JP5006557B2 - 燃料電池用スタックおよびこれを含む燃料電池システム - Google Patents

燃料電池用スタックおよびこれを含む燃料電池システム Download PDF

Info

Publication number
JP5006557B2
JP5006557B2 JP2006072213A JP2006072213A JP5006557B2 JP 5006557 B2 JP5006557 B2 JP 5006557B2 JP 2006072213 A JP2006072213 A JP 2006072213A JP 2006072213 A JP2006072213 A JP 2006072213A JP 5006557 B2 JP5006557 B2 JP 5006557B2
Authority
JP
Japan
Prior art keywords
reaction
fuel
hydrogen
passage
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006072213A
Other languages
English (en)
Other versions
JP2006261120A (ja
Inventor
周龍 金
鎬眞 權
聖鎭 安
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung SDI Co Ltd
Original Assignee
Samsung SDI Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung SDI Co Ltd filed Critical Samsung SDI Co Ltd
Publication of JP2006261120A publication Critical patent/JP2006261120A/ja
Application granted granted Critical
Publication of JP5006557B2 publication Critical patent/JP5006557B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/384Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts the catalyst being continuously externally heated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/248Reactors comprising multiple separated flow channels
    • B01J19/249Plate-type reactors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/0263Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant having meandering or serpentine paths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2483Details of groupings of fuel cells characterised by internal manifolds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/245Plate-type reactors
    • B01J2219/2451Geometry of the reactor
    • B01J2219/2453Plates arranged in parallel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/245Plate-type reactors
    • B01J2219/2461Heat exchange aspects
    • B01J2219/2465Two reactions in indirect heat exchange with each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/245Plate-type reactors
    • B01J2219/2476Construction materials
    • B01J2219/2477Construction materials of the catalysts
    • B01J2219/2479Catalysts coated on the surface of plates or inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/245Plate-type reactors
    • B01J2219/2491Other constructional details
    • B01J2219/2492Assembling means
    • B01J2219/2493Means for assembling plates together, e.g. sealing means, screws, bolts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/066Integration with other chemical processes with fuel cells
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0811Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Fuel Cell (AREA)

Description

本発明は燃料電池用スタックおよびこれを含む燃料電池システムにかかり,特に改質機能を有するスタックおよびこれを含む燃料電池システムに関する。
周知の如く,燃料電池(Fuel Cell)は,メタノール,エタノール,天然ガスなどの炭化水素系列の物質内に含有されている水素と,酸素との電気化学反応によって電気エネルギーを発生させる発電システムである。
このような燃料電池において,近来開発されている高分子電解質型燃料電池(PolymerElctrolyteMembraneFuelCell:以下「PEMFC」という)は,卓越した出力特性を有し,作動温度が低いうえ,速い始動および応答特性を有するので,自動車などに用いられる移動用電源はもとより,公共建物などに用いられる分散用電源,電子機器などに用いられる小型電源などその応用範囲が広いという利点を持つ。
前記のようなPEMFC方式を採用した燃料電池システムは,スタック(stack),改質器(Reformer),燃料タンク,および燃料ポンプなどを備える。スタックは,複数の単位セルからなる電気発生集合体を形成し,燃料ポンプは燃料タンク内の燃料を改質器へ供給する。
改質器は,スタックに連結・設置され,燃料を改質して水素ガスを発生させるとともにこの水素ガスをスタックへ供給する。
したがって,従来の燃料電池システムは,燃料ポンプの作動により燃料タンク内の燃料を改質器へ供給し,この改質器で燃料を改質して水素を発生させる。
そして,前記水素をスタックへ供給し,空気を別途のポンプなどを介してスタックへ供給する。すると,スタックでは,前記水素と前記空気中の酸素とを電気化学的に反応させて電気エネルギーを発生させる。
ところで,これまでの燃料電池システムにおいては,前記スタックと改質器が別途の構成物として備えられてお互い有機的な結合関係を持っており,このようなシステムの構成の際にその構成が複雑で設置面積が大きいため,システムの製造に難しさを伴ううえ,適用機器の大きさを減らすこともできないという問題点があった。
また,燃料電池の効率的な側面からみては,既存の燃料電池システムは,改質器とスタックが別個の部位で作用することにより,言い換えれば改質器とスタックが別個のボディからなっている状態でスタックが改質器からの水素ガスを受け入れて電気を生成する構成なので,それぞれから生成される熱を効率よく使用することが難しく,これにより全体的な熱効率を極大化していないという問題点があった。
本発明は,従来の燃料電池用スタックおよびこれを含む燃料電池システムが有する上記問題点に鑑みてなされたものであり,本発明の目的は,システムの体積を最小化しかつ熱効率を上昇させることが可能な,新規かつ改良されたスタックおよびこれを含む燃料電池システムを提供することである。
上記課題を解決するため,本発明の第1の観点によれば,水素と酸素との反応によって電気エネルギーを発生させる電気発生部と,燃料から水素を発生させ,この水素を前記電気発生部へ供給する燃料処理ユニットとを含み,前記電気発生部と前記燃料処理ユニットとが一体に合体してなる構造を取ることを特徴とする,燃料電池用スタックが提供される。
前記電気発生部の運転温度は,120℃〜200℃とすることができる。
前記スタックは,前記電気発生部を複数備えた集合体構造からなり,前記燃料処理ユニットは前記各電気発生部の間に位置する。
また,本発明の他の観点によれば,膜/電極接合体(Membrane−electrodeAssembly:MEA)と,水素移動チャネルおよび酸素移動チャネルを有しながら前記膜/電極接合体の両側面にそれぞれ密着配置されるセパレータとを含んでなる少なくとも1つの電気発生部,および前記セパレータの移動チャネルの反対側の面に形成され,燃料から水素ガスを発生させかつこの水素ガスを前記電気発生部へ供給する改質部を含むことを特徴とする,燃料電池用スタックが提供される。
前記スタックは,前記電気発生部を複数備えた集合体構造からなり,前記セパレータは,前記膜/電極接合体の一面に密着する密着面に水素移動チャネルを形成し,前記膜/電極接合体の他面に密着する密着面に酸素移動チャネルを形成してもよい。
前記改質部は,隣り合う前記電気発生部の間に形成されるもので,対向して密着する前記各セパレータの移動チャネルの反対側の面にチャネルが設けられるが,前記2つのチャネルが合体して反応通路を形成してもよい。
前記反応通路は,前記セパレータの一端から反対側の他端まで複数形成されてもよい。
前記各反応通路の内面に酸化触媒と改質触媒を交番に連続して形成してもよい。
前記一つの反応通路の内面に酸化触媒を形成し,隣り合う他の反応通路の内面に改質触媒を形成してもよい。
本発明にかかる燃料電池用スタックにおいて,前記改質部は,前記各反応通路の間に蒸発通路を形成してもよい。
本発明にかかる燃料電池用スタックにおいて,前記反応通路は,前記各セパレータに貫設される注入口と排出口を有しながら,この注入口と排出口とを連結するチャネルの形状からなってもよい。この場合,前記反応通路は蛇行状からなることができる。
前記反応通路の内面に酸化触媒と改質触媒を交番に連続して形成してもよい。
前記反応通路は,中央部を基準として,前記注入口側の内面に酸化触媒を形成し,前記排出口側の内面に改質触媒を形成してもよい。
前記反応通路は,ストライプ状に形成され,この反応通路の内面に酸化触媒と改質触媒を交番に連続して形成してもよい。
また,本発明の別の観点によれば,膜/電極接合体と,水素移動チャネルおよび酸素移動チャネルを有しながら,前記膜/電極接合体の両側面にそれぞれ密着配置されるセパレータとを含んでなる少なくとも1つの電気発生部,および前記セパレータに連結・設置され,燃料から水素ガスを発生させかつこの水素ガスを前記電気発生部へ供給する改質部を含むことを特徴とする,燃料電池用スタックが提供される。
前記スタックは,前記電気発生部を複数備えた集合体構造からなり,前記セパレータは,前記膜/電極接合体の一面に密着する密着面に水素移動チャネルを形成し,前記膜/電極接合体の他面に密着する密着面に酸素移動チャネルを形成してもよい。
前記改質部は,隣り合う前記電気発生部の間に介在される少なくとも一つの反応プレートを含んでもよい。この場合,前記反応プレートは,一端から反対側の他端まで貫設される複数の反応通路を備えてもよい。
前記各反応通路の内面に酸化触媒と改質触媒を交番に連続して形成してもよい。
前記一つの反応通路の内面に酸化触媒を形成し,隣り合う他の反応通路の内面に改質触媒を形成してもよい。
前記反応プレートは,前記各反応通路の間に蒸発通路を形成してもよい。
前記改質部は,一端から反対側の他端まで複数の第1反応通路を形成する第1反応プレートと,前記第1反応プレートの一面に密着配置され,一端から反対側の他端まで複数の第2反応通路を形成する第2反応プレートと,前記第1反応プレートの他面に密着配置され,一端から反対側の他端まで複数の第3反応通路を形成する第3反応プレートとを含んでもよい。
前記第1反応通路の内面に酸化触媒を形成し,前記第2版応通路および前記第3反応通路の内面に改質触媒を形成してもよい。この場合,本発明にかかる燃料電池用スタックは,前記第2反応通路と前記第3反応通路との間に蒸発通路を形成してもよい。
また,本発明の別の観点によれば,水素と酸素との反応によって電気エネルギーを発生させる少なくとも1つの電気発生部,および前記電気発生部と一体化し,燃料から水素ガスを発生させ,前記水素ガスを前記電気発生部へ供給する燃料処理ユニットを含むスタックと,前記燃料処理ユニットへ前記燃料を供給する燃料供給源と,前記電気発生部と前記燃料処理ユニットへ前記酸素を供給する酸素供給源とを含むことを特徴とする,燃料電池システムが提供される。
また,本発明にかかる燃料電池システムにおいて,前記スタックは,前記電気発生部を複数備え,これらの電気発生部による集合体構造からなり,前記燃料処理ユニットが前記各電気発生部の間に位置する構造を取っている。
また,本発明にかかる燃料電池システムにおいて,前記燃料供給源は,前記燃料を貯蔵する少なくとも1つの燃料タンクと,この燃料タンクに連結・設置され,前記燃料を排出させる燃料ポンプとを含んでもよい。
また,本発明にかかる燃料電池システムにおいて,前記酸素供給源は,少なくとも1つの空気ポンプとすることができる。
また,本発明の別の観点によれば,燃料から水素ガスを発生させ,水素と酸素との反応によって電気エネルギーを発生させるスタックと,前記スタックへ前記燃料を供給する燃料供給源と,前記スタックへ前記酸素を供給する酸素供給源とを含み,前記スタックは,膜/電極接合体と,水素移動チャネルおよび酸素移動チャネルを有しながら前記膜/電極接合体の両側面にそれぞれ密着配置されるセパレータとを含んでなる少なくとも1の電気発生部と,前記セパレータの移動チャネルの反対側の面に形成され,前記燃料から水素ガスを発生させかつこの水素を前記電気発生部へ供給する改質部とを含む特徴とする,燃料電池システムが提供される。
前記スタックは,電気発生部を複数備えた集合体構造からなり,前記セパレータは,前記膜/電極接合体の一面に密着する密着面に水素移動チャネルを形成し,前記膜/電極接合体の他面に密着する密着面に酸素移動チャネルを形成してもよい。前記改質部は,隣り合う前記電気発生部の間に形成されるもので,対向して密着する前記各セパレータの移動チャネルの反対側の面にチャネルが設けられるが,前記2つのチャネルが合体して反応通路を形成してもよい。
また,本発明の別の観点によれば,燃料から水素ガスを発生させ,水素と酸素との反応によって電気エネルギーを発生させるスタックと,前記スタックに前記燃料を供給する燃料供給源と,前記スタックへ前記酸素を供給する酸素供給源とを含み,前記スタックは,膜/電極接合体と,水素移動チャネルおよび酸素移動チャネルを有しながら前記膜/電極接合体の両側面にそれぞれ密着配置されるセパレータとを含んでなる少なくとも1つの電気発生部と,前記セパレータに連結・設置され,前記燃料から水素ガスを発生させかつこの水素ガスを前記電気発生部へ供給する改質部とを含むことを特徴とする,燃料電池システムが提供される。
前記スタック部は,前記電気発生部を複数備え,これらの電気発生部による集合体構造からなり,前記セパレータは,前記膜/電極接合体の一面に密着する密着面に水素移動チャネルを形成し,前記膜/電極接合体の他面に密着する密着面に酸素移動チャネルを形成してもよい。
前記改質部は,隣り合う前記電気発生部の間に介在される少なくとも1つの反応プレートを含むことができる。
前記反応プレートは,一端から反対側の他端まで貫設される複数の反応通路を形成してもよい。この場合,本発明にかかる燃料電池システムは,前記反応通路へ前記燃料を供給して前記燃料から水素ガスを発生させ,この水素ガスを前記電気発生部へ供給する構造を取っている。
以上のように,本発明によれば,燃料から水素ガスを発生させる改質部,および水素と酸素との反応によって電気エネルギーを発生させる電気発生部を一体に合体させてスタックを形成することにより,全体システムの体積を最小化することができるという効果がある。
また,本発明は,電気発生部から発生する熱を改質部へ伝達し,電気発生部の冷却と改質部の加熱を同時に行うことにより,全体システムの熱効率を極大化することができるという効果がある。
以下に添付図面を参照しながら,本発明にかかるスタックおよびこれを含む燃料電池システムの好適な実施形態について詳細に説明する。なお,本明細書および図面において,実質的に同一の機能構成を有する構成要素については,同一の符号を付することにより重複説明を省略する。
(第1実施形態)
以下に添付図面を参照しながら,本発明の好適な実施の形態について詳細に説明する。なお,本明細書及び図面において,実質的に同一の機能構成を有する構成要素については,同一の符号を付することにより重複説明を省略する。
図1は本発明の実施形態にかかる燃料電池システムの構成を概略的に示したブロック図である。
次に,図1を参照して燃料電池システム100を説明する。燃料電池システム100は,燃料を改質して水素を発生させ,この水素と酸化剤とを電気化学的に反応させて電気エネルギーを発生させる高分子電解質型燃料電池(PolymerElectrodeMembraneFuelCell:PEMFC)方式を採用している。
このような燃料電池システム100において,電気を発生させるための燃料は,メタノール,エタノールまたは天然ガスなどの水素を含む気体または液状の燃料をとすることができる。本実施形態では,液状の燃料を例とする。
また,燃料電池システム100において,水素と反応する酸化剤は,別途の貯蔵手段に貯蔵された酸素または空気中の酸素を使用することができる。本実施形態では,後者を例とする。
燃料電池システム100は,燃料から水素を発生させ,この水素と酸素との反応によって電気エネルギーを発生させるスタック10と,前記スタック10へ燃料を供給する燃料供給源50と,前記スタック10へ酸素を供給する酸素供給源70とを含む。
前記において,スタック10は,燃料電池の作用によって電気エネルギーを発生させる電気発生ユニットと,前記燃料から水素を発生させる燃料処理ユニットとが一体に合体し,前記燃料の改質処理および水素と酸素との電気化学反応を行う構造であって,その具体的な構成については後述する。
燃料供給源50は,前述した燃料,およびこの燃料と水との混合燃料(以下,便宜上「混合燃料」という)を前記スタック10の燃料処理ユニットに供給するためのものである。この燃料供給源50は,前記燃料を貯蔵する第1燃料タンク51と,前記混合燃料を貯蔵する第2燃料タンク52と,前記第1,2燃料タンク51,52に連結・設置され,前記燃料および前記混合燃料を排出させる燃料ポンプ53とを含む。
酸素供給源70は,酸素をスタック10の電気発生ユニットと燃料処理ユニットに供給するためのものである。前記酸素供給源70は,空気を吸入し,この吸入空気を前記スタック10に供給する空気ポンプ71を含む。
図2は,本発明の第1実施形態にかかる燃料電池用スタックの構成を示す分解斜視図,図3は,図2の結合断面構成図,図4は図2の改質部の構造を概略的に示したセパレータの正面構成図である。
前記スタック10は,水素と酸素との電気化学反応によって電気エネルギーを発生させる複数の電気発生部20を含む。
前記電気発生部20は,後述する改質部30から改質ガスを,酸素供給源70から空気を供給され,前記改質ガス中の水素と空気中の酸素とを電気化学的に反応させて電気エネルギーを発生させる最小単位の燃料電池を構成する。
したがって,本実施形態では,前記最小単位の電気発生部20を複数備え,これらを連続して配置することにより,電気発生部20の集合体構造によるスタック10を形成することができる。
ここで,前記電気発生部20は,自動車または住宅発展用に使用する,高温の運転条件を有する燃料電池から構成するが,特に,前記改質部30から供給される改質ガス中の一酸化炭素の濃度を低減させることが可能な,約120℃〜200℃の運転温度条件を有する燃料電池から構成することできる。
具体的に,前記電気発生部20は,膜/電極接合体21を中心におき,その両面にセパレータ(同業界では「バイポーラプレート」という)22を密着配置して構成できる。
前記膜/電極接合体21は,水素と酸素との電気化学反応が起こる所定面積の活性領域を有しながら,一面にアノード電極,他面にカソード電極を備え,両電極の間に電解質膜を備える構造からなっている。アノード電極は,前記改質部30から供給される水素ガス中の水素を酸化反応させ,水素イオン(プロトン)と電子に変換させる機能をする。カソード電極は,酸素供給源70の稼動によって供給される空気中の酸素と前記アノード電極から移動した水素イオンとを還元反応させ,所定の温度の熱と水分を発生させる機能をする。そして,電解質膜は,アノード電極で生成された水素イオンをカソード電極へ移動させるイオン交換の機能をする。
ここで,前記アノード電極は,一酸化炭素の被毒抵抗性を持つ触媒物質からなるところ,前述したような電気発生部20の運転温度条件による触媒活性で前記改質ガス中の一酸化炭素の濃度を低減させることが可能な通常の触媒物質からなる。
前記膜/電極接合体21を挟んでその両面に密着配置される前記セパレータ22は,膜/電極接合体21のアノード電極とカソード電極を直列に連結させる伝導体の機能を有し,膜/電極接合体21の酸化/還元反応に必要な水素ガスと空気を前記アノード電極とカソード電極に供給する通路の機能も有する。
本実施形態において,前記セパレータ22は,膜/電極接合体21に密着する面の反対側の面が,隣り合う電気発生部20のセパレータ22の膜/電極接合体の反対側の面に対向して密着する配置にすることがよい。
このような前記それぞれのセパレータ22には,膜/電極接合体21のアノード電極へ水素を供給するための水素移動チャネル23と,膜/電極接合体21のカソード電極へ空気を供給するための酸素移動チャネル24が形成される。この際,前記水素移動チャネル23は後述する改質部30に連結され,前記酸素移動チャネル24は酸素供給源70の空気ポンプ71に連結される。
前記それぞれのセパレータ22には,水素移動チャネル23と酸素移動チャネル24へ水素ガスと空気を注入させるためのマニホールドタイプの第1,2注入口22a,22bと,それぞれのチャネル23,24を通過しながら膜/電極接合体21に対し反応して残った水素ガスと空気を排出させるためのマニホールドタイプの第1,2排出口22c,22dが形成される。
前記第1注入口22aは,酸素移動チャネル24に連通せずかつ水素移動チャネル23とは連通するように形成され,前記第2注入口22bは,水素移動チャネル23に連通せずかつ酸素移動チャネル24とは連通するように形成され,前記第1排出口22cは,酸素移動チャネル24に連通せずかつ水素移動チャネル23とは連通するように形成され,前記第2排出口22dは,水素移動チャネル23に連通せずかつ酸素移動チャネル24とは連通するように形成される。この際,前記第1,2注入口22a,22bは,セパレータの一端に,前記第1,2排出口22c,22dは,注入口と反対側のセパレータ面の他端にそれぞれ形成することができる。
このように構成されるスタック10に本発明にかかる改質部30を提供するが,この改質部30は,複数の電気発生部20の間に配置され,前記混合燃料から改質ガスを発生させ,この改質ガスを前記電気発生部20へ供給する機能をする。
本発明において,前記改質部30は,燃料と空気との酸化反応によってスタック10全体を約200℃まで予熱させ,混合燃料と空気との自熱反応(Auto−ThermalReaction:ATR)および前記熱エネルギーによる混合燃料の水蒸気改質(Steam Reforming:SR)反応によって前記混合燃料から水素を発生させる構造になっている。
具体的に,前記改質部30は,隣り合う電気発生部20の間に形成され,純粋な燃料と空気,混合燃料と空気を通過させながら前記酸化反応,前記自熱反応および前記水蒸気改質反応を同時に行う反応通路31を含む。
この反応通路31は,隣り合う電気発生部20に対し対向して密着するセパレータ22の密着面にそれぞれ形成されるチャネル31aによって形成できる。この際,前記チャネル31aは,一つの電気発生部20のセパレータ22の膜/電極接合体21に密着する面の反対面と,このセパレータ22に対向して密着する隣接電気発生部20のセパレータ22の接面にそれぞれ形成できる。
したがって,一電気発生部20のセパレータ22と,この電気発生部20に隣り合う他の電気発生部20のセパレータ22が対向する形で密着する過程で前記チャネル31aが合体することにより,本実施形態にかかる反応通路31を形成することができる。この際,前記反応通路31は,セパレータ22の一端から反対側の他端まで貫設され,一端から純粋な燃料と空気,混合燃料と空気を注入し,前述した酸化反応,自熱反応および水蒸気改質反応によって発生する水素ガス,未反応燃料および水を反対側の他端から排出させるようになっている。
前記反応通路31は,第1燃料タンク51および空気ポンプ71に連結され,第2燃料タンク52と空気ポンプ71に連結される。このような連結構造において,本実施形態にかかるスタック10は,反応通路31の一端に燃料と空気,混合燃料と空気が供給され,前記反応通路31の反対側の他端から未反応燃料,水および水素ガスが排出されるように構成されたものを例示しながら,どのように燃料,混合燃料および空気が一端に供給されるかと,どのように水素ガス,未反応燃料および水が反対側の他端から排出されるかについての具体的な構成を省略している。これに関する構成は公知のものが適用できる。
本実施形態において,前記反応通路31は,チャネル31aの内面に,アルミナからなる膜状の担体32を形成し,この担体32に触媒物質を担持して構成される酸化触媒33と改質触媒34をチャネル31aの長さ方向に沿って交番に連続して形成している(図4参照)。
この際,前記担体32は,触媒物質を担持する機能の他にも,電気発生部20からの電流が液状の燃料(混合燃料)を介して漏れることを絶縁する絶縁膜の機能をする。ここで,前記酸化触媒33は,燃料と空気との酸化反応を促進させ,予め設定された温度範囲の熱エネルギーを発生させる通常の酸化触媒物質からなり,前記改質触媒34は,混合燃料の水蒸気改質反応を促進させ,この混合燃料から水素を発生させる通常の改質触媒物質からなる。
一方,本実施形態にかかる燃料電池システム100は,改質部30の反応通路31を介して排出される水素,未反応燃料および水を熱交換によってそれぞれ分離,回収し,前記水素を電気発生部20へ供給する回収部材90を含んでいる(図1参照)。
前記回収部材90は,通常の構造の凝縮器または気液分離器をその例として挙げることができ,前記水素ガスを電気発生部20へ供給するために,パイプラインを介してセパレータ22の第1注入口22aと連結・設置される。
以下,このように構成される本発明の実施形態にかかる燃料電池システムの動作を詳細に説明する。
まず,本システム100の初期起動の際,燃料ポンプ53を稼動させ,第1燃料タンク51に貯蔵された純粋な燃料を改質部30の反応通路31へ供給する。これと同時に,空気ポンプ71を稼動させ,空気を前記反応通路31へ供給する。すると,前記燃料と空気は反応通路31を通過しながら酸化触媒33によって酸化反応を起こす。
したがって,本実施形態にかかる改質部30では,前記酸化反応によって燃料と空気が燃焼するにつれて,予め設定された温度範囲の熱エネルギーを発生させる。これにより,本実施形態にかかるスタック10は,隣り合う電気発生部20の間に改質部30を備えることにより,前記熱エネルギーがそれぞれの電気発生部20に伝達されるので,スタック10全体の固有な運転条件に相応する温度範囲,例えば120℃〜200℃に予熱される。このような状態で,燃料ポンプ53の稼動によって,第2燃料タンク52に貯蔵された混合燃料を改質部30の反応通路31へ供給する。これと同時に,空気ポンプ71の稼動によって空気を前記反応通路31へ供給する。すると,前記混合燃料は,反応通路31を通過しながら,前述した熱エネルギーによって蒸発する。その途中,前記蒸発した混合燃料中に含有されている燃料の一部と空気とは酸化触媒33によって自熱反応を起こす。
したがって,本実施形態にかかる改質部30では,前記自熱反応によって燃料と空気とが燃焼するにつれて,スタック10の運転温度条件に相応する熱エネルギー,および後述する水蒸気改質反応に必要な熱エネルギーを発生させる。この際,本システム100は,改質部30の反応通路31へ供給される空気の量を空気弁体(図示せず)によって調節することができる。
そこで,本システム100は,前記空気弁体の開閉量の度合いによって反応通路31への空気供給量が異なるので,この空気供給量を選択的に調節して前記熱エネルギーの温度範囲を制御することができる。
これに加えて,本実施形態にかかる改質部30では,改質触媒34による前記蒸発した混合燃料の水蒸気改質反応によって水素を発生させる。この際,前記改質部30は,改質触媒34による混合燃料の水蒸気改質反応が吸熱反応なので,このような改質反応に必要な熱エネルギーの提供を前述したような燃料と空気との自熱反応を介して受けることができる。
このような場合,本システム100は,前記反応通路31へ供給される混合燃料の濃度または改質触媒34の触媒量を選択的に調節することにより,前記熱エネルギーの温度範囲を制御することができる。
その後,前記水素は,反応通路31の端部から排出されるが,この反応通路31を通過しながら未反応燃料および水と共に排出される。したがって,前記水素,未反応燃料および水は回収部材90によってお互い分離される。特に,前記水素はパイプラインを介してセパレータ22の第1注入口22aへ供給される。
これと同時に,前記空気ポンプ71の稼動によって空気をセパレータ22の第2注入口22bへ供給する。すると,前記水素ガスはセパレータ22の水素移動チャネル23を介して膜/電極接合体21のアノード電極へ,前記空気はセパレータ22の酸素移動チャネル24を介して膜/電極接合体21のカソード電極へそれぞれ供給される。
したがって,前記アノード電極では,水素の酸化反応によって前記水素を電子とプロトン(水素イオン)に分解する。前記プロトンは膜/電極接合体21の電解質膜を介してカソード電極へ移動し,電子は電界質膜を介して移動せず,セパレータ22または別途の端子部(図示せず)を介して隣接膜/電極接合体21のカソード電極へ移動する。この際,電子の流れで電流を発生させる。
前記カソード電極では,電解質膜を介してカソード電極に移動した水素イオンと,空気中に含有されている酸素との還元反応によって所定温度の熱と水分を発生させる。これにより,本発明にかかる燃料電子システム100は,このような一連の過程を繰り返し行うことにより,予め設定された出力量の電気エネルギーを所定のロード(例えば,ラップトップコンピュータ)へ出力させることができる。
一方,本発明にかかる燃料電池システム100は,スタック10全体の適正な運転温度範囲(約120℃〜200℃)を保たせるために,上述したように前記発生部20から発生する熱を持続的に冷却させる必要がある。本実施形態では,隣り合う電気発生部20の間に改質部30を備えているので,前記した熱は,電気発生部20を介して改質部30に伝達され,前述した燃料と空気との自熱反応によって発生する熱エネルギーと共に混合燃料の水蒸気改質反応に必要な熱エネルギーとして用いられる。
これは,電気発生部20から発生する熱を前記混合燃料の水蒸気改質反応によって冷却させることができることを意味する。しかも,前記水蒸気改質反応に必要な熱エネルギー源の供給を燃料と空気との自熱反応に全く依存せず,前記電気発生部20から発生する熱を前記熱エネルギー源として使用することができる。
一方,本発明にかかる燃料電池システム100において,改質部30から発生する改質ガス中には,副生成物としての一酸化炭素を微量含有しているが,電気発生部20が120℃〜200℃の高温運転条件を有しながら,膜/電極接合体21のアノード電極が一酸化炭素の被毒抵抗性を有する触媒物質からなっているため,前記触媒の活性によって一酸化炭素の濃度を低減させることができる。
図5A〜図5Eは本発明の第1実施形態にかかる改質部の変形例を概略的に示したセパレータの正面構成図である。
図5Aを参照すると,本実施形態にかかる改質部30Aの第1変形例は,前記実施形態と同様に,セパレータ22の一端から反対側の他端まで貫設される複数の反応通路31Aを備えるが,この反応通路31Aにおいて,一つの反応通路31Aの内面に酸化触媒33Aを,これと隣り合う他の反応通路31Aの内面に改質触媒34Aをそれぞれ形成し,前記それぞれの反応通路31Aに対し酸化触媒33Aと改質触媒34Aを交番に形成する構造になっている。
したがって,本変形例によれば,純粋な燃料と空気を前記一つの反応通路31Aに供給すると,前記酸化触媒33Aによる燃料と空気との酸化反応によって,予め設定された温度範囲の熱エネルギーを発生させる。
このような熱エネルギーは,前記他の反応通路31Aの改質触媒34Aに伝達される。そして,混合燃料を前記他の反応通路31Aに供給すると,この混合燃料が前記熱エネルギーを吸熱して蒸発し,改質触媒34Aによる混合燃料の水蒸気改質反応によって水素を発生させる。
図5Bを参照すると,本実施形態にかかる改質部130の第2変形例は,前記第1変形例の構造を基本としながら,それぞれの反応通路131の間に蒸発通路135を形成する構造になっている。
すなわち,第2変形例にかかる改質部130は,前記第1変形例と同様に,酸化触媒133を形成している反応通路131と,改質触媒134を形成している反応通路131との間に,蒸発通路135を形成している構成である。
ここで,前記蒸発通路135は,酸化触媒133による燃料と空気との酸化反応によって発生する熱エネルギーの提供を受けて混合燃料を蒸発させ,前記蒸発した混合燃料を,改質触媒134の形成されている反応通路131へ供給する機能をする。
したがって,本変形例によれば,純粋な燃料と空気を前記酸化触媒133の形成されている反応通路131へ供給すると,前記酸化触媒133による燃料と空気との酸化反応によって,予め設定された温度範囲の熱エネルギーを発生させる。
このような熱エネルギーは,本変形例による蒸発通路135に伝達される。そして,混合燃料を前記蒸発通路135に供給すると,この混合燃料は蒸発通路135を通過しながら,前記熱エネルギーによって蒸発する。
これにより,前記蒸発した混合燃料は,改質触媒134の形成されている反応通路131を介して供給されるので,本変形例にかかる改質部130では,前記改質触媒134による混合燃料の水蒸気改質反応によって水素ガスを発生させる。
図5Cを参照すると,本実施形態にかかる改質部230の第3変形例は,隣り合う電気発生部(図示せず)のセパレータ22の接面に任意の間隔をおいて直線状に配置される複数の直線パスを形成し,この直線パスの両端が交互に連結されて全体的な形状が蛇行状からなる反応通路231を構成する。
このような反応通路231は,各セパレータ22に貫設される,注入口237と排出口239とを連結するチャネルの形状を有する。前記反応通路231の内面には,酸化触媒233と改質触媒234をこの反応通路231のパス方向に沿って交番に連続して形成してある。
図5Cにおいて,22a,22bは,セパレータ22の水素移動チャネル(図示せず)と酸素移動チャネル(図示せず)へ水素ガスと空気を注入させるためのマニホールドタイプの第1,2注入口を示し,22c,22dは,前記各チャネルを通過しながら反応して残った水素ガスと空気を排出させるためのマニホールドタイプの第1,2排出口を示す。
したがって,本変形例によれば,システムの初期起動の際に前記注入口237から反応通路231へ純粋な燃料と空気を供給すると,酸化触媒233による燃料と空気との酸化反応によって熱エネルギーを発生させ,この熱エネルギーによってスタック全体を予熱させることができる。
このような状態で,前記反応通路231に混合燃料と空気を供給すると,混合燃料が前記熱エネルギーによって蒸発し,燃料の一部と空気との酸化触媒233による自熱反応によって熱エネルギーを発生させ,改質触媒234による前記蒸発した混合燃料の水蒸気改質反応によって水素ガスを発生させる。前記水素ガスは,排出口239から排出され,セパレータ22の第1注入口22aに供給される。
図5Dを参照すると,本実施形態にかかる改質部330の第4変形例は,前述した変形例と同様に注入口337と排出口339をチャネルの形で連結する反応通路331において,この反応通路331の中央部を基準として,注入口337側の反応通路331の内面に酸化触媒333を形成し,排出口339側の反応通路331の内面に改質触媒334を形成する構造になっている。
したがって,本変形例によれば,注入口337から混合燃料と空気を注入すると,前記混合燃料中に含有されている燃料の一部と空気との酸化触媒333による酸化反応によって,予め設定された温度範囲の熱エネルギーを発生させる。
これにより,混合燃料は,前記熱エネルギーによって蒸発し,本変形例による改質部330では,改質触媒334による前記蒸発した混合燃料の水蒸気改質反応によって水素ガスを発生させる。
図5Eを参照すると,本実施形態に係改質部430の第5変形例は,第3,4変形例と同様の注入口437と排出口439との間にストライプ状の反応通路431を形成し,前記反応通路431の内面に酸化触媒433と改質触媒434を交番に連続して形成する構造になっている。
したがって,本変形例によれば,システムの初期起動の際に前記注入口437から反応通路431へ純粋な燃料と空気を供給すると,酸化触媒433による燃料と空気との酸化反応によって熱エネルギーを発生させ,この熱エネルギーによってスタック全体を予熱させることができる。
このような状態で,前記反応通路431に混合燃料と空気を供給すると,混合燃料が前記熱エネルギーによって蒸発し,燃料の一部と空気との酸化触媒433による自熱反応によって熱エネルギーを発生させ,改質触媒434による前記蒸発した混合燃料の水蒸気改質反応によって水素ガスを発生させる。
(第2実施形態)
図6は,本発明の第2実施形態にかかる燃料電池用スタックの構成を示す分解斜視図である。
図6を参照すると,本実施形態にかかる燃料電池用スタック510は,隣り合う電気発生部520のセパレータ522の間に反応プレート540を設置し,この反応プレート540に複数の反応通路531を形成する改質部530を構成することができる。この際,前記反応通路531は,反応プレート540の一端から反対側の他端まで貫設する。
図7は図6の改質部を示した反応プレートの断面構成図である。
図7を参照すると,前記改質部530は,反応プレート540に貫設される反応通路531の内面に,アルミナからなる膜状の担体(図示せず)を形成し,この担体に触媒物質を担持して構成される酸化触媒533と改質触媒534を反応通路531の長さ方向に沿って交番に連続して形成している。
このように構成される本実施形態にかかるスタックの残りの構成および作用は前記実施形態と同様なので,その詳細な説明は略する。
図8Aおよび図8Bは,本発明の第2実施形態にかかる改質部の変形例を概略的に示した断面構成図である。
図8Aを参照すると,本実施形態にかかる改質部の第1変形例は,前記実施形態と同様に,反応プレート540Aの一端から反対側の他端まで貫設される複数の反応通路531Aを備え,この反応通路531Aにおいて1つの反応通路531Aの内面に酸化触媒533Aを形成し,これと隣り合う他の反応通路531Aの内面に改質触媒534Aを形成し,それぞれの反応通路531Aに対し酸化触媒533Aと改質触媒534Aを交番に形成する構造になっている。
このように構成される本変形例にかかる改質部530Aの残りの構成および作用は前述した図5Aの変形例と同様なので,その詳細な説明は略する。
図8Bを参照すると,本実施形態にかかる改質部530の第2変形例は,前記第1変形例の構造を基本としながら,反応プレート540Bに貫設されるそれぞれの反応通路531Aの間に蒸発通路535を形成する構造になっている。すなわち,前記第1変形例と同様に,酸化触媒533Aを形成している反応通路531Aと,改質触媒534Aを形成している反応通路531Aとの間に蒸発通路535を形成する構造になっている。
このように構成される本変形例にかかる改質部530Bの残りの構成および作用は前述した図5Bの変形例と同様なので,その詳細な説明は略する。
(第3実施形態)
図9は本発明の第3実施形態にかかる燃料電池用スタックの構成を示す断面構成図である。
図9を参照すると,本実施形態にかかる燃料電池用スタック610は,前記実施形態の構造を基本としながら,隣り合う電気発生部620のセパレータ622の間に複数の反応プレート641,642,643を介在した改質部630を構成することができる。
本実施形態にかかる前記改質部630は,複数の第1反応通路631Aを貫通して設けられる第1反応プレート641と,前記第1反応プレート641の一面に密着配置され,複数の第2反応通路631Bを貫通して設けられる第2反応プレート642と,前記第1反応プレート641の他面に密着配置され,複数の第3反応通路631Cを貫通して設けられる第3反応プレート643とを含むことができる。
ここで,第1反応通路631Aの内面には酸化触媒633を形成し,前記第2,3反応通路631B,631Cの内面には改質触媒634を形成している。このように構成される本実施形態にかかる燃料電池用スタック610の作用を説明すると,純粋な燃料と空気を第1反応プレート641の第1反応通路631Aに供給する。すると,第1反応プレート641では,酸化触媒633による燃料と空気との酸化反応によって,予め設定された温度範囲の熱エネルギーを発生させる。このような熱エネルギーは,第1反応プレート641を介して第2,3反応プレート642,643へ伝達される。
そして,混合燃料を前記第2,3反応プレート642,643の第2,3反応通路631B,631Cへ供給する。すると,混合燃料は前記熱エネルギーを吸熱して蒸発し,前記第2,3反応プレート642,643では,改質触媒634による混合燃料の水蒸気改質反応によって水素ガスを発生させる。
(第4実施形態)
図10は,本発明の第4実施形態にかかる燃料電池用スタックの構成を示す断面構成図である。
図10を参照すると,本実施形態にかかる燃料電池用スタック710は,前記実施形態の構造を基本としながら,第2,3反応プレート742,743の第2,3反応通路731B,731Cの間に蒸発通路735をそれぞれ形成する構造になっている。すなわち,第1反応プレート741の第1反応通路731Aに酸化触媒733を形成し,その両側面に密着配置される第2,3反応プレート742,743の反応通路731B,731Cに改質触媒734を形成している改質部730において,改質部730それぞれの第2,3反応通路731B,731Cの間に蒸発通路735を付加的に形成する。このような蒸発通路735は,酸化触媒733による燃料と空気との酸化反応によって発生する熱エネルギーの提供を受けて混合燃料を蒸発させ,前記蒸発した混合燃料を第2,3反応通路731B,731Cへ供給する機能をする。
したがって,本実施形態によれば,純粋な燃料と空気を第1反応通路731Aへ供給すると,第1反応プレート741では,酸化触媒733による燃料と空気との酸化反応によって,予め設定された温度範囲の熱エネルギーを発生させる。このような熱エネルギーは,本実施形態にかかる蒸発通路735に伝達される。混合燃料を前記蒸発通路735に供給すると,この混合燃料は,蒸発通路735を通過しながら前記熱エネルギーによって蒸発する。
これにより,前記蒸発した混合燃料は第2,3反応通路731B,731Cへ供給されるが,前記第2,3反応プレート742,743では,改質触媒734による混合燃料の水蒸気改質反応によって水素ガスを発生させる。
以上,添付図面を参照しながら本発明の好適な実施形態について説明したが,本発明はかかる例に限定されないことは言うまでもない。当業者であれば,特許請求の範囲に記載された範疇内において,各種の変更例または修正例に想到し得ることは明らかであり,それらについても当然に本発明の技術的範囲に属するものと了解される。
以上,添付図面を参照しながら本発明にかかる改質機能を有するスタックおよびこれを含む燃料電池システムの好適な実施形態について説明したが,本発明はかかる例に限定されない。当業者であれば,特許請求の範囲に記載された技術的思想の範疇内において各種の変更例または修正例に想到し得ることは明らかであり,それらについても当然に本発明の技術的範囲に属するものと了解される。
本発明は,燃料電池用スタックおよびこれを含む燃料電池システムに適用可能である。
実施形態にかかる燃料電池システムの構成を概略的に示すブロック図である 第1実施形態にかかる燃料電池用スタックの構成を示す分解斜視図である。 図2の結合断面構成図である。 図2の改質部の構造を概略的に示したセパレータの正面構成図である。 第1実施形態にかかる改質部の第1変形例を概略的に示したセパレータの正面構成図である。 第1実施形態にかかる改質部の第2変形例を概略的に示したセパレータの正面構成図である。 第1実施形態にかかる改質部の第3変形例を概略的に示したセパレータの正面構成図である。 第1実施形態にかかる改質部の第4変形例を概略的に示したセパレータの正面構成図である。 第1実施形態にかかる改質部の第5変形例を概略的に示したセパレータの正面構成図である。 第2実施形態にかかる燃料電池用スタックの構成を示した分解斜視図である 図6の改質部を示した反応プレートの断面構成図である。 第2実施形態にかかる改質部の第1変形例を概略的に示した断面構造図である。 第2実施形態にかかる改質部の第2変形例を概略的に示した断面構造図である。 第3実施形態にかかる燃料電池用スタックの構成を示した断面構成図である 第4実施形態にかかる燃料電池用スタックの構成を示した断面構成図である。
符号の説明
10 スタック
20 電気発生部
21 膜/電極接合体
22 セパレータ
22a 第1注入口
22b 第2注入口
22c 第1排出口
22d 第2排出口
23 水素移動チャネル
24 酸素移動チャネル
30 改質部
30A 改質部
31 反応通路
31A 反応通路
32 担体
33 酸化触媒
34 改質触媒
34A 改質触媒
50 燃料供給源
51 第1燃料タンク
52 第2燃料タンク
53 燃料ポンプ
70 酸素供給源
71 空気ポンプ
90 回収部材
100 燃料電池システム
130 改質部
131 反応通路
133 酸化触媒
134 改質触媒
135 蒸発経路
230 改質部
231 反応通路
233 酸化触媒
234 改質触媒
237 注入口
239 排出口
330 改質部
331 反応通路
333 酸化触媒
334 改質触媒
337 注入口
339 排出口
430 改質部
431 反応通路
433 酸化触媒
434 改質触媒
437 注入口
439 排出口
510 スタック
520 電気発生部
521 膜/電極接合体
522 セパレータ
530 改質部
530A 改質部
530B 改質部
531 反応通路
531A 反応通路
533 酸化触媒
533A 酸化触媒
534 改質触媒
534A 改質触媒
535 蒸発通路
540 反応プレート
540A 反応プレート
540B 反応プレート
610 スタック
620 電気発生部
622 セパレータ
630 改質部
631A 反応通路
631B 反応通路
631C 反応通路
633 酸化触媒
634 改質触媒
641 第1反応プレート
642 第2反応プレート
643 第3反応プレート
710 スタック
720 電気発生部
722 セパレータ
730 改質部
731A 反応通路
731B 反応通路
731C 反応通路
733 酸化触媒
734 改質触媒
735 蒸発通路
741 第1反応プレート
742 第2反応プレート
743 第3反応プレート

Claims (22)

  1. 膜/電極接合体と,水素移動チャネルおよび酸素移動チャネルを有しながら前記膜/電極接合体の両側面にそれぞれ密着配置されるセパレータとを含んでなる少なくとも1つの電気発生部と,
    前記水素移動チャネルまたは前記酸素移動チャネルの反対側の面に形成され,燃料から水素ガスを発生させこの水素ガスを前記電気発生部へ供給する改質部と,
    を備え,
    隣り合う前記電気発生部の間に形成された前記改質部において,対向して密着する前記各セパレータの,前記水素移動チャネルまたは前記酸素移動チャネルと反対側の面に設けられたチャネルが合体して反応通路を形成することを特徴とする,燃料電池用スタック。
  2. 前記電気発生部を複数備える集合体構造からなる前記セパレータは,
    前記膜/電極接合体の一面に密着する密着面に水素移動チャネルと,
    前記膜/電極接合体の他面に密着する密着面に酸素移動チャネルと
    を形成することを特徴とする,請求項1に記載の燃料電池用スタック。
  3. 前記反応通路は,前記セパレータの一端から反対側の他端まで複数形成することを特徴とする,請求項1または2に記載の燃料電池用スタック。
  4. 前記各反応通路の内面に酸化触媒と改質触媒を,前記反応通路の長さ方向に交番に連続して形成することを特徴とする,請求項1〜3のいずれか1項に記載の燃料電池用スタック。
  5. 前記1つの反応通路の内面に酸化触媒と,
    隣り合う他の反応通路の内面に改質触媒と,
    を形成することを特徴とする,請求項3に記載の燃料電池用スタック。
  6. 前記改質部は,前記各反応通路の間に蒸発通路を形成することを特徴とする,請求項1〜5のいずれか1項に記載の燃料電池用スタック。
  7. 前記反応通路は,前記各セパレータに貫設される注入口と排出口を有し,この注入口と排出口とを連結するチャネルの形状からなることを特徴とする,請求項1〜6のいずれか1項に記載の燃料電池用スタック。
  8. 前記反応通路は,蛇行状からなることを特徴とする,請求項1〜7のいずれか1項に記載の燃料電池用スタック。
  9. 前記反応通路の内面に酸化触媒と改質触媒を,前記反応通路の長さ方向に交番に連続して形成することを特徴とする,請求項8に記載の燃料電池用スタック。
  10. 前記反応通路は,中央部を基準として,
    混合燃料および空気が注入される注入口側の内面に酸化触媒と,
    水素ガスが排出される排出口側の内面に改質触媒と,
    を形成することを特徴とする,請求項8に記載の燃料電池用スタック。
  11. 前記反応通路は,ストライプ状に形成され,この反応通路の内面に酸化触媒と改質触媒を交番に連続して形成することを特徴とする,請求項7に記載の燃料電池用スタック。
  12. 膜/電極接合体と,水素移動チャネルおよび酸素移動チャネルを有しながら前記膜/電極接合体の両側面にそれぞれ密着配置されるセパレータと,を含んでなる少なくとも1つの電気発生部と,
    隣り合う前記セパレータと前記セパレータとの間に連結・設置され,燃料から水素ガスを発生させかつこの水素ガスを前記電気発生部へ供給する改質部と,
    を備え,
    前記改質部は,隣り合う前記電気発生部の間に介在され,その内部に反応通路が形成された少なくとも1つの反応プレートを含み,
    前記反応プレートは,一端から反対側の他端まで貫設される複数の反応通路を有し,
    前記各反応通路の内面に酸化触媒と改質触媒を,前記反応通路の長さ方向に交番に連続して形成することを特徴とする,燃料電池用スタック。
  13. 膜/電極接合体と,水素移動チャネルおよび酸素移動チャネルを有しながら前記膜/電極接合体の両側面にそれぞれ密着配置されるセパレータと,を含んでなる少なくとも1つの電気発生部と,
    隣り合う前記セパレータと前記セパレータとの間に連結・設置され,燃料から水素ガスを発生させかつこの水素ガスを前記電気発生部へ供給する改質部と,
    を備え,
    前記改質部は,隣り合う前記電気発生部の間に介在され,その内部に反応通路が形成された少なくとも1つの反応プレートを含み,
    前記反応プレートは,一端から反対側の他端まで貫設される複数の反応通路を有し,
    前記一つの反応通路の内面に酸化触媒を形成し,隣り合う他の反応通路の内面に改質触媒を形成し,
    前記各反応通路の間に蒸発通路を形成することを特徴とする,燃料電池用スタック。
  14. 膜/電極接合体と,水素移動チャネルおよび酸素移動チャネルを有しながら前記膜/電極接合体の両側面にそれぞれ密着配置されるセパレータと,を含んでなる少なくとも1つの電気発生部と,
    隣り合う前記セパレータと前記セパレータとの間に連結・設置され,燃料から水素ガスを発生させかつこの水素ガスを前記電気発生部へ供給する改質部と,
    を備え,
    前記改質部は,隣り合う前記電気発生部の間に介在され,その内部に反応通路が形成された少なくとも1つの反応プレートを含み,
    前記改質部は,
    一端から反対側の他端まで複数の第1反応通路を形成する第1反応プレートと,
    前記第1反応プレートの一面に密着配置され,一端から反対側の他端まで複数の第2反応通路を形成する第2反応プレートと,
    前記第1反応プレートの他面に密着配置され,一端から反対側の他端まで複数の第3反応通路を形成する第3反応プレートと,
    を含むことを特徴とする,燃料電池用スタック。
  15. 前記第1反応通路の内面に酸化触媒を形成し,前記第2,3反応通路の内面に改質触媒を形成することを特徴とする,請求項14に記載の燃料電池用スタック。
  16. 前記第2反応通路と前記第3反応通路との間に蒸発通路を形成することを特徴とする,請求項14または15に記載の燃料電池用スタック。
  17. 前記電気発生部を複数備え,これらの電気発生部による集合体構造からなり,前記セパレータは,前記膜/電極接合体の一面に密着する密着面に水素移動チャネルを形成し,前記膜/電極接合体の他面に密着する密着面に酸素移動チャネルを形成する請求項12〜16のいずれか1項に記載の燃料電池用スタック。
  18. 燃料から水素ガスを発生させ,水素と酸素との反応によって電気エネルギーを発生させるスタックと,
    前記スタックへ前記燃料を供給する燃料供給源と,
    前記スタックへ前記酸素を供給する酸素供給源と,
    を含み,
    前記スタックは,膜/電極接合体と,水素移動チャネルおよび酸素移動チャネルを有し,前記膜/電極接合体の両側面にそれぞれ密着配置されるセパレータとを含んでなる少なくとも1つの電気発生部と,
    前記セパレータの前記水素移動チャネルまたは前記酸素移動チャネルの反対側の面に形成され,前記燃料から水素ガスを発生させ,この水素を前記電気発生部へ供給する改質部と,
    を備え,
    前記改質部は,隣り合う前記電気発生部の間に形成され,対向して密着する前記各セパレータの前記水素移動チャネルまたは前記酸素移動チャネルと反対側の面に設けられたチャネルが合体して反応通路を形成し,前記反応通路へ前記燃料を供給して前記燃料から水素を発生させ,この水素を前記電気発生部へ供給する構造を有することを特徴とする,燃料電池システム。
  19. 前記スタックは,前記電気発生部を複数備え,これらの電気発生部による集合体構造からなり,
    前記セパレータは,前記膜/電極接合体の一面に密着する密着面に水素移動チャネルを形成し,前記膜/電極接合体の他面に密着する密着面に酸素移動チャネルを形成することを特徴とする,請求項18に記載の燃料電池システム。
  20. 燃料から水素ガスを発生させ,水素と酸素との反応によって電気エネルギーを発生させるスタックと,
    前記スタックへ前記燃料を供給する燃料供給源と,
    前記スタックへ前記酸素を供給する酸素供給源と,
    を含み,
    前記スタックは,
    膜/電極接合体と,水素移動チャネルおよび酸素移動チャネルを有しながら前記膜/電極接合体の両側面にそれぞれ密着配置されるセパレータとを含んでなる少なくとも1つの電気発生部と,
    隣り合う前記セパレータと前記セパレータとの間に連結・設置され,前記燃料から水素ガスを発生させかつこの水素ガスを前記電気発生部へ供給する改質部と,
    を備え,
    前記改質部は,隣り合う前記電気発生部の間に介在され,その内部に反応通路が形成された少なくとも1つの反応プレートを含み,
    前記反応プレートは,一端から反対側の他端まで貫設される複数の反応通路を形成し,
    前記各反応通路の内面に酸化触媒と改質触媒を,前記反応通路の長さ方向に交番に連続して形成し,
    前記反応通路へ前記燃料を供給して前記燃料から水素ガスを発生させ,この水素ガスを前記電気発生部へ供給する構造を取ることを特徴とする,燃料電池システム。
  21. 燃料から水素ガスを発生させ,水素と酸素との反応によって電気エネルギーを発生させるスタックと,
    前記スタックへ前記燃料を供給する燃料供給源と,
    前記スタックへ前記酸素を供給する酸素供給源と,
    を含み,
    前記スタックは,
    膜/電極接合体と,水素移動チャネルおよび酸素移動チャネルを有しながら前記膜/電極接合体の両側面にそれぞれ密着配置されるセパレータとを含んでなる少なくとも1つの電気発生部と,
    隣り合う前記セパレータと前記セパレータとの間に連結・設置され,前記燃料から水素ガスを発生させかつこの水素ガスを前記電気発生部へ供給する改質部と,
    を備え,
    前記改質部は,隣り合う前記電気発生部の間に介在され,その内部に反応通路が形成された少なくとも1つの反応プレートを含み,
    前記反応プレートは,一端から反対側の他端まで貫設される複数の反応通路を形成し,
    前記一つの反応通路の内面に酸化触媒を形成し,隣り合う他の反応通路の内面に改質触媒を形成し,
    前記各反応通路の間に蒸発通路を形成し,
    前記反応通路へ前記燃料を供給して前記燃料から水素ガスを発生させ,この水素ガスを前記電気発生部へ供給する構造を取ることを特徴とする,燃料電池システム。
  22. 前記スタック部は,前記電気発生部を複数備え,これらの電気発生部による集合体構造からなり,前記セパレータは,前記膜/電極接合体の一面に密着する密着面に水素移動チャネルを形成し,前記膜/電極接合体の他面に密着する密着面に酸素移動チャネルを形成することを特徴とする,請求項20または21に記載の燃料電池システム。
JP2006072213A 2005-03-16 2006-03-16 燃料電池用スタックおよびこれを含む燃料電池システム Expired - Fee Related JP5006557B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2005-0021973 2005-03-16
KR1020050021973A KR101155910B1 (ko) 2005-03-16 2005-03-16 개질 기능을 갖는 스택 및 이를 포함하는 연료 전지 시스템

Publications (2)

Publication Number Publication Date
JP2006261120A JP2006261120A (ja) 2006-09-28
JP5006557B2 true JP5006557B2 (ja) 2012-08-22

Family

ID=36636488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006072213A Expired - Fee Related JP5006557B2 (ja) 2005-03-16 2006-03-16 燃料電池用スタックおよびこれを含む燃料電池システム

Country Status (6)

Country Link
US (1) US20060210845A1 (ja)
EP (1) EP1703581B1 (ja)
JP (1) JP5006557B2 (ja)
KR (1) KR101155910B1 (ja)
CN (1) CN1835270B (ja)
DE (1) DE602006017461D1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7810669B2 (en) * 2004-03-05 2010-10-12 Airbus Deutschland Gmbh Replaceable cartridge for liquid hydrogen
CN101636866B (zh) * 2007-05-25 2013-11-13 特鲁玛杰拉特技术有限公司 使用液化石油气运行的燃料电池系统
JP5360452B2 (ja) * 2007-07-06 2013-12-04 ソニー株式会社 燃料電池および電子機器
WO2009139607A2 (ko) * 2008-05-16 2009-11-19 주식회사 엘지화학 적층형 유기발광소자
CN103022546A (zh) * 2012-12-31 2013-04-03 刘军 以小分子液态有机物为燃料的液流燃料电池的制备方法
DE112018006034T5 (de) * 2017-11-27 2020-08-27 Infinity Fuel Cell And Hydrogen, Inc. Elektrochemische Brennstoffzelle mit Kaskadenstapel
CN115458764B (zh) * 2022-11-09 2023-03-24 常州创氢能源科技有限公司 高温质子交换膜燃料电池间接内重整电堆

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07109773B2 (ja) * 1989-02-28 1995-11-22 石川島播磨重工業株式会社 燃料電池を用いた発電装置
JP2899709B2 (ja) * 1989-11-25 1999-06-02 石川島播磨重工業株式会社 溶融炭酸塩型燃料電池発電装置
JP2940108B2 (ja) * 1990-09-04 1999-08-25 三菱電機株式会社 内部改質形燃料電池
JPH0613090A (ja) * 1991-05-31 1994-01-21 Tonen Corp 直接内部改質式溶融炭酸塩型燃料電池
JPH0676839A (ja) * 1992-08-25 1994-03-18 Sanyo Electric Co Ltd 間接内部改質溶融炭酸塩型燃料電池
JPH06111838A (ja) * 1992-09-30 1994-04-22 Toshiba Corp 改質器、改質システム、及び燃料電池システム
DE19716438A1 (de) * 1997-04-18 1998-10-22 Heitzer Joerg Dr Kühlung einer Brennstoffzelle
KR100388161B1 (ko) * 1998-07-08 2003-06-25 도요다 지도샤 가부시끼가이샤 연료개질장치
DE10033594B4 (de) 2000-07-11 2006-07-06 Nucellsys Gmbh Brennstoffzelle und Verwendung derselben in einem Kraftfahrzeug
US6569553B1 (en) 2000-08-28 2003-05-27 Motorola, Inc. Fuel processor with integrated fuel cell utilizing ceramic technology
US6828055B2 (en) * 2001-07-27 2004-12-07 Hewlett-Packard Development Company, L.P. Bipolar plates and end plates for fuel cells and methods for making the same
JP4075048B2 (ja) * 2002-06-20 2008-04-16 日産自動車株式会社 固体電解質型燃料電池用セル板
AU2003294322A1 (en) * 2002-11-18 2004-06-15 Gencell Corporation Bipolar plate with two-pass anode
US7312440B2 (en) * 2003-01-14 2007-12-25 Georgia Tech Research Corporation Integrated micro fuel processor and flow delivery infrastructure
US7951507B2 (en) * 2004-08-26 2011-05-31 GM Global Technology Operations LLC Fluid flow path for stamped bipolar plate

Also Published As

Publication number Publication date
EP1703581A3 (en) 2007-08-29
DE602006017461D1 (de) 2010-11-25
US20060210845A1 (en) 2006-09-21
EP1703581A2 (en) 2006-09-20
JP2006261120A (ja) 2006-09-28
CN1835270A (zh) 2006-09-20
EP1703581B1 (en) 2010-10-13
CN1835270B (zh) 2010-05-12
KR20060100976A (ko) 2006-09-22
KR101155910B1 (ko) 2012-06-20

Similar Documents

Publication Publication Date Title
JP5006557B2 (ja) 燃料電池用スタックおよびこれを含む燃料電池システム
US7601186B2 (en) Reformer and fuel cell system having the same
US20050193628A1 (en) Fuel cell system and reformer therefor
JP2005340207A (ja) 燃料電池システムおよび燃料電池用スタック
KR100536218B1 (ko) 연료 전지 시스템
US20050214614A1 (en) Fuel cell system
JP4351641B2 (ja) 燃料電池システム
KR101118666B1 (ko) 세퍼레이터 및 이를 이용한 연료 전지 스택
US8283080B2 (en) Fuel cell system including fuel supply apparatus
KR101023147B1 (ko) 연료 전지 시스템
US20050266294A1 (en) Stack and fuel cell system having the same
KR100570698B1 (ko) 연료 전지 시스템 및 이에 사용되는 개질기
KR100560442B1 (ko) 연료 전지 시스템
KR20060020024A (ko) 연료 전지 시스템 및 스택
KR20050116444A (ko) 연료 전지 시스템의 개질기 및 이를 채용한 연료 전지시스템
KR20060065776A (ko) 연료 전지 시스템, 스택 및 세퍼레이터
KR101126204B1 (ko) 연료 전지 시스템
KR20070027968A (ko) 개질기 및 이를 포함하는 연료 전지 시스템
KR20110022441A (ko) 연료전지 스택 및 이에 적용된 연료전지용 세퍼레이터
KR20060037749A (ko) 연료 전지 시스템, 이에 사용되는 스택 및 세퍼레이터
KR20060106367A (ko) 연료 전지 시스템용 개질기
KR20060102131A (ko) 연료 전지용 스택 및 이를 구비한 연료 전지 시스템

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100204

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20100204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120229

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120522

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120525

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees