JP5008896B2 - Warm press-molded high-strength member and manufacturing method thereof - Google Patents
Warm press-molded high-strength member and manufacturing method thereof Download PDFInfo
- Publication number
- JP5008896B2 JP5008896B2 JP2006137232A JP2006137232A JP5008896B2 JP 5008896 B2 JP5008896 B2 JP 5008896B2 JP 2006137232 A JP2006137232 A JP 2006137232A JP 2006137232 A JP2006137232 A JP 2006137232A JP 5008896 B2 JP5008896 B2 JP 5008896B2
- Authority
- JP
- Japan
- Prior art keywords
- strength
- press
- warm
- strength member
- steel plate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D22/00—Shaping without cutting, by stamping, spinning, or deep-drawing
- B21D22/02—Stamping using rigid devices or tools
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D22/00—Shaping without cutting, by stamping, spinning, or deep-drawing
- B21D22/20—Deep-drawing
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Shaping Metal By Deep-Drawing, Or The Like (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Description
本発明は、温間プレス成形高強度部材及びその製造方法に係り、更に詳細には、高強度であり、且つ部材成形における寸法精度に優れた温間プレス成形高強度部材及びその製造方法に関する。 The present invention relates to a warm press-molded high-strength member and a method for producing the same, and more particularly to a warm press-molded high-strength member having high strength and excellent dimensional accuracy in member molding and a method for producing the same.
従来から、温間プレス成形は自動車用部材の高強度化及び部材成形における寸法精度向上の両立を図る観点から多くの検討がなされている。
例えば、温間プレス成形での成形性を向上させるために、温間温度域における材料強度や降伏強度を室温におけるそれぞれの強度に対して低下させることが提案されている(特許文献1及び2参照。)。
For example, in order to improve the formability in warm press forming, it has been proposed to reduce the material strength and yield strength in the warm temperature range with respect to the respective strengths at room temperature (see Patent Documents 1 and 2). .)
しかしながら、引張強度が980MPa以上の高強度鋼板においては、温間温度域においても材料強度や降伏強度があまり低下せず、部材の高強度化及び部材成形における寸法精度向上の両立が図りがたいという問題点があった。 However, in high-strength steel sheets with a tensile strength of 980 MPa or more, the material strength and yield strength do not decrease much even in the warm temperature range, and it is difficult to achieve both high strength of members and improvement of dimensional accuracy in member forming. There was a problem.
本発明は、このような従来技術の有する課題に鑑みてなされたものであり、その目的とするところは、高強度であり、且つ部材成形における寸法精度に優れた温間プレス成形高強度部材及びその製造方法を提供することにある。 The present invention has been made in view of such problems of the prior art, and an object of the present invention is to provide a warm press-molded high-strength member having high strength and excellent dimensional accuracy in member molding, and It is in providing the manufacturing method.
本発明者らは、上記目的を達成すべく鋭意検討を重ねた結果、引張強度が980MPa以上の高強度鋼板に所定の塑性変形部を形成し、これを温間温度域でプレス成形することなどにより、上記目的が達成できることを見出し、本発明を完成するに至った。 As a result of intensive studies to achieve the above object, the present inventors have formed a predetermined plastic deformation portion on a high-strength steel sheet having a tensile strength of 980 MPa or more, and press-molded this in a warm temperature range. Thus, the inventors have found that the above object can be achieved and have completed the present invention.
即ち、本発明の温間プレス成形高強度部材は、引張強度が980MPa以上である高強度鋼板を温間温度域でプレス成形して成り、該高強度鋼板は、C:0.10〜0.40%、Si:0.01〜2.5%、Mn:0.1〜1.0%、P:0.02%以下、S:0.01%以下、Cu:0.1〜3.0%、Ni:0.1〜3.0%、Cr:0.01〜3.0%、Mo:0.1〜2.0%を含有し、残部がFe及び不可避不純物であり、対数ひずみが1以上である塑性変形部を全体又は板厚表面部に有し、当該温間プレス成形高強度部材が、Mo合金炭化物から成る析出物を含有することを特徴とする。 That is, the warm press-formed high-strength member of the present invention is formed by press-forming a high-strength steel plate having a tensile strength of 980 MPa or more in a warm temperature range, and the high-strength steel plate has C: 0.10 to 0.00. 40%, Si: 0.01 to 2.5%, Mn: 0.1 to 1.0%, P: 0.02% or less, S: 0.01% or less, Cu: 0.1 to 3.0 %, Ni: 0.1-3.0%, Cr: 0.01-3.0%, Mo: 0.1-2.0%, the balance being Fe and inevitable impurities, logarithmic strain the plastic deformation portion is 1 or more possess the whole or thickness surface portion, the warm press forming high strength member, characterized in that it contains a precipitate consisting of Mo alloy carbides.
また、本発明の温間プレス成形高強度部材の製造方法は、上記本発明の温間プレス成形高強度部材を製造する方法であって、下記の工程(1)〜(3)を含むことを特徴とする。
(1)引張強度が980MPa以上の高強度鋼板を用意する工程
(2)上記高強度鋼板の全体又は板厚表面部に対数ひずみが1以上である塑性変形部を形成し、該塑性変形部を備えたひずみ保持高強度鋼板を得る工程
(3)上記ひずみ保持高強度鋼板を400〜600℃の温間温度域でプレス成形して、温間プレス成形高強度部材を得る工程
Moreover, the manufacturing method of the warm press-molded high strength member of the present invention is a method of manufacturing the warm press molded high strength member of the present invention, and includes the following steps (1) to (3). Features.
(1) Step of preparing a high-strength steel sheet having a tensile strength of 980 MPa or more (2) A plastic deformation part having a logarithmic strain of 1 or more is formed on the whole of the high-strength steel sheet or on the surface of the plate thickness. Step for obtaining a strain-retained high-strength steel plate (3) Step for press-forming the strain-retained high-strength steel plate in a warm temperature range of 400 to 600 ° C. to obtain a warm press-formed high-strength member
本発明によれば、引張強度が980MPa以上の高強度鋼板に所定の塑性変形部を形成し、これを温間温度域でプレス成形することなどとしたため、高強度であり、且つ部材成形における寸法精度に優れた温間プレス成形高強度部材及びその製造方法を提供することができる。 According to the present invention, a predetermined plastic deformation portion is formed on a high-strength steel plate having a tensile strength of 980 MPa or more, and this is press-molded in a warm temperature range. It is possible to provide a warm press-formed high-strength member excellent in accuracy and a method for manufacturing the same.
以下、本発明の温間プレス成形高強度部材について詳細に説明する。なお、本明細書及び特許請求の範囲において、濃度、含有量などについての「%」は、特記しない限り質量百分率を表すものとする。
上述の如く、本発明の温間プレス成形高強度部材は、引張強度が980MPa以上である高強度鋼板を温間温度域でプレス成形して成るものである。
そして、かかる高強度鋼板は、C:0.10〜0.40%、Si:0.01〜2.5%、Mn:0.1〜1.0%、P:0.02%以下、S:0.01%以下、Cu:0.1〜3.0%、Ni:0.1〜3.0%、Cr:0.01〜3.0%、Mo:0.1〜2.0%を含有し、残部がFe及び不可避不純物であり、対数ひずみが1以上である塑性変形部を全体又は板厚表面部に有する。
また、かかる温間プレス成形高強度部材は、Mo合金炭化物から成る析出物を含有する。
このような構成とすることにより、高強度であり、且つ部材成形における寸法精度に優れたものとなる。
Hereinafter, the warm press-molded high-strength member of the present invention will be described in detail. In the present specification and claims, “%” for concentration, content, etc. represents mass percentage unless otherwise specified.
As described above, the warm press-formed high-strength member of the present invention is formed by press-forming a high-strength steel plate having a tensile strength of 980 MPa or more in a warm temperature range.
And this high-strength steel plate is C: 0.10-0.40%, Si: 0.01-2.5%, Mn: 0.1-1.0%, P: 0.02% or less, S : 0.01% or less, Cu: 0.1 to 3.0%, Ni: 0.1 to 3.0%, Cr: 0.01 to 3.0%, Mo: 0.1 to 2.0% And the balance is Fe and inevitable impurities, and the plastic deformation portion having a logarithmic strain of 1 or more is included in the whole or the plate thickness surface portion .
Moreover, this warm press-molded high-strength member contains precipitates made of Mo alloy carbide.
By adopting such a configuration, the strength is high and the dimensional accuracy in member molding is excellent.
ここで、上記塑性変形部は、高強度鋼板の板厚方向に平均的に(全体に)存在していてもよく、高強度鋼板の板表面側に集中して(表面部に)存在していてもよい。 Here, the plastic deformation portion may be present on the average (totally) in the thickness direction of the high-strength steel plate, and is concentrated (on the surface portion) on the plate surface side of the high-strength steel plate. May be.
また、本発明においては、その塑性変形部の形成(付与)方法について特に限定されるものではないが、例えば塑性変形部を圧延加工によって形成(付与)することができる。 In the present invention, but are not particularly limited in form (transfer) a method of the plastic deformation portion can be formed, for example, by rolling the plastically deformed portion (grant).
更に、本発明においては、上述した圧延加工における圧延方向と、当該高強度部材の使用時における入力方向とを実質的に一致させたものであることが望ましい。
このとき、著しく圧延方向に伸長させた結晶組織によって、部材の入力方向に対する強度をより向上させることができる。
Furthermore, in the present invention, it is desirable that the rolling direction in the rolling process described above substantially coincides with the input direction when the high-strength member is used.
At this time, the strength of the member in the input direction can be further improved by the crystal structure that is remarkably elongated in the rolling direction.
また、本発明においては、用いる高強度鋼板として、板厚一定のものを用いてもよいが、厚み分布を有する、即ち板厚が位置により異なるもの(いわゆる差厚鋼板)を用いることもできる。
例えば、厚み分布を部材に要求される強度分布に合わせることにより、部材の高強度化をより的確に図ることができる。
用いる高強度鋼板の板厚は、従来の高強度鋼板と同程度でよく、0.6〜4mmとすればよいが、より高強度であるため、同程度の強度を薄い板厚で得ることができる。
In the present invention, a high-strength steel plate to be used may have a constant plate thickness, but a plate having a thickness distribution, that is, a plate having a different thickness depending on the position (so-called differential thickness steel plate) can also be used.
For example, the strength of the member can be increased more accurately by matching the thickness distribution with the strength distribution required for the member.
The thickness of the high-strength steel plate to be used may be the same as that of a conventional high-strength steel plate and may be 0.6 to 4 mm. However, since the strength is higher, the same strength can be obtained with a thin plate thickness. it can.
更に、本発明においては、用いる高強度鋼板の表面状態について特に限定されるものではなく、例えばめっき被膜を有するものを用いることもできる。
このようなめっき被膜としては、例えば亜鉛めっきやアルミニウムめっきなどを挙げることができる。
Furthermore, in this invention, it does not specifically limit about the surface state of the high strength steel plate to be used, For example, what has a plating film can also be used.
Examples of such a plating film include zinc plating and aluminum plating.
ここで、用いる高強度鋼板について、更に詳細に説明する。
高強度鋼板の一実施形態としては、例えば、モリブデン(Mo)、タングステン(W)、バナジウム(V)、チタン(Ti)又はニオブ(Nb)、及びこれらの任意の組合せに係る元素を含有して成り、基地組織が下部ベイナイト、焼戻し下部ベイナイト又は焼戻しマルテンサイトであり、旧オーステナイト粒径が30μm以下のものを挙げることができる。
Here, the high-strength steel sheet used will be described in more detail.
As one embodiment of a high-strength steel plate, for example, it contains elements according to molybdenum (Mo), tungsten (W), vanadium (V), titanium (Ti) or niobium (Nb), and any combination thereof. The base structure is lower bainite, tempered lower bainite or tempered martensite, and the prior austenite grain size is 30 μm or less.
このような構成により、引張強度が980MPa以上でありながら、従来の高強度鋼板に対して例えば自動車用部品としての要求を満足するのに十分な成形性を示すものとなる。また、耐遅れ破壊性が向上するという副次的な効果も得られる。 With such a configuration, while having a tensile strength of 980 MPa or more, the conventional high-strength steel sheet exhibits a formability sufficient to satisfy, for example, a demand as an automotive part. Moreover, the secondary effect that delayed fracture resistance is improved is also obtained.
また、高強度鋼板においては、硬質相である下部ベイナイト組織、焼戻し下部ベイナイト又は焼戻しマルテンサイトを素地とすることにより、高強度鋼板の引張強度が980MPa以上になる。より好ましくは、高強度鋼板の引張強度は1180MPa以上であることが良い。 In the high-strength steel sheet, the tensile strength of the high-strength steel sheet becomes 980 MPa or more by using the lower bainite structure, the tempered lower bainite, or the tempered martensite which are hard phases. More preferably, the tensile strength of the high-strength steel plate is 1180 MPa or more.
更に、旧オーステナイト粒径は1〜30μmに細粒化できる。旧オーステナイト粒径が30μmを超えると、深絞り性、張出し性、形状凍結性の向上効果が小さいものとなる。また、旧オーステナイト粒径が1μm未満では、機械的性質が劣化し易い上、製造上も困難となり易い。 Furthermore, the prior austenite particle size can be reduced to 1-30 μm. When the prior austenite particle size exceeds 30 μm, the effect of improving deep drawability, stretchability, and shape freezeability is small. Further, when the prior austenite particle size is less than 1 μm, the mechanical properties are likely to deteriorate, and the production tends to be difficult.
更にまた、上記旧オーステナイト粒径は3〜10μmにすることが好適である。このときは、深絞り性、張出し性、形状凍結性をより向上させ得るので、当該高強度鋼板を用いて例えば自動車部品を成形するときに要求される成形性を満足させ得る。 Furthermore, the prior austenite particle size is preferably 3 to 10 μm. At this time, since the deep drawability, the stretchability, and the shape freezing property can be further improved, it is possible to satisfy the formability required when, for example, automobile parts are formed using the high-strength steel plate.
また、このような高強度鋼板は、添加成分として、炭素(C)、クロム(Cr)を、C:0.10〜0.40%、Cr:0.01〜3.0%の割合で含有し、モリブデン(Mo)、タングステン(W)、バナジウム(V)、チタン(Ti)又はニオブ(Nb)、及びこれらの任意の組合せに係るものを、Mo:0.10〜2.0%、W:0.20〜1.5%、V:0.002〜1.0%、Ti:0.002〜1.0%及びNb:0.005〜1.0%の割合で含有し、更に、不純物のリン(P)、硫黄(S)を、P:≦0.02%、S:≦0.01%の割合で含有し、残部は実質的に鉄(Fe)及び不可避的不純物であることが好適である。 Moreover, such a high-strength steel sheet contains carbon (C) and chromium (Cr) as additive components in proportions of C: 0.10 to 0.40% and Cr: 0.01 to 3.0%. And molybdenum (Mo), tungsten (W), vanadium (V), titanium (Ti), niobium (Nb), and any combination thereof, Mo: 0.10 to 2.0%, W : 0.20 to 1.5%, V: 0.002 to 1.0%, Ti: 0.002 to 1.0% and Nb: 0.005 to 1.0%, Impurity phosphorus (P) and sulfur (S) are contained in proportions of P: ≦ 0.02%, S: ≦ 0.01%, and the balance is substantially iron (Fe) and inevitable impurities. Is preferred.
このときは、微細な合金炭化物が含有されることにより、成形性を確保しつつ耐遅れ破壊性に優れる高強度鋼板が得られる。
以下に各成分について説明する。
At this time, by containing fine alloy carbides, a high-strength steel sheet having excellent delayed fracture resistance while securing formability can be obtained.
Each component will be described below.
C : Cは強度増加に最も有効な元素である。980MPa以上の強度を得るためには0.1%以上含有することが好適であるが、0.4%を超えると靭性劣化を招き易いことから、0.10〜0.40%含有することが良い。 C: C is the most effective element for increasing the strength. In order to obtain a strength of 980 MPa or more, it is preferable to contain 0.1% or more. However, if it exceeds 0.4%, it tends to cause toughness deterioration, so 0.10 to 0.40% is contained. good.
Cr: Crは焼入れ性向上に有効な元素であるとともにセメンタイト中に固溶して鋼板の強度上昇に有効な元素である。従って、少なくとも0.01%以上含有することが好適である。好ましくは1%以上含有させることが良いが、過剰に添加するとその効果が飽和するとともに靭性が低下してしまうため、上限を3.0%とすることが良い。 Cr: Cr is an element effective for improving the hardenability, and is an element effective for increasing the strength of the steel sheet by solid solution in cementite. Therefore, it is preferable to contain at least 0.01%. The content is preferably 1% or more, but if added excessively, the effect is saturated and the toughness is lowered, so the upper limit is preferably made 3.0%.
Mo: Moは用いる高強度鋼板において重要な元素であり、焼入れ性向上の他、合金炭化物を形成することで微細粒化に有効であると共に、水素の置換にも有効である。しかし、0.10%未満では、合金炭化物の形成が困難になり易い。一方、Moは高価な合金元素であるため、0.1〜2.0%含有することが良い。 Mo: Mo is an important element in the high-strength steel sheet to be used. In addition to improving hardenability, Mo is effective for fine graining by forming an alloy carbide and also effective for hydrogen replacement. However, if it is less than 0.10%, formation of alloy carbide tends to be difficult. On the other hand, since Mo is an expensive alloy element, it is preferable to contain 0.1 to 2.0%.
なお、成形性を確保しつつ良好な耐遅れ破壊性を確保するために、Mo、W、V、Ti、Nbのうち少なくとも1元素を含有することが好適であるが、W、V、Nb及びTiについても、Moと同様な添加効果を示すことから、上記含有量の上限、下限とすることが良い。 In order to ensure good delayed fracture resistance while securing formability, it is preferable to contain at least one element of Mo, W, V, Ti, and Nb. However, W, V, Nb, and Ti also has the same addition effect as Mo, so it is preferable to set the upper limit and the lower limit of the above content.
P : Pは粒界強度を低下させるため、極力取り除きたい元素であり、上限を0.02%とすることが良い。 P: P is an element to be removed as much as possible in order to reduce the grain boundary strength, and the upper limit is preferably made 0.02%.
S : Sは粒界強度を低下させるため、極力取り除きたい元素であり、上限を0.01%とすることが良い。 S: S is an element to be removed as much as possible in order to reduce the grain boundary strength, and the upper limit is preferably made 0.01%.
更に、このような高強度鋼板は、添加成分として、銅(Cu)、ニッケル(Ni)のいずれか一方又は双方を、Cu:0.1〜3.0%、Ni:0.1〜3.0%の割合で含有することが良い。
以下に各成分について説明する。
Furthermore, such a high-strength steel sheet contains, as an additive component, one or both of copper (Cu) and nickel (Ni), Cu: 0.1-3.0%, Ni: 0.1-3. It is good to contain in the ratio of 0%.
Each component will be described below.
Cu: Cuは強化に有効である上、自身の微細析出は遅れ破壊の向上にも寄与するため、0.1%以上含有することが良い。また、過剰添加は加工性の劣化を招くことから、上限を3.0%とすることが良い。 Cu: Since Cu is effective for strengthening and its fine precipitation contributes to the improvement of delayed fracture, it is preferable to contain 0.1% or more. Moreover, since excessive addition causes deterioration of workability, the upper limit is preferably set to 3.0%.
Ni: Niは鋼板の焼入れ性を高めることにより鋼板の強度を確保できるとともに、耐食性の向上に有効な元素である。0.1%未満では所望の効果が得られず、一方、3.0%を超えると加工性が悪くなることから0.1〜3.0%含有することが良い。 Ni: Ni is an element effective in improving the corrosion resistance while ensuring the strength of the steel sheet by enhancing the hardenability of the steel sheet. If it is less than 0.1%, the desired effect cannot be obtained. On the other hand, if it exceeds 3.0%, the workability deteriorates, so 0.1 to 3.0% is preferably contained.
更にまた、このような高強度鋼板は、添加成分として、シリコン(Si)、マンガン(Mn)のいずれか一方又は双方を、Si:0.01〜2.5%、Mn:0.1〜1.0%の割合で含有することが良い。
以下に各成分について説明する。
Furthermore, such a high-strength steel sheet contains, as an additive component, one or both of silicon (Si) and manganese (Mn), Si: 0.01 to 2.5%, Mn: 0.1 to 1 It is good to contain in the ratio of 0.0%.
Each component will be described below.
Si: Siは脱酸及び強度増加に有効な元素である。従って、脱酸材として添加したもので鋼中に残るものも含め、含有量を0.2%以上とすることが良い。但し、過剰な添加は靭性劣化を起す場合があるため、上限を2.5%とすることが良い。 Si: Si is an element effective for deoxidation and strength increase. Therefore, it is preferable to make the content 0.2% or more including those added as a deoxidizer and remaining in the steel. However, since excessive addition may cause toughness deterioration, the upper limit is preferably 2.5%.
Mn: Mnは、鋼板の強度上昇に有効な元素である。0.1%未満では所望の効果が得られにくい。一方、含有量が多過ぎるとP、Sの共偏析を助長するだけでなく、靭性劣化を起すことがあるため、0.1〜1.0%含有することが良い。 Mn: Mn is an element effective for increasing the strength of the steel sheet. If it is less than 0.1%, it is difficult to obtain a desired effect. On the other hand, when the content is too large, not only co-segregation of P and S is promoted, but also toughness deterioration may be caused.
また、このような高強度鋼板は、添加成分として、アルミニウム(Al)を、Al:0.001〜0.1%の割合で含有することが良い。 Moreover, such a high-strength steel plate preferably contains aluminum (Al) as an additive component in a ratio of Al: 0.001 to 0.1%.
Al: Alは脱酸のため添加するが、添加量が多過ぎると介在物が増加して加工性が劣化するため、0.001〜0.1%含有することが良い。 Al: Al is added for deoxidation, but if the addition amount is too large, inclusions increase and workability deteriorates, so 0.001 to 0.1% is preferably contained.
次に、本発明の温間プレス成形高強度部材の製造方法について詳細に説明する。
上述の如く、本発明の温間プレス成形高強度部材の製造方法は、上記本発明の温間プレス成形高強度部材を製造する方法であって、下記の工程(1)〜(3)を含む。
(1)引張強度が980MPa以上の高強度鋼板を用意する工程
(2)上記高強度鋼板の全体又は板厚表面部に対数ひずみが1以上である塑性変形部を形成し、該塑性変形部を備えたひずみ保持高強度鋼板を得る工程
(3)上記ひずみ保持高強度鋼板を400〜600℃の温間温度域でプレス成形して、所望の温間プレス成形高強度部材を得る工程
Next, the manufacturing method of the warm press-molded high strength member of the present invention will be described in detail.
As described above, the method for producing a warm press-molded high strength member of the present invention is a method for producing the warm press molded high strength member of the present invention, and includes the following steps (1) to (3). .
(1) Step of preparing a high-strength steel sheet having a tensile strength of 980 MPa or more (2) A plastic deformation part having a logarithmic strain of 1 or more is formed on the whole of the high-strength steel sheet or on the surface of the plate thickness. Step of obtaining a strain-retained high-strength steel plate (3) Step of press-forming the strain-retained high-strength steel plate in a warm temperature range of 400 to 600 ° C. to obtain a desired warm press-formed high-strength member
このような構成とすることにより、高強度であり、且つ部材成形における寸法精度に優れたものを得ることができるが、本発明の温間プレス成形高強度部材は、上記製造方法により作製されたものに限定されるものではない。 By adopting such a configuration, it is possible to obtain a high-strength and excellent dimensional accuracy in member molding, but the warm press-molded high-strength member of the present invention was produced by the above manufacturing method. It is not limited to things.
以下、各工程毎に更に詳細に説明する。
上記(1)工程においては、上述したような高強度鋼板を用意すればよい。
具体的には、上述した各成分の所期の効果が発揮されるように、熱処理して高強度鋼板を用意すればよく、典型的には、鋼塊を1200℃に加熱し、その後粗圧延にて板厚を調整し、直後に900〜1050℃の温度で仕上げ圧延を開始する。仕上げ圧延の各ロールで圧下及び各ロール間で必要に応じて冷却を行いながら、800〜900℃の温度で仕上げ圧延工程を終了し、直ちに冷却しながら350〜550℃でコイル巻き取りを行なう。
Hereinafter, it demonstrates in detail for every process.
In the step (1), a high-strength steel plate as described above may be prepared.
Specifically, a high-strength steel plate may be prepared by heat treatment so that the desired effect of each component described above is exhibited. Typically, the steel ingot is heated to 1200 ° C., and then rough rolled. The thickness of the sheet is adjusted, and immediately after that, finish rolling is started at a temperature of 900 to 1050 ° C. The finish rolling step is completed at a temperature of 800 to 900 ° C. while performing rolling reduction and cooling between the rolls as necessary, and coil winding is performed at 350 to 550 ° C. while cooling immediately.
上記(2)工程においては、高強度鋼板の少なくとも一部に対数ひずみが1以上である塑性変形部を形成し、ひずみ保持高強度鋼板を得ることができれば特に形成方法については限定されるものではない。例えば圧延加工により形成してもよい。 In the step (2), the forming method is not particularly limited as long as a plastically deformed portion having a logarithmic strain of 1 or more is formed on at least a part of the high-strength steel plate to obtain a strain-maintaining high-strength steel plate. Absent. For example, it may be formed by rolling.
上記(3)工程においては、ひずみ保持高強度鋼板を温間温度域でプレス成形し、所望の温間プレス成形高強度部材を得ることができれば特に温間プレス条件について限定されるものではない。温間温度域としては、Mo合金炭化物の析出効果を最大化するという観点からは400〜600℃とすることを要する。
なお、本発明においては、温間温度域におけるプレス成形時における動的回復効果により、高強度と寸法精度の両立が図られていると考えられる。
In the step (3), the hot pressing conditions are not particularly limited as long as the strain-retaining high-strength steel plate is press-formed in a warm temperature range to obtain a desired warm-press-formed high strength member. The warm temperature range, from the viewpoint of maximizing the precipitation effect of M o alloy carbides requires that a 400 to 600 ° C..
In the present invention, it is considered that both high strength and dimensional accuracy are achieved by the dynamic recovery effect during press molding in the warm temperature range.
以下、本発明を実施例及び比較例により更に詳細に説明するが、本発明はこれら実施例に限定されるものではない。 EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention further in detail, this invention is not limited to these Examples.
(参考例1、実施例2〜実施例5、参考例6〜参考例10、比較例1及び比較例2)
表1に示す化学組成の高強度鋼板A(引張強度:1280MPa、応力低下度(SD):240MPa、旧オーステナイト粒径:8μm)及び高強度鋼板B(引張強度:1140MPa、応力低下度(SD):190MPa、旧オーステナイト粒径:10μm)を用い(双方とも下部ベイナイトを基地組織とする。)、表2に示す塑性変形部(ひずみ)付与条件、及び表3に示す温間プレス条件などの製造条件により、各例の温間プレス成形高強度部材を作製した。ここで、旧オーステナイト粒径は、基地組織が下部ベイナイトのものについて、JIS G0551に準拠して行い測定した。
( Reference Example 1, Example 2 to Example 5, Reference Example 6 to Reference Example 10, Comparative Example 1 and Comparative Example 2)
High-strength steel plate A (tensile strength: 1280 MPa, stress reduction (SD): 240 MPa, prior austenite grain size: 8 μm) and high-strength steel plate B (tensile strength: 1140 MPa, stress reduction (SD) with chemical composition shown in Table 1 : 190 MPa, former austenite grain size: 10 μm) (both are based on the lower bainite), and the plastic deformation part (strain) application conditions shown in Table 2 and the warm press conditions shown in Table 3 are produced. Depending on conditions, warm press-formed high-strength members of each example were produced. Here, the prior austenite grain size was measured in accordance with JIS G0551 for the base structure having the lower bainite.
なお、表2において、条件1は板厚方向に平均して対数ひずみ1相当となってり、条件2は板厚表面部に特にひずみ集中し、その対数ひずみが1相当となっており、条件3は圧延加工によるひずみ付与を行わないことを示すものである。 In Table 2, Condition 1 is equivalent to logarithmic strain 1 on average in the plate thickness direction, and Condition 2 is particularly concentrated in the surface portion of the plate thickness, and its logarithmic strain is equivalent to 1. 3 indicates that no strain is applied by rolling.
また、表3において、温間プレス成形に当たっては、いずれの条件においても、プレス下死点にて、5分間保持し、その間の温度は表3の条件に保った。また、温間プレス成形する温間プレス成形高強度部材は、ハット型形状をしており、その寸法は、高さ:80mm、ポンチ底に当たる底面幅:60mm、フランジ幅:25mmであり、縦壁とポンチ底面とのなす角は93°とした。また、表3に高強度鋼板のひずみ付与方向と成形方向との相対的位置関係を併記する。 Further, in Table 3, when performing the warm press forming, the press was maintained at the bottom dead center for 5 minutes in any condition, and the temperature during that time was maintained at the condition shown in Table 3. Moreover, the warm press-molded high-strength member for warm press-molding has a hat shape, and the dimensions are: height: 80 mm, bottom face width hitting the punch bottom: 60 mm, flange width: 25 mm, vertical wall And the bottom of the punch was 93 °. Table 3 also shows the relative positional relationship between the strain applying direction and the forming direction of the high-strength steel sheet.
[性能評価]
各例の温間プレス成形高強度部材について、成形性評価及び強度向上性評価を行った。得られた試験結果を表4に示す。また、各特性評価は下記の要領で実施した。
[Performance evaluation]
The warm press-molded high-strength member of each example was evaluated for formability and strength improvement. The obtained test results are shown in Table 4. Moreover, each characteristic evaluation was implemented in the following way.
(1)成形性評価
温間プレス成形高強度部材の成形性を部品成形形状精度の観点から目視により評価した。表4中の「○」は良好である、「△」は部材形状を選べば良好である、「×」は不良である、ことを示す。
(1) Formability evaluation The formability of the warm press-formed high-strength member was evaluated visually from the viewpoint of the precision of the part forming shape. In Table 4, “◯” indicates good, “Δ” indicates that if a member shape is selected, “X” indicates that the member is good, and “X” indicates that the member is defective.
(2)強度向上性評価
初期鋼板強度に対する温間プレス成形後の強度向上効果(部材長手方向の引張強度)をJIS Z2201の5号試験片を用い、JIS Z2241に準拠した引張試験を行い、評価した(図1参照。)。強度向上効果を三段階で評価し、「大」は強度向上効果が大きいこと、「中」は強度向上効果が中程度であること、「小」は強度向上効果が小さいこと、「―」は強度向上効果が認められなかったこと、を示す。
(2) Strength improvement evaluation Evaluation of the strength improvement effect (tensile strength in the longitudinal direction of the member) after warm press forming with respect to the initial steel plate strength using a JIS Z2201 No. 5 test piece and performing a tensile test based on JIS Z2241 (See FIG. 1). The strength improvement effect is evaluated in three stages. “Large” indicates that the strength improvement effect is large, “Medium” indicates that the strength improvement effect is moderate, “Small” indicates that the strength improvement effect is small, and “-” indicates that It shows that the strength improvement effect was not recognized.
表4に示すように、本発明の範囲に属する実施例2〜5の温間プレス成形高強度部材は、高強度であり、且つ部材成形における寸法精度に優れた温間プレス成形高強度部材となる。つまり、高強度鋼板の板厚方向に全体にわたって平均的に又は表面部に集中させて塑性変形部(ひずみ)を形成(付与)することにより、温間温度域にて強度を維持ないし向上させつつ寸法精度を向上させることができることが分かる。
これに対して、本発明外の参考例1、参考例6〜参考例10、比較例1及び比較例2は、十分な寸法精度を有する部材を成形することができないことが分かる。
高強度鋼板Aにおいて顕著な強度向上効果が得られており、現時点においては実施例2〜5が良好な結果をもたらすものと思われる。
これは塑性変形付与により温間成形時に微細な合金炭化物が析出するためと考えられる。
As shown in Table 4, the warm press-molded high-strength members of Examples 2 to 5 belonging to the scope of the present invention are high-strength, and the warm press-molded high-strength members excellent in dimensional accuracy in member molding Become. In other words, while forming (giving) a plastic deformation portion (strain) in the thickness direction of the high-strength steel plate in an average or concentrated on the entire surface, the strength is maintained or improved in the warm temperature range. It can be seen that the dimensional accuracy can be improved.
On the other hand, it can be seen that Reference Example 1, Reference Example 6 to Reference Example 10, Comparative Example 1 and Comparative Example 2 outside the present invention cannot form a member having sufficient dimensional accuracy.
A remarkable strength improvement effect is obtained in the high-strength steel sheet A, and at this time, Examples 2 to 5 are considered to give good results.
This is presumably because fine alloy carbide precipitates during warm forming due to plastic deformation.
Claims (8)
上記高強度鋼板は、C:0.10〜0.40%、Si:0.01〜2.5%、Mn:0.1〜1.0%、P:0.02%以下、S:0.01%以下、Cu:0.1〜3.0%、Ni:0.1〜3.0%、Cr:0.01〜3.0%、Mo:0.1〜2.0%を含有し、残部がFe及び不可避不純物であり、対数ひずみが1以上である塑性変形部を全体又は板厚表面部に有し、
当該温間プレス成形高強度部材が、Mo合金炭化物から成る析出物を含有する
ことを特徴とする温間プレス成形高強度部材。 A hot press-formed high-strength member formed by press-forming a high-strength steel plate having a tensile strength of 980 MPa or more in a warm temperature range,
The high-strength steel sheets are : C: 0.10 to 0.40%, Si: 0.01 to 2.5%, Mn: 0.1 to 1.0%, P: 0.02% or less, S: 0 0.01% or less, Cu: 0.1 to 3.0%, Ni: 0.1 to 3.0%, Cr: 0.01 to 3.0%, Mo: 0.1 to 2.0% and the balance is Fe and inevitable impurities, possess all or thickness surface portion plastically deformed portion is logarithmic strain 1 or more,
The warm press-molded high-strength member, wherein the warm-press molded high-strength member contains a precipitate made of a Mo alloy carbide .
(1)引張強度が980MPa以上の高強度鋼板を用意する工程、
(2)上記高強度鋼板の全体又は板厚表面部に対数ひずみが1以上である塑性変形部を形成し、該塑性変形部を備えたひずみ保持高強度鋼板を得る工程、
(3)上記ひずみ保持高強度鋼板を400〜600℃の温間温度域でプレス成形して、温間プレス成形高強度部材を得る工程、
を含むことを特徴とする温間プレス成形高強度部材の製造方法。 It is a method of manufacturing the warm press-molded high-strength member according to any one of claims 1 to 6, and the following steps (1) to (3)
(1) A step of preparing a high-strength steel plate having a tensile strength of 980 MPa or more,
(2) forming a plastic deformation portion having a logarithmic strain of 1 or more on the entire high-strength steel plate or the surface portion of the plate thickness , and obtaining a strain-retaining high-strength steel plate provided with the plastic deformation portion;
(3) a step of press-forming the strain-retaining high-strength steel sheet in a warm temperature range of 400 to 600 ° C. to obtain a warm press-formed high-strength member;
A method for producing a warm press-molded high-strength member, comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006137232A JP5008896B2 (en) | 2006-05-17 | 2006-05-17 | Warm press-molded high-strength member and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006137232A JP5008896B2 (en) | 2006-05-17 | 2006-05-17 | Warm press-molded high-strength member and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007308744A JP2007308744A (en) | 2007-11-29 |
JP5008896B2 true JP5008896B2 (en) | 2012-08-22 |
Family
ID=38841879
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006137232A Expired - Fee Related JP5008896B2 (en) | 2006-05-17 | 2006-05-17 | Warm press-molded high-strength member and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5008896B2 (en) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5347392B2 (en) * | 2008-09-12 | 2013-11-20 | Jfeスチール株式会社 | Hot press member excellent in ductility, steel plate for hot press member, and method for producing hot press member |
JP5347393B2 (en) * | 2008-09-12 | 2013-11-20 | Jfeスチール株式会社 | Hot press member excellent in ductility, steel plate for hot press member, and method for producing hot press member |
JP5644093B2 (en) * | 2008-12-19 | 2014-12-24 | Jfeスチール株式会社 | Manufacturing method of high strength members |
JP5444750B2 (en) * | 2009-02-19 | 2014-03-19 | 新日鐵住金株式会社 | Steel plate press forming method |
JP5834587B2 (en) | 2010-12-03 | 2015-12-24 | Jfeスチール株式会社 | Manufacturing method of warm press member |
JP5632759B2 (en) * | 2011-01-19 | 2014-11-26 | 株式会社神戸製鋼所 | Method for forming high-strength steel members |
JP5691792B2 (en) * | 2011-04-22 | 2015-04-01 | 新日鐵住金株式会社 | Metal plate rolling method and rolling mill |
KR101382981B1 (en) * | 2011-11-07 | 2014-04-09 | 주식회사 포스코 | Steel sheet for warm press forming, warm press formed parts and method for manufacturing thereof |
WO2014041583A1 (en) * | 2012-09-13 | 2014-03-20 | Jfeスチール株式会社 | Method for hot and warm press-forming metal sheet |
ES2728328T3 (en) * | 2013-05-14 | 2019-10-23 | Nippon Steel Corp | Hot rolled steel sheet and its manufacturing method |
JP5870961B2 (en) * | 2013-05-20 | 2016-03-01 | Jfeスチール株式会社 | Warm press forming method |
JP6048580B2 (en) * | 2013-05-21 | 2016-12-21 | 新日鐵住金株式会社 | Hot rolled steel sheet and manufacturing method thereof |
JP5929846B2 (en) * | 2013-06-18 | 2016-06-08 | Jfeスチール株式会社 | Warm press molding method and molding die used in this molding method |
JP6981487B2 (en) | 2020-02-25 | 2021-12-15 | Jfeスチール株式会社 | Press molding method and shape evaluation method of press molded products |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003113442A (en) * | 2001-10-05 | 2003-04-18 | Sumitomo Metal Ind Ltd | High-tensile steel sheet superior in warm forming property |
-
2006
- 2006-05-17 JP JP2006137232A patent/JP5008896B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2007308744A (en) | 2007-11-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5008896B2 (en) | Warm press-molded high-strength member and manufacturing method thereof | |
JP5206244B2 (en) | Cold rolled steel sheet | |
KR101289518B1 (en) | Austenite stainless steel sheet and method for producing same | |
JP5609945B2 (en) | High-strength cold-rolled steel sheet and manufacturing method thereof | |
JP5126844B2 (en) | Steel sheet for hot pressing, manufacturing method thereof, and manufacturing method of hot pressed steel sheet member | |
EP2728027B1 (en) | Heat-hardened steel with excellent crashworthiness and method for manufacturing heat-hardenable parts using same | |
TW201207125A (en) | Ultra high strength cold rolled steel sheet having excellent bendability | |
EP2617852A1 (en) | High-strength hot-rolled steel sheet having excellent bending workability and method for producing same | |
WO2011115279A1 (en) | Hot-rolled steel sheet having excellent cold working properties and hardening properties, and method for producing same | |
JP2012001802A (en) | Steel, and method for manufacturing the same, and steel sheet for quenching treatment | |
JP4858286B2 (en) | Full hard cold rolled steel sheet | |
JP5196934B2 (en) | High fatigue life quenched and tempered steel pipe and method for manufacturing the same | |
KR20140098900A (en) | High strength thick steel plate and method for manufacturing the same | |
JP5094887B2 (en) | Manufacturing method of high strength and low specific gravity steel sheet with excellent ductility | |
JP5729213B2 (en) | Manufacturing method of hot press member | |
JP6699310B2 (en) | Cold rolled steel sheet for squeezer and method for manufacturing the same | |
JP4471688B2 (en) | High strength low specific gravity steel plate excellent in ductility and method for producing the same | |
JP5008897B2 (en) | High strength member and manufacturing method thereof | |
JP4299774B2 (en) | High strength low specific gravity steel sheet with excellent ductility and fatigue characteristics and method for producing the same | |
JP5073966B2 (en) | Age-hardening ferritic stainless steel sheet and age-treated steel using the same | |
JP2007332457A (en) | Ultrahigh-strength steel sheet and intensity component for automobile utilizing the same | |
EP2022865A1 (en) | Ultrahigh strength steel sheet and strength part for automobile utilizing the same | |
JP5220341B2 (en) | Ultra-high strength steel plate and automotive strength parts using the same | |
JP2003321738A (en) | High tensile strength hot rolled steel sheet having excellent workability and working method therefor | |
JPS5949301B2 (en) | Ferritic stainless steel with excellent workability |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090312 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20090312 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110425 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110824 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20111024 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120529 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120530 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5008896 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150608 Year of fee payment: 3 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |