JP5011732B2 - battery - Google Patents

battery Download PDF

Info

Publication number
JP5011732B2
JP5011732B2 JP2006012817A JP2006012817A JP5011732B2 JP 5011732 B2 JP5011732 B2 JP 5011732B2 JP 2006012817 A JP2006012817 A JP 2006012817A JP 2006012817 A JP2006012817 A JP 2006012817A JP 5011732 B2 JP5011732 B2 JP 5011732B2
Authority
JP
Japan
Prior art keywords
battery
negative electrode
positive electrode
lead
electrode lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006012817A
Other languages
Japanese (ja)
Other versions
JP2007194129A (en
Inventor
良介 高木
直子 山川
賢太 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2006012817A priority Critical patent/JP5011732B2/en
Publication of JP2007194129A publication Critical patent/JP2007194129A/en
Application granted granted Critical
Publication of JP5011732B2 publication Critical patent/JP5011732B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Primary Cells (AREA)

Description

この発明は、電池素子を電池缶に収容した電池に関する。   The present invention relates to a battery in which a battery element is accommodated in a battery can.

従来、いわゆる乾電池と互換性を持つさまざまな電池が開発、使用されている。その一つとして、例えば、以下の特許文献1に示すような、正極に硫化鉄(FeS)等の硫化物、二酸化マンガン(MnO2)等の遷移金属酸化物、(CFxn等の多炭素フッ化物を用い、負極に金属リチウム箔を用いた筒型リチウム電池が挙げられる。中でも、正極に硫化鉄(FeS)を用いた単四型リチウム硫化鉄電池は、アルカリ乾電池に比べ0.2V高い平均放電電圧を有することから、定出力放電において単純に15%長持ちする。また、正極と負極とを積層して渦巻き状に巻いた巻回構造を有しているので、重負荷放電特性が良く、例えばデジタルカメラに使用すると、アルカリ乾電池の倍以上の撮影枚数を確保することができる。 Conventionally, various batteries compatible with so-called dry batteries have been developed and used. As one of them, for example, as shown in Patent Document 1 below, the positive electrode is a sulfide such as iron sulfide (FeS), a transition metal oxide such as manganese dioxide (MnO 2 ), a large number of (CF x ) n and the like. Examples include a cylindrical lithium battery using carbon fluoride and a metal lithium foil as a negative electrode. Among these, the AAA lithium iron sulfide battery using iron sulfide (FeS) as the positive electrode has an average discharge voltage that is 0.2 V higher than that of the alkaline battery, and therefore simply lasts 15% in constant output discharge. In addition, since it has a winding structure in which a positive electrode and a negative electrode are stacked and wound in a spiral shape, it has good heavy load discharge characteristics. For example, when used in a digital camera, it can secure more than twice the number of alkaline batteries. be able to.

特許第3060109号明細書Japanese Patent No. 3060109

しかしながら、例えば正極に硫化鉄、酸化鉄、フッ化鉄等の鉄系材料を用いた場合、鉄が電解液に溶解しやすく、また溶解した鉄が電池内部で針状に析出して短絡が生じるという問題が生じる。   However, for example, when an iron-based material such as iron sulfide, iron oxide, or iron fluoride is used for the positive electrode, the iron is easily dissolved in the electrolytic solution, and the dissolved iron precipitates in a needle shape inside the battery to cause a short circuit. The problem arises.

したがって、この発明は、上述のような巻回型電池において、電池内部での短絡を防止し、電池特性を向上させた電池を提供することを目的とする。   Accordingly, an object of the present invention is to provide a battery in which the short-circuit inside the battery is prevented and the battery characteristics are improved in the wound battery as described above.

上記課題を解決するために、この発明は、正極活物質として鉄を含有する正極および負極を有し、正極および負極のいずれか一方が、他方よりも外周側になるようにして巻回された巻回構造を有する電池素子と、電池素子を収容する電池缶とを備え、
電池缶は、リードにより正極および負極のいずれか一方に電気的に接続され、
リードは、電池素子と電池缶との間に、電池素子を周回して設けられ、リードと電池素子との間に絶縁部材が設けられ、
リードの貼着開始端部と、電池缶と電気的に接続されない正極および負極のいずれか一方の終端部とが重ならない電池である。
In order to solve the above problems, the present invention is to have a positive and negative electrodes containing iron as a positive electrode active material, one of the positive and negative electrodes were wound in such a manner that the outer peripheral side than the other A battery element having a winding structure, and a battery can that houses the battery element,
The battery can is electrically connected to either the positive electrode or the negative electrode by a lead,
The lead is provided around the battery element between the battery element and the battery can, and an insulating member is provided between the lead and the battery element.
In this battery, the lead sticking start end portion does not overlap with either the positive electrode or the negative electrode terminal portion that is not electrically connected to the battery can.

この発明では、電池缶と電気的に接続されたリードの貼着開始端部と、電池缶と電気的に接続されない正極および負極のいずれか一方の電極の終端部とが重ならないように構成しているため、リードの厚みにより電極が圧迫され、リード上に析出した析出物により短絡が生じるのを抑制することができる。 In this invention, it is configured such that the sticking start end portion of the lead electrically connected to the battery can and the terminal portion of one of the positive electrode and the negative electrode not electrically connected to the battery can do not overlap. Therefore , the electrode is pressed by the thickness of the lead, and the occurrence of a short circuit due to the deposit deposited on the lead can be suppressed.

この発明によれば、巻回型の電池素子を電池缶に収容した電池において、電池内部での短絡を防止し、電池特性を向上させた電池を提供することができる。   According to the present invention, in a battery in which a wound battery element is housed in a battery can, a short circuit inside the battery can be prevented, and a battery with improved battery characteristics can be provided.

以下、この発明の一実施形態について図面を参照しながら説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

図1および図2はこの発明の一実施の形態に係る電池の断面構造を示す模式図である。この電池は、いわゆる円筒型といわれるリチウム硫化鉄乾電池(一次電池)であり、ほぼ中空円柱状の電池缶11の内部に、帯状の正極21と負極22とがセパレータ23を介して巻回された電池素子20を有している。電池缶11は、例えばニッケルめっきが施された鉄により構成されており、一端部が閉鎖され他端部が開放されている。なお、電池缶11は、電気的に導通の取れるものであれば、他の材料を用いることもできる。電池缶11の内部には、電池素子20を挟むように巻回周面に対して垂直に一対の絶縁板12a,12bがそれぞれ配置されている。   1 and 2 are schematic views showing a cross-sectional structure of a battery according to one embodiment of the present invention. This battery is a so-called cylindrical type lithium iron sulfide battery (primary battery), and a strip-shaped positive electrode 21 and a negative electrode 22 are wound around a separator 23 through a substantially hollow cylindrical battery can 11. The battery element 20 is included. The battery can 11 is made of, for example, iron plated with nickel, and has one end closed and the other end open. The battery can 11 may be made of other materials as long as it can be electrically connected. Inside the battery can 11, a pair of insulating plates 12 a and 12 b are respectively disposed perpendicular to the winding peripheral surface so as to sandwich the battery element 20.

電池缶11の開放端部には、電池蓋13と、この電池蓋13の内側に設けられた安全弁機構14およびPTC素子15とが、絶縁封口ガスケット16を介してかしめられることにより取り付けられている。電池蓋13は、例えば電池缶11と同様の材料により構成されている。安全弁機構14は、熱感抵抗素子(Positive Temperature Coefficient:PTC素子)15を介して電池蓋13と電気的に接続されており、内部短絡あるいは外部からの加熱などにより電池の内圧が一定以上となった場合にディスク板14aが反転して電池蓋13と電池素子20との電気的接続を切断するようになっている。PTC素子15は、温度が上昇すると抵抗値の増大により電流を制限し、大電流による異常な発熱を防止するものであり、例えば、チタン酸バリウム系半導体セラミックスにより構成されている。絶縁封口ガスケット16は、例えば絶縁材料により構成されており、表面にはアスファルトが塗布されている。   A battery lid 13 and a safety valve mechanism 14 and a PTC element 15 provided inside the battery lid 13 are attached to the open end of the battery can 11 by caulking through an insulating sealing gasket 16. . The battery lid 13 is made of, for example, the same material as the battery can 11. The safety valve mechanism 14 is electrically connected to the battery lid 13 via a thermal resistance element (Positive Temperature Coefficient: PTC element) 15, and the internal pressure of the battery becomes a certain level or more due to internal short circuit or external heating. In this case, the disk plate 14a is inverted to disconnect the electrical connection between the battery lid 13 and the battery element 20. When the temperature rises, the PTC element 15 limits the current by increasing the resistance value and prevents abnormal heat generation due to a large current. For example, the PTC element 15 is made of barium titanate semiconductor ceramics. The insulating sealing gasket 16 is made of, for example, an insulating material, and asphalt is applied to the surface.

電池素子20は、正極21と負極22とをセパレータ23を介して積層し、正極21の外周側端部が負極22よりも外周側になるようにして渦巻き状に巻回した巻回構造を有し、中心にはセンターピン24が挿入されている。電池素子20の正極21にはアルミニウム(Al)などよりなる正極リード30が接続されており、負極22には負極リード40が接続されている。正極リード30は安全弁機構14に溶接されることにより電池蓋13と電気的に接続されており、負極リード40は電池缶11に電気的に接続されている。また、電池素子20の最外周にはセパレータ23が設けられておらず、正極21が電池素子20の最外周を構成している。   The battery element 20 has a winding structure in which a positive electrode 21 and a negative electrode 22 are laminated via a separator 23 and wound in a spiral shape so that the outer peripheral side end of the positive electrode 21 is on the outer peripheral side of the negative electrode 22. A center pin 24 is inserted in the center. A positive electrode lead 30 made of aluminum (Al) or the like is connected to the positive electrode 21 of the battery element 20, and a negative electrode lead 40 is connected to the negative electrode 22. The positive electrode lead 30 is electrically connected to the battery lid 13 by being welded to the safety valve mechanism 14, and the negative electrode lead 40 is electrically connected to the battery can 11. Further, the separator 23 is not provided on the outermost periphery of the battery element 20, and the positive electrode 21 constitutes the outermost periphery of the battery element 20.

負極リード40は、電池素子20と電池缶11との間に、電池素子20を周回するようにして設けられている。また、正極21が最外周となるように構成された電池素子20と、負極リード40との間には、正極21と負極リード40とが接触するのを防止するために、絶縁部材50が設けられている。   The negative electrode lead 40 is provided between the battery element 20 and the battery can 11 so as to go around the battery element 20. In addition, an insulating member 50 is provided between the battery element 20 configured so that the positive electrode 21 has the outermost periphery and the negative electrode lead 40 in order to prevent the positive electrode 21 and the negative electrode lead 40 from contacting each other. It has been.

以下、電池缶11に収容された電池素子20の構成について詳細に説明する。   Hereinafter, the configuration of the battery element 20 accommodated in the battery can 11 will be described in detail.

[正極]
正極21は、正極活物質を含有する正極活物質層21bが、正極集電体21aの両面上に形成されたものである。正極集電体21aは、例えばアルミニウム(Al)箔,ニッケル(Ni)箔ステンレス(SUS)箔、あるいは銅(Cu)箔などの金属箔により構成されており、中でも銅がより好ましい。銅は接触抵抗が低いため、安全性をさらに高めることができるとともに、集電効果を向上させ、放電特性を高めることができる。
[Positive electrode]
The positive electrode 21 is obtained by forming positive electrode active material layers 21b containing a positive electrode active material on both surfaces of the positive electrode current collector 21a. The positive electrode current collector 21a is made of a metal foil such as an aluminum (Al) foil, a nickel (Ni) foil, a stainless steel (SUS) foil, or a copper (Cu) foil, and copper is more preferable. Since copper has a low contact resistance, safety can be further improved, the current collecting effect can be improved, and the discharge characteristics can be enhanced.

正極活物質層21bは、例えば正極活物質と、導電剤と、結着剤とを含有して構成されている。正極活物質、導電剤、結着剤および溶剤は、均一に分散していればよく、その混合比は問わない。   The positive electrode active material layer 21b includes, for example, a positive electrode active material, a conductive agent, and a binder. The positive electrode active material, the conductive agent, the binder, and the solvent only need to be uniformly dispersed, and the mixing ratio is not limited.

正極活物質としては、例えば酸化鉄、硫化鉄またはフッ化鉄などの鉄化合物、ならびに鉄または鉄化合物が少量混入された、例えばマンガン(Mn)、銅、コバルト(Co)、ニッケル等を主とする金属または金属化合物を用いることができる。   Examples of the positive electrode active material mainly include iron compounds such as iron oxide, iron sulfide, and iron fluoride, and a small amount of iron or iron compound, for example, manganese (Mn), copper, cobalt (Co), nickel, and the like. The metal or metal compound to be used can be used.

導電剤としては、例えばカーボンブラックあるいはグラファイトなどの炭素材料等が用いられる。また、結着剤としては、例えばポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリビニリデンフルオライド等が用いられる。また、溶剤としては、例えばN−メチル−2−ピロリドン(NMP)等が用いられる。   As the conductive agent, for example, a carbon material such as carbon black or graphite is used. As the binder, for example, polyvinylidene fluoride, polytetrafluoroethylene, polyvinylidene fluoride, or the like is used. Moreover, as a solvent, N-methyl-2-pyrrolidone (NMP) etc. are used, for example.

上述の正極活物質、結着剤、導電剤を均一に混合して正極合剤とし、この正極合剤を溶剤中に分散させてスラリー状にする。次いで、このスラリーをドクターブレード法等により正極集電体の両面に均一に塗布する。さらに、高温で乾燥させて溶剤を飛ばすことにより正極活物質層が形成される。   The above-described positive electrode active material, binder, and conductive agent are uniformly mixed to form a positive electrode mixture, and this positive electrode mixture is dispersed in a solvent to form a slurry. Next, this slurry is uniformly applied to both surfaces of the positive electrode current collector by a doctor blade method or the like. Furthermore, the positive electrode active material layer is formed by drying at a high temperature and removing the solvent.

このとき、正極21の片面の一端部に、正極活物質未塗布部を設けることが好ましい。電池素子20を組み立てる際、正極活物質未塗布部を形成した一端部ではない他端部を巻き始めとし、正極活物質未塗布部が巻回外周側となるようにして巻回することにより、正極21の電池素子外周側端部の外周面が正極活物質未塗布部となる。このような構成とすることにより、電池缶11の側壁との接触抵抗を低減させることができ、安全性をより一層高めることができる。   At this time, it is preferable to provide a positive electrode active material uncoated portion at one end portion of one surface of the positive electrode 21. When assembling the battery element 20, by starting winding the other end portion that is not one end portion where the positive electrode active material uncoated portion is formed, and winding the positive electrode active material uncoated portion on the winding outer periphery side, The outer peripheral surface of the battery element outer peripheral side end of the positive electrode 21 is a positive electrode active material uncoated portion. By setting it as such a structure, contact resistance with the side wall of the battery can 11 can be reduced, and safety | security can be improved further.

正極21は正極集電体の一部にスポット溶接または超音波溶接で接続された1本の正極リード30を有している。この正極リード30は金属箔、網目状のものが望ましいが、電気化学的および化学的に安定であり、導通がとれるものであれば金属でなくとも問題はない。正極リード30の材料としては、例えばアルミニウム、銅等を用いることができる。   The positive electrode 21 has one positive electrode lead 30 connected to a part of the positive electrode current collector by spot welding or ultrasonic welding. The positive electrode lead 30 is preferably a metal foil or a mesh-like one, but there is no problem even if it is not a metal as long as it is electrochemically and chemically stable and can conduct electricity. As a material of the positive electrode lead 30, for example, aluminum, copper or the like can be used.

[負極]
負極22としては、金属リチウム箔を用いることができる。
[Negative electrode]
As the negative electrode 22, a metal lithium foil can be used.

負極リード40は、後に電池素子20を周回するようにして設けられ、例えば鉄、ニッケルまたはステンレス等、リチウムと合金を形成しない材料により構成されていることが好ましく、中でも銅が好ましい。負極22と負極リード40の接触抵抗が小さいため、電池の内部抵抗をさらに低減し、電圧および負荷特性を向上させることができる。例えば、粗銅の合金を用いた場合、銅と対になる金属がリチウムと合金化しやすい。また、銅は比較的容易に高純度の純銅が得られるため、コストも低い。このような理由から、負極リード40として用いる銅としては、Cu量を99.9%以上とする純銅が好ましい。   The negative electrode lead 40 is provided so as to go around the battery element 20 later, and is preferably made of a material that does not form an alloy with lithium, such as iron, nickel, or stainless steel, and copper is particularly preferable. Since the contact resistance between the negative electrode 22 and the negative electrode lead 40 is small, the internal resistance of the battery can be further reduced, and the voltage and load characteristics can be improved. For example, when a crude copper alloy is used, a metal paired with copper is easily alloyed with lithium. Moreover, since copper can obtain high purity pure copper relatively easily, the cost is low. For these reasons, the copper used as the negative electrode lead 40 is preferably pure copper with a Cu content of 99.9% or more.

また、負極リード40の電池素子20側面には、接着層41が設けられていることが好ましい。前述のように、負極リード40は、電池素子20と電池缶11との間に、電池素子20を周回するようにして設けられている。このため、負極リード40の電池素子20側面に接着層41を設けることにより、負極リード40の位置を安定させることができ、電池缶11に電池素子20を収容する際に負極リード40が曲がったり、切れたりするのを防止することができる。   Further, an adhesive layer 41 is preferably provided on the side surface of the battery element 20 of the negative electrode lead 40. As described above, the negative electrode lead 40 is provided between the battery element 20 and the battery can 11 so as to go around the battery element 20. For this reason, by providing the adhesive layer 41 on the side surface of the battery element 20 of the negative electrode lead 40, the position of the negative electrode lead 40 can be stabilized, and the negative electrode lead 40 is bent when the battery element 20 is accommodated in the battery can 11. , It can be prevented from cutting.

負極リード40の幅は、負極22の幅よりも2mm以上短いことが好ましい。負極リード40が負極22の幅よりも大きい場合、負極リード40の切断部に発生したバリが正極21の端部に接触し、微小なショートが発生することにより、容量の劣化が生じるおそれがある。このため、負極リード40の幅を負極22の幅よりも短くなるように構成する。   The width of the negative electrode lead 40 is preferably shorter than the width of the negative electrode 22 by 2 mm or more. When the negative electrode lead 40 is larger than the width of the negative electrode 22, the burr generated at the cut portion of the negative electrode lead 40 comes into contact with the end portion of the positive electrode 21, and there is a possibility that the capacity is deteriorated due to the occurrence of a minute short. . For this reason, the width of the negative electrode lead 40 is configured to be shorter than the width of the negative electrode 22.

[セパレータ]
セパレータは、例えばポリプロピレン(PP)あるいはポリエチレン(PE)などのポリオレフィン系の材料よりなる多孔質膜、またはセラミック製の不織布などの無機材料よりなる多孔質膜により構成されており、これら2種以上の多孔質膜を積層した構造とされていてもよい。中でも、ポリエチレン、ポリプロピレンの多孔質フィルムが最も有効である。
[Separator]
The separator is made of, for example, a porous film made of a polyolefin-based material such as polypropylene (PP) or polyethylene (PE), or a porous film made of an inorganic material such as a ceramic nonwoven fabric. A structure in which a porous film is laminated may be used. Among these, polyethylene and polypropylene porous films are the most effective.

一般的にセパレータの厚みは5〜50μmが好適に使用可能であるが、7〜30μmがより好ましい。セパレータは、厚すぎると活物質の充填量が低下して電池容量が低下するとともに、イオン伝導性が低下して電流特性が低下する。逆に薄すぎると、膜の機械的強度が低下する。   In general, the thickness of the separator is preferably 5 to 50 μm, more preferably 7 to 30 μm. If the separator is too thick, the amount of the active material filled decreases, the battery capacity decreases, and the ionic conductivity decreases and the current characteristics deteriorate. On the other hand, if the film is too thin, the mechanical strength of the film decreases.

[電解液]
上述のセパレータには、液状の電解質である電解液が含浸されている。この電解液は、非水溶媒に電解質塩が溶解されたものであり、一般的に使用される材料が使用可能である。
[Electrolyte]
The separator described above is impregnated with an electrolytic solution that is a liquid electrolyte. This electrolytic solution is obtained by dissolving an electrolyte salt in a non-aqueous solvent, and generally used materials can be used.

非水溶媒としては、例えば、プロピレンカーボネート、エチレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、メチルエチルカーボネート、γ−ブチロラクトン、テトラヒドロフラン、2−ジメトキシエタン、1,3−ジオキソラン、4−メチル−1,3−ジオキソラン、ジエチルエーテル、スルホラン、メチルスルホラン、アセトニトリルあるいはプロピオニトリル、アニソール、酢酸エステル、絡酸エステルあるいはプロピオン酸エステル等が好ましく、これらのうちのいずれか1種または2種以上を混合して用いることができる。   Examples of the non-aqueous solvent include propylene carbonate, ethylene carbonate, diethyl carbonate, dimethyl carbonate, methyl ethyl carbonate, γ-butyrolactone, tetrahydrofuran, 2-dimethoxyethane, 1,3-dioxolane, 4-methyl-1,3-dioxolane. , Diethyl ether, sulfolane, methyl sulfolane, acetonitrile or propionitrile, anisole, acetic acid ester, entangled acid ester or propionic acid ester, etc. are preferred, and any one of these or a mixture of two or more may be used. it can.

電解質塩としては、上記非水溶媒に溶解するものが用いられ、カチオンとアニオンが組み合わされてなる。カチオンにはアルカリ金属やアルカリ土類金属が用いられ、アニオンには、Cl-,Br-,I-,SCN-,ClO4 -,BF4 -,PF6 -,CF3SO3 -等が用いられる。具体的には、例えばLiCl、LiClO4、LiAsF6、LiPF6、LiBF4、LiB(C654、LiBr、CH3SO3Li、CF3SO3Li、N(CnF2n+1SO22Liなどがあり、これらのうちのいずれか1種または2種以上が混合して用いられている。中でも、LiPF6を主として用いることが好ましい。また、電解質塩濃度としては、上記非水溶媒に溶解することができる濃度であれば問題ないが、リチウムイオン濃度が非水溶媒に対して0.4mol/kg以上、2.0mol/kg以下の範囲であることが好ましい。 As the electrolyte salt, one that dissolves in the non-aqueous solvent is used, and a combination of a cation and an anion is used. Alkali metals and alkaline earth metals are used as cations, and Cl , Br , I , SCN , ClO 4 , BF 4 , PF 6 , CF 3 SO 3 − and the like are used as anions. It is done. Specifically, for example, LiCl, LiClO 4 , LiAsF 6 , LiPF 6 , LiBF 4 , LiB (C 6 H 5 ) 4 , LiBr, CH 3 SO 3 Li, CF 3 SO 3 Li, N (CnF 2n + 1 SO 2 ) 2 Li and the like, and any one of these or a mixture of two or more thereof is used. Among them, it is preferable to mainly use LiPF 6 . The electrolyte salt concentration is not a problem as long as it can be dissolved in the non-aqueous solvent, but the lithium ion concentration is 0.4 mol / kg or more and 2.0 mol / kg or less with respect to the non-aqueous solvent. A range is preferable.

[絶縁部材]
絶縁部材50は、正極21と、負極リード40との接触を防止する機能を有する。また、このような機能のみでなく、正極21と、負極22に電気的に接続された電池缶11の側壁との通電を阻止する機能も有している。電池素子20は、電池缶11内において、最外周を構成する正極21が電池缶11の側壁と電気的に接触可能な位置に収容配置されており、負極リード40の幅が正極21の幅よりも小さい場合、正極21と電池缶とが接触するため、正極21および負極22の幅よりも広い幅を有する絶縁部材を用いる。
[Insulating material]
The insulating member 50 has a function of preventing contact between the positive electrode 21 and the negative electrode lead 40. In addition to such a function, it also has a function of preventing energization between the positive electrode 21 and the side wall of the battery can 11 electrically connected to the negative electrode 22. In the battery element 20, the positive electrode 21 constituting the outermost periphery is accommodated and disposed in the battery can 11 so as to be in electrical contact with the side wall of the battery can 11, and the width of the negative electrode lead 40 is larger than the width of the positive electrode 21. Is smaller than the positive electrode 21 and the battery can, an insulating member having a width wider than that of the positive electrode 21 and the negative electrode 22 is used.

また、絶縁部材50の厚みは40μm以上であることが好ましい。負極リード40の端部を切断する際に発生するバリがセパレータ23を貫通して対向する正極21に接触し、短絡を引き起こしてしまうことを抑制することができるからである。   Moreover, it is preferable that the thickness of the insulating member 50 is 40 micrometers or more. This is because it is possible to prevent a burr generated when cutting the end of the negative electrode lead 40 from coming into contact with the positive electrode 21 that passes through the separator 23 and is opposed to the short circuit.

このような絶縁部材50は、例えば樹脂材料により構成されていることが好ましい。具体的には、例えば、ポリプロピレン、ポリエチレン、ポリフェニレンサルファイド(PPS)、ポリイミド、または、ポリプロピレンとポリエチレン,アクリル,酢酸ビニルなどの他のポリマーとの共重合体が挙げられる。   Such an insulating member 50 is preferably made of, for example, a resin material. Specific examples include polypropylene, polyethylene, polyphenylene sulfide (PPS), polyimide, and copolymers of polypropylene and other polymers such as polyethylene, acrylic, and vinyl acetate.

なお、絶縁部材50は、電池素子20の巻回終端部を固定する固定部材、いわゆる終端テープとしての機能も有している。   The insulating member 50 also has a function as a fixing member for fixing the winding terminal portion of the battery element 20, a so-called terminal tape.

[電池素子の作製]
上述のような正極21と、負極22とを、2枚のセパレータ23a,23bと交互に積層し、巻回する。このとき、前述のように、正極活物質未塗布部が電池素子外周面となるように、正極21が電池素子20の最外周を覆うようにする。
[Production of battery element]
The positive electrode 21 and the negative electrode 22 as described above are alternately stacked with the two separators 23a and 23b and wound. At this time, as described above, the positive electrode 21 covers the outermost periphery of the battery element 20 so that the positive electrode active material uncoated portion becomes the outer periphery of the battery element.

一般的には、電池缶が負極と接続される構成とすることが多い。このため、負極集電体上に負極活物質層を設けた負極が電池素子の最外周を覆うようにし、電池素子外周面側を負極活物質層未塗布部として負極集電体を露出させ、電池缶と接触させる構成を用いる。しかしながら、金属リチウム箔を負極22として用いる場合、負極22が電池素子20の最外周を覆うように構成すると、接触抵抗が低い状態で電池缶11と負極22を接触させることができなくなる。このため、正極21が電池素子外周部を覆うように構成し、さらに電池素子外周に負極22と接続した負極リード40を周回させることにより、負極22と電池缶11とを電気的に接続するようにする。   In general, the battery can is often connected to the negative electrode. For this reason, the negative electrode provided with the negative electrode active material layer on the negative electrode current collector covers the outermost periphery of the battery element, and the negative electrode current collector is exposed with the battery element outer peripheral surface side as the negative electrode active material layer uncoated portion. A structure in contact with the battery can is used. However, when the metal lithium foil is used as the negative electrode 22, if the negative electrode 22 covers the outermost periphery of the battery element 20, the battery can 11 and the negative electrode 22 cannot be brought into contact with each other with a low contact resistance. Therefore, the positive electrode 21 is configured to cover the outer periphery of the battery element, and the negative electrode lead 40 connected to the negative electrode 22 is circulated around the outer periphery of the battery element, so that the negative electrode 22 and the battery can 11 are electrically connected. To.

このとき、図2に示すように、正極21の巻回終端部が、正極21の巻回終端部と隣接する負極リード40にセパレータのみを介して対向する箇所がないようにする。   At this time, as shown in FIG. 2, the winding termination portion of the positive electrode 21 does not have a portion facing the negative electrode lead 40 adjacent to the winding termination portion of the positive electrode 21 through only the separator.

正極活物質に含まれる鉄は電解液に溶け、負極22と接続されることにより負極22と同電位となっている負極リード40の表面に針状に析出する。このため、図3に示すように、正極21と負極リード40がセパレータ23のみを介して対向する箇所がないように負極リード40を設けた場合、負極リード40の厚みにより金属リチウムが圧迫され、電池内部で小さな短絡を発生する原因となる。そこで、正極21の巻回終端部と負極リード40とがセパレータ23のみを介して対向する箇所がないように配置することで、短絡を抑制することができる。   Iron contained in the positive electrode active material is dissolved in the electrolytic solution and deposited in a needle shape on the surface of the negative electrode lead 40 having the same potential as the negative electrode 22 when connected to the negative electrode 22. For this reason, as shown in FIG. 3, when the negative electrode lead 40 is provided so that the positive electrode 21 and the negative electrode lead 40 do not face each other only through the separator 23, the metal lithium is pressed by the thickness of the negative electrode lead 40, It causes a small short circuit inside the battery. Therefore, short-circuiting can be suppressed by disposing the winding terminal portion of the positive electrode 21 and the negative electrode lead 40 so that there is no portion facing only through the separator 23.

次いで、接着層41が設けられた負極リード40と、絶縁部材50とを用意し、絶縁部材50と負極リード40とを接着層41を介して重ね合わせることにより固定する。続いて、図4に示すように、負極リード40を電池缶11側にして絶縁部材50の一端部を負極22の内周側のセパレータ23aに固定することにより、負極リード40を負極22に接触させる。さらに、負極リード40の残部が電池素子20を一周するように周回させ、負極リード40の他端部を一端部に重ねて固定した後、不要な部分を切断する。   Next, the negative electrode lead 40 provided with the adhesive layer 41 and the insulating member 50 are prepared, and the insulating member 50 and the negative electrode lead 40 are fixed by being overlapped via the adhesive layer 41. Subsequently, as shown in FIG. 4, the negative electrode lead 40 is brought into contact with the negative electrode 22 by fixing one end portion of the insulating member 50 to the separator 23 a on the inner peripheral side of the negative electrode 22 with the negative electrode lead 40 facing the battery can 11. Let Further, the remaining portion of the negative electrode lead 40 circulates around the battery element 20 and the other end portion of the negative electrode lead 40 is overlapped and fixed to one end portion, and then unnecessary portions are cut.

[電池の作製]
次いで、負極リード40および絶縁部材50を取り付けた電池素子20の巻回面が覆われるようにして一対の絶縁板12,13で挟み、正極リード30を安全弁機構14に溶接した電池素子20を、電池缶11の内部に収容する。さらに、電解液を電池缶11の内部に注入し、セパレータ23に含浸させたのち、電池缶11の開口端部に電池蓋13と、電池蓋13の内側に設けられた安全弁機構14およびPTC素子15とを、ガスケット16を介してかしめるとにより固定する。
[Production of battery]
Subsequently, the battery element 20 in which the winding surface of the battery element 20 to which the negative electrode lead 40 and the insulating member 50 are attached is covered with the pair of insulating plates 12 and 13 and the positive electrode lead 30 is welded to the safety valve mechanism 14. The battery can 11 is housed inside. Furthermore, after injecting the electrolyte into the battery can 11 and impregnating the separator 23, the battery lid 13 at the opening end of the battery can 11, the safety valve mechanism 14 provided inside the battery lid 13, and the PTC element 15 is fixed by caulking through the gasket 16.

なお、正極リード30を製造工程上、ある程度の長さを持ったものを用いる必要がある。これは、あらかじめ正極リード30を電池蓋13に設けられた安全弁機構14に接続してから電池缶11の開放端部を密閉するためであり、正極リード30が短いほど正極リード30と電池蓋13の接続が困難になる。このようにして電池蓋をかしめることにより、正極リード30は電池10の内部で略U字状に屈曲して収容される。   In addition, it is necessary to use the positive electrode lead 30 having a certain length in the manufacturing process. This is for sealing the open end of the battery can 11 after connecting the positive electrode lead 30 to the safety valve mechanism 14 provided in the battery lid 13 in advance. The shorter the positive electrode lead 30 is, the positive electrode lead 30 and the battery lid 13 are. Connection becomes difficult. By caulking the battery lid in this way, the positive electrode lead 30 is bent and accommodated in a substantially U shape inside the battery 10.

上述のようにして、図1に示すような電池が作製される。   As described above, the battery as shown in FIG. 1 is manufactured.

この電池では、一次電池なので充電は行わず、一回の放電のみを行う。放電を行うと、負極22から金属リチウムがリチウムイオンとなって溶出し、電解液を介して正極21に吸蔵される。ここでは、負極リード40が、電池素子20と電池缶11との間に電池素子20を周回して設けられているので、発熱時に負極リード40と電池缶11との接触面積が大きくなり、内部抵抗が大幅に低減される。   Since this battery is a primary battery, it is not charged and only discharged once. When discharging is performed, metallic lithium is eluted as lithium ions from the negative electrode 22 and is occluded by the positive electrode 21 through the electrolytic solution. Here, since the negative electrode lead 40 is provided around the battery element 20 between the battery element 20 and the battery can 11, the contact area between the negative electrode lead 40 and the battery can 11 increases during heat generation, and the internal Resistance is greatly reduced.

また、この電池では、電池素子20と電池缶11との間に絶縁部材50が設けられているので、電池素子20の最外周を構成する正極21と、負極22に電気的に接続された電池缶11との間での通電が阻止されている。   Further, in this battery, since the insulating member 50 is provided between the battery element 20 and the battery can 11, the battery electrically connected to the positive electrode 21 and the negative electrode 22 constituting the outermost periphery of the battery element 20. Energization with the can 11 is prevented.

このように、この発明の一実施の形態では、電池素子の巻回終端部において、負極リード40と正極21とが対向しないようにして構成することにより、負極リード40上に鉄が析出して電池内部で小さな短絡が生じるのを防止することができる。   As described above, in the embodiment of the present invention, the negative electrode lead 40 and the positive electrode 21 are configured so that the negative electrode lead 40 and the positive electrode 21 do not face each other at the winding terminal portion of the battery element. It is possible to prevent a small short circuit from occurring inside the battery.

また、負極リード40を、電池素子20と電池缶11との間に電池素子20を周回して設けるようにしたので、負極リード40と電池缶11の側壁との接触面積が大きくなり、その結果、内部抵抗が大幅に低減されて、放電電圧が大きくなり、負荷特性が向上する。   Further, since the negative electrode lead 40 is provided around the battery element 20 between the battery element 20 and the battery can 11, the contact area between the negative electrode lead 40 and the side wall of the battery can 11 is increased, and as a result. The internal resistance is greatly reduced, the discharge voltage is increased, and the load characteristics are improved.

特に、負極リード40を銅により構成したので、内部抵抗をさらに小さくして、電圧を大きくして、負荷特性を向上させることができる。   In particular, since the negative electrode lead 40 is made of copper, the internal resistance can be further reduced, the voltage can be increased, and the load characteristics can be improved.

また、負極リード40の幅を、負極22の幅よりも2mm以上短くしたので、保存による劣化を抑制することができる。   Moreover, since the width of the negative electrode lead 40 is shorter than the width of the negative electrode 22 by 2 mm or more, deterioration due to storage can be suppressed.

さらに、負極リード40の電池素子20側の面に接着層41を設けるようにしたので、負極リード40の位置を安定させることができ、電池素子20を電池缶11へ挿入する工程において負極リード40が曲がったり切れたりするのを防いで、安定した生産を可能とすることができる。   Furthermore, since the adhesive layer 41 is provided on the surface of the negative electrode lead 40 on the battery element 20 side, the position of the negative electrode lead 40 can be stabilized, and the negative electrode lead 40 is inserted in the step of inserting the battery element 20 into the battery can 11. Can be prevented from bending or cutting, enabling stable production.

加えて、負極リード40と電池素子20との間に絶縁部材50を設け、この絶縁部材50の厚みを40μm以上としたので、負極リード40の端部を切断する際に発生するバリがセパレータ23を貫通して対向する正極21に接触し、短絡を引き起こしてしまうことを抑制することができる。   In addition, since the insulating member 50 is provided between the negative electrode lead 40 and the battery element 20 and the thickness of the insulating member 50 is set to 40 μm or more, the burr generated when the end of the negative electrode lead 40 is cut is separated from the separator 23. It is possible to suppress a short circuit from being brought into contact with the positive electrode 21 that penetrates through and opposite to the positive electrode 21.

以下、実施例によりこの発明を具体的に説明する。以下の実施例および比較例では、単四型リチウム硫化鉄乾電池を作製した。   Hereinafter, the present invention will be specifically described by way of examples. In the following Examples and Comparative Examples, AAA type lithium iron sulfide batteries were produced.

<実施例1>
[正極の作製]
硫化鉄粉末と、導電剤であるグラファイトと、結着剤であるポリフッ化ビニリデンとを、固形分比で硫化鉄:グラファイト:ポリフッ化ビニリデン=90:5:5の割合で混合し、溶剤であるN−メチル−2−ピロリドンに分散して正極合剤スラリーとした。この正極合剤スラリーを、アルミニウム箔よりなる正極集電体の両面に均一に塗布し、所定の大きさに切断した後、ロールプレス機で圧縮成型して外側正極活物質層および内側正極活物質層を形成し、正極を作製した。
<Example 1>
[Production of positive electrode]
Iron sulfide powder, graphite as a conductive agent, and polyvinylidene fluoride as a binder are mixed at a solid content ratio of iron sulfide: graphite: polyvinylidene fluoride = 90: 5: 5 and used as a solvent. Dispersed in N-methyl-2-pyrrolidone to obtain a positive electrode mixture slurry. The positive electrode mixture slurry is uniformly applied to both surfaces of a positive electrode current collector made of an aluminum foil, cut into a predetermined size, and then compression-molded with a roll press machine to form an outer positive electrode active material layer and an inner positive electrode active material. A layer was formed to produce a positive electrode.

次いで、正極の巻回外周側となる一端部において、内側正極活物質層が外側正極活物質層よりも長くなるように、外側正極活物質層の一部を剥離し、正極活物質未被覆部を形成した。また、正極の巻回中心側となる他端部の正極集電体に、アルミニウム製の正極リードを溶接により取り付けた。   Next, a part of the outer positive electrode active material layer is peeled off so that the inner positive electrode active material layer is longer than the outer positive electrode active material layer at one end on the winding outer peripheral side of the positive electrode, and the positive electrode active material uncoated portion Formed. Moreover, the positive electrode lead made from aluminum was attached to the positive electrode current collector of the other end part used as the winding center side of a positive electrode by welding.

[電池素子の作製]
続いて、金属リチウム箔よりなる負極を用意し、正極と負極とをセパレータを介して積層し、正極が電池素子の最外周を覆うように巻回して電池素子を作製した。
[Production of battery element]
Then, the negative electrode which consists of metal lithium foil was prepared, the positive electrode and the negative electrode were laminated | stacked through the separator, and it wound so that a positive electrode might cover the outermost periphery of a battery element, and produced the battery element.

[電解液の作製]
エチレンカーボネート(EC)50重量部とプロピレンカーボネート(PC)50重量部とを混合し、電解質塩としてLiPF6を0.7mol/kgを溶解させて電解液を作製した。
[Preparation of electrolyte]
50 parts by weight of ethylene carbonate (EC) and 50 parts by weight of propylene carbonate (PC) were mixed, and 0.7 mol / kg of LiPF 6 was dissolved as an electrolyte salt to prepare an electrolytic solution.

[電池の作製]
上述のような電池素子を作製したのち、接着層が設けられた銅箔テープからなる負極リードと、厚み40μmの絶縁部材とを用意し、絶縁部材に負極リードを接着層で固定した。絶縁部材に負極リードを固定したのち、負極リードを電池缶側にして絶縁部材の一端部を負極の内周側のセパレータに固定することにより、負極リードを負極に接触させた。続いて、負極リードを電池素子を一周するように巻き付け、他端部を一端部に重ねて固定し、切断した。
[Production of battery]
After producing the battery element as described above, a negative electrode lead made of a copper foil tape provided with an adhesive layer and an insulating member having a thickness of 40 μm were prepared, and the negative electrode lead was fixed to the insulating member with an adhesive layer. After fixing the negative electrode lead to the insulating member, the negative electrode lead was brought into contact with the negative electrode by fixing the negative electrode lead to the battery can side and fixing one end of the insulating member to the separator on the inner peripheral side of the negative electrode. Subsequently, the negative electrode lead was wound around the battery element, and the other end portion was overlapped and fixed to one end portion and cut.

このとき、電池素子最外周部において、銅箔テープの貼着開始端部位置が、正極巻回終端部位置から5cm離れ、正極巻回終端部と銅箔テープが重ならないように端部位置を調整する。また、負極集端部は、銅箔テープと10cm重なるように調整する。   At this time, in the battery element outermost peripheral part, the end position of the copper foil tape sticking start position is 5 cm away from the positive electrode winding end position, and the end position is set so that the positive electrode winding end part and the copper foil tape do not overlap. adjust. Further, the negative electrode collecting end is adjusted so as to overlap with the copper foil tape by 10 cm.

電池素子に絶縁部材および負極リードを巻き付けたのち、電池素子を一対の絶縁板で挟み、正極リードを安全弁機構に溶接して、電池素子を電池缶の内部に収容した。次いで、電解液を電池缶の内部に注入し、セパレータに含浸させた。さらに、電池缶の開放端部に電池蓋および安全弁を、ガスケットを介してかしめることにより、図1に示す電池と同様の構成である電池を作製した。   After winding the insulating member and the negative electrode lead around the battery element, the battery element was sandwiched between a pair of insulating plates, the positive electrode lead was welded to the safety valve mechanism, and the battery element was accommodated inside the battery can. Next, the electrolytic solution was injected into the battery can and impregnated in the separator. Furthermore, a battery having the same configuration as the battery shown in FIG. 1 was produced by caulking a battery lid and a safety valve to the open end of the battery can via a gasket.

<比較例1>
電池素子最外周部において、銅箔テープの貼着開始端部が正極終端部によって5cm覆われるようにした以外は実施例1と同様にして電池を作製した。
<Comparative Example 1>
A battery was fabricated in the same manner as in Example 1, except that the end of the copper foil tape was covered with 5 cm of the positive electrode terminal at the outermost periphery of the battery element.

<比較例2>
電池素子最外周部において、銅箔テープの貼着開始端部が正極終端部によって15cm覆われるようにした以外は実施例1と同様にして電池を作製した。
<Comparative example 2>
A battery was fabricated in the same manner as in Example 1, except that the adhesion start end of the copper foil tape was covered 15 cm with the positive electrode termination at the outermost periphery of the battery element.

<比較例3>
電池素子最外周部において、銅箔テープからなり、電池素子の外周を周回させた負極リードを設けず、ニッケルからなる短冊状の負極リードを負極端部に圧着し、この負極リードが電池缶側壁部に接触するようにした以外は実施例1と同様にして電池を作製した。
<Comparative Example 3>
At the outermost periphery of the battery element, a strip-shaped negative electrode lead made of nickel is crimped to the negative electrode end without being provided with a negative electrode lead made of copper foil tape and circulated around the outer periphery of the battery element. A battery was fabricated in the same manner as in Example 1, except that the contact was made.

このようにして得られた実施例1および比較例1〜3の各電池について、以下の測定(a)、測定(b)および測定(c)を行った。   The following measurement (a), measurement (b), and measurement (c) were performed on the batteries of Example 1 and Comparative Examples 1 to 3 thus obtained.

測定(a) 保存維持率の測定
上述の実施例1および比較例1〜3について、それぞれ100個ずつ電池を作製し、保存維持率を測定した。実施例1および比較例1〜3のそれぞれについて、得られた100個の電池のうち50個は電池作製直後に直ちに1000mAにて放電させ、初期の平均放電容量を測定した。次いで、残りの50個を60℃雰囲気下で3ヶ月保存した後、1000mAにて放電させ、保存後の平均放電容量を測定した。
Measurement (a) Measurement of storage retention rate For each of Example 1 and Comparative Examples 1 to 3 described above, 100 batteries were produced, and the storage retention rate was measured. For each of Example 1 and Comparative Examples 1 to 3, 50 of the 100 batteries obtained were immediately discharged at 1000 mA immediately after the production of the battery, and the initial average discharge capacity was measured. Next, the remaining 50 pieces were stored in an atmosphere of 60 ° C. for 3 months, then discharged at 1000 mA, and the average discharge capacity after storage was measured.

保存維持率は以下のようにして求めた。
保存維持率[%]=(保存後の平均放電容量[mAh])/(初期の平均放電容量[mAh])×100
The storage maintenance rate was determined as follows.
Storage maintenance ratio [%] = (Average discharge capacity after storage [mAh]) / (Initial average discharge capacity [mAh]) × 100

測定(b) 異常放電不良率
上述の実施例1および比較例1〜3について、それぞれ100個ずつ電池を作製し、異常放電不良率を測定した。実施例1および比較例1〜3のそれぞれについて、得られた100個の電池のうち50個は電池作製直後に直ちに42Ωの抵抗をかけて放電させて放電容量を測定した。次いで、残りの50個を60℃雰囲気下で3ヶ月保存した後、42Ωの抵抗をかけて放電させて放電容量を測定した。入力容量の80%に満たない容量で放電が終了した電池を異常放電不良とし、異常放電不良率を測定した。
Measurement (b) Abnormal discharge failure rate For each of Example 1 and Comparative Examples 1 to 3 described above, 100 batteries were produced, and the abnormal discharge failure rate was measured. For each of Example 1 and Comparative Examples 1 to 3, 50 of the 100 batteries obtained were immediately discharged by applying a resistance of 42Ω immediately after the battery was manufactured, and the discharge capacity was measured. Next, the remaining 50 pieces were stored in an atmosphere of 60 ° C. for 3 months, and then discharged with a resistance of 42Ω, and the discharge capacity was measured. A battery whose discharge was completed with a capacity less than 80% of the input capacity was regarded as abnormal discharge failure, and the abnormal discharge failure rate was measured.

異常放電不良率は以下のようにして求めた。
異常放電不良率[%]=(42Ω放電が入力容量の80%に満たない電池の数[個])/(試験電池数[個])×100
なお、今回の測定において試験電池数は50個である。
The abnormal discharge failure rate was determined as follows.
Abnormal discharge failure rate [%] = (number of batteries with 42Ω discharge less than 80% of input capacity [pieces]) / (number of test batteries [pieces]) × 100
In this measurement, the number of test batteries is 50.

測定(c) 内部抵抗
上述の実施例1および比較例1〜3について、それぞれ100個ずつ電池を作製し、内部抵抗測定した。実施例1および比較例1〜3のそれぞれについて、1kHzの交流を流したときのインピーダンスを求めて内部抵抗を調べ、平均の内部抵抗を調べた。
Measurement (c) Internal Resistance With respect to Example 1 and Comparative Examples 1 to 3 described above, 100 batteries were prepared and the internal resistance was measured. For each of Example 1 and Comparative Examples 1 to 3, the impedance when an alternating current of 1 kHz was passed was obtained, the internal resistance was examined, and the average internal resistance was examined.

以下の表1に、測定(a)、測定(b)および測定(c)の測定結果を示す。なお、表1では、銅箔テープからなる負極リードを電池素子外周部に周回させた実施例1および比較例1,2の電池において、銅箔テープの貼着開始端部位置に対する正極終端部および負極集端部の位置を、銅箔テープと重なる方向を+、銅箔テープと重ならない方向を−として記載する。例えば、電極が銅箔テープと5cm重なる場合は+5cm、銅箔テープと電極端部が重ならず、5cm離れている場合は−5cmとする。   Table 1 below shows the measurement results of measurement (a), measurement (b), and measurement (c). In Table 1, in the batteries of Example 1 and Comparative Examples 1 and 2 in which the negative electrode lead made of the copper foil tape was circulated around the battery element outer peripheral portion, the positive electrode termination portion relative to the adhesion start end position of the copper foil tape and The position of the negative electrode collecting end portion is described as + in the direction overlapping with the copper foil tape and-as the direction not overlapping with the copper foil tape. For example, when the electrode overlaps with the copper foil tape by 5 cm, it is +5 cm, and when the copper foil tape does not overlap with the electrode end portion, it is −5 cm.

Figure 0005011732
Figure 0005011732

上記結果から、金属リチウム箔を負極として用い、負極リードを電池素子の外周部に周回させた構成の電池において、負極リードと正極とが対向しないように構成することにより、保存維持率および異常放電不良率のそれぞれを良好に維持することがでることがわかる。   From the above results, in a battery having a configuration in which a metal lithium foil is used as the negative electrode and the negative electrode lead is circulated around the outer periphery of the battery element, the negative electrode lead and the positive electrode are configured so as not to face each other. It can be seen that each defective rate can be maintained well.

この原因は定かではないが、負極リードと正極とが対向することにより、負極リードの厚みによって負極の金属リチウムが圧迫され、負極リードおよび正極の対向部分に小さな短絡が発生し、電池が徐々に劣化したり、異常放電が発生していたものと考えられる。このため、負極リードと正極とが対向しないように構成することにより、保存維持率の低下や異常放電の発生を抑制することができるものと考えられる。   The cause of this is not clear, but the negative electrode lead and the positive electrode are opposed to each other, so that the metal lithium of the negative electrode is pressed by the thickness of the negative electrode lead, and a small short circuit occurs at the opposite part of the negative electrode lead and the positive electrode. It is considered that the battery was deteriorated or abnormal discharge occurred. For this reason, it is considered that the decrease in the storage maintenance rate and the occurrence of abnormal discharge can be suppressed by configuring the negative electrode lead and the positive electrode so as not to face each other.

また、短冊状の負極リードを用いた電池と比較して、負極リードを電池素子の外周部に周回させた構成の電池は内部抵抗を低減させることができる。   Further, as compared with a battery using a strip-shaped negative electrode lead, a battery having a configuration in which the negative electrode lead is circulated around the outer periphery of the battery element can reduce internal resistance.

以上、この発明の一実施の形態について具体的に説明したが、この発明は、上述の一実施の形態に限定されるものではなく、この発明の技術的思想に基づく各種の変形が可能である。   Although one embodiment of the present invention has been specifically described above, the present invention is not limited to the above-described embodiment, and various modifications based on the technical idea of the present invention are possible. .

例えば、上述の一実施の形態において挙げた数値はあくまでも例に過ぎず、必要に応じてこれと異なる数値を用いてもよい。   For example, the numerical values given in the above-described embodiment are merely examples, and different numerical values may be used as necessary.

また、正極21は、鉄系の材料に限られず、電解液に溶解し、析出して短絡するおそれのある材料であれば、この発明の構成を用いることにより効果を得ることができる。また、他の材料であっても、負極リードを電池素子外周部に周回させる構成とすることによって正極および負極が圧迫され、不具合が生じる場合もある。このため、電解液に溶解し、電池内部で析出する材料以外であってもこの発明の構成を用いることにより効果を得ることができる場合もある。   In addition, the positive electrode 21 is not limited to an iron-based material, and an effect can be obtained by using the configuration of the present invention as long as it is a material that can be dissolved in an electrolytic solution, deposited, and short-circuited. Moreover, even if it is another material, a positive electrode and a negative electrode may be pressed by making it the structure which makes a negative electrode lead go around the battery element outer peripheral part, and a malfunction may arise. For this reason, even if it is other than the material which melt | dissolves in electrolyte solution and deposits inside a battery, an effect can be acquired by using the structure of this invention.

また、負極22は、金属リチウム箔に限られず、銅など他の金属からなる負極集電体に金属リチウムからなる負極活物質層を設けた構造としてもよい。   The negative electrode 22 is not limited to a metal lithium foil, and may be a structure in which a negative electrode active material layer made of metallic lithium is provided on a negative electrode current collector made of another metal such as copper.

さらに、上述の一実施の形態および実施例では、電池素子の最外周に絶縁部材が直接巻かれている場合について説明したが、電池素子の最外周にセパレータが設けられ、さらに絶縁部材が設けられた構成としてもよい。なお、このような場合には、絶縁部材は必ずしも設ける必要はなく、セパレータの巻回終端部近傍を固定部材で固定し、最外周のセパレータに対して負極リードを周回させて固定してもよい。   Furthermore, in the above-described one embodiment and example, the case where the insulating member is directly wound around the outermost periphery of the battery element has been described. However, a separator is provided on the outermost periphery of the battery element, and an insulating member is further provided. It is good also as a structure. In such a case, the insulating member is not necessarily provided, and the vicinity of the winding terminal portion of the separator may be fixed by a fixing member, and the negative electrode lead may be rotated around the outermost separator and fixed. .

また、上述の一実施の形態および実施例では、絶縁部材がいわゆる終端テープと兼用されている場合について説明したが、絶縁部材と終端テープとは別の部材として設けられていてもよい。この場合、終端テープは電池素子を一周する必要はなく、電池素子の巻回終端部近傍の一部分のみに設けられていてもよい。   Moreover, although the above-mentioned one Embodiment and Example demonstrated the case where the insulating member was combined with what is called a termination | terminus tape, you may provide as a member different from an insulation member and a termination | terminus tape. In this case, the termination tape does not need to go around the battery element, and may be provided only in a part near the winding termination portion of the battery element.

加えて、絶縁部材は必ずしも負極の内周側のセパレータに固定される必要はなく、負極リード40が負極22と電池缶11の内壁とに接触可能であれば、負極22の外周側のセパレータ23に固定されていてもよい。   In addition, the insulating member is not necessarily fixed to the separator on the inner peripheral side of the negative electrode. If the negative electrode lead 40 can contact the negative electrode 22 and the inner wall of the battery can 11, the separator 23 on the outer peripheral side of the negative electrode 22. It may be fixed to.

この発明の一実施の形態による電池の、縦方向の断面構造を示す模式図である。It is a schematic diagram which shows the cross-sectional structure of the vertical direction of the battery by one Embodiment of this invention. この発明の一実施の形態による電池の、横方向の断面構造を示す模式図である。It is a schematic diagram which shows the cross-sectional structure of the horizontal direction of the battery by one Embodiment of this invention. 正極の巻回終端部を負極リードと対向させた場合の電池の、横方向の断面構造を示す模式図である。It is a schematic diagram which shows the cross-sectional structure of the horizontal direction of the battery at the time of making the winding termination | terminus part of a positive electrode oppose a negative electrode lead. この発明の一実施の形態による電池に収容された電池素子の巻回構造を示す模式図である。It is a schematic diagram which shows the winding structure of the battery element accommodated in the battery by one Embodiment of this invention.

符号の説明Explanation of symbols

10・・・電池
11・・・電池缶
12a,12b・・・絶縁板
13・・・電池蓋
14・・・安全弁機構
14a・・・ディスク板
15・・・PTC素子
16・・・絶縁封口ガスケット
20・・・電池素子
21・・・正極
21a・・・正極集電体
21b・・・正極活物質層
22・・・負極
23・・・セパレータ
24・・・センターピン
30・・・正極リード
40・・・負極リード
41・・・接着層
50・・・絶縁部材
DESCRIPTION OF SYMBOLS 10 ... Battery 11 ... Battery can 12a, 12b ... Insulation board 13 ... Battery cover 14 ... Safety valve mechanism 14a ... Disk board 15 ... PTC element 16 ... Insulation sealing gasket DESCRIPTION OF SYMBOLS 20 ... Battery element 21 ... Positive electrode 21a ... Positive electrode collector 21b ... Positive electrode active material layer 22 ... Negative electrode 23 ... Separator 24 ... Center pin 30 ... Positive electrode lead 40 ... Negative electrode lead 41 ... Adhesive layer 50 ... Insulating member

Claims (4)

正極活物質として鉄を含有する正極および負極を有し、該正極および該負極のいずれか一方が、他方よりも外周側になるようにして巻回された巻回構造を有する電池素子と、上記電池素子を収容する電池缶とを備え、
上記電池缶は、リードにより上記正極および上記負極のいずれか一方に電気的に接続され、
上記リードは、上記電池素子と上記電池缶との間に、上記電池素子を周回して設けられ、該リードと該電池素子との間に絶縁部材が設けられ、
上記リードの貼着開始端部と、上記電池缶と電気的に接続されない上記正極および上記負極のいずれか一方の終端部とが重ならない
池。
Have a positive and negative electrodes containing iron as a positive electrode active material, one of the positive electrode and the negative electrode, a battery element having a wound winding structure in such a manner that the outer peripheral side than the other, the A battery can containing a battery element;
The battery can is electrically connected to either the positive electrode or the negative electrode by a lead,
The lead is provided around the battery element between the battery element and the battery can, and an insulating member is provided between the lead and the battery element.
The lead start end of the lead does not overlap with the terminal of either the positive electrode or the negative electrode that is not electrically connected to the battery can.
Batteries.
上記絶縁部材の厚みは40μm以上である
請求項1に記載の電池。
The insulating member has a thickness of 40 μm or more.
The battery according to claim 1 .
上記負極は、リチウムを含有・付着またはリチウムイオンを吸蔵す
求項1に記載の電池。
The above negative electrode, you occluding the inclusion or attachment or lithium ions of lithium
The battery according to Motomeko 1.
上記リードは、銅(Cu)により構成されてい
求項1に記載の電池。
The lead is that consists of copper (Cu)
The battery according to Motomeko 1.
JP2006012817A 2006-01-20 2006-01-20 battery Expired - Fee Related JP5011732B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006012817A JP5011732B2 (en) 2006-01-20 2006-01-20 battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006012817A JP5011732B2 (en) 2006-01-20 2006-01-20 battery

Publications (2)

Publication Number Publication Date
JP2007194129A JP2007194129A (en) 2007-08-02
JP5011732B2 true JP5011732B2 (en) 2012-08-29

Family

ID=38449651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006012817A Expired - Fee Related JP5011732B2 (en) 2006-01-20 2006-01-20 battery

Country Status (1)

Country Link
JP (1) JP5011732B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101850748A (en) * 2009-03-30 2010-10-06 丰田合成株式会社 Sealing band

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2010306801B2 (en) * 2009-10-14 2014-03-06 Energizer Brands, Llc Lithium-iron disulfide cell design
CN102414885B (en) * 2010-03-30 2015-09-09 松下电器产业株式会社 No. five lithium primary batteries and No. seven lithium primary batteries
CN102760911B (en) * 2011-04-27 2015-03-11 黄祥盛 Preparation method of novel high-capacity cylindrical battery cell

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5758274U (en) * 1980-09-24 1982-04-06
US4609598A (en) * 1985-11-04 1986-09-02 Union Carbide Corporation Electrochemical cell
JPS6288369U (en) * 1985-11-25 1987-06-05
JP2752361B2 (en) * 1986-11-03 1998-05-18 エバレディー、バッテリー、カンパニー、インコーポレーテッド Sealed non-aqueous battery with positive terminal pin and perchlorate electrolyte
DE3902648A1 (en) * 1989-01-30 1990-08-09 Varta Batterie GALVANIC ELEMENT
JP3213370B2 (en) * 1992-04-14 2001-10-02 三洋電機株式会社 Organic electrolyte battery
JPH11273692A (en) * 1998-03-23 1999-10-08 Sanyo Electric Co Ltd Battery having spiral electrode body
JP2003168413A (en) * 2001-11-30 2003-06-13 Sanyo Electric Co Ltd Battery and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101850748A (en) * 2009-03-30 2010-10-06 丰田合成株式会社 Sealing band

Also Published As

Publication number Publication date
JP2007194129A (en) 2007-08-02

Similar Documents

Publication Publication Date Title
JP5954674B2 (en) Battery and battery manufacturing method
JP5260838B2 (en) Non-aqueous secondary battery
CN102195088B (en) Nonaqueous electrolyte battery and nonaqueous electrolyte
JP5002927B2 (en) Non-aqueous electrolyte secondary battery and battery pack using the same
JP5264099B2 (en) Nonaqueous electrolyte secondary battery
WO2013062056A1 (en) Non-aqueous secondary battery
JP5103496B2 (en) Lithium ion secondary battery
EP2779280A2 (en) Battery
JP4952878B2 (en) Primary battery
KR20100114515A (en) Battery
JP4678235B2 (en) Nonaqueous electrolyte secondary battery
JP2010086780A (en) Square secondary battery
JP4539658B2 (en) battery
CN109891640B (en) Electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP2008243672A (en) Winding electrode for secondary battery, lithium-ion secondary battery, and secondary battery pack
JP5011732B2 (en) battery
JP2007128747A (en) Battery
JP2013097903A (en) Nonaqueous electrolyte secondary battery
JP5141940B2 (en) Secondary battery
KR101833609B1 (en) Method of manufacturing electric power storage device, and electric power storage device
JP4839746B2 (en) Cylindrical non-aqueous electrolyte secondary battery
JP4455008B2 (en) Nonaqueous electrolyte secondary battery
CN111183542B (en) Nonaqueous electrolyte secondary battery
JP2019121500A (en) Cylindrical secondary cell
JP2007128746A (en) Battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110628

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120508

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120521

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees