JP5005446B2 - Independent high-sensitivity satellite signal receiver - Google Patents
Independent high-sensitivity satellite signal receiver Download PDFInfo
- Publication number
- JP5005446B2 JP5005446B2 JP2007175375A JP2007175375A JP5005446B2 JP 5005446 B2 JP5005446 B2 JP 5005446B2 JP 2007175375 A JP2007175375 A JP 2007175375A JP 2007175375 A JP2007175375 A JP 2007175375A JP 5005446 B2 JP5005446 B2 JP 5005446B2
- Authority
- JP
- Japan
- Prior art keywords
- coherent
- frequency
- addition
- signal
- correlation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Position Fixing By Use Of Radio Waves (AREA)
Description
本発明は、携帯電話機や車などの移動体に設置され、GPSなどの航法衛星からの衛星信号が屋内や高架下など非常に弱い環境の場合でも、測位位置計算に必要なエッジ位置(航法データの切り替わりタイミング)及び追尾周波数を自ら決定できる自立型高感度衛星信号受信機に関する。 The present invention is installed in a mobile body such as a cellular phone or a car, and even in a very weak environment such as a satellite signal from a navigation satellite such as GPS indoors or under an elevated position, the edge position (navigation data) And a self-supporting high-sensitivity satellite signal receiver that can determine the tracking frequency by itself.
地球を周回する航法衛星(人工衛星)までの距離及び当該航法衛星の軌道に関する情報を利用し、地球上の物体の位置、速度等を求めるシステムである米国のGlobal Positioning System(GPS)等のGlobal Navigation Satellite System(GNSS)の衛星信号受信機において、受信する衛星信号の状況としては、種々の状況がある。以下、GPSを例に採って説明する。 A global system such as the Global Positioning System (GPS) in the United States, which uses information about the distance to the navigation satellite (artificial satellite) that orbits the earth and the orbit of the navigation satellite to determine the position and speed of objects on the earth. In the satellite signal receiver of the Navigation Satellite System (GNSS), there are various situations for the satellite signals received. Hereinafter, the GPS will be described as an example.
1ms間のI,Q相関信号のS/N比が良い状況の場合(状況1)は、通常感度での衛星受信機で対応可能である。通常感度の自立型衛星信号受信機では、まず、PNコード検出及び周波数引き込み、キャリア位相引き込みを行い、次いで、1ms毎のI相関信号の反転でエッジ位置の検出を行うことが出来る(特許文献1)。 When the S / N ratio of the I and Q correlation signals for 1 ms is good (situation 1), a satellite receiver with normal sensitivity can be used. In a normal-sensitivity autonomous satellite signal receiver, first, PN code detection, frequency acquisition, and carrier phase acquisition are performed, and then the edge position can be detected by inverting the I correlation signal every 1 ms (Patent Document 1). ).
1ms間のI,Q相関信号のS/N比は低く雑音に埋もれているが、正しく周波数推定がされた状態での20ms間のコヒーレント結果のS/N比は良い状況の場合(状況2)では、各20ms間でエッジ位置の推定と、航法データの反転の推定が可能である(特許文献2)。 The S / N ratio of the I and Q correlation signals for 1 ms is low and buried in noise, but the S / N ratio of the coherent result for 20 ms with the frequency estimated correctly is in a good situation (situation 2) Then, it is possible to estimate the edge position and inversion of the navigation data every 20 ms (Patent Document 2).
この特許文献2では、(1)各20ms間におけるエッジ位置は、1msずつ加算タイミングをずらした20候補の中から最大パワーとなったものを選択する(特許文献2の図2Cの例でSum1を用いる。)、(2)各20msブロック間の航法データ遷移は、連続する20msブロックの航法データの反転も考慮して、全体で信号パワーが最大となるものを選ぶ、ことにより、20msを超えたコヒーレント加算で信号アクイジションを行っている。 In this Patent Document 2, (1) the edge position between each 20 ms is selected from the 20 candidates with the addition timing shifted by 1 ms (Sum1 is selected in the example of FIG. 2C of Patent Document 2). (2) The navigation data transition between each 20 ms block exceeded 20 ms by selecting the one that maximizes the signal power overall, taking into account the inversion of the navigation data of the continuous 20 ms blocks. Signal acquisition is performed by coherent addition.
但し、特許文献2の方法では、前述のように、各20ms間で判定しているため、正しく周波数推定された状態での20ms間のコヒーレント結果のS/N比も悪い場合には適用することが出来ない。 However, in the method of Patent Document 2, since the determination is made every 20 ms as described above, the method is applied when the S / N ratio of the coherent result for 20 ms in a state where the frequency is correctly estimated is also bad. I can't.
また、特許文献2の方法では、信号アクイジションを目的としているため、各20ms間で独立に推定したエッジ位置が多少異なっていても問題とはならない。すなわち、信号アクイジションにおいては、20ms加算した場合、真のエッジ位置であれば1ms加算値*20となるが、例え1msエッジ位置が誤ったとしても1ms加算値*18の十分大きい信号パワーが得られるので、信号アクイジション段階ではエッジ位置は、真のエッジ位置に概略合っていれば問題はない。しかし、本発明では、正確にエッジ位置を求める必要があるので、特許文献2の方式はエッジ検出方式としては、使用できない。 Further, since the method of Patent Document 2 aims at signal acquisition, it does not matter if the edge positions estimated independently for each 20 ms are slightly different. That is, in the signal acquisition, when 20 ms is added, if the true edge position is obtained, the 1 ms addition value * 20 is obtained, but even if the 1 ms edge position is incorrect, a sufficiently large signal power of 1 ms addition value * 18 can be obtained. Therefore, there is no problem in the signal acquisition stage as long as the edge position roughly matches the true edge position. However, in the present invention, since it is necessary to accurately obtain the edge position, the method of Patent Document 2 cannot be used as an edge detection method.
1ms間のI,Q相関信号のS/N比は低く雑音に埋もれており、正しく周波数推定がされた状態での20ms間のコヒーレント結果のS/N比も悪い状況の場合(状況3)には、1ms間のI,Q相関信号のコヒーレント加算と、そのコヒーレント加算の加算結果をノンコヒーレント加算するノンコヒーレント加算とを併用することで、加算時間を長くすることによりS/N比を改善した衛星信号追尾装置が、本発明者により提案されている(特願2006−293440号;以下、先願発明、という)。 The S / N ratio of the I and Q correlation signals for 1 ms is low and buried in noise, and the S / N ratio of the coherent result for 20 ms in a state where the frequency is correctly estimated is also bad (situation 3). Has improved the S / N ratio by extending the addition time by using coherent addition of I and Q correlation signals for 1 ms and noncoherent addition for noncoherent addition of the addition result of the coherent addition. A satellite signal tracking device has been proposed by the present inventor (Japanese Patent Application No. 2006-293440; hereinafter referred to as the prior invention).
コヒーレント加算は、I(搬送波正位相)相関信号とQ(搬送波90°移相)相関信号を各々そのまま加算する加算方法であり、大きなS/N比の改善が行える方法である。GPSでは、20ms毎にしかI,Q相関信号の反転は起こらないので、20msまではコヒーレント加算が行われる。I,Q相関信号の反転が起こらない範囲では、FFTによる周波数解析も可能なので、コヒーレント加算区間内ではFFTによる周波数解析が行われる場合もある。 Coherent addition is an addition method in which an I (carrier positive phase) correlation signal and a Q (carrier 90 ° phase shift) correlation signal are added as they are, and a method capable of greatly improving the S / N ratio. In GPS, the inversion of the I and Q correlation signals occurs only every 20 ms, so coherent addition is performed up to 20 ms. Since frequency analysis by FFT is possible within a range where the inversion of the I and Q correlation signals does not occur, frequency analysis by FFT may be performed within the coherent addition interval.
一方、ノンコヒーレント加算は、I,Q相関信号またはこれらをコヒーレント加算した信号パワーP(=I2+Q2)を加算していく方法である。この方法のS/N比改善度はコヒーレント加算に劣るが、I,Q相関信号の反転の影響を受けないため、衛星からの航法データの反転パターンが未知の場合でもS/N比の改善が行える利点がある。 On the other hand, non-coherent addition is a method of adding I, Q correlation signals or signal power P (= I 2 + Q 2 ) obtained by coherent addition of these signals. Although the S / N ratio improvement of this method is inferior to coherent addition, it is not affected by the inversion of the I and Q correlation signals, so the S / N ratio can be improved even when the inversion pattern of the navigation data from the satellite is unknown. There is an advantage that can be done.
ただ、先願発明では、衛星信号が屋内や高架下など非常に弱い環境の場合でも安定した周波数追尾を行うことを目的としており、エッジ検出をも正確に行うことには、そのままでは適用できない。 However, the invention of the prior application aims to perform stable frequency tracking even in a very weak environment such as indoors or under an elevated position, and cannot be applied as it is to accurately perform edge detection.
また、状況3の場合でも、エッジ検出が可能な方法として、ネットワークからのアシスト情報を利用するネットワーク型衛星信号受信機が知られている(特許文献3)。このネットワーク型の高感度衛星信号受信機では、本部サーバ側で衛星信号を受信し、GPS航法データを算出し、それを端末側に送っている。この場合には、送られてきた航法データの反転パターンを利用し、端末側で受信した航法データの符号を変更することで、航法データによるI信号、Q信号の符号反転がない状態にできる。その結果、航法データ繰り返し周期(GPSでは20ms)以上のコヒーレント加算を行うことができ、エッジ位置検出の高感度化が実現されている。しかしながら、本発明ではネットワークからの航法データの情報は一切得られない、自立型高感度衛星信号受信機であるので、この特許文献3の方式も用いることはできない。
本発明は、以上の点に鑑みてなされたものであり、GPSなどの航法衛星からの衛星信号が屋内や高架下など非常に弱い環境下において、測位位置計算に必要なエッジ位置(航法データの切り替わりタイミング)及び追尾周波数を自ら決定できる自立型高感度衛星信号受信機を提供することを目的とする。 The present invention has been made in view of the above points, and in an environment where the satellite signal from a navigation satellite such as GPS is extremely weak such as indoors or under an elevated position, an edge position (of navigation data) is required. It is an object of the present invention to provide a self-supporting high-sensitivity satellite signal receiver that can determine the switching timing) and the tracking frequency.
請求項1に記載の衛星信号受信機は、周波数制御信号を受けてキャリア周波数信号を発生するキャリア局部発振器を含み、航法データを含む衛星信号を変換し入力される特定衛星信号に関する受信信号とPNコードとのコード相関及び前記キャリア周波数信号とのキャリア相関が採られ、1ms間のI相関信号とQ相関信号とを同時に1ms毎に出力する1ms相関チャンネル回路と、
前記I相関信号とQ相関信号に対して、それぞれ異なる周波数候補に関してそれぞれ周波数変換された周波数変換I相関信号と周波数変換Q相関信号を演算し出力する、複数J個の周波数変換器と、
前記複数J個の周波数変換器からの各周波数変換I相関信号と周波数変換Q相関信号を、航法データの切り替わりタイミングを示すエッジ位置に関して、複数Kのエッジ位置候補位置に対応するそれぞれの加算区間でのコヒーレント加算を行い、それぞれIコヒーレント加算値とQコヒーレント加算値とを出力する、複数J*K個のコヒーレント加算器と、
前記複数J*K個のコヒーレント加算器からのIコヒーレント加算値とQコヒーレント加算値を受けて、各コヒーレント加算器毎の信号パワーを求め、少なくとも1つの所定期間に関し、その期間中のノンコヒーレント加算を行う、複数J*K個のノンコヒーレント加算器と、
前記複数J*K個のノンコヒーレント加算器の加算結果から航法データの切り替わりタイミングを示すエッジ位置及び追尾周波数を同時に決定するエッジ検出回路制御器と、
を備えたことを特徴とする。
The satellite signal receiver according to claim 1 includes a carrier local oscillator that receives a frequency control signal and generates a carrier frequency signal, converts a satellite signal including navigation data, and receives a received signal related to a specific satellite signal and PN A 1 ms correlation channel circuit that takes a code correlation with a code and a carrier correlation with the carrier frequency signal, and simultaneously outputs an I correlation signal and a Q correlation signal for 1 ms every 1 ms;
A plurality of J frequency converters for calculating and outputting a frequency-converted I-correlation signal and a frequency-converted Q-correlation signal that are respectively frequency-converted with respect to different frequency candidates for the I-correlation signal and the Q-correlation signal;
The frequency conversion I correlation signal and the frequency conversion Q correlation signal from the plurality of J frequency converters are added to each of the addition sections corresponding to the plurality of K edge position candidate positions with respect to the edge position indicating the switching timing of the navigation data. A plurality of J * K coherent adders, each of which outputs an I coherent addition value and a Q coherent addition value,
The signal power for each coherent adder is obtained by receiving the I coherent addition value and the Q coherent addition value from the plurality of J * K coherent adders, and the non-coherent addition during that period for at least one predetermined period. A plurality of J * K non-coherent adders,
An edge detection circuit controller for simultaneously determining an edge position and a tracking frequency indicating the switching timing of navigation data from the addition results of the plurality of J * K non-coherent adders;
It is provided with.
請求項2に記載の衛星信号受信機は、請求項1に記載の衛星信号受信機において、前記1ms相関チャンネル回路1と前記複数J個の周波数変換器51〜5Jとの間に、エッジ位置検出用の加算区間を設定する加算開始時期選択器3を設けるとともに、その加算区間の設定を前記エッジ検出回路制御器10からの加算区間を指示する加算開始時期指示に基づいて行うことを特徴とする。 The satellite signal receiver according to claim 2 is the satellite signal receiver according to claim 1, wherein an edge position detection is performed between the 1 ms correlation channel circuit 1 and the plurality of J frequency converters 51 to 5J. And an addition start time selector 3 for setting an addition interval for use, and the setting of the addition interval is performed based on an addition start time instruction indicating the addition interval from the edge detection circuit controller 10. .
請求項3に記載の衛星信号受信機は、請求項1または2に記載の衛星信号受信機において、前記エッジ検出回路制御器10でのエッジ位置E0の決定に際して、1つの周波数候補k(kは、1〜Kのいずれか)に関するコヒーレント結果のうち、第2番目に大きいコヒーレント結果に対する最大のノンコヒーレント結果の比が所定閾値以上の場合に、エッジ位置判定を行うことを特徴とする。 According to a third aspect of the present invention, in the satellite signal receiver according to the first or second aspect, when the edge position E0 is determined by the edge detection circuit controller 10, one frequency candidate k (k is , 1 to K), the edge position determination is performed when the ratio of the maximum non-coherent result to the second largest coherent result is equal to or greater than a predetermined threshold.
また、本発明は、複数J*K個のノンコヒーレント加算器として、それぞれコヒーレント回数M回の第1のコヒーレント加算器811〜8JKと、コヒーレント回数L回(L>M)の第2のコヒーレント加算器911〜9JKとを設けることがよい。これにより、1ms間のI,Q相関信号のS/N比の程度(良い或いは悪い)に応じて、エッジ位置の検出時間を短くする。 The present invention also provides a first coherent adder 811 to 8JK having M times of coherent times and a second coherent addition of L times (L> M) as a plurality of J * K non-coherent adders. It is preferable to provide the devices 911 to 9JK. Thereby, the detection time of the edge position is shortened according to the degree (good or bad) of the S / N ratio of the I and Q correlation signals for 1 ms.
また、本発明が対象とするS/N比が悪い場合にはエッジ検出の誤り率が高いためにエッジ位置が連続する確率が低いから、本発明は、エッジ候補1〜Kのうち、出現回数が一番多い候補と、出現回数が2番目に多い候補との出現回数の差が、所定閾値を超えた場合をエッジ検出完了(エッジ検出終了)とすることがよい。 Further, when the S / N ratio targeted by the present invention is poor, the edge detection error rate is high, and therefore the probability that the edge positions are continuous is low. When the difference in the number of appearances between the candidate with the largest number of occurrences and the candidate with the second largest number of appearances exceeds a predetermined threshold, the edge detection is completed (edge detection end).
本発明の衛星信号受信機によれば、GPSなどの航法衛星からの衛星信号が屋内や高架下など非常に弱い環境下において、高感度用に良く使われるネットワークからのアシスト情報を一切使わないで、測位位置計算に必要なエッジ位置(航法データの切り替わりタイミング)及び追尾周波数を、自立して決定できる。 According to the satellite signal receiver of the present invention, in the environment where the satellite signal from the navigation satellite such as GPS is very weak such as indoors or under the overhead, no assist information from a network often used for high sensitivity is used. The edge position (navigation data switching timing) and tracking frequency necessary for positioning position calculation can be determined independently.
以下、図面を参照して、GPSを例として本発明の自立型高感度衛星信号受信機の実施例について説明する。 Hereinafter, with reference to the drawings, an embodiment of the self-supporting high-sensitivity satellite signal receiver according to the present invention will be described using GPS as an example.
本発明では、測位位置計算に必要なエッジ位置(航法データの切り替わりタイミング)及び追尾周波数を決定するが、それに先立つ前段処理としての信号アクイジション処理にて、PNコードの検出、PNコード位相引き込み、及び数10Hz以内への周波数引き込みは、行われている。この信号アクイジション処理は、専用の信号アクイジション回路を設けて行っても良く、また、本発明の図1のエッジ検出用加算回路41〜4Jを利用して行うことも可能であるが、本発明の課題とは直接には関係しないので詳しい説明は省略する。 In the present invention, the edge position (navigation data switching timing) and the tracking frequency necessary for positioning position calculation are determined. In the signal acquisition process as the preceding process, the PN code detection, PN code phase acquisition, and Frequency pulling to within several tens of Hz is performed. This signal acquisition processing may be performed by providing a dedicated signal acquisition circuit, or may be performed using the edge detection addition circuits 41 to 4J of FIG. 1 of the present invention. Detailed explanation is omitted because it is not directly related to the problem.
本発明の実施例に係る衛星信号受信機の全体構成図を示す図1において、衛星からアンテナ101に到来した衛星信号は、ダウンコンバータ102で中間周波数に変換され、A/D変換回路103にてディジタル処理のためにディジタル信号に変換され、受信信号としてキャリアNCO2を含む1ms相関チャンネル回路1に入力される。 In FIG. 1 showing an overall configuration diagram of a satellite signal receiver according to an embodiment of the present invention, a satellite signal arriving at an antenna 101 from a satellite is converted to an intermediate frequency by a down converter 102 and is converted by an A / D conversion circuit 103. It is converted into a digital signal for digital processing and input as a received signal to a 1 ms correlation channel circuit 1 including a carrier NCO2.
1ms相関チャンネル回路1は、前段のアクイジション処理で得られたキャリア周波数制御信号を受けてキャリア周波数信号を発生するキャリア局部発振器2を含み、衛星信号を変換し入力される特定衛星信号に関する受信信号とPNコードとのコード相関及び前記キャリア周波数信号とのキャリア相関が採られ、1ms間のI相関信号I0とQ相関信号Q0とを同時に1ms毎に出力する。この1ms相関チャンネル回路1は、従来のGPS受信装置で使用されているものと同様のものでよい。 The 1 ms correlation channel circuit 1 includes a carrier local oscillator 2 that receives a carrier frequency control signal obtained in the previous acquisition process and generates a carrier frequency signal, converts a satellite signal, and receives a received signal related to a specific satellite signal that is input. The code correlation with the PN code and the carrier correlation with the carrier frequency signal are taken, and the I correlation signal I0 and the Q correlation signal Q0 for 1 ms are simultaneously output every 1 ms. The 1 ms correlation channel circuit 1 may be the same as that used in a conventional GPS receiver.
加算開始時期選択器3は、1ms相関チャンネル回路1からの1ms間のI相関信号I0とQ相関信号Q0を、そのまま次段のエッジ検出用加算回路41〜4Jに供給するか、或いは、加算開始スタート時点のみ、ある時間分のデータI0,Q0を捨てて、つまり、エッジ検出用加算回路41〜4Jに送らずに、その時間後のデータI0,Q0をエッジ検出用加算回路41〜4Jに供給することを、エッジ検出回路制御器10からの加算開始時期指示に応じて、選択するものである。エッジ検出の開始時点では、1ms間のI相関信号I0とQ相関信号Q0を、そのまま次段のエッジ検出用加算回路41〜4Jに供給する。その後の処理の状況に応じて、加算開始時期指示が与えられることになる。 The addition start time selector 3 supplies the I correlation signal I0 and the Q correlation signal Q0 for 1 ms from the 1 ms correlation channel circuit 1 to the edge detection addition circuits 41 to 4J in the next stage as they are, or starts addition. Only at the start time, data I0 and Q0 for a certain time are discarded, that is, the data I0 and Q0 after that time are supplied to the edge detection addition circuits 41 to 4J without being sent to the edge detection addition circuits 41 to 4J. This is selected according to the instruction to start addition from the edge detection circuit controller 10. At the start of the edge detection, the I correlation signal I0 and the Q correlation signal Q0 for 1 ms are supplied as they are to the next edge detection addition circuits 41 to 4J. An addition start time instruction is given according to the status of subsequent processing.
エッジ検出用加算回路41〜4Jは、周波数候補J個に応じてJ個設けられ、それぞれ1ms間のI相関信号I0とQ相関信号Q0が供給され、加算結果を出力する。それぞれのエッジ検出用加算回路4j(但し、j=1〜Jのいずれか)は、周波数候補jへの周波数変換器5j、及びK個のエッジ候補用加算回路6jk(但し、k=1〜Kのいずれか、Kは例えば20で良い)を備えている。 The edge detection adding circuits 41 to 4J are provided in accordance with J frequency candidates, and are supplied with the I correlation signal I0 and the Q correlation signal Q0 for 1 ms, respectively, and output the addition result. Each of the edge detection addition circuits 4j (where j = 1 to J) includes a frequency converter 5j to the frequency candidate j and K edge candidate addition circuits 6jk (where k = 1 to K). Or K may be 20, for example.
周波数変換器5jでは、1ms間のI相関信号I0とQ相関信号Q0に関し、先願発明と同様の周波数回転手法により、周波数候補jの周波数に相当する、周波数変換I相関信号I0j、周波数変換Q相関信号Q0jを求めて出力する。 In the frequency converter 5j, with respect to the I correlation signal I0 and the Q correlation signal Q0 for 1 ms, the frequency conversion I correlation signal I0j and the frequency conversion Q corresponding to the frequency of the frequency candidate j are obtained by the same frequency rotation method as in the prior invention. A correlation signal Q0j is obtained and output.
この周波数変換装置5jにおける周波数変換は、先願発明と同様に、I相関信号I0及びQ相関信号Q0に、乗部(cosωNT−jsinωNT)を乗じて、その実数部を周波数変換I相関信号とし、その虚数部を周波数変換Q相関信号とする。この回転角ωNTは、各候補周波数に合わせてそれぞれ数値制御発振器からディジタルワードで与えられ、そのcosωNT,sinωNTの値はROMのテーブルを利用することができる。 In the frequency conversion in this frequency conversion device 5j, as in the prior invention, the I correlation signal I0 and the Q correlation signal Q0 are multiplied by a multiplier (cos ωNT−jsin ωNT), and the real part is used as a frequency conversion I correlation signal. The imaginary part is used as a frequency conversion Q correlation signal. The rotation angle ωNT is given by a digital word from a numerically controlled oscillator in accordance with each candidate frequency, and the values of cos ωNT and sin ωNT can use a ROM table.
この周波数変換装置5jにおける周波数変換の処理は、対象とするI,Q相関信号I0,Q0が1ms毎と非常に遅い周期で行えば良く、また、各候補周波数について1つの変換回路で順次時分割的に処理すれば良いので、極めて小さい回路で実行できるし、消費電流も極めて少なくできる。このことは、局部発振器(キャリアNCO)を利用して複数の候補周波数に関して周波数変換を行う場合と比較すると、その優位さは明らかである。 The frequency conversion process in the frequency conversion device 5j may be performed with a very slow cycle of the target I and Q correlation signals I0 and Q0 every 1 ms, and one conversion circuit sequentially time-divides each candidate frequency. Therefore, it can be executed with an extremely small circuit, and the current consumption can be extremely reduced. This is clearly superior in comparison with the case where frequency conversion is performed for a plurality of candidate frequencies using a local oscillator (carrier NCO).
ここで、前段の信号アクイジション処理により得られる周波数制御信号F0は±30Hzの誤差を有する状態とし、本発明でエッジ検出回路制御器10で得るべき周波数FSを、図示しない追尾回路にて周波数引き込みが行える10Hz以内までにすれば良いものとすると、各周波数変換器5j(j=1〜J)から得られる周波数候補は、F0+30[Hz]、F0+20[Hz]、F0+10[Hz]、F0[Hz]、F0−10[Hz]、F0−20[Hz]、F0−30[Hz]、の7つになる。この場合、J=7である。 Here, the frequency control signal F0 obtained by the signal acquisition process in the previous stage is in a state having an error of ± 30 Hz, and the frequency FS to be obtained by the edge detection circuit controller 10 in the present invention is obtained by a tracking circuit (not shown). Assuming that the frequency can be within 10 Hz, the frequency candidates obtained from the frequency converters 5j (j = 1 to J) are F0 + 30 [Hz], F0 + 20 [Hz], F0 + 10 [Hz], and F0 [Hz]. , F0-10 [Hz], F0-20 [Hz], and F0-30 [Hz]. In this case, J = 7.
エッジ候補用加算回路6jkは、各周波数変換I相関信号I0jと周波数変換Q相関信号Q0jを、該当するエッジ位置候補位置(周波数候補jのエッジ候補k)に対応するそれぞれの加算区間でのコヒーレント加算を行い、それぞれIコヒーレント加算値とQコヒーレント加算値とを出力するNmsコヒーレント加算器7jkと、このコヒーレント加算器7jkからのIコヒーレント加算値とQコヒーレント加算値を受けて、各コヒーレント加算器jk毎の信号パワーを求め、所定期間M回の期間中のノンコヒーレント加算を行うM回ノンコヒーレント加算器8jkと、同じく各コヒーレント加算器jk毎の信号パワーを求め、所定期間L回(但し、L>M)の期間中のノンコヒーレント加算を行うL回ノンコヒーレント加算器9jkとを設ける。M回(第1の)コヒーレント加算器8jkとL回(第2の)コヒーレント加算器9jkとを設けることは、これにより1ms間のI,Q相関信号のS/N比の程度(良い或いは悪い)に応じて、エッジ位置の検出時間を短くするためである。 The edge candidate addition circuit 6jk coherently adds each frequency transformed I correlation signal I0j and frequency transformed Q correlation signal Q0j in each addition section corresponding to the corresponding edge position candidate position (edge candidate k of the frequency candidate j). Nms coherent adder 7jk that outputs an I-coherent addition value and a Q-coherent addition value, and receives an I-coherent addition value and a Q-coherent addition value from the coherent adder 7jk, And M times of the non-coherent adder 8jk that performs non-coherent addition during a predetermined period M times, and the signal power of each coherent adder jk is obtained for a predetermined period L times (where L> L times non-coherent adder 9jk that performs non-coherent addition during period M) Kick. Providing M times (first) coherent adder 8jk and L times (second) coherent adder 9jk allows the degree of S / N ratio of the I and Q correlation signals for 1 ms (good or bad). ) In order to shorten the edge position detection time.
エッジ検出回路制御器10では、J*K個の全てのエッジ候補用加算回路6jkからの加算結果を元に、エッジ位置E0,周波数FSを決定し出力する。このエッジ位置E0は、疑似距離計算や20msの起点の確認に用いられる。また、周波数FSは、キャリア周波数追尾に用いられる。また、エッジ検出回路制御器10では、エッジ位置E0,周波数FSの決定に先立って、必要な場合には加算開始時期指示を加算開始時期選択器3へ供給する。以下、それらの決定方法などについて説明する。 The edge detection circuit controller 10 determines and outputs the edge position E0 and the frequency FS based on the addition results from all the J * K edge candidate addition circuits 6jk. This edge position E0 is used for pseudorange calculation and confirmation of the starting point of 20 ms. The frequency FS is used for carrier frequency tracking. Further, the edge detection circuit controller 10 supplies an addition start time instruction to the addition start time selector 3 when necessary prior to the determination of the edge position E0 and the frequency FS. Hereinafter, the determination method thereof will be described.
まず、エッジ検出用加算回路4jにおけるエッジ候補kのコヒーレント、ノンコヒーレント結果について見る。図5は、加算区間境界部分での雑音寄与の違いを説明するための図である。GPSの場合に、エッジスタート位置としては図5に1msずつ加算区間を変えた、スタート位置00〜19までの合計20通りの候補がある。 First, the coherent and non-coherent results of the edge candidate k in the edge detection addition circuit 4j will be described. FIG. 5 is a diagram for explaining a difference in noise contribution at the addition section boundary. In the case of GPS, there are a total of 20 candidates from start positions 00 to 19 with the addition interval changed by 1 ms in FIG. 5 as edge start positions.
ここで、例として、
(1)真のエッジ位置は、スタート位置6
(2)周波数候補jの周波数の周波数が追尾すべき真の周波数に一致し、図5の各1ms区間での加算値の絶対値は全て「1」
(3)図5の各1ms区間での加算値は、00〜05の区間で「−1」、06〜25の区間で「+1」
の場合を想定し、図5の前半部分でのコヒーレント結果について説明する。
Here, as an example
(1) The true edge position is the start position 6
(2) The frequency of the frequency of the frequency candidate j matches the true frequency to be tracked, and the absolute values of the added values in each 1 ms section of FIG. 5 are all “1”.
(3) The added value in each 1 ms section of FIG. 5 is “−1” in the section of 00 to 05 and “+1” in the section of 06 to 25.
The coherent result in the first half of FIG. 5 will be described.
この場合、例えば、スタート位置00のエッジ候補の20ms間のコヒーレント結果は、00〜05が「−1」、06〜19が「+1」だから、−6+14=+8になる。一方、真のエッジ位置である、スタート位置06のエッジ候補の20ms間のコヒーレント結果は、06〜25が全て「+1」だから、+20になる。 In this case, for example, the coherent result for 20 ms of the edge candidate at the start position 00 is −6 + 14 = + 8 since 00 to 05 is “−1” and 06 to 19 is “+1”. On the other hand, the coherent result for 20 ms of the edge candidate at the start position 06, which is the true edge position, becomes +20 because 06 to 25 are all “+1”.
これを全スタート位置(エッジ候補番号)に関して求めると、エッジ反転とコヒーレント結果との対応を示す図2のエッジ反転がある場合の図2(a)のように真のエッジ位置で最大のコヒーレント結果(第1ピーク)になるので、最大のコヒーレント値が得られたエッジ候補を真エッジ位置とすればよいことになる。 When this is obtained for all start positions (edge candidate numbers), the maximum coherent result at the true edge position as shown in FIG. 2A when there is edge inversion in FIG. 2 showing the correspondence between edge inversion and coherent results. Since this is the (first peak), the edge candidate from which the maximum coherent value is obtained may be set as the true edge position.
しかし、航法データは反転しない場合もある。上記例において、00〜05の区間も「+1」であった場合には、スタート位置00のエッジ候補の20ms間のコヒーレント結果も+20となる。つまり、航法データの反転が含まれない場合には、図2(b)のようにコヒーレント結果はどのエッジ位置でもほとんど変わらない結果となり、エッジ値の判定は出来ない。 However, the navigation data may not be reversed. In the above example, when the section from 00 to 05 is also “+1”, the coherent result for 20 ms of the edge candidate at the start position 00 is also +20. That is, when the inversion of the navigation data is not included, the coherent result is almost the same at any edge position as shown in FIG. 2B, and the edge value cannot be determined.
そこで、本発明では、特許文献2とは異なり、エッジ位置E0の決定に際して、1つの周波数候補k(kは、1〜Kのいずれか)に関するコヒーレント結果のうち、図2に示した第2番目に大きいコヒーレント結果である第2ピークに対する最大のノンコヒーレント結果である第1ピークの比(第1ピーク値/第2ピーク値)が所定閾値以上の場合に、エッジ位置判定を行うことにより、正確にエッジ検出が行えるようにしている。 Therefore, in the present invention, unlike Patent Document 2, the second position shown in FIG. 2 among the coherent results regarding one frequency candidate k (k is any one of 1 to K) when determining the edge position E0. If the ratio of the first peak (first peak value / second peak value), which is the maximum non-coherent result to the second peak, which is a very large coherent result, is equal to or greater than a predetermined threshold, the edge position determination is performed accurately. Edge detection can be performed.
なお、以上の説明では、説明を分かりやすくするために1回のコヒーレント結果で説明したが、実際にはS/N比が低い場合でもエッジ検出を行うために、コヒーレント結果が反映された、複数回のノンコヒーレント結果によって、以上のエッジ位置E0の判定を行う。 In the above description, in order to make the description easy to understand, the description is made with a single coherent result. However, in actuality, in order to perform edge detection even when the S / N ratio is low, a plurality of coherent results are reflected. The above edge position E0 is determined based on the non-coherent result of the number of times.
また、周波数変換器5jからの周波数の違いによるノンコヒーレント結果の差は、図3に示すように、ノンコヒーレント時間と共に顕著になるので、その差(或いは比)が閾値以上になった時点で、真の周波数を決定する。前段の信号アクイジション処理によって、周波数制御信号F0は数10Hzまで引き込まれているので、例えば周波数候補は10Hz間隔とすれば良い。 Further, the difference in the non-coherent result due to the difference in frequency from the frequency converter 5j becomes significant with the non-coherent time as shown in FIG. 3, so when the difference (or ratio) becomes equal to or greater than the threshold value, Determine the true frequency. Since the frequency control signal F0 is drawn to several tens of Hz by the signal acquisition process in the previous stage, for example, the frequency candidates may be set at intervals of 10 Hz.
真の周波数の決定に際しては、各周波数候補1〜J内に複数のエッジ位置候補があるが、全てのエッジ候補用加算回路611〜6JKの中から単純にノンコヒーレント結果を比較して最大のノンコヒーレント結果が得られた候補から、エッジ位置決定時期と独立に真の周波数を決定しても良いし、また、各周波数候補1〜J内でエッジ候補がほぼ確定した後に、そのエッジ候補に関してのノンコヒーレント結果から真の周波数を決定しても良い。 In determining the true frequency, there are a plurality of edge position candidates in each of the frequency candidates 1 to J, but the non-coherent result is simply compared among all the edge candidate addition circuits 611 to 6JK to obtain the maximum non-coherent result. The true frequency may be determined independently from the edge position determination time from the candidate for which the coherent result is obtained, and after the edge candidates are almost determined within each of the frequency candidates 1 to J, The true frequency may be determined from the non-coherent result.
このように本発明では、限られた数種類の周波数候補だけに限定でき、効率的であるので、省エネルギー化も図ることができる。なお、特許文献2のようにFFTによる場合には、コヒーレント加算区間しか使用することができないし、本発明のように狭い周波数範囲を調べれば良い場合でも、最終段に至るまでの間は全周波数候補範囲の計算をしなければならず、非効率的である。 As described above, the present invention can be limited to only a limited number of types of frequency candidates and is efficient, and thus can save energy. Note that in the case of FFT as in Patent Document 2, only the coherent addition interval can be used, and even if a narrow frequency range may be examined as in the present invention, all frequencies are required until the final stage. Candidate ranges must be calculated, which is inefficient.
さて、以上に説明したような方法でエッジ位置E0及び追尾周波数FSを決めることが出来るが、エッジ検出で1ms間違うと測位位置は300km以上と大きく間違ってしまうため、最終のエッジ検出誤り率Aは十分小さい値とする必要がある。本発明が対象とする「状況3」;1ms間のI,Q相関信号のS/N比は低く雑音に埋もれており、正しく周波数推定がされた状態での20ms間のコヒーレント結果のS/N比も悪い状況の場合では、検出したエッジ位置にある確率で検出誤りが発生することは避けられない。そこで、そのエッジ検出において、最終のエッジ位置検出誤り率Aをユーザーの要求に応えるように、十分に小さい値とする必要がある。 Now, the edge position E0 and the tracking frequency FS can be determined by the method described above. However, if the error is 1 ms in the edge detection, the positioning position is greatly mistaken as 300 km or more, so the final edge detection error rate A is It is necessary to make the value sufficiently small. “Situation 3” targeted by the present invention; the S / N ratio of the I and Q correlation signals for 1 ms is low and buried in noise, and the S / N of the coherent result for 20 ms in a state where the frequency is correctly estimated. In a situation where the ratio is also bad, it is inevitable that a detection error occurs with a probability of being at the detected edge position. Therefore, in the edge detection, the final edge position detection error rate A needs to be set to a sufficiently small value so as to meet the user's request.
1回のノンコヒーレント結果のエッジ位置検出誤り率Bのみでは、最終のエッジ検出誤り率Aを満足できない。S/N比が良い場合には、数回以上同じエッジ位置が連続して検出された場合に、エッジ位置検出完了とすることができる。しかしながら、本発明が対象とするS/N比が悪い場合には、エッジ位置検出誤り率が高いために、同じエッジ位置が連続して検出される確率は低いため、数回以上同じエッジ位置が連続して検出されることが通常期待できない。したがって、本発明では、状況3におけるエッジ位置検出において、検出回数(出現回数)が一番多いエッジ位置候補と2番目に多いエッジ位置候補の検出回数(出現回数)の差が所定の閾値を超えた場合をエッジ位置検出完了(エッジ位置検出終了)とするのが良い。 Only the edge position detection error rate B of one non-coherent result cannot satisfy the final edge detection error rate A. When the S / N ratio is good, the edge position detection can be completed when the same edge position is continuously detected several times or more. However, when the S / N ratio targeted by the present invention is poor, the edge position detection error rate is high, and therefore the probability that the same edge position is continuously detected is low. It cannot usually be expected to be detected continuously. Therefore, in the present invention, in edge position detection in situation 3, the difference between the number of detections (number of appearances) of the edge position candidate with the largest number of detections (number of appearances) and the second most frequent edge position candidate (number of appearances) exceeds a predetermined threshold. It is preferable to complete the edge position detection (edge position detection end).
本発明では、図1に示したように、各コヒーレント加算器jk毎の信号パワーを求め、所定期間M回の期間中のノンコヒーレント加算を行うM回ノンコヒーレント加算器8jkと、同じく各コヒーレント加算器jk毎の信号パワーを求め、所定期間L回(但し、L>M)の期間中のノンコヒーレント加算を行うL回ノンコヒーレント加算器9jkとを併用している。M回(第1の)コヒーレント加算器8jkとL回(第2の)コヒーレント加算器9jkとを設けることは、これにより1ms間のI,Q相関信号のS/N比の程度(良い、或いは、悪い)に応じて、エッジ位置の検出時間を短くするためである。 In the present invention, as shown in FIG. 1, the signal power for each coherent adder jk is obtained, and M times non-coherent adder 8jk that performs non-coherent addition during a predetermined period M times, as well as each coherent addition. The signal power for each device jk is obtained and used in combination with the L-time non-coherent adder 9jk that performs non-coherent addition during a predetermined period of L times (where L> M). Providing the M times (first) coherent adder 8jk and the L times (second) coherent adder 9jk allows the S / N ratio of the I and Q correlation signals for 1 ms (good, or This is for shortening the detection time of the edge position in response to (bad).
1ms間のI,Q相関信号のS/N比が良い場合は、ノンコヒーレント時間が短くても、エッジ誤り率は十分小さいので、図4に示すようにノンコヒーレント時間が短い場合の方がエッジ検出時間は短い。一方、信号S/N比が悪い場合は、ノンコヒーレント時間が短いとエッジ誤り率が大きく、多くの回数分チェックしなければならないので、図4に示すようにノンコヒーレント時間が長い場合の方がエッジ検出時間は短い。つまり、この両方式を同時に行い、早く終了した方を採用すれば、最短のエッジ位置検出時間を実現できる。 When the S / N ratio of the I and Q correlation signals for 1 ms is good, the edge error rate is sufficiently small even if the non-coherent time is short. Therefore, the edge is shorter when the non-coherent time is short as shown in FIG. Detection time is short. On the other hand, when the signal S / N ratio is poor, the edge error rate is large when the non-coherent time is short, and it is necessary to check many times. Therefore, when the non-coherent time is long as shown in FIG. Edge detection time is short. That is, the shortest edge position detection time can be realized by performing both of these methods at the same time and adopting the method that ends earlier.
ところで、エッジ位置検出誤り率(エッジ誤り率)は、エッジ誤り率を説明するための図6の真のエッジ位置が加算区間境界付近でない場合を示す図6(a)に示すように、真のエッジ位置から、加算区間が±1ms異なる場合が、他のそれ以上異なる加算区間より十分に高い。なお、エッジ誤り率は、「真位置でない、誤った」エッジ位置となる確率であるから、真のエッジ位置におけるエッジ誤り率は定義できない。図6において、エッジ誤り率に代えて、エッジ検出の発生率で表現すると、真のエッジ位置以外でのエッジ検出の発生率はエッジ誤り率と同様に表現でき、真のエッジ位置のエッジ検出の発生率は、真のエッジ位置以外のエッジ検出の発生率より、より高い発生率で表される。 By the way, the edge position detection error rate (edge error rate) is true as shown in FIG. 6A showing the case where the true edge position in FIG. 6 for explaining the edge error rate is not near the addition section boundary. The case where the addition interval is different by ± 1 ms from the edge position is sufficiently higher than other different addition intervals. Note that since the edge error rate is the probability that the edge position is “not true, wrong”, the edge error rate at the true edge position cannot be defined. In FIG. 6, instead of the edge error rate, the detection rate of edge detection can be expressed in the same way as the edge error rate, and the edge detection rate other than the true edge position can be expressed. The occurrence rate is expressed by a higher occurrence rate than the occurrence rate of edge detection other than the true edge position.
また、エッジ誤り率は、真のエッジ位置が加算区間境界付近である場合には、図6(b)に示すように、加算区間が+1ms或いは−1ms異なる場合に更に高くなる。 Further, when the true edge position is in the vicinity of the addition section boundary, the edge error rate is further increased when the addition section is different by +1 ms or −1 ms as shown in FIG.
この理由を、真のエッジ位置が0msの場合について、図5を利用して説明する。加算区間が+1msずれる場合は、図5において黒く塗りつぶした加算先頭と最後の1msしか、加算区間の違いはない。つまり、殆どの区間が同一である。一方、加算区間が−1msであるスタート位置=19の場合と比較すると、図5において斜線を施した19ms*2の部分が、別の時間の加算区間となる。信号レベルが低い状態では、20ms間コヒーレント加算のみでは信号成分は雑音以下であるので、加算結果には加算区間が異なることによる雑音部分の差がそのまま反映されやすいので、エッジ誤り率は更に高くなってしまう。 The reason for this will be described with reference to FIG. 5 in the case where the true edge position is 0 ms. When the addition section is shifted by +1 ms, there is a difference between the addition section only in the addition head and the last 1 ms, which are blacked out in FIG. That is, most of the sections are the same. On the other hand, as compared with the case where the addition section is −1 ms and the start position = 19, the hatched portion of 19 ms * 2 in FIG. 5 is another time addition section. In a state where the signal level is low, the signal component is less than or equal to noise by only coherent addition for 20 ms. Therefore, the difference in noise due to different addition sections is easily reflected in the addition result, and the edge error rate is further increased. End up.
そこで、本発明では、エッジ検出回路制御器10で、エッジ位置E0,周波数FSの決定に先立って、ノンコヒーレント結果から得られたエッジ決定候補を観測し、エッジ決定候補が加算区間境界付近であった場合には、加算開始時期選択器に与える加算時期を所定区間(例えば、10ms)ずらすことが必要になる。この加算時期を所定区間ずらすために、加算開始時期指示を加算開始時期選択器3へ供給する。これにより、常に図6(a)のような状態でエッジ検出を行うことが可能になる。なお、加算時期の初期値は、エッジ検出用加算回路41〜4Jを使用し始めた時期とする。 Therefore, in the present invention, the edge detection circuit controller 10 observes the edge determination candidate obtained from the non-coherent result prior to the determination of the edge position E0 and the frequency FS, and the edge determination candidate is near the addition section boundary. In such a case, it is necessary to shift the addition time given to the addition start time selector by a predetermined interval (for example, 10 ms). In order to shift this addition time by a predetermined interval, an addition start time instruction is supplied to the addition start time selector 3. As a result, it is possible to always perform edge detection in the state as shown in FIG. The initial value of the addition time is the time when the edge detection addition circuits 41 to 4J are started to be used.
なお、加算区間境界の±5ms区間とそれ以外に分けて、エッジ決定候補数が加算区間境界の±5ms区間の方に多い時に、上記10msずらす調整を行っても良い。また、上記10ms調整前のエッジ決定候補情報を10msずらした位置の情報として記憶し、10ms調整後にもその情報を有効利用しても良い。 In addition, when the number of edge determination candidates is larger in the ± 5 ms section of the addition section boundary, the above-described adjustment of shifting by 10 ms may be performed separately in the ± 5 ms section of the addition section boundary. Further, the edge determination candidate information before the 10 ms adjustment may be stored as position information shifted by 10 ms, and the information may be used effectively after the 10 ms adjustment.
この加算開始時期は、5ms区間で区別できれば十分であるため、誤り率はエッジ位置決定より少ない回数で行える。例えば、加算開始時期を決定する回数閾値が2回、エッジ位置決定ができる回数閾値が4回であったとすると、加算開始時期調整前の2回分も有効利用すれば、調整後は後2回分の待ち時間で済むことになる。 Since it is sufficient that the addition start time can be distinguished in the 5 ms section, the error rate can be performed with a smaller number of times than the edge position determination. For example, if the number threshold for determining the addition start time is 2 and the number threshold for determining the edge position is 4 times, if two times before the adjustment of the addition start time are also effectively used, two times after the adjustment You will have to wait.
以上の説明では、加算開始時期選択器3、エッジ検出用加算回路41〜4Jをハードにて構成する場合を例として説明したが、これらをソフトウェアで実現しても良い。 In the above description, the case where the addition start time selector 3 and the edge detection addition circuits 41 to 4J are configured by hardware has been described as an example, but these may be realized by software.
また、ネットワークからのアシスト情報を使わない構成で説明したが、利用可能な情報、例えば、追尾周波数、概略エッジ位置、航法データ等の情報があれば、それらを利用しても良い。 Further, the configuration has been described in which the assist information from the network is not used. However, if there is usable information, for example, information such as the tracking frequency, the approximate edge position, and the navigation data, they may be used.
101 アンテナ、102 ダウンコンバータ、103 A/D変換器
1 1ms相関チャンネル回路、2 キャリアNCO、3 加算開始時期選択器、
41〜4J エッジ検出用加算回路、51〜5J 周波数変換器、
611〜6JK Nmsコヒーレント加算器、
811〜8JK M回ノンコヒーレント加算器、
911〜9JK L回ノンコヒーレント加算器、10 エッジ検出回路制御器
101 antenna, 102 down converter, 103 A / D converter 1 1 ms correlation channel circuit, 2 carrier NCO, 3 addition start time selector,
41-4J edge detection adder circuit, 51-5J frequency converter,
611-6JK Nms coherent adder,
811-8JK M times non-coherent adder,
911 to 9JK L times non-coherent adder, 10 edge detection circuit controller
Claims (3)
前記I相関信号とQ相関信号に対して、それぞれ異なる周波数候補に関してそれぞれ周波数変換された周波数変換I相関信号と周波数変換Q相関信号を演算し出力する、複数J個の周波数変換器と、
前記複数J個の周波数変換器からの各周波数変換I相関信号と周波数変換Q相関信号を、航法データの切り替わりタイミングを示すエッジ位置に関して、複数Kのエッジ位置候補位置に対応するそれぞれの加算区間でのコヒーレント加算を行い、それぞれIコヒーレント加算値とQコヒーレント加算値とを出力する、複数J*K個のコヒーレント加算器と、
前記複数J*K個のコヒーレント加算器からのIコヒーレント加算値とQコヒーレント加算値を受けて、各コヒーレント加算器毎の信号パワーを求め、少なくとも1つの所定期間に関し、その期間中のノンコヒーレント加算を行う、複数J*K個のノンコヒーレント加算器と、
前記複数J*K個のノンコヒーレント加算器の加算結果から航法データの切り替わりタイミングを示すエッジ位置及び追尾周波数を同時に決定するエッジ検出回路制御器と、
を備えたことを特徴とする衛星信号受信機。 A carrier local oscillator that receives a frequency control signal and generates a carrier frequency signal, converts a satellite signal including navigation data and receives a code correlation between a received signal and a PN code related to a specific satellite signal, and the carrier frequency signal A 1 ms correlation channel circuit that takes carrier correlation and outputs an I correlation signal and a Q correlation signal for 1 ms simultaneously every 1 ms;
A plurality of J frequency converters for calculating and outputting a frequency-converted I-correlation signal and a frequency-converted Q-correlation signal that are frequency-converted with respect to different frequency candidates for the I correlation signal and the Q correlation signal,
The frequency conversion I correlation signal and the frequency conversion Q correlation signal from the plurality of J frequency converters are added to each of the addition sections corresponding to the plurality of K edge position candidate positions with respect to the edge position indicating the switching timing of the navigation data. A plurality of J * K coherent adders, each of which outputs an I coherent addition value and a Q coherent addition value,
The signal power for each coherent adder is obtained by receiving the I coherent addition value and the Q coherent addition value from the plurality of J * K coherent adders, and the non-coherent addition during that period for at least one predetermined period. A plurality of J * K non-coherent adders,
An edge detection circuit controller for simultaneously determining an edge position and a tracking frequency indicating the switching timing of navigation data from the addition results of the plurality of J * K non-coherent adders;
A satellite signal receiver.
When the edge position is determined by the edge detection circuit controller, among the coherent results for one frequency candidate k (k is any one of 1 to K), the maximum non-coherent result with respect to the second largest coherent result is obtained. The satellite signal receiver according to claim 1, wherein edge position determination is performed when the ratio is equal to or greater than a predetermined threshold value.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007175375A JP5005446B2 (en) | 2007-07-03 | 2007-07-03 | Independent high-sensitivity satellite signal receiver |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007175375A JP5005446B2 (en) | 2007-07-03 | 2007-07-03 | Independent high-sensitivity satellite signal receiver |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009014451A JP2009014451A (en) | 2009-01-22 |
JP5005446B2 true JP5005446B2 (en) | 2012-08-22 |
Family
ID=40355546
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007175375A Active JP5005446B2 (en) | 2007-07-03 | 2007-07-03 | Independent high-sensitivity satellite signal receiver |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5005446B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5968053B2 (en) * | 2012-04-27 | 2016-08-10 | 日本無線株式会社 | Satellite signal receiver |
CN104614740B (en) | 2015-02-10 | 2016-08-17 | 华中科技大学 | A kind of navigation signal data pilot combined tracking method and device |
CN111708058B (en) * | 2020-06-30 | 2023-08-29 | 湖南国科微电子股份有限公司 | Signal capturing method and device |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3106829B2 (en) * | 1993-12-22 | 2000-11-06 | 松下電器産業株式会社 | GPS receiver demodulation circuit |
US6327473B1 (en) * | 1998-09-08 | 2001-12-04 | Qualcomm Incorporated | Method and apparatus for increasing the sensitivity of a global positioning satellite receiver |
JP3270407B2 (en) * | 1998-12-28 | 2002-04-02 | 三菱電機株式会社 | GPS positioning method, GPS terminal and GPS positioning system |
US7127351B2 (en) * | 2000-06-27 | 2006-10-24 | Sirf Technology, Inc. | Combined parallel and sequential detection for GPS signal acquisition |
US7567636B2 (en) * | 2001-05-18 | 2009-07-28 | Global Locate, Inc. | Method and apparatus for performing signal correlation using historical correlation data |
US6775319B2 (en) * | 2001-08-16 | 2004-08-10 | Motorola, Inc. | Spread spectrum receiver architectures and methods therefor |
JP2006345128A (en) * | 2005-06-08 | 2006-12-21 | Mitsubishi Electric Corp | Detecting device |
US7660373B2 (en) * | 2005-10-04 | 2010-02-09 | Sirf Technology, Inc. | Data demodulation from weak navigational satellite signals |
-
2007
- 2007-07-03 JP JP2007175375A patent/JP5005446B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2009014451A (en) | 2009-01-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4755920B2 (en) | Carrier phase tracking device and pseudo noise code signal tracking device | |
JP6447883B2 (en) | Receiver and method for direct sequence spread spectrum signals | |
US6825805B2 (en) | Search procedure for position determination system | |
EP2058670B1 (en) | Suppression of multipath effects for received SPS signal | |
JP5015788B2 (en) | Method and apparatus for increasing coherent integration length while receiving positioning signal | |
JP4869022B2 (en) | Satellite signal tracking device and satellite signal receiver including the same | |
US8237611B2 (en) | Method for processing combined navigation signals | |
JP4828308B2 (en) | Phase modulation sequence playback device | |
JP2010286354A (en) | Device for estimation of doppler frequency, device for capturing and tracking of positioning signal, positioning device, and method of measuring doppler frequency | |
US11346958B2 (en) | GNSS receiver performance improvement via long coherent integration | |
CN102016622A (en) | Methods and apparatuses for processing satellite positioning system signals | |
JP5483750B2 (en) | Unnecessary signal discrimination device, unnecessary signal discrimination method, unnecessary signal discrimination program, GNSS receiver and mobile terminal | |
FI109311B (en) | Bit boundary detection method for global positioning system, involves utilizing index of largest element of determination vector formed based on received signal, to indicate bit boundary | |
JP2007520100A (en) | GPS receiver using differential correlation | |
JP5005446B2 (en) | Independent high-sensitivity satellite signal receiver | |
EP2793051A1 (en) | Gnss signal processing method, positioning method, gnss signal processing program, positioning program, gnss signal processing device, positioning device, and mobile terminal | |
JP5918351B2 (en) | Signal search method, signal search program, signal search device, GNSS signal reception device, and information equipment terminal | |
WO2011028928A1 (en) | Energy domain based peak reconstruction methods and apparatuses | |
JP4859790B2 (en) | GPS receiver | |
JP2008209287A (en) | Satellite navigation receiver | |
JP5679170B2 (en) | Satellite signal receiver | |
JP5353396B2 (en) | COMMUNICATION DEVICE, SIGNAL PROCESSING METHOD, SIGNAL PROCESSING DEVICE, AND MOBILE BODY | |
JP3837419B2 (en) | Satellite positioning method and satellite positioning system | |
JP2001311768A (en) | Gps receiver with multi-path judging function | |
JP5126527B2 (en) | Positioning signal tracking processing device and positioning device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20090119 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20090130 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100628 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110921 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120327 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120418 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120522 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120523 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150601 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5005446 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |