が配位することが可能な金属原子であればよく特に制限されず、銅、ルテニウム、ロジウム、モリブデン、亜鉛、タングステン、レニウム、鉄、セリウム、マグネシウム、アルミニウム、チタン、バナジウム、ケイ素、カルシウム、マンガン、コバルト、ニッケル、ガリウム、ゲルマニウム、ジルコニウム、ニオブ、テクネチウム、パラジウム、銀、カドミウム、インジウム、スズ、アンチモン、オスミウム、イリジウム等が挙げられる。このようなMとして選択され得る金属原子としては、配位能力の高さとできた化合物の安定性及び毒性の観点から、銅、ルテニウム、ロジウム、モリブデン、亜鉛、チタン、バナジウム、アルミニウム、マグネシウム、セリウム、タングステン、レニウム及び鉄からなる群から選択される金属原子であることが好ましい。また、Mとしては製造の容易さという観点からは、銅がより好ましく、触媒能がより向上するという観点からは、ロジウム、ルテニウム、チタン、鉄及びセリウムがより好ましい。 As described above, M 1 represents two hydrogen atoms or metal atoms. The metal atom that can be selected as M 1 is not particularly limited as long as the nitrogen atom inside the porphyrin ring can be coordinated, and copper, ruthenium, rhodium, molybdenum, zinc, Tungsten, rhenium, iron, cerium, magnesium, aluminum, titanium, vanadium, silicon, calcium, manganese, cobalt, nickel, gallium, germanium, zirconium, niobium, technetium, palladium, silver, cadmium, indium, tin, antimony, osmium, Examples include iridium. Examples of the metal atom that can be selected as M 1 include copper, ruthenium, rhodium, molybdenum, zinc, titanium, vanadium, aluminum, magnesium, from the viewpoint of stability and toxicity of the compound having high coordination ability. A metal atom selected from the group consisting of cerium, tungsten, rhenium and iron is preferred. Further, as M 1 , copper is more preferable from the viewpoint of ease of production, and rhodium, ruthenium, titanium, iron, and cerium are more preferable from the viewpoint of further improving the catalytic ability.

また、本発明にかかるポルフィリン誘導体中のR〜Rは同一でも異なっていてもよく、それぞれが一価の置換基である。このような一価の置換基としては特に制限されないが、立体障害とピロール環の電子密度の観点から、水素原子、ハロゲン原子、ニトロ基、シリル基、シアノ基、スルホン酸基、メルカプト基、アルキル基、ハロゲン化アルキル基、アリール基及びハロゲン化アリール基からなる群から選択される一価の置換基が好ましく、中でも水素原子、メチル基がより好ましい。 Moreover, R < 1 > -R < 8 > in the porphyrin derivative concerning this invention may be same or different, and each is a monovalent substituent. Although it does not restrict | limit especially as such a monovalent substituent, From a viewpoint of a steric hindrance and the electron density of a pyrrole ring, a hydrogen atom, a halogen atom, a nitro group, a silyl group, a cyano group, a sulfonic acid group, a mercapto group, an alkyl A monovalent substituent selected from the group consisting of a group, a halogenated alkyl group, an aryl group and a halogenated aryl group is preferred, and among them, a hydrogen atom and a methyl group are more preferred.

また、R〜Rとして選択され得るハロゲン原子としては、フッ素、塩素、臭素、ヨウ素等が挙げられ、中でもフッ素、塩素が好ましい。 In addition, examples of the halogen atom that can be selected as R 1 to R 8 include fluorine, chlorine, bromine, iodine, and the like, among which fluorine and chlorine are preferable.

また、R〜Rとして選択され得る前記アルキル基、前記ハロゲン化アルキル基、前記アリール基、前記ハロゲン化アリール基としては、炭素数が1〜12(更に好ましくは1〜6)のものがより好ましく、中でも、置換基のかさ高さの観点から、細孔容積を減少させないためにメチル基、トリフルオロメチル基が特に好ましい。 The alkyl group, the halogenated alkyl group, the aryl group, and the halogenated aryl group that can be selected as R 1 to R 8 are those having 1 to 12 carbon atoms (more preferably 1 to 6). Among these, a methyl group and a trifluoromethyl group are particularly preferable from the viewpoint of bulkiness of the substituent in order not to reduce the pore volume.

また、本発明にかかるカルボン酸金属錯体は、上記一般式(2)で表されるカルボン酸金属錯体である。   Moreover, the carboxylic acid metal complex concerning this invention is a carboxylic acid metal complex represented by the said General formula (2).

本発明にかかるカルボン酸金属錯体中のRは同一でも異なっていてもよく、それぞれが一価の有機置換基である。このようなRとして選択され得る一価の有機置換基としては特に制限されないが、合成の容易さ、例えば溶媒への溶解性の観点から、水素原子、アルキル基、アリール基、ハロゲン化アルキル基及びハロゲン化アリール基が好ましく、水素原子、メチル基、エチル基、プロピル基、イソプロピル基、フェニル基、トリル基、ナフチル基、シクロヘキシル基、アントリル基又はピレニル基がより好ましく、中でもメチル基、フェニル基が特に好ましい。 R 9 in the carboxylic acid metal complex according to the present invention may be the same or different, and each is a monovalent organic substituent. The monovalent organic substituent that can be selected as R 9 is not particularly limited, but from the viewpoint of ease of synthesis, for example, solubility in a solvent, a hydrogen atom, an alkyl group, an aryl group, a halogenated alkyl group. And a halogenated aryl group are preferable, and a hydrogen atom, a methyl group, an ethyl group, a propyl group, an isopropyl group, a phenyl group, a tolyl group, a naphthyl group, a cyclohexyl group, an anthryl group or a pyrenyl group are more preferable, and among them, a methyl group, a phenyl group Is particularly preferred.

本発明にかかるカルボン酸金属錯体中のMは金属原子である。このようなMとして選択され得る金属原子としては二核構造を形成できる金属原子であればよく特に制限されないが、例えば、銅、ルテニウム、ロジウム、モリブデン、クロム、亜鉛、タングステン、レニウム、テクネチウム、鉄、マグネシウム、アルミニウム、ケイ素、カルシウム、チタン、バナジウム、マンガン、コバルト、ニッケル、ガリウム、ゲルマニウム、ジルコニウム、ニオブ、パラジウム、銀、カドミウム、インジウム、スズ、アンチモン、オスミウム、イリジウムが挙げられる。 M 2 in the carboxylic acid metal complex according to the present invention is a metal atom. The metal atom that can be selected as M 2 is not particularly limited as long as it is a metal atom that can form a binuclear structure. For example, copper, ruthenium, rhodium, molybdenum, chromium, zinc, tungsten, rhenium, technetium, Examples thereof include iron, magnesium, aluminum, silicon, calcium, titanium, vanadium, manganese, cobalt, nickel, gallium, germanium, zirconium, niobium, palladium, silver, cadmium, indium, tin, antimony, osmium, and iridium.

このようなMとして選択され得る金属原子としては、カルボン酸と金属の配位能力の強さの観点から、銅、ルテニウム、ロジウム、モリブデン、クロム、亜鉛、タングステン、レニウム、テクネチウム又は鉄が好ましく、中でも銅、ルテニウム、ロジウム又は亜鉛がより好ましい。 The metal atom that can be selected as M 2 is preferably copper, ruthenium, rhodium, molybdenum, chromium, zinc, tungsten, rhenium, technetium, or iron from the viewpoint of the strength of coordination ability between the carboxylic acid and the metal. Of these, copper, ruthenium, rhodium or zinc is more preferable.

また、本発明の有機金属錯体としては、下記一般式(3):   Moreover, as an organometallic complex of this invention, following General formula (3):

[式(3)中、Mは同一でも異なっていてもよく、それぞれ前記一般式(1)中のMと同義であり、R〜Rは前記一般式(1)中のR〜Rと同義であり、Xは前記一般式(2)で表されるカルボン酸金属錯体を示す。]
で表される2次元格子構造を繰り返し単位として有するものが好ましい。このような2次元格子構造を繰り返し単位として有することで、有機金属錯体が有する細孔の細孔径がより大きくなり、吸蔵能及び触媒能がより向上する傾向にある。ここで、本発明にいう細孔とは、上記一般式(3)で表される2次元格子構造が自己集積機能により積層した時に形成される空孔を言い、細孔径とは原子のファンデルワールス半径を考慮した時に、他の原子や分子が存在しない空間内の最大距離をいう。
Wherein (3), M 1 may be the same or different, have the same meanings as M 1 in the general formula (1), R 1 of R 1 to R 8 are in the general formula (1) to R 8 in the above formula, X is illustrates a carboxylic acid metal complex represented by the general formula (2). ]
It is preferable to have a two-dimensional lattice structure represented by By having such a two-dimensional lattice structure as a repeating unit, the pore diameter of the pores of the organometallic complex becomes larger, and the occlusion ability and catalytic ability tend to be further improved. Here, the pore referred to in the present invention means a pore formed when the two-dimensional lattice structure represented by the general formula (3) is laminated by a self-integrating function, and the pore diameter is an atomic van der. The maximum distance in a space where no other atom or molecule exists when the Wales radius is considered.

また、本発明の有機金属錯体としては、前記2次元格子構造の繰り返し単位が有する径の異なる複数の細孔のうち最大の細孔の細孔径が0.6〜2.5nmであることが好ましく、1.0〜2.5nmであることがより好ましい。このような細孔径が前記下限未満では細孔径が小さすぎて十分な吸蔵能及び触媒能を発揮できない傾向にあり、他方、前記上限を超えると細孔が分子吸着され難い空間として認識される傾向にある。   Further, as the organometallic complex of the present invention, it is preferable that the pore diameter of the largest pore among the plurality of pores having different diameters of the repeating unit of the two-dimensional lattice structure is 0.6 to 2.5 nm. 1.0 to 2.5 nm is more preferable. If the pore diameter is less than the lower limit, the pore diameter tends to be too small to exhibit sufficient occlusion ability and catalytic ability. On the other hand, if the pore diameter exceeds the upper limit, the pore tends to be recognized as a space that is difficult to adsorb molecules. It is in.

また、本発明の有機金属錯体においては、その比表面積については特に制限はないが、30m/g以上であることが好ましく、100m/g以上であることがより好ましい。比表面積が前記下限未満では十分な吸蔵能や触媒能を発揮できない傾向にある。このような比表面積は、吸着等温線からBET等温吸着式、Langmuir吸着等温式を採用して算出することができる。 Moreover, in the organometallic complex of this invention, although there is no restriction | limiting in particular about the specific surface area, it is preferable that it is 30 m < 2 > / g or more, and it is more preferable that it is 100 m < 2 > / g or more. If the specific surface area is less than the lower limit, sufficient occlusion ability and catalytic ability tend not to be exhibited. Such a specific surface area can be calculated from the adsorption isotherm using the BET isotherm adsorption equation and the Langmuir adsorption isotherm equation.

また、細孔容積としては、0.01cm/g以上であることが好ましく、0.1cm/g以上であることがより好ましい。細孔容積が前記下限未満では十分な吸蔵能や触媒能を発揮できない傾向にある。 In addition, the pore volume is preferably 0.01 cm 3 / g or more, and more preferably 0.1 cm 3 / g or more. If the pore volume is less than the lower limit, sufficient occlusion ability and catalytic ability tend not to be exhibited.

次に、本発明の有機金属錯体を製造するための好適な方法について説明する。すなわち、先ず、テトラピリジルポルフィリン及び/又はテトラピリジルポルフィリン金属錯体(前記一般式(1)で表されるポルフィリン誘導体)を溶媒に溶解させた溶液に、テトラキスモノカルボン酸金属二核錯体(前記一般式(2)で表されるカルボン酸金属錯体)を反応用有機溶媒に溶解させた溶液を混合し、十分に結晶が析出するまで数日間撹拌する。その後、析出した結晶をろ過し、反応に用いた溶媒で洗浄し、真空乾燥することにより、本発明の有機金属錯体として好適な有機金属錯体(前記一般式(3)で表される2次元格子構造を繰り返し単位として有する有機金属錯体)を得ることができる。   Next, the suitable method for manufacturing the organometallic complex of this invention is demonstrated. That is, first, a tetrakismonocarboxylic acid metal binuclear complex (the above general formula) is added to a solution in which a tetrapyridyl porphyrin and / or a tetrapyridyl porphyrin metal complex (the porphyrin derivative represented by the general formula (1)) is dissolved in a solvent. A solution in which the carboxylic acid metal complex represented by (2) is dissolved in an organic solvent for reaction is mixed and stirred for several days until crystals are sufficiently precipitated. Thereafter, the precipitated crystals are filtered, washed with the solvent used for the reaction, and vacuum-dried to obtain an organometallic complex suitable for the organometallic complex of the present invention (two-dimensional lattice represented by the general formula (3)) An organometallic complex having a structure as a repeating unit can be obtained.

このようなテトラピリジルポルフィリンやテトラピリジルポルフィリン金属錯体並びにテトラキスモノカルボン酸金属二核錯体は、目的とする本発明の有機金属錯体の構造によって適宜選択されるものである。このようなテトラピリジルポルフィリン及び/又はテトラピリジルポルフィリン金属錯体の添加量と、テトラキスモノカルボン酸金属二核錯体の添加量とのモル比としては、バルクで均一な目的物を得るという観点から1:0.1〜1:20程度であることが好ましい。   Such tetrapyridylporphyrin, tetrapyridylporphyrin metal complex, and tetrakismonocarboxylic acid metal binuclear complex are appropriately selected depending on the structure of the target organometallic complex of the present invention. The molar ratio of the addition amount of such tetrapyridylporphyrin and / or tetrapyridylporphyrin metal complex and the addition amount of the tetrakismonocarboxylic acid metal binuclear complex is 1: It is preferably about 0.1 to 1:20.

また、このようなテトラピリジルポルフィリンやテトラピリジルポルフィリン金属錯体を溶解させる溶媒としては特に制限されないが、クロロホルム、ジクロロメタン、四塩化炭素、ジクロロエタン、テトラクロロエタン等が挙げられる。更に、前記反応用有機溶媒としては特に制限されず、水酸基を有する溶媒等が挙げることができる。このような反応用有機溶媒としては、例えば、メタノール、エタノール、プロパノール、イソプロパノール、ベンゼン、トルエン、ペンタン、エチルベンゼン、n−ヘキサン、3−メチルペンタン、n−ヘプタン、シクロヘキサン、クロロホルム、エチルプロピルエーテル、アリルエチルエーテル、アセトン、エチルメチルケトンが挙げられる。   The solvent for dissolving such tetrapyridylporphyrin or tetrapyridylporphyrin metal complex is not particularly limited, and examples thereof include chloroform, dichloromethane, carbon tetrachloride, dichloroethane, and tetrachloroethane. Furthermore, the organic solvent for reaction is not particularly limited, and examples thereof include a solvent having a hydroxyl group. Examples of the organic solvent for reaction include methanol, ethanol, propanol, isopropanol, benzene, toluene, pentane, ethylbenzene, n-hexane, 3-methylpentane, n-heptane, cyclohexane, chloroform, ethylpropyl ether, allyl. Examples include ethyl ether, acetone, and ethyl methyl ketone.

また、前記溶液を混合する方法としては特に制限されず、公知の方法を適宜選択して採用することができ、例えば、細管を用いて細管の下層にテトラピリジルポルフィリン及び/又はテトラピリジルポルフィリン金属錯体を溶媒に溶解させた溶液を仕込んだ後、テトラキスモノカルボン酸金属二核錯体をアルコール系溶媒に溶解させた溶液を静かに加える液−液拡散法を採用することができる。   In addition, the method for mixing the solution is not particularly limited, and a known method can be appropriately selected and employed. For example, tetrapyridylporphyrin and / or tetrapyridylporphyrin metal complex is used in the lower layer of the tubule using a tubule. A liquid-liquid diffusion method in which a solution in which a tetrakismonocarboxylic acid metal binuclear complex is dissolved in an alcohol solvent is gently added after a solution in which is dissolved in a solvent can be employed.

また、数日間放置する際の温度条件としては、0〜200℃程度が好ましく、室温(25℃)〜80℃程度であることがより好ましい。また、数日間放置する際の圧力条件としては、0.01〜10MPa程度であることが好ましく、0.1〜1MPa程度であることがより好ましい。   Moreover, as temperature conditions at the time of leaving for several days, about 0-200 degreeC is preferable, and it is more preferable that it is room temperature (25 degreeC)-about 80 degreeC. Moreover, as a pressure condition at the time of leaving for several days, it is preferable that it is about 0.01-10 MPa, and it is more preferable that it is about 0.1-1 MPa.

以上、本発明の有機金属錯体について説明したが、以下において、本発明の吸蔵物質及び触媒について説明する。   Although the organometallic complex of the present invention has been described above, the storage material and catalyst of the present invention will be described below.

本発明の吸蔵物質は、上記本発明の有機金属錯体を含有することを特徴とする。また、本発明の触媒は、上記本発明の有機金属錯体を含有することを特徴とする。このように、本発明の吸蔵物質又は触媒は、それぞれ上記本発明の有機金属錯体を含有しているものであることから、ともに優れた吸蔵能及び触媒能を有している。   The occlusion substance of the present invention contains the organometallic complex of the present invention. The catalyst of the present invention contains the organometallic complex of the present invention. Thus, since the occlusion substance or catalyst of the present invention each contains the organometallic complex of the present invention, both have an excellent occlusion ability and catalytic ability.

また、本発明の吸蔵物質及び触媒は上記本発明の有機金属錯体を含有するものであればよく、上記本発明の有機金属錯体そのものが本発明の吸蔵物質又は触媒を構成していても、或いは上記本発明の有機金属錯体を他の基材に担持せしめて本発明の吸蔵物質又は触媒が構成されていてもよい。更に、本発明の吸蔵物質及び触媒の形状は特に限定されず、粉末、顆粒、膜状、球状、繊維状等を挙げることができる。また、円柱状、破砕状、球状、ハニカム状、凹凸状、波板状等に成形したものであってもよい。   Further, the occlusion material and catalyst of the present invention may be those containing the organometallic complex of the present invention, and the organometallic complex of the present invention itself constitutes the occlusion material or catalyst of the present invention, or The occlusion substance or catalyst of the present invention may be constituted by supporting the organometallic complex of the present invention on another substrate. Furthermore, the shape of the occlusion substance and catalyst of the present invention is not particularly limited, and examples thereof include powder, granules, membranes, spheres, and fibers. Further, it may be formed into a columnar shape, a crushed shape, a spherical shape, a honeycomb shape, an uneven shape, a corrugated plate shape, or the like.

このような本発明の吸蔵物質は、例えば水素吸蔵物質等として特に有用である。また、前記本発明の触媒は、例えば、酸化反応用の触媒等として特に有用であり、飽和、不飽和炭化水素の選択的酸化反応を行うことによって有機合成反応の中間体として重要なアルコール化合物やエポキシ化合物等の含酸素化合物を合成するための触媒、或いは水素、窒素、一酸化炭素、含硫黄化合物等の低分子を酸化する触媒等としても使用可能である。また、本発明の触媒は、例えば、種々の悪臭成分、揮発性有機化合物(VOC)若しくは有害成分を(吸着し)分解除去する環境浄化触媒として、工場、車両等において排出される廃ガスの脱臭、浄化装置等に使用可能である。更に、本発明の触媒は、化学工場、食品製造工場、畜産農業、下水・屎尿処理場等の産業用分野だけでなく、例えば、住居、オフィス、車、共用施設、飲食店等における脱臭・消臭剤、脱臭・消臭製品、脱臭・消臭装置として活用できる。   Such a storage material of the present invention is particularly useful as a hydrogen storage material, for example. In addition, the catalyst of the present invention is particularly useful as a catalyst for oxidation reaction, for example, and an alcohol compound important as an intermediate of organic synthesis reaction by performing selective oxidation reaction of saturated and unsaturated hydrocarbons. It can also be used as a catalyst for synthesizing oxygen-containing compounds such as epoxy compounds, or a catalyst for oxidizing low molecules such as hydrogen, nitrogen, carbon monoxide and sulfur-containing compounds. In addition, the catalyst of the present invention is used as an environmental purification catalyst for decomposing and removing various malodorous components, volatile organic compounds (VOC) or harmful components, for example, and deodorizing waste gas discharged in factories, vehicles, etc. It can be used for purification devices. Furthermore, the catalyst of the present invention is used not only in industrial fields such as chemical factories, food manufacturing factories, livestock farming, sewage / sewage treatment plants, but also in deodorizing / extinguishing, for example, in residences, offices, cars, common facilities, restaurants, etc. It can be used as a deodorant, deodorant / deodorant product, and deodorizer / deodorizer.

以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example and a comparative example, this invention is not limited to a following example.

(実施例1)
〈錯体の製造〉
先ず、テトラピリジルポルフィリン6mg(0.0097mmol)を20mlのクロロホルムに溶解させた溶液を細管の下層に仕込み、酢酸銅(II)一水和物40mg(0.1002mmol)を20mlのメタノールに溶解させた溶液を上から静かに加え、常圧(0.1MPa程度)、常温(25℃程度)の条件下において、数日間放置し、液−液拡散法により単結晶を析出させた。
Example 1
<Manufacture of complex>
First, a solution in which 6 mg (0.0097 mmol) of tetrapyridylporphyrin was dissolved in 20 ml of chloroform was charged to the lower layer of the capillary tube, and 40 mg (0.1002 mmol) of copper (II) acetate monohydrate was dissolved in 20 ml of methanol. The solution was gently added from above and allowed to stand for several days under normal pressure (about 0.1 MPa) and room temperature (about 25 ° C.), and a single crystal was deposited by a liquid-liquid diffusion method.

次に、得られた単結晶をろ過した後、クロロホルムとメタノールの混合溶媒で洗浄し、真空乾燥を施すことにより、上記一般式(1)中のMが銅(II)(銅の含有率100%)で、R〜Rがそれぞれ水素原子であり、且つ上記一般式(2)中のRがメチル基でMが銅(II)である本発明の有機金属錯体を得た。 Next, the obtained single crystal is filtered, washed with a mixed solvent of chloroform and methanol, and vacuum-dried, whereby M 1 in the above general formula (1) is copper (II) (copper content). 100%), an organometallic complex of the present invention in which R 1 to R 8 are each a hydrogen atom, R 9 in the general formula (2) is a methyl group, and M 2 is copper (II) was obtained. .

〈単結晶X線構造解析〉
得られた有機金属錯体に対して単結晶X線構造解析を行った。このような単結晶X線構造解析においては、X線構造解析装置として理学電子株式会社製の商品名「Saturn」を用い、解析ソフトとして理学電子株式会社製の商品名「Crystal Structure」を用いた。また、X線構造解析により得られる構造の様子を見る方向を示す図を図1に示し、図1に示す(a)、(b)、(c)方向の関係を表すベクトル図を図2に示し、(a)、(d)、(e)方向の関係を表すベクトル図を図3に示す。このように(a)方向は2次元格子面と垂直な方向を示し、(b)及び(d)方向は2次元格子面と平行な方向を示し、(c)方向は(a)及び(b)方向とそれぞれ45°の角度となる方向を示し、(e)方向は(a)及び(d)方向とそれぞれ45°の角度となる方向を示す。
<Single crystal X-ray structure analysis>
Single crystal X-ray structural analysis was performed on the obtained organometallic complex. In such single crystal X-ray structural analysis, the trade name “Saturn” manufactured by Rigaku Denshi Co., Ltd. was used as the X-ray structural analysis apparatus, and the product name “Crystal Structure” manufactured by Rigaku Denshi Co., Ltd. was used as the analysis software. . FIG. 1 is a diagram showing the direction of viewing the structure obtained by X-ray structural analysis, and FIG. 2 is a vector diagram showing the relationship between the (a), (b), and (c) directions shown in FIG. FIG. 3 shows a vector diagram showing the relationship between the directions (a), (d), and (e). Thus, the (a) direction indicates a direction perpendicular to the two-dimensional lattice plane, the (b) and (d) directions indicate directions parallel to the two-dimensional lattice plane, and the (c) direction indicates (a) and (b ) Direction and a direction at an angle of 45 °, respectively, and (e) direction indicates a direction at an angle of 45 ° with respect to each of the directions (a) and (d).

このようなX線構造解析により得られた(a)方向から見た2次元格子構造の様子を図4に示す。また、(a)方向から見た2次元格子構造の積層した様子を図5に示し、(b)方向から見た2次元格子構造の積層した様子を図6に示す。更に、(a)、(b)、(c)、(d)、(e)の各方向から見た細孔の様子を図7に示す。   FIG. 4 shows a two-dimensional lattice structure as viewed from the (a) direction obtained by such an X-ray structure analysis. FIG. 5 shows a state in which the two-dimensional lattice structure is viewed from the direction (a), and FIG. 6 shows a state in which the two-dimensional lattice structure is viewed from the direction (b). Further, FIG. 7 shows the state of the pores viewed from the respective directions (a), (b), (c), (d), and (e).

図4〜7からも明らかなように、得られた有機金属錯体は、上記一般式(3)で表されるMが銅(II)(銅の含有率100%)であり、R〜Rがそれぞれ水素原子であり、Rがメチル基であり、且つMが銅(II)である2次元格子構造を繰り返し単位として有する有機金属錯体であることが確認された。また、図7からも明らかなように、得られた有機金属錯体は9方向に孔が空いていることが確認された。また、このような有機金属錯体の有する径の異なる複数の細孔のうち最大の細孔の細孔径は1.0nmであり、大口径の細孔を有する有機金属錯体であることが確認された。 As apparent from FIGS. 4 to 7, in the obtained organometallic complex, M 1 represented by the general formula (3) is copper (II) (copper content: 100%), and R 1 to It was confirmed that each of the organometallic complexes has a two-dimensional lattice structure as a repeating unit in which R 8 is a hydrogen atom, R 9 is a methyl group, and M 2 is copper (II). Further, as is clear from FIG. 7, it was confirmed that the obtained organometallic complex had pores in 9 directions. Moreover, the pore diameter of the largest pore among the plurality of pores having different diameters of such an organometallic complex is 1.0 nm, and it was confirmed that the organometallic complex has pores with a large diameter. .

〈比表面積、細孔容積、細孔系分布の測定〉
液体窒素温度における窒素ガスの吸脱着等温線を、日本ベル社製の商品名「BELSORP 18」を用いて測定した。測定結果を図8に示す。
<Measurement of specific surface area, pore volume, pore system distribution>
The adsorption / desorption isotherm of nitrogen gas at liquid nitrogen temperature was measured using a trade name “BELSORP 18” manufactured by Nippon Bell Co., Ltd. The measurement results are shown in FIG.

測定の結果、比表面積は812.08m/g(BET等温吸着式により算出)及び1035.96m/g(測定範囲:0〜40KPa、Langmuir吸着等温式により算出)であり、細孔容積は0.4622cmであった。 As a result of the measurement, the specific surface area was 812.08 m 2 / g (calculated by the BET isotherm adsorption equation) and 1033.56 m 2 / g (measurement range: 0 to 40 KPa, calculated by the Langmuir adsorption isotherm equation), and the pore volume was It was 0.4622 cm 3 .

〈水素吸着量の測定〉
−199.3℃と23.3℃における水素吸着量を測定した。測定の結果から得られた水素の吸脱着等温線のグラフを図9に示す。図9からも明らかなように、本発明の有機金属錯体が吸脱着効果に優れることが確認された。
<Measurement of hydrogen adsorption amount>
The hydrogen adsorption amounts at -199.3 ° C. and 23.3 ° C. were measured. A graph of the adsorption and desorption isotherm of hydrogen obtained from the measurement results is shown in FIG. As is clear from FIG. 9, it was confirmed that the organometallic complex of the present invention was excellent in the adsorption / desorption effect.

〈熱安定性の測定〉
TG−MS測定により、熱安定性及び発生したガスの同定を行った。温度に対する各種ガスの発生量の変化の関係を示すグラフを図10に示す。
<Measurement of thermal stability>
Thermal stability and the generated gas were identified by TG-MS measurement. FIG. 10 is a graph showing the relationship between changes in the amount of various gases generated with respect to temperature.

図10からも明らかなように、一段階目の減量(温度範囲:23〜140℃)において細孔内からクロロホルムが抜け、二段階目の減量(温度範囲:190〜400℃)でリンカー部分である酢酸銅(II)の分解が起こることが確認された。   As is clear from FIG. 10, chloroform escapes from the pores at the first stage of weight loss (temperature range: 23 to 140 ° C.), and at the linker portion at the second stage of weight loss (temperature range: 190 to 400 ° C.). It was confirmed that decomposition of some copper (II) acetate occurred.

〈触媒能の試験〉
得られた有機金属錯体をメチルメルカプタン(CHSH)の酸化触媒として使用した。生成物としてジメチルジスルフィド(CH−S−S−CH)が選択的に得られ、酸化触媒として有効に機能することが明らかになった。
<Catalytic activity test>
The obtained organometallic complex was used as an oxidation catalyst for methyl mercaptan (CH 3 SH). Dimethyl disulfide (CH 3 —S—S—CH 3 ) was selectively obtained as a product, and was found to function effectively as an oxidation catalyst.

(実施例2)
〈錯体の製造〉
先ず、酢酸銅(II)一水和物の代わりに、酢酸イオン二分子と安息香酸二分子とからなる銅(II)二核錯体を用いた以外は実施例1と同様の方法を採用して単結晶を析出させた。なお、このような有機金属錯体の製造に用いた酢酸イオン二分子と安息香酸二分子とからなる銅(II)二核錯体の構造を図11に示す。
(Example 2)
<Manufacture of complex>
First, instead of copper acetate (II) monohydrate, the same method as in Example 1 was adopted except that a copper (II) binuclear complex composed of two molecules of acetate ion and two molecules of benzoic acid was used. Single crystals were precipitated. FIG. 11 shows the structure of a copper (II) binuclear complex composed of two molecules of acetate ion and two molecules of benzoic acid used for the production of such an organometallic complex.

次に、得られた単結晶をろ過した後、クロロホルムで洗浄し、真空乾燥を施すことにより、上記一般式(1)中のMが銅(II)(銅の含有率100%)で、R〜Rがそれぞれ水素原子であり、且つ上記一般式(2)中のRのうちの2つが酢酸イオンで、Rのうちの残りの2つが安息香酸イオンで、Mが銅(II)である本発明の有機金属錯体を得た。 Then, after filtering the obtained single crystals were washed with chloroform, by performing vacuum drying, M 1 in the general formula (1) is copper (II) (content of 100% copper), R 1 to R 8 are each a hydrogen atom, and two of R 9 in the general formula (2) are acetate ions, the remaining two of R 9 are benzoate ions, and M 2 is copper. An organometallic complex of the present invention which is (II) was obtained.

〈単結晶X線構造解析〉
得られた有機金属錯体に対して単結晶X線構造解析を行った。このような単結晶X線構造解析においては、X線構造解析装置として理学電子株式会社製の商品名「Rigaku CCD Mercury」を用い、解析ソフトとして理学電子株式会社製の商品名「Crystal Structure」を用いた。前述の(c)方向から見た2次元格子構造が積層した様子を図12に示す。
<Single crystal X-ray structure analysis>
Single crystal X-ray structural analysis was performed on the obtained organometallic complex. In such single crystal X-ray structural analysis, the trade name “Rigaku CCD Mercury” manufactured by Rigaku Denshi Co., Ltd. is used as the X-ray structural analysis apparatus, and the product name “Crystal Structure” manufactured by Rigaku Denshi Co., Ltd. is used as the analysis software. Using. FIG. 12 shows a state in which the two-dimensional lattice structure viewed from the direction (c) is stacked.

図12に示す結果からも明らかなように、実施例2で得られた有機金属錯体は、上記一般式(3)中のMが銅(II)(銅の含有率100%)で、R〜Rがそれぞれ水素原子であり、且つ上記一般式(2)中のRのうちの2つが酢酸イオンで、Rのうちの残りの2つが安息香酸イオンで、Mが銅(II)である二次元格子構造を繰り返し単位として有する有機金属錯体であることが確認された。また、図12に示す結果からも明らかなように、実施例2で得られた有機金属錯体の有する細孔径は1.0nm以上であり、大口径の細孔を有する有機金属錯体であることが確認された。 As is clear from the results shown in FIG. 12, the organometallic complex obtained in Example 2 has M 1 in the general formula (3) as copper (II) (copper content: 100%), R 1 to R 8 are each a hydrogen atom, and two of R 9 in the general formula (2) are acetate ions, the remaining two of R 9 are benzoate ions, and M 2 is copper ( It was confirmed that the organometallic complex has a two-dimensional lattice structure (II) as a repeating unit. Further, as is clear from the results shown in FIG. 12, the organometallic complex obtained in Example 2 has a pore size of 1.0 nm or more and is an organometallic complex having large pores. confirmed.

以上説明したように、本発明によれば、高度な吸蔵特性と優れた触媒作用とを発揮することが可能なポルフィリン構造を有する有機金属錯体、並びに、それを用いた吸蔵物質及び触媒を提供することが可能となる。   As described above, according to the present invention, there are provided an organometallic complex having a porphyrin structure capable of exhibiting advanced occlusion characteristics and excellent catalytic action, and an occlusion substance and a catalyst using the same. It becomes possible.

したがって、本発明の有機金属錯体は、吸蔵能及び触媒能に優れるため、水素吸蔵物質や酸化反応用の触媒の材料等として非常に有用である。   Therefore, since the organometallic complex of the present invention is excellent in storage ability and catalytic ability, it is very useful as a hydrogen storage material, a material for an oxidation reaction catalyst, or the like.

X線構造解析により実施例1で得られた有機金属錯体の構造の様子を見る方向を示す図である。It is a figure which shows the direction which sees the mode of the structure of the organometallic complex obtained in Example 1 by X-ray structural analysis. 図1に示す(a)、(b)、(c)方向の関係を表すベクトル図である。It is a vector diagram showing the relationship of the (a), (b), (c) direction shown in FIG. 図1に示す(a)、(d)、(e)方向の関係を表すベクトル図である。It is a vector diagram showing the relationship of the (a), (d), (e) direction shown in FIG. (a)方向から見た実施例1で得られた有機金属錯体の2次元格子構造の様子を示す図である。(A) It is a figure which shows the mode of the two-dimensional lattice structure of the organometallic complex obtained in Example 1 seen from the direction. (a)方向から見た実施例1で得られた有機金属錯体の2次元格子構造が積層した様子を示す図である。(A) It is a figure which shows a mode that the two-dimensional lattice structure of the organometallic complex obtained in Example 1 seen from the direction was laminated | stacked. (b)方向から見た実施例1で得られた有機金属錯体の2次元格子構造の積層した様子を示す図である。(B) It is a figure which shows a mode that the two-dimensional lattice structure of the organometallic complex obtained in Example 1 seen from the direction was laminated | stacked. (a)、(b)、(c)、(d)、(e)の各方向から見た実施例1で得られた有機金属錯体の細孔の様子を示す図である。It is a figure which shows the mode of the pore of the organometallic complex obtained in Example 1 seen from each direction of (a), (b), (c), (d), (e). 実施例1で得られた有機金属錯体の液体窒素温度における窒素ガスの吸脱着等温線を示すグラフである。2 is a graph showing an adsorption / desorption isotherm of nitrogen gas at a liquid nitrogen temperature of the organometallic complex obtained in Example 1. FIG. 実施例1で得られた有機金属錯体の−199.3℃と23.3℃とにおける水素の吸脱着等温線を示すグラフである。2 is a graph showing hydrogen adsorption and desorption isotherms at −199.3 ° C. and 23.3 ° C. of the organometallic complex obtained in Example 1. FIG. 実施例1で得られた有機金属錯体の温度に対する各種ガスの発生量の変化の関係を示すグラフである。2 is a graph showing the relationship of changes in the amount of various gases generated with respect to the temperature of the organometallic complex obtained in Example 1. 実施例2で用いた酢酸イオン二分子と安息香酸二分子とからなる銅(II)二核錯体の構造を示す図である。4 is a diagram showing the structure of a copper (II) binuclear complex composed of two molecules of acetate ion and two molecules of benzoic acid used in Example 2. FIG. (c)方向から見た実施例2で得られた有機金属錯体の2次元格子構造の積層した様子を示す図である。(C) It is a figure which shows a mode that the two-dimensional lattice structure of the organometallic complex obtained in Example 2 seen from the direction was laminated | stacked.

Claims (6)

下記一般式(1):
[式(1)中、Mは窒素原子に配位している金属原子を示すか、或いは窒素原子に結合している2個の水素原子を示し、R〜R はそれぞれ水素原子を示す。]
で表されるポルフィリン誘導体が、下記一般式(2):
[式(2)中、Rは同一でも異なっていてもよく、それぞれアルキル基及びアリール基からなる群から選択される一価の有機置換基を示し、Mは同一でも異なっていてもよく、それぞれ金属原子を示す。]
で表されるカルボン酸金属錯体を介して結合されており、
下記一般式(3):
[式(3)中、M は同一でも異なっていてもよく、それぞれ前記一般式(1)中のM と同義であり、R 〜R は前記一般式(1)中のR 〜R と同義であり、Xは前記一般式(2)で表されるカルボン酸金属錯体を示す。]
で表される2次元格子構造を繰り返し単位として有すること、
を特徴とする有機金属錯体。
The following general formula (1):
Wherein (1), M 1 is either indicates a metal atom coordinated to a nitrogen atom, or indicate two hydrogen atoms attached to the nitrogen atom, R 1 to R 8 Waso respectively Indicates a hydrogen atom . ]
A porphyrin derivative represented by the following general formula (2):
[In Formula (2), R 9 may be the same or different, each represents a monovalent organic substituent selected from the group consisting of an alkyl group and an aryl group , and M 2 may be the same or different. , Each represents a metal atom. ]
Is coupled in via the carboxylic acid metal complex represented,
The following general formula (3):
Wherein (3), M 1 may be the same or different, have the same meanings as M 1 in the general formula (1), R 1 of R 1 to R 8 are in the general formula (1) to R 8 in the above formula, X is illustrates a carboxylic acid metal complex represented by the general formula (2). ]
Having a two-dimensional lattice structure represented by
An organometallic complex characterized by
前記一般式(1)中のMが、銅、ルテニウム、ロジウム、モリブデン、亜鉛、チタン、バナジウム、アルミニウム、マグネシウム、セリウム、タングステン、レニウム及び鉄からなる群から選択される金属原子又は2個の水素原子であることを特徴とする請求項1に記載の有機金属錯体。 M 1 in the general formula (1) is a metal atom selected from the group consisting of copper, ruthenium, rhodium, molybdenum, zinc, titanium, vanadium, aluminum, magnesium, cerium, tungsten, rhenium, and iron, or two 2. The organometallic complex according to claim 1, which is a hydrogen atom. 前記一般式(2)中のMが、それぞれ、銅、ルテニウム、ロジウム、モリブデン、クロム、亜鉛、タングステン、レニウム、テクネチウム及び鉄からなる群から選択される二核構造を形成できる金属原子であることを特徴とする請求項1又は2に記載の有機金属錯体。 M 2 in the general formula (2) is a metal atom that can form a binuclear structure selected from the group consisting of copper, ruthenium, rhodium, molybdenum, chromium, zinc, tungsten, rhenium, technetium, and iron, respectively. The organometallic complex according to claim 1 or 2 , wherein 前記2次元格子構造の繰り返し単位が有する径の異なる複数の細孔のうち最大の細孔の細孔径が0.6〜2.5nmであることを特徴とする請求項1〜3のうちのいずれか一項に記載の有機金属錯体。 Any of the claims 1 to 3, the pore diameter of the largest pore of the plurality of pores of different diameters repeating units of the 2-dimensional grating structure has is characterized in that a 0.6~2.5nm The organometallic complex according to claim 1. 請求項1〜のうちのいずれか一項に記載の有機金属錯体を含有することを特徴とする吸蔵物質。 An occlusion substance comprising the organometallic complex according to any one of claims 1 to 4 . 請求項1〜のうちのいずれか一項に記載の有機金属錯体を含有することを特徴とする触媒。
A catalyst comprising the organometallic complex according to any one of claims 1 to 4 .
JP2006314501A 2005-11-22 2006-11-21 Organometallic complex, occlusion material and catalyst using the same Expired - Fee Related JP5013173B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006314501A JP5013173B2 (en) 2005-11-22 2006-11-21 Organometallic complex, occlusion material and catalyst using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005337158 2005-11-22
JP2005337158 2005-11-22
JP2006314501A JP5013173B2 (en) 2005-11-22 2006-11-21 Organometallic complex, occlusion material and catalyst using the same

Publications (2)

Publication Number Publication Date
JP2007169267A JP2007169267A (en) 2007-07-05
JP5013173B2 true JP5013173B2 (en) 2012-08-29

Family

ID=38296301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006314501A Expired - Fee Related JP5013173B2 (en) 2005-11-22 2006-11-21 Organometallic complex, occlusion material and catalyst using the same

Country Status (1)

Country Link
JP (1) JP5013173B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5019449B2 (en) * 2007-09-28 2012-09-05 独立行政法人産業技術総合研究所 Catalyst for chemical oxidation of carbon monoxide
CA2703021C (en) 2007-11-28 2015-01-20 Vugar Aliyev Catalyst composition and process for oligomerization of ethylene
JP2009167123A (en) * 2008-01-16 2009-07-30 Toyota Central R&D Labs Inc Three-dimensional porous organic metal complex, occlusion substance using the same and complex
JP5062060B2 (en) * 2008-06-26 2012-10-31 株式会社豊田中央研究所 Catalyst for purifying automobile exhaust gas and method for producing the same
CN102666547B (en) * 2009-10-30 2016-05-04 住友化学株式会社 Nitrogenous aromatic compounds and metal complex

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000063385A (en) * 1998-08-13 2000-02-29 Osaka Gas Co Ltd New dicarboxylic acid metal complex and gas-storage material
JP4814478B2 (en) * 2002-08-07 2011-11-16 学校法人神奈川大学 Organometallic complex, method for producing the same, and gas storage material
JP4415161B2 (en) * 2003-02-07 2010-02-17 学校法人神奈川大学 Organometallic complex, gas storage material, hydrogenation catalyst and hydrogenation reaction method using the complex

Also Published As

Publication number Publication date
JP2007169267A (en) 2007-07-05

Similar Documents

Publication Publication Date Title
Kirchon et al. From fundamentals to applications: a toolbox for robust and multifunctional MOF materials
Martis et al. Amine-functionalized MIL-125 with imbedded palladium nanoparticles as an efficient catalyst for dehydrogenation of formic acid at ambient temperature
Zhang et al. Robust bifunctional lanthanide cluster based metal–organic frameworks (MOFs) for tandem deacetalization–knoevenagel reaction
Xu et al. Heterogeneous catalysts based on mesoporous metal–organic frameworks
Rimoldi et al. Catalytic zirconium/hafnium-based metal–organic frameworks
US20230039640A1 (en) Solid-state crystallization of metal organic frameworks within mesoporous materials methods and hybrid materials thereof
Kabtamu et al. Hierarchically porous metal–organic frameworks: synthesis strategies, structure (s), and emerging applications in decontamination
Lv et al. A base-resistant metalloporphyrin metal–organic framework for C–H bond halogenation
Xu et al. Pd@ MIL-100 (Fe) composite nanoparticles as efficient catalyst for reduction of 2/3/4-nitrophenol: Synergistic effect between Pd and MIL-100 (Fe)
Lee et al. A highly active, robust photocatalyst heterogenized in discrete cages of metal–organic polyhedra for CO 2 reduction
Morris et al. Synthesis, structure, and metalation of two new highly porous zirconium metal–organic frameworks
Nelson et al. Supercritical processing as a route to high internal surface areas and permanent microporosity in metal− organic framework materials
Corma et al. Engineering metal organic frameworks for heterogeneous catalysis
Rösler et al. Hollow Zn/Co zeolitic imidazolate framework (ZIF) and yolk–shell metal@ Zn/Co ZIF nanostructures
Zou et al. Probing the lewis acid sites and co catalytic oxidation activity of the porous metal− Organic Polymer [Cu (5-methylisophthalate)]
Sompornpailin et al. Selective adsorption mechanisms of pharmaceuticals on benzene-1, 4-dicarboxylic acid-based MOFs: Effects of a flexible framework, adsorptive interactions and the DFT study
Zu et al. Improving hydrothermal stability and catalytic activity of metal–organic frameworks by graphite oxide incorporation
Jiang et al. Porous metal–organic frameworks as platforms for functional applications
Song et al. A multiunit catalyst with synergistic stability and reactivity: a polyoxometalate–metal organic framework for aerobic decontamination
Bhattacharjee et al. Metal–organic frameworks for catalysis
JP5013173B2 (en) Organometallic complex, occlusion material and catalyst using the same
Hou et al. Novel (3, 4, 6)-connected metal–organic framework with high stability and gas-uptake capability
KR20150007484A (en) Novel Zn-MOF compounds, and carbon dioxide sorption and heterogeneous catalysts for transesterification comprising the same
Mao et al. Fe-based MOFs@ Pd@ COFs with spatial confinement effect and electron transfer synergy of highly dispersed Pd nanoparticles for Suzuki-Miyaura coupling reaction
Tang et al. Water–ethanol and methanol–ethanol separations using in situ confined polymer chains in a metal–organic framework

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091013

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120323

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120510

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120523

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5013173

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees