JP5011650B2 - Light detection method - Google Patents

Light detection method Download PDF

Info

Publication number
JP5011650B2
JP5011650B2 JP2005105875A JP2005105875A JP5011650B2 JP 5011650 B2 JP5011650 B2 JP 5011650B2 JP 2005105875 A JP2005105875 A JP 2005105875A JP 2005105875 A JP2005105875 A JP 2005105875A JP 5011650 B2 JP5011650 B2 JP 5011650B2
Authority
JP
Japan
Prior art keywords
light
region
hole
particles
regions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005105875A
Other languages
Japanese (ja)
Other versions
JP2006287021A (en
Inventor
将也 中谷
亘彦 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2005105875A priority Critical patent/JP5011650B2/en
Publication of JP2006287021A publication Critical patent/JP2006287021A/en
Application granted granted Critical
Publication of JP5011650B2 publication Critical patent/JP5011650B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Light Receiving Elements (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Description

本発明は例えば孔径約5nmの微小な孔における発光状態を検出するための光センサおよび光検知方法に関するものである。   The present invention relates to an optical sensor and an optical detection method for detecting a light emission state in a minute hole having a hole diameter of about 5 nm, for example.

従来、光を感知する方法としては、光によって電子状態が変化する感知部分を半導体基板に形成することで、感知部分に当たる光を高精度に感知していた。例えばその先行技術としては下記特許文献1が存在する。
特開2004−363354号公報
Conventionally, as a method for sensing light, a light that strikes the sensing portion is sensed with high accuracy by forming a sensing portion in which an electronic state is changed by light on a semiconductor substrate. For example, the following Patent Document 1 exists as the prior art.
JP 2004-363354 A

しかしながら、従来では例えば孔径約5nmのような小さな孔内における発光状態を検出する技術はなかった。そこで本発明は、例えば孔径約5nmのような小さな孔内における発光状態を検出する光センサを提供することを目的とする。   However, conventionally, there has been no technique for detecting a light emission state in a small hole such as a hole diameter of about 5 nm. Accordingly, an object of the present invention is to provide an optical sensor that detects a light emission state in a small hole having a hole diameter of about 5 nm, for example.

この目的を達成するために本発明は、半導体からなるプレートと、このプレートによって区画された第一、第二の領域と、前記プレート内に形成され、前記第一、第二の領域を接続する少なくとも一つ以上の微小貫通孔と、この第一、第二の領域内に備えられた測定電極とを備え、前記第一、第二の領域内および前記微小貫通孔内に電解性液体もしくはゲルを充填した。   To achieve this object, the present invention provides a plate made of semiconductor, first and second regions defined by the plate, and the first and second regions formed in the plate. At least one or more micro through holes and a measurement electrode provided in the first and second regions, and an electrolytic liquid or gel in the first and second regions and in the micro through holes. Filled.

この構成により、例えば孔径約5nmのような小さな孔内における発光状態を検出する光センサを提供することができる。   With this configuration, it is possible to provide an optical sensor that detects a light emission state in a small hole having a hole diameter of about 5 nm, for example.

(実施の形態1)
本発明の実施の形態1について、図面を用いて説明する。図1は本発明の光センサの一部切り取り斜視図であり、図2は同断面図である。図1および図2において、1はシリコンからなるプレートであり、このプレート1の一部は肉薄部2となっている。プレート1および肉薄部2の材料であるシリコンはドーピング量が任意の範囲であらかじめ決められ、所望の電気伝導率を有する半導体である。さらに第一の領域4と第二の領域5は肉薄部2に設けられた微小貫通孔3によってのみ互いに接続されている。また、第一の領域4と第二の領域5内にはそれぞれ測定電極8,9が設置されており、これら測定電極8,9はさらに測定器(図示せず)へと接続されている。さらに第一の領域4、第二の領域5および微小貫通孔3の内部は、塩化ナトリウム、塩化カリウムなどの電解性液体10によって充たされている。電解性液体10は電解性ゲルであってもよい。さらに第一の領域4および第二の領域5には蓋板の一例としてキャップ6,7が当接されており、これにより第一の領域4、および第二の領域5は外部雰囲気から遮断されている。なお、キャップ6,7内の少なくとも一つは外部からの光を透過する材料でできている。
(Embodiment 1)
Embodiment 1 of the present invention will be described with reference to the drawings. FIG. 1 is a partially cutaway perspective view of an optical sensor of the present invention, and FIG. 2 is a sectional view thereof. 1 and 2, reference numeral 1 denotes a plate made of silicon, and a part of the plate 1 is a thin portion 2. Silicon, which is a material of the plate 1 and the thin portion 2, is a semiconductor having a desired electrical conductivity with a doping amount determined in advance in an arbitrary range. Furthermore, the first region 4 and the second region 5 are connected to each other only by the minute through hole 3 provided in the thin portion 2. Further, measurement electrodes 8 and 9 are installed in the first region 4 and the second region 5, respectively, and these measurement electrodes 8 and 9 are further connected to a measuring instrument (not shown). Furthermore, the insides of the first region 4, the second region 5, and the minute through-hole 3 are filled with an electrolytic liquid 10 such as sodium chloride or potassium chloride. The electrolytic liquid 10 may be an electrolytic gel. Further, caps 6 and 7 as an example of a cover plate are brought into contact with the first region 4 and the second region 5, whereby the first region 4 and the second region 5 are shielded from the external atmosphere. ing. At least one of the caps 6 and 7 is made of a material that transmits light from the outside.

ここで、本実施の形態における光センサの測定系の等価回路は図4に示すように、測定電極8,9間には、測定電極8,9から微小貫通孔3の開口部までの抵抗R1(13),R2(14)と、微小貫通孔3内の抵抗Rh(15)とプレート内の抵抗Rp(16)、微小貫通孔3の壁面を伝わる表面抵抗Rs(17)によって構成される。このうち、R1(13),R2(14),Rh(15)は電解性液体10の伝導率によって決まるが、微小貫通孔3の形状は第一の領域4、第二の領域5に比べて圧倒的に小さいのでRh(15)>>R1(13),R2(14)の関係が成り立ち、電極間の抵抗は実質的に、Rh(15),Rp(16)およびRs(17)が並列に接続された回路によって決まる。一方、Rh(15),Rp(16)およびRs(17)は、肉薄部2の材料であるシリコンへあらかじめドーピングした不純物の量で決まっている。   Here, as shown in FIG. 4, the equivalent circuit of the measurement system of the optical sensor in the present embodiment has a resistance R <b> 1 between the measurement electrodes 8 and 9 and the opening of the minute through hole 3. (13), R2 (14), the resistance Rh (15) in the minute through hole 3, the resistance Rp (16) in the plate, and the surface resistance Rs (17) transmitted through the wall surface of the minute through hole 3. Among these, R 1 (13), R 2 (14), and Rh (15) are determined by the conductivity of the electrolytic liquid 10, but the shape of the minute through hole 3 is larger than that of the first region 4 and the second region 5. Since it is overwhelmingly small, the relationship of Rh (15) >> R1 (13), R2 (14) is established, and the resistance between the electrodes is substantially parallel to Rh (15), Rp (16) and Rs (17). It depends on the circuit connected to. On the other hand, Rh (15), Rp (16), and Rs (17) are determined by the amount of impurities previously doped into silicon, which is the material of the thin portion 2.

次に上記本発明の光センサを用いて、外部雰囲気の光エネルギー量を測定する方法について説明する。図3および図5は本発明の光センサの使用方法を示す断面図および拡大断面図である。ここで、図3に示す本実施の形態の光センサの測定電極8および9の間の電気的特性値である抵抗値を測定すると、図4で示された等価回路に従って抵抗値が観測される。   Next, a method for measuring the amount of light energy in the external atmosphere using the optical sensor of the present invention will be described. 3 and 5 are a sectional view and an enlarged sectional view showing a method of using the optical sensor of the present invention. Here, when the resistance value, which is an electrical characteristic value between the measurement electrodes 8 and 9 of the optical sensor of the present embodiment shown in FIG. 3, is measured, the resistance value is observed according to the equivalent circuit shown in FIG. .

次に図3に示すように、第一の領域4側から光を導入すると光は第一の領域4内を充たした電解性液体10中を散乱しながら透過し、図5に示すように微小貫通孔3内へも進入する。微小貫通孔3内へ進入した光は微小貫通孔3の孔内も照射することとなる。ここで微小貫通孔3の内壁は適切なドーピング処理が施されたシリコンでできており、光の照射によって特に微小貫通孔3内壁表面付近のホールもしくは電子移動度を変化させる。この変化は抵抗Rs(17)の変化となって、測定電極8,9の抵抗値変化として検知される。   Next, as shown in FIG. 3, when light is introduced from the first region 4 side, the light passes through the electrolytic liquid 10 filling the first region 4 while being scattered, and as shown in FIG. It also enters the through hole 3. The light that has entered the minute through-hole 3 is also irradiated inside the minute through-hole 3. Here, the inner wall of the minute through hole 3 is made of silicon subjected to appropriate doping treatment, and the hole or electron mobility particularly near the inner wall surface of the minute through hole 3 is changed by light irradiation. This change is a change in the resistance Rs (17), and is detected as a change in the resistance value of the measurement electrodes 8 and 9.

なお、抵抗Rs(17)の変化を検出する際には、Rh(15)、Rp(16)の値がRs(17)と同じであるか、もしくは大きい方が望ましいため、微小貫通孔3の孔径を小さく、かつ長手方向の長さを長くする When detecting a change in the resistance Rs (17), it is desirable that the values of Rh (15) and Rp (16) are the same as or larger than those of Rs (17). The hole diameter is reduced and the length in the longitudinal direction is increased .

また、本実施の形態における光センサは、第一の領域4、第二の領域5を光透過性である透明なキャップ6,7で覆っているので、第一の領域4、第二の領域5を測定環境から分離できる。   Moreover, since the optical sensor in this Embodiment has covered the 1st area | region 4 and the 2nd area | region 5 with the transparent caps 6 and 7 which are light transmittances, the 1st area | region 4 and the 2nd area | region 5 can be separated from the measurement environment.

上記の構成により、測定環境としての外部雰囲気が液体であっても極めて簡便な構造で光検知が行われるのである。   With the above configuration, even if the external atmosphere as a measurement environment is a liquid, light detection is performed with a very simple structure.

なお、本実施の形態における光センサを溶液中で使用する場合には測定電極8,9が外部雰囲気溶液と触れないように適切な保護が必要であるが、図面ではこのことを省略している。   In addition, when using the optical sensor in this Embodiment in a solution, appropriate protection is required so that the measurement electrodes 8 and 9 do not touch an external atmosphere solution, but this is omitted in the drawings. .

また、プレート1および肉薄部2は半導体で構成されており、これによってプレート1および肉薄部2の内部および表面のホールまたは電子移動度をドーピング量によって制御できるが、特にシリコンあるいはガリウムヒ素基板である場合には、肉薄部2への微小貫通孔3の形成が行いやすいという製造上の利点を有する。   In addition, the plate 1 and the thin portion 2 are made of a semiconductor, so that the hole or electron mobility in the inside and the surface of the plate 1 and the thin portion 2 can be controlled by the doping amount, but in particular a silicon or gallium arsenide substrate. In this case, there is a manufacturing advantage that the minute through hole 3 is easily formed in the thin portion 2.

また、測定電極8,9は銀、金、白金などが用いられるが、特に表面をAgClでコーティングすると、測定電極8,9が第一の領域4と第二の領域5を充たす電解性液体10との間で電気二重層容量を持たないため、直流に近い周波数成分の測定も容易に行えるので、より高精度な検知が可能である。   Further, the measurement electrodes 8 and 9 are made of silver, gold, platinum, or the like. Particularly, when the surface is coated with AgCl, the measurement electrodes 8 and 9 fill the first region 4 and the second region 5 with the electrolytic liquid 10. Since there is no electric double layer capacity between the two, a frequency component close to direct current can be easily measured, so that detection with higher accuracy is possible.

なお、肉薄部2に設けた微小貫通孔3は、測定電極8,9間の抵抗値を正確に検知するために数個設けた構成とするのが望ましい。   It should be noted that it is desirable that several micro through holes 3 provided in the thin portion 2 are provided in order to accurately detect the resistance value between the measurement electrodes 8 and 9.

(実施の形態2)
本発明の実施の形態2における光センサについて、図面を用いて説明する。
(Embodiment 2)
An optical sensor according to Embodiment 2 of the present invention will be described with reference to the drawings.

図6に示すように、プレート1の片側を外部雰囲気に開放した構造とすることもでき、この場合は光センサを直接電解性液体10につけることで、溶液中の光エネルギー量を測定できる。   As shown in FIG. 6, it can also be set as the structure which open | released one side of the plate 1 to the external atmosphere, In this case, the optical energy amount in a solution can be measured by attaching a photosensor to the electrolytic liquid 10 directly.

さらに、図7は本実施の形態2の別の方法による光センサの模式断面図であるが、第二の領域5に吸引手段18が接続されていることを特徴とする。この吸引手段18は第一の領域4、第二の領域5を充たす物質が溶液である場合にはポンプなどの圧力減圧手段等であり、ゲルである場合には電解発生手段等である。例えば、吸引手段18が圧力減圧手段であると、溶液は第一の領域4側から第二の領域5側に流れ、吸引手段18が電解発生手段である場合にはゲル中の電解物質、例えば電荷を帯びた分子、細胞などが第一の領域4側から第二の領域5側へ流れることになる。   FIG. 7 is a schematic cross-sectional view of an optical sensor according to another method of the second embodiment, and is characterized in that a suction means 18 is connected to the second region 5. The suction means 18 is a pressure reducing means such as a pump when the substance filling the first region 4 and the second region 5 is a solution, and is an electrolysis generating means when it is a gel. For example, when the suction means 18 is a pressure reduction means, the solution flows from the first region 4 side to the second region 5 side, and when the suction means 18 is an electrolysis generating means, an electrolytic substance in the gel, for example, Charged molecules, cells, and the like flow from the first region 4 side to the second region 5 side.

以上の構成により、微小貫通孔3内を流れる微小な粒子、分子(例えば細胞、核酸、タンパク質などが考えられる)が発光している場合に、この光によって微小貫通孔3の内壁で検知される抵抗Rs(17)が下がるので、これらの粒子、分子が発光するエネルギー量を検出できる。   With the above configuration, when minute particles or molecules (for example, cells, nucleic acids, proteins, etc.) flowing in the minute through hole 3 emit light, the light is detected on the inner wall of the minute through hole 3 by this light. Since the resistance Rs (17) decreases, the amount of energy emitted by these particles and molecules can be detected.

上記の検出方法について図8を用いて説明する。ここで、微小貫通孔3に発光する核酸、タンパク質などを通過させ光を検知する際には、配列の結合状態によって発光状態が変化するアッセイ系を測定評価するために、この核酸配列19に蛍光修飾を施した上で、微小貫通孔3にこの核酸配列19を流入・流出させる。この構成により、核酸配列19が発光している状態を簡便な構造で高精度に検出できる。さらに、核酸配列19は通常、ひも状態の長細い形状であり、微小貫通孔3の孔径が十分小さい場合には、核酸配列19は図のように伸びた状態で通過する。そして、核酸配列19の特異配列箇所のみが発光するようにアッセイ系を構成すれば、特異配列箇所が通過したときのみ表面抵抗Rs(17)が変化するので、核酸配列19におけるこの特異配列の位置を測定することが可能となる。   The above detection method will be described with reference to FIG. Here, when light is detected by passing through a nucleic acid, protein, or the like that emits light through the micro through-hole 3, the nucleic acid sequence 19 is subjected to fluorescence to measure and evaluate an assay system in which the light emission state changes depending on the binding state of the sequence. After the modification, the nucleic acid sequence 19 is caused to flow into and out of the micro through-hole 3. With this configuration, the state in which the nucleic acid sequence 19 emits light can be detected with a simple structure and high accuracy. Furthermore, the nucleic acid sequence 19 usually has a long and narrow shape in a string state. When the hole diameter of the micro through-hole 3 is sufficiently small, the nucleic acid sequence 19 passes in an extended state as shown in the figure. If the assay system is configured such that only the specific sequence portion of the nucleic acid sequence 19 emits light, the surface resistance Rs (17) changes only when the specific sequence portion passes, so the position of this specific sequence in the nucleic acid sequence 19 Can be measured.

さらに図9に示すように、微小貫通孔3を通過させる粒子を細胞20とした場合には、細胞20を特定の化学物質との反応により細胞が発光するアッセイ系とし、この光を検出することによって細胞20と特定の化学物質との反応状態を知ることができる。   Furthermore, as shown in FIG. 9, when the particles that pass through the micro through-hole 3 are the cells 20, the cells 20 are used as an assay system in which the cells emit light by reaction with a specific chemical substance, and this light is detected. Thus, the reaction state between the cell 20 and a specific chemical substance can be known.

以上のように、粒子あるいは分子の発光状態を極めて小さな孔の中で測定するので、個々の粒子あるいは分子の発光状態を高精度に測定できるのである。   As described above, since the light emission state of particles or molecules is measured in an extremely small hole, the light emission state of individual particles or molecules can be measured with high accuracy.

以上のように本発明にかかる光センサは、例えば孔径約5nmのような小さな孔内における発光状態を検出することができる。   As described above, the optical sensor according to the present invention can detect a light emission state in a small hole having a hole diameter of about 5 nm, for example.

本発明の実施の形態1における光センサの一部切り取り斜視図1 is a partially cutaway perspective view of an optical sensor according to Embodiment 1 of the present invention. 同光センサの断面図Cross section of the same light sensor 同光センサの使用方法を示す断面図Sectional view showing how to use the same optical sensor 同光センサの等価回路図Equivalent circuit diagram of the same optical sensor 同光センサの使用方法を示す図3A部の拡大断面図FIG. 3A is an enlarged cross-sectional view showing how to use the optical sensor. 本発明の実施の形態2における光センサの断面図Sectional drawing of the optical sensor in Embodiment 2 of this invention 同実施の形態2における光センサの断面図Sectional drawing of the optical sensor in Embodiment 2 同実施の形態2における使用方法を示す拡大断面図The expanded sectional view which shows the usage method in Embodiment 2 同実施の形態2における使用方法を示す拡大断面図The expanded sectional view which shows the usage method in Embodiment 2

符号の説明Explanation of symbols

1 プレート
2 肉薄部
3 微小貫通孔
4 第一の領域
5 第二の領域
6 キャップ
7 キャップ
8 測定電極
9 測定電極
10 電解性液体
13 抵抗R1
14 抵抗R2
15 抵抗Rh
16 抵抗Rp
17 抵抗Rs
18 吸引手段
19 核酸配列
20 細胞
DESCRIPTION OF SYMBOLS 1 Plate 2 Thin part 3 Micro through-hole 4 1st area | region 5 2nd area | region 6 Cap 7 Cap 8 Measuring electrode 9 Measuring electrode 10 Electrolytic liquid 13 Resistance R1
14 Resistance R2
15 Resistance Rh
16 Resistance Rp
17 Resistance Rs
18 Aspiration means 19 Nucleic acid sequence 20 cells

Claims (3)

半導体からなるプレートと、このプレートによって区画された第一、第二の領域と、前記プレート内に形成され、前記第一、第二の領域を接続する少なくとも一つ以上の微小貫通孔と、前記第一、第二の領域内に備えられた測定電極とを備え、前記第一、第二の領域内および前記微小貫通孔内を電解性液体もしくはゲルで充填した光センサを用い、前記第一の領域の電解性液体もしくはゲル内に、外部からの特定の刺激により光を発する粒子もしくは分子またはこれらの集合体を混合する工程と、前記第一の領域から第二の領域へこの粒子もしくは分子またはこれらの集合体を流出させる工程と、前記第一の領域と第二の領域内に設置された測定電極間の電気特性値を調べることにより、外部からの刺激によって前記粒子もしくは分子またはこれらの集合体が発する光を検知する工程を有したことを特徴とする光検知方法。 A plate made of a semiconductor, first and second regions partitioned by the plate, at least one or more micro through-holes formed in the plate and connecting the first and second regions, and Measuring electrodes provided in the first and second regions, and using the optical sensor in which the first and second regions and the micro through-holes are filled with an electrolytic liquid or gel. Mixing the particles or molecules that emit light by a specific external stimulus or an assembly thereof into the electrolytic liquid or gel in the region, and the particles or molecules from the first region to the second region Alternatively, the step of causing these aggregates to flow out and the electrical property value between the measurement electrodes installed in the first region and the second region are examined, whereby the particles or molecules or the Light detecting method characterized by having a step of detecting the light these aggregates emitted. 粒子が細胞であり、かつ前記刺激は化学物質によるものであって、前記刺激を受けた細胞が発する光を感知することを特徴とする請求項記載の光検知方法。 Particles are cells, and the stimulation was due to chemicals, light detecting method according to claim 1, wherein the sensing light that cells that have undergone the stimulus is emitted. 分子が核酸もしくはタンパク質であり、かつ前記刺激が励起光であって、前記励起光を受けた前記分子が発する光を感知する請求項記載の光検知方法。 The light detection method according to claim 2 , wherein the molecule is a nucleic acid or a protein, and the stimulus is excitation light, and light emitted from the molecule receiving the excitation light is sensed.
JP2005105875A 2005-04-01 2005-04-01 Light detection method Expired - Fee Related JP5011650B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005105875A JP5011650B2 (en) 2005-04-01 2005-04-01 Light detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005105875A JP5011650B2 (en) 2005-04-01 2005-04-01 Light detection method

Publications (2)

Publication Number Publication Date
JP2006287021A JP2006287021A (en) 2006-10-19
JP5011650B2 true JP5011650B2 (en) 2012-08-29

Family

ID=37408574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005105875A Expired - Fee Related JP5011650B2 (en) 2005-04-01 2005-04-01 Light detection method

Country Status (1)

Country Link
JP (1) JP5011650B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5894351A (en) * 1997-05-13 1999-04-13 Colvin, Jr.; Arthur E. Fluorescence sensing device
DE69942697D1 (en) * 1998-01-12 2010-09-30 Massachusetts Inst Technology Device for micro test implementation
JP3945338B2 (en) * 2002-08-01 2007-07-18 松下電器産業株式会社 Extracellular potential measuring device and manufacturing method thereof
JP3861831B2 (en) * 2003-03-07 2006-12-27 松下電器産業株式会社 Extracellular potential measuring device and manufacturing method thereof
WO2004088298A1 (en) * 2003-03-28 2004-10-14 Fujitsu Limited Cavity electrode structure, sensor using same, and protein detection device

Also Published As

Publication number Publication date
JP2006287021A (en) 2006-10-19

Similar Documents

Publication Publication Date Title
Bansod et al. A review on various electrochemical techniques for heavy metal ions detection with different sensing platforms
Feng et al. Disposable paper-based bipolar electrode for sensitive electrochemiluminescence detection of a cancer biomarker
Gencoglu et al. Electrochemical detection techniques in micro-and nanofluidic devices
EP1097371B1 (en) Electrochemiluminescence cell with electrically floating reaction electrodes
Wei et al. Electrochemical biosensors at the nanoscale
JP3093274B2 (en) Gas concentration measurement method and micromachining detection device for implementing the method
Berduque et al. Voltammetric characterisation of silicon-based microelectrode arrays and their application to mercury-free stripping voltammetry of copper ions
CN110337586A (en) For detecting the analyte detection of at least one of at least one fluid sample analyte
JP2007523327A5 (en)
Hsueh et al. A microfabricated, electrochemiluminescence cell for the detection of amplified DNA
RU2650087C2 (en) Integrated circuit with sensing transistor array, sensing apparatus and measuring method
Jin et al. Nanomaterial-based environmental sensing platforms using state-of-the-art electroanalytical strategies
Medina-Sánchez et al. On-chip electrochemical detection of CdS quantum dots using normal and multiple recycling flow through modes
US20230137889A1 (en) Electrochemical sensor with opening between solid elements
EP2182358B1 (en) Method for detecting analyte, detection apparatus, and test chip
US7438796B2 (en) Electrochemical chlorine sensor
KR20140012933A (en) Integrated carbon electrode chips for the electric excitation of lanthanide chelates, and analytical methods using these chips
KR20150048702A (en) Electrochemical-based analytical test strip with intersecting sample-receiving chambers
Huang et al. Design of an electrochemiluminescence detection system through the regulation of charge density in a microchannel
Somnet et al. Ready-to-use paraquat sensor using a graphene-screen printed electrode modified with a molecularly imprinted polymer coating on a platinum core
US20230314359A1 (en) Electrochemical sensor
JP5011650B2 (en) Light detection method
Wan et al. Design of a miniaturized multisensor chip with nanoband electrode array and light addressable potentiometric sensor for ion sensing
Liu et al. Monolithic integration of three-material microelectrodes for electrochemical detection on PMMA substrates
JP5781256B2 (en) Reader device and signal amplification method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080306

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20080414

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120508

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120521

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees