JP5009840B2 - Optical device design support method and recording medium - Google Patents

Optical device design support method and recording medium Download PDF

Info

Publication number
JP5009840B2
JP5009840B2 JP2008058492A JP2008058492A JP5009840B2 JP 5009840 B2 JP5009840 B2 JP 5009840B2 JP 2008058492 A JP2008058492 A JP 2008058492A JP 2008058492 A JP2008058492 A JP 2008058492A JP 5009840 B2 JP5009840 B2 JP 5009840B2
Authority
JP
Japan
Prior art keywords
optical
mechanical
optical component
behavior state
mechanical behavior
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008058492A
Other languages
Japanese (ja)
Other versions
JP2008257705A (en
Inventor
徹也 園田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2008058492A priority Critical patent/JP5009840B2/en
Publication of JP2008257705A publication Critical patent/JP2008257705A/en
Application granted granted Critical
Publication of JP5009840B2 publication Critical patent/JP5009840B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、複写機やレーザプリンタなど電子写真方式の画像形成装置に装備される光書込みユニットなどの光学機器の設計支援技術に関し、特に、機械的挙動による光学的性能への影響を軽減するのに最適な機械構造を光路解析及び機械系解析の手法を用いて、且つ使用する光学部品の変形を考慮しつつ行えるようにした光学機器の設計支援方法及び光学機器の設計支援プログラムを記録した記録媒体に関するものである。   The present invention relates to a design support technology for an optical device such as an optical writing unit installed in an electrophotographic image forming apparatus such as a copying machine or a laser printer, and in particular, reduces the influence of mechanical behavior on optical performance. Optical equipment design support method and optical equipment design support program that can perform optimal optical structure using optical path analysis and mechanical system analysis methods, taking into account deformation of optical components used It relates to the medium.

一般に、複写機やレーザプリンタ等に装備される光書き込みユニットなどの光学機器の設計は、その光学機器の機械的挙動が光学的性能に及ぼす影響を考慮して行う必要がある。光書き込みユニットの場合、例えばスポット位置ずれを引き起こす要因としてハウジングの変形、振動等を挙げることができ、その影響を受けないようにユニット全体及びユニットを構成する各光学機器を設計する必要がある。そのためには、ユニット全体で位置ずれとなる要因が発生したときにどの程度スポット位置がずれるのかについて事前に検証しておく必要がある。
特許文献1の発明は、光学機器の機械系解析モデル、光学系解析モデル及び機械特性パラメータの初期値を作成し、機械系解析モデルに械特性パラメータの初期値を代入して光学部品の変形状態を算出し、光学系解析モデルを用いて光学部品の変形時の光学的性能を計算し、予め計算しておいた静止時の光学的性能と比較し、その差が許容値以内かどうか判断する。許容値以内でなければ、光学的性能の変化を求め、その結果を基に最適化計算を行って機械特性パラメータの最適化計算を行い、機械特性パラメータの値を最適化計算で得られた値に変更するという処理を、許容値以内に収まるまで繰り返すものである。
In general, it is necessary to design an optical device such as an optical writing unit provided in a copying machine or a laser printer in consideration of the influence of the mechanical behavior of the optical device on the optical performance. In the case of the optical writing unit, for example, deformation of the housing, vibration, etc. can be cited as factors that cause spot position deviation, and it is necessary to design the entire unit and each optical device constituting the unit so as not to be affected by the influence. For this purpose, it is necessary to verify in advance how much the spot position is shifted when a factor causing positional deviation occurs in the entire unit.
The invention of Patent Document 1 creates a mechanical system analysis model of an optical instrument, an optical system analysis model, and initial values of mechanical characteristic parameters, and substitutes the initial values of the mechanical characteristic parameters into the mechanical system analysis model to deform the optical component. Calculate the optical performance when the optical component is deformed using the optical system analysis model, compare with the optical performance at rest calculated in advance, and determine whether the difference is within the allowable value . If the value is not within the allowable value, obtain the change in optical performance, perform the optimization calculation based on the result, perform the optimization calculation of the mechanical property parameter, and obtain the value of the mechanical property parameter by the optimization calculation. The process of changing to is repeated until it falls within the allowable value.

また、特許文献2の発明は、光学機器を構成する光学部品の振動が光学機器の性能に与える影響を解析するために、光学部品の振動数及び振幅を実際に測定し、測定された光学部品の振動数及び振幅の情報に基づいて有限要素法のシミュレーションモデルを作成し、生成されたシミュレーションモデルを用いて振動計算を行い、計算された光学部品の振動による変形状態を、3次元空間に対する一意の形状表現が可能な形状関数で近似し(曲面フィッティング)、形状関数に基づいて光学機器の性能に関係する特性の計算を行う。前記曲面フィッティングでは、形状関数を空間変数x、y、zの多項式で表現し、シミュレーションモデルによって離散的に計算された変形状態から最小2乗法によって前記多項式の各係数を求めて曲面フィッティングを行う。
また、特許文献3の発明では、光学設計ツールで設計式に基づいて設計した光学系の形状を変形解析ツールに入力し、機械的又は熱的挙動を調べ、変形の仕方から、より最適な光学系の形状を探す場合、変形解析ツールのモデル化において、粗く生成されたモデルを設計式に基づいて補正し、補正されたモデルについて数値解析することにより、シミュレーション結果を得ている。
特許第3788674号 特許第3595775号 特開2005−172545公報
In addition, the invention of Patent Document 2 actually measures the frequency and amplitude of an optical component in order to analyze the influence of the vibration of the optical component constituting the optical device on the performance of the optical device. A finite element method simulation model is created based on the vibration frequency and amplitude information, and the calculated simulation model is used to calculate the vibration. The deformation state of the calculated optical component due to vibration is unique to the three-dimensional space. The shape function is approximated by a shape function capable of expressing the shape (curved surface fitting), and the characteristics related to the performance of the optical apparatus are calculated based on the shape function. In the curved surface fitting, a shape function is expressed by a polynomial of spatial variables x, y, and z, and each coefficient of the polynomial is obtained by a least square method from a deformation state discretely calculated by a simulation model, and curved surface fitting is performed.
Further, in the invention of Patent Document 3, the shape of the optical system designed based on the design formula by the optical design tool is input to the deformation analysis tool, the mechanical or thermal behavior is examined, and a more optimal optical is determined from the deformation method. When searching for the shape of a system, in modeling a deformation analysis tool, a coarsely generated model is corrected based on a design formula, and a simulation result is obtained by numerically analyzing the corrected model.
Japanese Patent No. 3788674 Japanese Patent No. 3595775 JP 2005-172545 A

しかしながら、光学面をフィッティングする従来の方法では、以下のような問題があった。すなわち、特許文献1、2では、振動解析工程で算出した数値モデルの光学面を曲面フィッティングし、そのフィッティング面を直接光学計算工程で用いて光学的性能を正確に予測するためには、フィッティング面の精度が重要である。このため、振動解析工程での数値モデルにおいて、光学面に相当する面は実際の光学面となるように十分な精度で位置決めしなければならないという問題点があった。
また特許文献1〜3では、振動解析工程での計算結果データが膨大になる。例えば、有限要素解析モデルの節点数が多く必要である。このため、所定時間後の各節点の位置情報を記録すると、データが膨大になる。また、振動解析するには重要でない節点の位置情報も必要とされるため、振動解析工程で計算する時間が膨大になるという問題点があった。
さらに特許文献1〜3では、光学面の形状(mmオーダ)と変形量(nmオーダ)の両者を含む絶対位置を検出するため、フィッティングに必要な有効桁数が膨大に必要であり、コンピュータで計算するには丸め誤差などの影響を受けやすいという問題点があった。
本発明は、上記したような問題点を解消することができる光学機器の設計支援方法を提供することを目的とする。
However, the conventional method for fitting an optical surface has the following problems. That is, in Patent Documents 1 and 2, in order to accurately predict the optical performance by fitting the optical surface of the numerical model calculated in the vibration analysis process to a curved surface and using the fitting surface directly in the optical calculation process, the fitting surface The accuracy of is important. For this reason, in the numerical model in the vibration analysis process, there is a problem that the surface corresponding to the optical surface must be positioned with sufficient accuracy so as to be an actual optical surface.
Moreover, in patent documents 1-3, the calculation result data in a vibration analysis process become enormous. For example, the finite element analysis model needs a large number of nodes. For this reason, if the position information of each node after a predetermined time is recorded, the data becomes enormous. In addition, since position information of nodes that are not important for vibration analysis is required, there is a problem that the time required for calculation in the vibration analysis process becomes enormous.
Further, in Patent Documents 1 to 3, the absolute position including both the shape of the optical surface (mm order) and the deformation amount (nm order) is detected. There is a problem that the calculation is easily affected by rounding errors.
An object of the present invention is to provide a design support method for an optical apparatus that can solve the above-described problems.

上記の課題を解決するために、請求項1記載の発明は、解析対象となる光学機器の機械系解析モデル、光学系解析モデル、及び機械系解析に使用する機械特性パラメータを記憶する記憶手段と、該記憶手段から前記機械系解析モデル、光学系解析モデル、及び機械特性パラメータを適宜読み出して演算処理を行う演算処理手段とを含むコンピュータが、光学機器の機械特性パラメータを光路解析及び機械系解析により算出して解析する光学機器の設計支援方法であって、前記演算処理手段が、前記光学機器の機械系解析モデルに機械特性パラメータを代入して光学部品の機械的挙動状態を算出する機械的挙動状態算出処理と、前記演算処理手段が、前記機械的挙動状態算出処理の結果に基づき、光学系解析モデルを用いて前記光学部品の機械的挙動時の光学的性能を解析する光学的性能算出処理と、前記演算処理手段が、前記機械的挙動状態算出処理によって算出された機械的挙動状態から、前記光学部品の空間歪み特性を抽出し、静止時の光学部品と前記空間歪み特性から前記光学部品の機械的挙動状態を算出する光学部品機械的挙動状態算出処理と、を有することを特徴とする。
また、請求項2記載の発明は、請求項1記載の光学機器の設計支援方法において、前記光学部品機械的挙動状態算出処理は、前記空間歪み特性を写像変換関数で表し、前記機械的挙動状態算出処理により算出した機械的挙動状態から前記写像変換関数内のパラメータを抽出することを特徴とする。
また、請求項3記載の発明は、請求項2記載の光学機器の設計支援方法において、前記写像変換関数内のパラメータを抽出するときに用いる機械的挙動状態は、前記光学部品の一部に限定したことを特徴とする。
In order to solve the above problems, the invention described in claim 1 includes a mechanical system analysis model of an optical device to be analyzed, an optical system analysis model, and a storage means for storing a mechanical characteristic parameter used for the mechanical system analysis. And a computer including the mechanical system analysis model, the optical system analysis model, and the mechanical processing parameters appropriately read out from the storage device and performing arithmetic processing, the optical characteristic analysis and the mechanical system analysis of the mechanical characteristics parameters of the optical device. A design support method for an optical device that is calculated and analyzed by the calculation method, wherein the arithmetic processing unit calculates a mechanical behavior state of an optical component by substituting a mechanical characteristic parameter into a mechanical system analysis model of the optical device. a behavior state calculation processing, the arithmetic processing means, based on the results of the mechanical behavior state calculation processing, the optical component of the machine by using an optical system analysis model And optical performance calculation process for analyzing the optical performance of Behavior, said arithmetic processing means, the mechanical behavior state calculated by the mechanical behavior state calculation processing, to extract the spatial distortion characteristics of the optical component, An optical component mechanical behavior state calculation process for calculating a mechanical behavior state of the optical component from the optical component at rest and the spatial distortion characteristic.
According to a second aspect of the present invention, in the optical device design support method according to the first aspect, the optical component mechanical behavior state calculation process represents the spatial distortion characteristic by a mapping transformation function, and the mechanical behavior state A parameter in the mapping transformation function is extracted from the mechanical behavior state calculated by the calculation process.
According to a third aspect of the present invention, in the optical apparatus design support method according to the second aspect, a mechanical behavior state used when extracting a parameter in the mapping transformation function is limited to a part of the optical component. It is characterized by that.

また、請求項4記載の発明は、請求項3記載の光学機器の設計支援方法において、前記写像変換関数内パラメータを抽出するときに用いる、前記光学部品の一部の機械的挙動は、光学特性に関わる部分に限定した一部を用いたことを特徴とする。
また、請求項5記載の発明は、請求項4記載の光学機器の設計支援方法において、前記光学特性に関わる部分は前記光学部品のミラー面であることを特徴とする。
また、請求項6記載の発明は、請求項4記載の光学機器の設計支援方法において、前記光学特性に関わる部分は前記光学部品のレンズ面および前記光学部品のレンズの内部の一部であることを特徴とする。
また、請求項7記載の発明は、請求項2記載の光学機器の設計支援方法において、前記光学的性能算出処理は、各時刻の前記写像変換関数および前記写像変換関数パラメータ、または前記写像変換関数パラメータのみを用いて前記光学部品の機械手的挙動時の光学的性能を解析することを特徴とする。
また、請求項8記載の発明は、請求項1記載の光学機器の設計支援方法において、前記空間歪み特性は前記光学的性能算出処理を行う前に算出することを特徴とする。
また、請求項9記載の発明は、請求項1乃至8のいずれか一項記載の方法をコンピュータに実施させるためのプログラムを記録したコンピュータ読み取り可能な記録媒体であることを特徴とする。
According to a fourth aspect of the present invention, in the optical apparatus design support method according to the third aspect, the mechanical behavior of a part of the optical component used when extracting the parameter in the mapping transformation function is an optical characteristic. It is characterized by using a part limited to the part related to.
According to a fifth aspect of the present invention, in the optical apparatus design support method according to the fourth aspect, the portion related to the optical characteristic is a mirror surface of the optical component.
According to a sixth aspect of the present invention, in the design support method for an optical device according to the fourth aspect, the portion related to the optical characteristics is a lens surface of the optical component and a part of the lens of the optical component. It is characterized by.
The invention according to claim 7 is the design support method for an optical apparatus according to claim 2, wherein the optical performance calculation processing is performed by the mapping transformation function and the mapping transformation function parameter at each time, or the mapping transformation function. The optical performance at the time of mechanical hand behavior of the optical component is analyzed using only the parameters.
According to an eighth aspect of the present invention, in the design support method for an optical apparatus according to the first aspect, the spatial distortion characteristic is calculated before the optical performance calculation process.
The invention described in claim 9 is a computer-readable recording medium having recorded thereon a program for causing a computer to execute the method according to any one of claims 1 to 8.

本発明によれば、光学面の機械的挙動を、変形前の形状と、機械的挙動状態から求めた空間歪み特性で表現するようにした。従って、機械的挙動を十分解析できれば、機械系解析モデルの光学面相当の形状が光学面に則していなくとも、光学的性能を精度よく解析することができる。
また、空間歪み特性を表現するために用いたパラメータのみで機械的挙動を表現できるため、データ数を低減することができる。
さらに必要な光学特性に関わる機械的挙動を限定しているため、重要ではない一部の光学部品挙動に影響することなく空間歪み特性を抽出でき、解析精度の向上およびデータ数の低減が可能となる。
According to the present invention, the mechanical behavior of the optical surface is expressed by the shape before deformation and the spatial distortion characteristic obtained from the mechanical behavior state. Therefore, if the mechanical behavior can be sufficiently analyzed, the optical performance can be analyzed with high accuracy even if the shape corresponding to the optical surface of the mechanical system analysis model does not conform to the optical surface.
In addition, since the mechanical behavior can be expressed only by the parameters used for expressing the spatial distortion characteristics, the number of data can be reduced.
Furthermore, because the mechanical behavior related to the required optical characteristics is limited, spatial distortion characteristics can be extracted without affecting the behavior of some unimportant optical components, and analysis accuracy can be improved and the number of data can be reduced. Become.

以下、本発明の実施形態を詳細に説明する。
[第1の実施形態]
図1は本発明の第1の実施形態を示す動作フロー図である。この実施の形態では、初めに初期設定を行う(S1)。この初期設定では、対象となる光学機器の機械系解析モデル、光学系解析モデル、及び機械系解析に使用する機械特性パラメータの初期値を作成し、これらのデータを処理手段としてのパーソナルコンピュータ(以下、PCと記す。)の管理する記憶手段としてのハードディスク装置(以下、HDDと記す。)に記憶させる。そして、PCにより以下の処理を実行させる。なお、PCはHDDから機械系解析モデル、光学系解析モデル、及び機械特性パラメータを適宜読み出して演算処理を行うためのプログラムを保有しており、このプログラムに従って各種動作を行う。このプログラムはフロッピー(登録商標)ディスクや光ディスクなど、コンピュータ読取可能な記録媒体に記録された状態で供給され、PCはこの記録媒体からプログラムデータを読み出し、HDD上などに格納している。
まず、機械系解析モデルに前記機械特性パラメータの初期値を代入して光学部品の変形状態を算出する(S2、機械的挙動状態算出処理)。次に、S2の処理結果に基づき、光学部品のミラー面、レンズ面等の光路に影響する面の変形状態算出結果から、元の形状から変形状態へ空間が歪んだと仮定し、元の形状から変形状態への空間歪みを求める。また、光学面と空間歪みから、光学部品のミラー面、レンズ面等の光路に影響する面の変形状態を求める(S3、光学部品機械的挙動状態算出処理)。次に、これを反映させた光学系解析モデルを用いて光学部品の変形時の光学的性能を計算する(S4、光学的性能算出処理)。
Hereinafter, embodiments of the present invention will be described in detail.
[First Embodiment]
FIG. 1 is an operation flowchart showing a first embodiment of the present invention. In this embodiment, initial setting is performed first (S1). In this initial setting, the mechanical system analysis model of the target optical device, the optical system analysis model, and initial values of the mechanical property parameters used for the mechanical system analysis are created, and these data are stored in a personal computer (hereinafter referred to as a processing means). Are stored in a hard disk device (hereinafter referred to as HDD) as storage means managed by PC. Then, the following processing is executed by the PC. Note that the PC has a program for appropriately reading out a mechanical system analysis model, an optical system analysis model, and mechanical characteristic parameters from the HDD and performing arithmetic processing, and performs various operations according to the program. This program is supplied in a state of being recorded on a computer-readable recording medium such as a floppy (registered trademark) disk or an optical disk, and the PC reads the program data from the recording medium and stores it on the HDD or the like.
First, the deformation state of the optical component is calculated by substituting the initial value of the mechanical characteristic parameter into the mechanical system analysis model (S2, mechanical behavior state calculation process). Next, based on the processing result of S2, it is assumed that the space is distorted from the original shape to the deformed state based on the result of calculating the deformed state of the surface that affects the optical path such as the mirror surface and lens surface of the optical component. Find the spatial distortion from to the deformed state. Further, a deformation state of a surface that affects an optical path such as a mirror surface or a lens surface of the optical component is obtained from the optical surface and spatial distortion (S3, optical component mechanical behavior state calculation process). Next, the optical performance when the optical component is deformed is calculated using the optical system analysis model reflecting this (S4, optical performance calculation processing).

具体例として、書き込みユニットの光学的性能を解析する場合について説明する。
図2は書き込みユニットと感光体の主要部を概念的に示したものであり、書き込みユニット100のハウジング101上にはポリゴンミラー102、レンズ103A、103B、ミラー103C、103D、及び、ポリゴンミラー102を駆動するポリゴンモータ104がそれぞれ所定の位置に配設されている。上記のような書き込みユニット100では、ポリゴンモータ104の起振力によりハウジング101が振動することにより、感光体200上に照射するレーザ光線Lのスポット位置Pがずれるという問題が発生する。まず、ハウジング101、光学部品103などを有限要素解析モデル化する。そして、レーザ光源Sから出射されるレーザ光線Lが各光学部品103を通ってスポット位置Pに届くまでの光路を、光路解析プログラム(光学的性能計算プログラム)用にモデル化しておく。次に、有限要素解析により光学部品103等の変形状態を算出する(図1中のS2に相当)。
この結果より、光学部品103等の光学面の変形前形状と変形状態を基に、写像変換関数(空間の歪み)を求める(図1中のS3に相当)。レーザ光源Sから照射されるレーザ光線Lの角度、光学部品103のミラー面、レンズ面等の光路に影響する面の変形状態等、レーザ光線Lの光路に影響する情報を光路解析プログラムに反映させる。具体的には、この光路解析プログラムを用いて、計算中に必要な任意の光学面上の点について写像変換関数を用いて変形状態の位置や、その位置での法線ベクトル等を求め、スポット位置Pfの位置を求める(図1中のS4に相当)。以上により、感光体200上に照射するレーザ光線Lのスポット位置Pがずれる方向・変動量が求められる。
As a specific example, a case where the optical performance of the writing unit is analyzed will be described.
FIG. 2 conceptually shows the main part of the writing unit and the photosensitive member. On the housing 101 of the writing unit 100, a polygon mirror 102, lenses 103A and 103B, mirrors 103C and 103D, and a polygon mirror 102 are provided. Each polygon motor 104 to be driven is disposed at a predetermined position. In the writing unit 100 as described above, the housing 101 vibrates due to the vibration force of the polygon motor 104, thereby causing a problem that the spot position P of the laser beam L irradiated onto the photosensitive member 200 is shifted. First, the housing 101, the optical component 103, and the like are converted into a finite element analysis model. Then, the optical path until the laser beam L emitted from the laser light source S reaches the spot position P through each optical component 103 is modeled for an optical path analysis program (optical performance calculation program). Next, the deformation state of the optical component 103 or the like is calculated by finite element analysis (corresponding to S2 in FIG. 1).
From this result, a mapping conversion function (spatial distortion) is obtained based on the pre-deformation shape and deformation state of the optical surface such as the optical component 103 (corresponding to S3 in FIG. 1). Information that affects the optical path of the laser beam L, such as the angle of the laser beam L emitted from the laser light source S, the deformation state of the surface that affects the optical path such as the mirror surface and lens surface of the optical component 103, is reflected in the optical path analysis program. . Specifically, this optical path analysis program is used to determine the position of the deformed state, the normal vector at that position, etc. using the mapping transformation function for any point on the optical surface required during the calculation, and the spot The position Pf is obtained (corresponding to S4 in FIG. 1). As described above, the direction / variation amount in which the spot position P of the laser beam L irradiated onto the photosensitive member 200 is shifted is obtained.

次に、空間歪みから光学面の変形状態を求める場合について説明する。図3に示す光学面の変形前形状の有限要素解析モデル300を基に、図4の変形状態301を求めた結果を用いて、変形前形状から変形状態へ到る図5の空間歪み302(概念図)を抽出する。この空間歪み302(図6)と図7の変形前光学面303を基に、光学面の変形状態304(図8)を求める。
以上の説明は、光学面の変形状態を求める場合の例であるが、レンズ等の光学部品内部を通過する光路を扱う場合、光学部品内部の歪み状態の光学特性を考慮した光路解析を必要とする場合がある。この場合は空間歪みを求める対象の変形状態をレンズ内部まで考慮する。
光線追跡上重要な光学特性に着目し、光路解析に必要な光学面またはその内部に限定した変形状態を用いて空間歪みを抽出しても良い。例えば、図9に示すレンズ400の場合は、締結部403を除く光路解析上重要な光路に関わる光学面401およびその内部402に限定して(白部)空間歪みを抽出しても良い。
Next, the case where the deformation state of the optical surface is obtained from the spatial distortion will be described. Based on the finite element analysis model 300 of the pre-deformation shape of the optical surface shown in FIG. 3, using the result of obtaining the deformation state 301 of FIG. 4, the spatial distortion 302 ( (Conceptual diagram) is extracted. Based on this spatial distortion 302 (FIG. 6) and the pre-deformation optical surface 303 in FIG. 7, the deformation state 304 (FIG. 8) of the optical surface is obtained.
The above explanation is an example in the case of obtaining the deformation state of the optical surface, but when dealing with the optical path passing through the inside of the optical component such as a lens, the optical path analysis considering the optical characteristics of the distortion state inside the optical component is required. There is a case. In this case, the deformation state of the object for which the spatial distortion is obtained is taken into consideration inside the lens.
Focusing on optical characteristics important for ray tracing, spatial distortion may be extracted using a deformed state limited to an optical surface necessary for optical path analysis or the inside thereof. For example, in the case of the lens 400 shown in FIG. 9, spatial distortion may be extracted by limiting to the optical surface 401 related to the optical path important for optical path analysis excluding the fastening portion 403 and the inside 402 (white part).

次に、具体例として、空間歪みを求める場合について説明する。空間歪みを写像変換関数で表現する。具体的には、式(1)を用いて、光学面の変形前座標x、y、zを写像変換関数fに入れ、変形状態での座標x’、y’、z’を求める。写像変換関数にn次の多項近似式を用いた場合、写像変換関数fは式(2)となる。

Figure 0005009840

Figure 0005009840

ここで、Tは多項近似式の係数マトリックスである。有限要素解析モデル・光学面の節点がm個あった場合、式(1)、式(2)から式(3)を導出できる。

Figure 0005009840
・・・(3)
多項近似式係数Tを求めるためには、式(3)に例えば、ガウスの消去法等の計算アルゴリズムを用いればよい。
なお、第1の実施形態では光学部品の変形状態を、有限要素解析を例に説明したが、光学部品の変形状態の解析方法はこれに限られるものではない。
例えば、機械特性を離散的に近似して解析するシミュレーション解析、光学面の各個所の振動を計測した実験データ、また、振動特性(固有振動数、減衰比、モードシェイプ)をモーダル解析により求め、動的挙動を予測する時間応答計算結果(参考文献:機械のモーダル・アナリシス、大久保信行著、中央大学出版、P115)、モード合成法(同P137)、および有限要素解析と連成した解析手法(同P158)等を用いることが可能である。また、シミュレーション解析に使用する機械特性パラメータは経験値、および実験により抽出した値を用いてもよい。空間歪みを表現する方法として写像変換関数に多項近似式の具体例を上げたが、区間毎に多項近似式を当てはめる方法(例:スプライン関数)、モーフィング手法等、変形前形状を基に変形状態へ到る関係を表現可能な関数、手法であれば具体例に限るもではない。 Next, as a specific example, the case of obtaining spatial distortion will be described. Spatial distortion is expressed by a mapping transformation function. Specifically, using the equation (1), the coordinates x, y, z before deformation of the optical surface are put into the mapping transformation function f, and the coordinates x ′, y ′, z ′ in the deformed state are obtained. When an nth-order polynomial approximate expression is used for the mapping conversion function, the mapping conversion function f is expressed by Expression (2).
Figure 0005009840

Figure 0005009840

Here, T is a coefficient matrix of a polynomial approximate expression. When there are m nodes of the finite element analysis model / optical surface, Expression (3) can be derived from Expression (1) and Expression (2).

Figure 0005009840
... (3)
In order to obtain the polynomial approximate expression coefficient T, for example, a calculation algorithm such as Gaussian elimination may be used in Expression (3).
In the first embodiment, the deformation state of the optical component has been described by taking finite element analysis as an example. However, the analysis method of the deformation state of the optical component is not limited to this.
For example, simulation analysis that analyzes by approximating mechanical characteristics discretely, experimental data that measures the vibration of each part of the optical surface, and vibration characteristics (natural frequency, damping ratio, mode shape) are obtained by modal analysis, Time response calculation results to predict dynamic behavior (Reference: Machine modal analysis, Nobuyuki Okubo, Chuo University Press, P115), mode synthesis method (P137), and analysis method coupled with finite element analysis ( P158) and the like can be used. Further, as a mechanical characteristic parameter used for the simulation analysis, an empirical value or a value extracted by experiment may be used. Specific examples of polynomial approximations have been given to mapping transformation functions as a method for expressing spatial distortion. However, deformation states based on pre-deformation shapes, such as methods of applying polynomial approximations to sections (eg, spline functions), morphing methods, etc. It is not limited to a specific example as long as it is a function or method capable of expressing the relation to the end.

また、写像変換関数の対象をx、y、z空間としたが、光学的性能算出処理で十分な精度が得られるのであれば、座標を限定しても良い、例えば、x座標成分(光軸方向など)の変形状態だけで十分な精度が得られるのであれば、式(4)とおき、写像変換関数fを求めても良い。

Figure 0005009840
また、実施例では光学部品の機械的挙動状態を算出するときに用いる変形前形状の光学面を用いたが、光学面を定義するときに使用する光学式を用いても良い。
以上のように第1の実施形態では、光学面をフィッティングするのではなく、その空間の歪み情報を抽出し、静止時の正確な光学面をこの歪み情報で変形させ、その変形面を光学性能評価計算に用いるようにした。つまり、光学面の機械的挙動を、変形前の形状と、機械的挙動状態から求めた空間歪み特性で表現するようにした。このため、機械的挙動を十分解析できれば、機械系解析モデルの光学面相当の形状が光学面に則していなくとも、光学的性能を精度よく解析することができる。
また、空間歪み特性を表現するために用いたパラメータのみで機械的挙動を表現できるため、データ数を低減することができる。また、必要な光学特性に関わる機械的挙動を限定しているため、重要ではない一部の光学部品挙動に影響されることなく空間歪み特性を抽出でき、解析精度の向上およびデータ数の低減が可能となる。 Further, although the target of the mapping transformation function is x, y, z space, the coordinates may be limited as long as sufficient accuracy can be obtained by the optical performance calculation process. For example, the x coordinate component (optical axis) If sufficient accuracy can be obtained only with the deformed state (direction, etc.), the mapping transformation function f may be obtained by using Equation (4).
Figure 0005009840
In the embodiment, the pre-deformation-shaped optical surface used when calculating the mechanical behavior state of the optical component is used. However, an optical system used when defining the optical surface may be used.
As described above, in the first embodiment, rather than fitting an optical surface, the distortion information of the space is extracted, the accurate optical surface at rest is deformed with this distortion information, and the deformation surface is optical performance. It was used for evaluation calculation. In other words, the mechanical behavior of the optical surface is expressed by the shape before deformation and the spatial distortion characteristics obtained from the mechanical behavior state. Therefore, if the mechanical behavior can be sufficiently analyzed, the optical performance can be analyzed with high accuracy even if the shape corresponding to the optical surface of the mechanical system analysis model does not conform to the optical surface.
In addition, since the mechanical behavior can be expressed only by the parameters used for expressing the spatial distortion characteristics, the number of data can be reduced. In addition, since the mechanical behavior related to the required optical characteristics is limited, spatial distortion characteristics can be extracted without being affected by the behavior of some unimportant optical components, improving analysis accuracy and reducing the number of data. It becomes possible.

[第2の実施形態]
各光学面の機械的挙動を時間毎にし、写像変換関数で使用する数式のタイプ、例えば多項近似式等を選択し、その係数を第1の実施形態で算出した方法で求める。光学的性能算出処理の際に多項近似式のタイプ、係数を用いて第1の実施形態と同様に光学面機械的挙動を設定する。
以上により、各時間毎の光学的性能、例えば、感光体200上に照射するレーザ光線Lのスポット位置Pがずれる方向・変動量が求められる。写像変換関数を全時間帯で1つに固定した場合は、予め光学的性能算出処理内に写像変換関数を設定しておき、係数のみを各時間毎に設定することで光学的性能を求めることができる。なお、写像変換関数のタイプ、係数は光学的性能算出処理の前に、事前に選択、係数の抽出を行って、写像変換関数のタイプ、および係数を記憶しておき、光学的性能算出処理の際に、各時間毎の数式タイプおよび係数を呼び出し、光学特性を計算しても良い。
以上のように第2の実施形態では、各時刻毎に写像変換関数および写像変換関数の係数、または写像変換関数の係数のみのパラメータを扱うので、各時刻の光学的性能を評価する上でもデータ数を低減することができる。また、光学的性能算出処理で計算する前に、空間歪み特性を算出しておくことで、特に各時刻毎の光学的性能を効率よく計算することができる。
[Second Embodiment]
The mechanical behavior of each optical surface is changed over time, the type of mathematical expression used in the mapping conversion function, such as a polynomial approximation, is selected, and the coefficient is obtained by the method calculated in the first embodiment. In the optical performance calculation process, the optical surface mechanical behavior is set in the same manner as in the first embodiment by using the type and coefficient of the polynomial approximation formula.
As described above, the optical performance for each time, for example, the direction / variation amount in which the spot position P of the laser beam L irradiated onto the photoreceptor 200 is shifted is obtained. When the mapping conversion function is fixed to one in all time zones, the mapping performance is set in advance in the optical performance calculation process, and the optical performance is obtained by setting only the coefficient for each time. Can do. Note that the type and coefficient of the mapping conversion function are selected and extracted in advance before the optical performance calculation process, the type and coefficient of the mapping conversion function are stored, and the optical performance calculation process is performed. At this time, the formula type and coefficient for each time may be called to calculate the optical characteristics.
As described above, in the second embodiment, the mapping conversion function and the coefficient of the mapping conversion function or the parameter of only the coefficient of the mapping conversion function are handled at each time, so that data can be used for evaluating the optical performance at each time. The number can be reduced. In addition, by calculating the spatial distortion characteristics before calculating in the optical performance calculation process, it is possible to efficiently calculate the optical performance particularly at each time.

本発明の第1の実施形態を示す動作フロー図である。It is an operation | movement flowchart which shows the 1st Embodiment of this invention. 書き込みユニットと感光体の主要部を概念的に示した図である。FIG. 2 is a diagram conceptually showing a main part of a writing unit and a photoconductor. 光学面の変形前形状の有限要素解析モデルを示す図である。It is a figure which shows the finite element analysis model of the shape before a deformation | transformation of an optical surface. 光学面の変形後形状の有限要素解析モデルを示す図である。It is a figure which shows the finite element analysis model of the shape after a deformation | transformation of an optical surface. 光学面の変形前形状から変形状態へ到る空間歪みの概念図である。It is a conceptual diagram of the spatial distortion from the shape before deformation of the optical surface to the deformation state. 空間歪みの概念図である。It is a conceptual diagram of spatial distortion. 変形前の光学面を示す図である。It is a figure which shows the optical surface before a deformation | transformation. 変形後の光学面を示す図である。It is a figure which shows the optical surface after a deformation | transformation. 光路解析上重要な光路に関わる部分を示した図である。It is the figure which showed the part in connection with an optical path important for an optical path analysis.

符号の説明Explanation of symbols

100…書き込みユニット、101…ハウジング、102…ポリゴンミラー、103…光学部品、103A、103B…レンズ、103C、103D…ミラー、104…ポリゴンモータ、200…感光体、300…有限要素解析モデル、301…変形状態、302…空間歪み、303…変形前光学面、304…光学面の変形状態、400…レンズ、401…光学面、402…内部、403…締結部   DESCRIPTION OF SYMBOLS 100 ... Writing unit 101 ... Housing 102 ... Polygon mirror 103 ... Optical part 103A, 103B ... Lens, 103C, 103D ... Mirror 104 ... Polygon motor 200 ... Photoconductor 300 ... Finite element analysis model 301 ... Deformed state, 302 ... Spatial distortion, 303 ... Pre-deformation optical surface, 304 ... Deformed state of optical surface, 400 ... Lens, 401 ... Optical surface, 402 ... Inside, 403 ... Fastening part

Claims (9)

解析対象となる光学機器の機械系解析モデル、光学系解析モデル、及び機械系解析に使用する機械特性パラメータを記憶する記憶手段と、該記憶手段から前記機械系解析モデル、光学系解析モデル、及び機械特性パラメータを適宜読み出して演算処理を行う演算処理手段とを含むコンピュータが、光学機器の機械特性パラメータを光路解析及び機械系解析により算出して解析する光学機器の設計支援方法であって、
前記演算処理手段が、前記光学機器の機械系解析モデルに機械特性パラメータを代入して光学部品の機械的挙動状態を算出する機械的挙動状態算出処理と、
前記演算処理手段が、前記機械的挙動状態算出処理の結果に基づき、光学系解析モデルを用いて前記光学部品の機械的挙動時の光学的性能を解析する光学的性能算出処理と、
前記演算処理手段が、前記機械的挙動状態算出処理によって算出された機械的挙動状態から、前記光学部品の空間歪み特性を抽出し、静止時の光学部品と前記空間歪み特性から前記光学部品の機械的挙動状態を算出する光学部品機械的挙動状態算出処理と、
を有することを特徴とする光学機器の設計支援方法。
A mechanical system analysis model of the optical device to be analyzed, an optical system analysis model, and a storage means for storing a mechanical characteristic parameter used for the mechanical system analysis; from the storage means, the mechanical system analysis model, the optical system analysis model, and A computer including an arithmetic processing unit that appropriately reads out mechanical characteristic parameters and performs arithmetic processing is a design support method for optical equipment that calculates and analyzes mechanical characteristic parameters of optical equipment by optical path analysis and mechanical system analysis,
The arithmetic processing means substitutes a mechanical characteristic parameter into a mechanical system analysis model of the optical device to calculate a mechanical behavior state of an optical component, and a mechanical behavior state calculation process;
The arithmetic processing means , based on the result of the mechanical behavior state calculation process, an optical performance calculation process for analyzing the optical performance at the time of the mechanical behavior of the optical component using an optical system analysis model;
The arithmetic processing means extracts the spatial distortion characteristic of the optical component from the mechanical behavior state calculated by the mechanical behavior state calculation process, and the optical component machine from the optical component at rest and the spatial distortion characteristic Optical component mechanical behavior state calculation processing for calculating a dynamic behavior state;
A design support method for an optical apparatus, comprising:
前記光学部品機械的挙動状態算出処理は、前記空間歪み特性を写像変換関数で表し、前記機械的挙動状態算出処理により算出した機械的挙動状態から前記写像変換関数内のパラメータを抽出することを特徴とする請求項1記載の光学機器の設計支援方法。   The optical component mechanical behavior state calculation process represents the spatial distortion characteristic by a mapping transformation function, and extracts parameters in the mapping transformation function from the mechanical behavior state calculated by the mechanical behavior state calculation processing. The optical apparatus design support method according to claim 1. 前記写像変換関数内のパラメータを抽出するときに用いる機械的挙動状態は、前記光学部品の一部に限定したことを特徴とする請求項2記載の光学機器の設計支援方法。   3. The design support method for an optical apparatus according to claim 2, wherein a mechanical behavior state used when extracting a parameter in the mapping transformation function is limited to a part of the optical component. 前記写像変換関数内パラメータを抽出するときに用いる前記光学部品の一部の機械的挙動は、光学特性に関わる部分に限定した一部を用いたことを特徴とする請求項3記載の光学機器の設計支援方法。   4. The optical apparatus according to claim 3, wherein the mechanical behavior of a part of the optical component used when extracting the parameter in the mapping function is limited to a part related to optical characteristics. Design support method. 前記光学特性に関わる部分は前記光学部品のミラー面であることを特徴とする請求項4記載の光学機器の設計支援方法。   5. The method of supporting design of an optical apparatus according to claim 4, wherein the part related to the optical characteristic is a mirror surface of the optical component. 前記光学特性に関わる部分は前記光学部品のレンズ面および前記光学部品のレンズの内部の一部であることを特徴とする請求項4記載の光学機器の設計支援方法。   5. The optical apparatus design support method according to claim 4, wherein the part related to the optical characteristic is a lens surface of the optical component and a part of the lens of the optical component. 前記光学的性能算出処理は、各時刻の前記写像変換関数および前記写像変換関数パラメータ、または前記写像変換関数パラメータのみを用いて前記光学部品の機械手的挙動時の光学的性能を解析することを特徴とする請求項2記載の光学機器の設計支援方法。   The optical performance calculation processing includes analyzing the optical performance at the time of mechanical hand movement of the optical component using only the mapping conversion function and the mapping conversion function parameter at each time or the mapping conversion function parameter. The method for supporting the design of an optical apparatus according to claim 2, wherein: 前記空間歪み特性は前記光学的性能算出処理を行う前に算出することを特徴とする請求項1記載の光学機器の設計支援方法。   2. The design support method for an optical apparatus according to claim 1, wherein the spatial distortion characteristic is calculated before performing the optical performance calculation process. 請求項1乃至8のいずれか一項記載の方法をコンピュータに実施させるためのプログラムを記録したコンピュータ読み取り可能な記録媒体。   A computer-readable recording medium having recorded thereon a program for causing a computer to execute the method according to claim 1.
JP2008058492A 2007-03-15 2008-03-07 Optical device design support method and recording medium Expired - Fee Related JP5009840B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008058492A JP5009840B2 (en) 2007-03-15 2008-03-07 Optical device design support method and recording medium

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007067180 2007-03-15
JP2007067180 2007-03-15
JP2008058492A JP5009840B2 (en) 2007-03-15 2008-03-07 Optical device design support method and recording medium

Publications (2)

Publication Number Publication Date
JP2008257705A JP2008257705A (en) 2008-10-23
JP5009840B2 true JP5009840B2 (en) 2012-08-22

Family

ID=39981164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008058492A Expired - Fee Related JP5009840B2 (en) 2007-03-15 2008-03-07 Optical device design support method and recording medium

Country Status (1)

Country Link
JP (1) JP5009840B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5932492B2 (en) * 2012-05-31 2016-06-08 キヤノン株式会社 Optical evaluation apparatus and optical evaluation method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1114924A (en) * 1997-06-20 1999-01-22 Ricoh Co Ltd Method for designing optical equipment
JP3788674B2 (en) * 1997-10-14 2006-06-21 株式会社リコー Optical device design support method, optical device design support device, and recording medium recording optical device design support program

Also Published As

Publication number Publication date
JP2008257705A (en) 2008-10-23

Similar Documents

Publication Publication Date Title
JP5218806B2 (en) Pattern inspection apparatus, pattern inspection method, and pattern inspection program
Movahhedy et al. Prediction of spindle dynamics in milling by sub-structure coupling
JP4594114B2 (en) Image processing apparatus and refractive index distribution measuring apparatus
Kaszynski et al. Uncertainties of an automated optical 3d geometry measurement, modeling, and analysis process for mistuned integrally bladed rotor reverse engineering
US20200159879A1 (en) Refinement of finite element model of integrally bladed disk
CN102576410B (en) Evaluation of image processing algorithms
JP4533158B2 (en) Image processing apparatus, image processing program, and refractive index distribution measuring apparatus
TW201521929A (en) Method for controlling an operation of a laser processing machine and controller for controlling an operation of a first actuator of a laser processing machine
CN111618421A (en) Machine learning device, laser processing device, and laser processing system
JP4138318B2 (en) Lithography process margin evaluation apparatus, lithography process margin evaluation method, and lithography process margin evaluation program
Mahboubkhah et al. An investigation on measurement accuracy of digitizing methods in turbine blade reverse engineering
CN112488927A (en) Image restoration device, image restoration method, and restorer generation device
JP5009840B2 (en) Optical device design support method and recording medium
JP2010146224A (en) Method for deforming analysis model and computer
JP2011014060A (en) Numerical analysis method and numerical analysis device
Henry et al. A fleet risk prediction methodology for mistuned ibrs using geometric mistuning models
JP2002248666A (en) Optical element and its manufacturing method as well as optical scanner
Hahn et al. Transient dynamical-thermal-optical system modeling and simulation
JP2016042084A (en) Shape measurement method and shape measurement apparatus
JP2007076319A (en) Method, program, storage medium, and information processing device for calculation of deformation amount of injection molded product
CN114910102A (en) Position detection device, system, method, and program
JP3788674B2 (en) Optical device design support method, optical device design support device, and recording medium recording optical device design support program
US6546357B2 (en) Estimation of the configuration of an optical element for an optical writing device
JP2010009181A (en) Display controller, animation generation device, display control method and display control program
Lafferty et al. Practical DTCO through design/patterning exploration

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101102

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120321

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120327

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120515

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120531

R150 Certificate of patent or registration of utility model

Ref document number: 5009840

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150608

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees