JP5003016B2 - Alumina porous body - Google Patents

Alumina porous body Download PDF

Info

Publication number
JP5003016B2
JP5003016B2 JP2006124588A JP2006124588A JP5003016B2 JP 5003016 B2 JP5003016 B2 JP 5003016B2 JP 2006124588 A JP2006124588 A JP 2006124588A JP 2006124588 A JP2006124588 A JP 2006124588A JP 5003016 B2 JP5003016 B2 JP 5003016B2
Authority
JP
Japan
Prior art keywords
particles
weight
porous body
alumina porous
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006124588A
Other languages
Japanese (ja)
Other versions
JP2006327927A (en
Inventor
明 石黒
高志 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Original Assignee
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd filed Critical Toto Ltd
Priority to JP2006124588A priority Critical patent/JP5003016B2/en
Publication of JP2006327927A publication Critical patent/JP2006327927A/en
Application granted granted Critical
Publication of JP5003016B2 publication Critical patent/JP5003016B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、セラミックフィルタ等に用いるアルミナ多孔体において、優れた耐アルカリ性能を有するアルミナ多孔体に関するものである。   The present invention relates to an alumina porous body having excellent alkali resistance in an alumina porous body used for a ceramic filter or the like.

アルミナ多孔体は、比較的粒径の大きなAl粒子を骨材とし、それらをSiO2を主体とするガラス成分からなる無機系の結合材にてAl粒子間を結合させ、目的に応じた細孔径を有するアルミナ多孔体を形成するものが良く利用されている。
特に、食品、医薬品、化成品等の生産において、原液中の不要物質の除去や原液中の所定物質の濃縮等のセラミックフィルタとして、アルミナ多孔体が用いられる。ここで、原液が強アルカリ性である場合や、気孔の目詰まり除去等にアルカリ溶液処理を行う場合などに、上記したAl粒子間を接合しているガラス成分の一部が溶出し、セラミックフィルタの強度を低下させることがあった。
Alumina porous body, a relatively having a large grain size Al 2 O 3 particles as aggregates, let them bond between Al 2 O 3 particles in binder inorganic made of glass component mainly comprising SiO2, object A material that forms an alumina porous body having a pore size corresponding to the above is often used.
In particular, in the production of foods, pharmaceuticals, chemical products, etc., a porous alumina body is used as a ceramic filter for removing unnecessary substances in a stock solution and concentrating a predetermined substance in the stock solution. Here, when the stock solution is strongly alkaline, or when an alkaline solution treatment is performed to remove clogging of pores, etc., a part of the glass component bonding between the Al 2 O 3 particles is eluted, The strength of the ceramic filter may be reduced.

また、アルミナ多孔体は、その用途として表面に水熱合成によりゼオライト膜を製膜し、分子ふるいとして利用される場合があるが、特許文献1に記載されているようにゼオライト膜製膜時の水熱処理の際にアルカリ性の薬剤により担体であるアルミナ多孔体が溶出し、この溶出分がゼオライト膜中に異物として混入され、ゼオライト膜の性状が不安定になってしまうという問題があった。   In addition, the alumina porous body may be used as a molecular sieve by forming a zeolite membrane on the surface by hydrothermal synthesis as its use, but as described in Patent Document 1, During the hydrothermal treatment, there was a problem that the alumina porous body as a carrier was eluted by an alkaline agent, and this eluted portion was mixed as a foreign substance in the zeolite membrane, resulting in unstable properties of the zeolite membrane.

従来、アルミナフィルタの耐アルカリ性を向上されるためには、例えば、特許文献2のようにAl粒子間を結合しているガラス成分の耐アルカリ性を向上させるために、Zr2OやMgOを特定量添加することがなされていた。
特開2005−111380 特公平5−21605号
Conventionally, in order to improve the alkali resistance of an alumina filter, for example, as in Patent Document 2, in order to improve the alkali resistance of a glass component that bonds Al 2 O 3 particles, Zr 2 O or MgO is used. The specific amount was added.
JP-A-2005-111380 Japanese Patent Publication No.5-221605

しかしながら、Al粒子間を結合しているガラス成分の溶出にある程度の効果を有するものの、まだ、不十分であった。
本発明は、耐アルカリ性に優れた特性を有するアルミナ多孔体を提供することを目的とするものである。
However, although it has a certain effect on the elution of the glass component bonding between the Al 2 O 3 particles, it is still insufficient.
An object of this invention is to provide the alumina porous body which has the characteristic excellent in alkali resistance.

上記課題を解決するためになされた本発明は、Al粒子間を結合することで構成されるアルミナ多孔体であって、前記Al粒子間は、平均粒径10〜50μmのAl粒子100重量部に対して、10〜30重量部のAl微粒粉末と0.1〜10重量部のGdまたはYとの化合物(GdAlOまたはYAl12)にて焼結により結合されていることを特徴とするアルミナ多孔体とした。
セラミックフィルタの強度低下の主たる要因となっていたAl粒子間のガラス成分を、主として、Alと特定の希土類(Ln)酸化物との化合物(LnAl)にかえて、Al粒子間を結合させることにより、ガラス成分の溶出によるセラミックフィルタ強度低下を効果的に防止でき、アルカリ処理後においても優れた強度を維持することが可能となる。
The present invention has been made in order to solve the aforementioned problems is a porous alumina formed by coupling between Al 2 O 3 particles, between the Al 2 O 3 particles have an average particle diameter of 10~50μm against Al 2 O 3 particles 100 parts by weight, the compound of the Gd 2 O 3 or Y 2 O 3 of Al 2 O 3 fine powder and 0.1 to 10 parts by weight of 10 to 30 parts by weight (GdAlO 3 or Y 3 Al 5 O 12 ) to form a porous alumina body bonded by sintering.
The glass component between the Al 2 O 3 particles, which has been the main factor for reducing the strength of the ceramic filter, is mainly converted to a compound (Ln x Al y 0 z ) of Al 2 O 3 and a specific rare earth (Ln) oxide. Instead, by bonding the Al 2 O 3 particles, it is possible to effectively prevent the ceramic filter strength from being reduced due to elution of the glass component, and it is possible to maintain excellent strength even after the alkali treatment.

本発明の好ましい形態として、前記の希土類(Ln)酸化物は、Gd、La、Yから選ばれた少なくとも1種類とすることが良い。 As a preferred embodiment of the present invention, the rare earth (Ln) oxide may be at least one selected from Gd 2 O 3 , La 2 O 3 , and Y 2 O 3 .

Gd、La3、は、GdAlO、LaAl1118やYAl512等のAlと希土類酸化物の化合物を形成して、Al粒子間の結合に寄与しており、また、アルカリ処理後、Al粒子間のそれらの溶出は見られず、化合物組織を維持していることから、それらの化合物自体が耐アルカリ性に優れていると推測され、アルカリ処理後のセラミックフィルタの強度を維持することが可能となる。 Gd 2 O 3, La 2 O 3, Y 2 O 3 is to form a GdAlO 3, LaAl of 11 O 18 and Y 3 Al 5 O Al 2 O 3 and a rare earth oxide such as 12 compounds, Al 2 O These particles contribute to the bonding between the three particles, and after the alkali treatment, the elution between the Al 2 O 3 particles is not observed and the compound structure is maintained. It is presumed that the ceramic filter is excellent, and the strength of the ceramic filter after the alkali treatment can be maintained.

また、本発明の好ましい形態として、前記アルミナ多孔体において、SiOの含有率は、0.5重量%以下にすること良い。 As a preferred embodiment of the present invention, in the alumina porous body, the content of SiO 2 is preferably 0.5% by weight or less.

一般に、SiOはAl粒子間にガラス相として存在し、Alの焼結助材あるいはAl粒子の結合材としての働きがあるが、本発明のLnAlを含むアルミナ多孔体では、焼成過程で形成されるLnAlが、優れた焼結助材や接合材の働きをするため、SiO等他の焼結助材や結合材の混合は不要である。一方、SiOは高アルカリ側で溶出して、アルミナ多孔体の強度を低下させるため、SiOは極力少ないことが望ましく、本発明のアルミナ多孔体では、SiOの含有率は0.5重量%以下、さらに好ましくは0.2重量%以下にする。 In general, SiO 2 is present as a glass phase between Al 2 O 3 particles, there is a function as a binding material of the sintering material or Al 2 O 3 particles of Al 2 O 3, Ln x Al y of the present invention In the alumina porous body containing 0 z , Ln x Al y 0 z formed in the firing process functions as an excellent sintering aid and bonding material, so other sintering aids and binders such as SiO 2 are used. Is not necessary. On the other hand, since SiO 2 elutes on the high alkali side and lowers the strength of the alumina porous body, it is desirable that SiO 2 is as small as possible. In the alumina porous body of the present invention, the content of SiO 2 is 0.5% by weight. % Or less, more preferably 0.2% by weight or less.

本発明は、Al粒子間を耐アルカリ性に優れたAlと希土類(Ln)酸化物との化合物(LnAl)にて結合することで、アルカリ処理後においても優れた強度を有するセラミックフィルタを提供できる。 In the present invention, Al 2 O 3 particles are bonded with a compound of Al 2 O 3 and rare earth (Ln) oxide (Ln x Al y 0 z ) excellent in alkali resistance so that even after alkali treatment. A ceramic filter having excellent strength can be provided.

以下の本発明を更に詳細に説明する。
図1は、本発明のアルミナ多孔体の構造を説明する模式図である。
図1は、円筒状のセラミックフィルタ1断面の一部を示しており、骨材としてのAl粒子2間を結合材3にて結合し、それらの界面に孔4を形成しているものである。
Al粒子としては、要求される細孔径に合わせて適宜選択されるものであるが、平均粒径10μm〜50μmを利用することで、細孔径3μm〜16μmのセラミックフィルタを得ることができる。また、このセラミックフィルタを支持体として、その表層の平均粒径1μm以下のAl粒子を被覆して細孔径0.3μm以下の複層のセラミックフィルタを構成しても良い。
The following present invention will be described in more detail.
FIG. 1 is a schematic diagram illustrating the structure of the alumina porous body of the present invention.
FIG. 1 shows a part of a cross section of a cylindrical ceramic filter 1, in which Al 2 O 3 particles 2 as aggregates are bonded together by a bonding material 3, and a hole 4 is formed at the interface between them. Is.
The Al 2 O 3 particles are appropriately selected according to the required pore diameter, but a ceramic filter having a pore diameter of 3 μm to 16 μm can be obtained by using an average particle diameter of 10 μm to 50 μm. . Alternatively, a multilayer ceramic filter having a pore diameter of 0.3 μm or less may be formed by coating Al 2 O 3 particles having an average particle diameter of 1 μm or less on the surface layer using this ceramic filter as a support.

また、結合材については、Alと希土類酸化物を利用するが、Alについては、上記骨材粒子の一部を利用することも可能である。耐アルカリ性では、Al微粒子の添加は無い方が、好ましく、その際のAl骨材粒径としては、小さい方が好ましい。なお、Al微粒子を利用することで、成形後の成形体を焼成する際の保形成を保つためには、効果的であるので、ある程度の微粒子の存在はあった方が好ましい。この場合、Al微粒粉末と希土類酸化物粉末の混合比は、反応生成物のLnAlから、Ln:Alが原子量比でx:yと等しい、もしくは、x:yよりAlが多くなるように計算して混合するのが良い。x:yよりAl微粒粉末が少ない場合には、未反応の希土類酸化物が残存し、反って耐食性を落とす原因になることもある。希土類酸化物は、Alと反応し、LnAlの化合物を形成するものであれば、利用可能であるが、特に、Gd、La、Yが好適に利用できる。また、これらの酸化物は、複数種を利用しても良い。粒径としては、平均粒径10μm以下が望ましい。 As for the binder, it utilizes a Al 2 O 3 and a rare earth oxide, for Al 2 O 3, it is possible to use a part of the aggregate particles. In terms of alkali resistance, it is preferable that no Al 2 O 3 fine particles are added, and the smaller the Al 2 O 3 aggregate particle size, the better. It should be noted that the use of Al 2 O 3 fine particles is effective in maintaining the retention during firing of the molded body after molding, and therefore it is preferable that a certain amount of fine particles exist. In this case, the mixing ratio of the Al 2 O 3 fine particle powder and the rare earth oxide powder is such that Ln: Al is equal to x: y in terms of atomic weight ratio from Ln x Al y 0 z of the reaction product, or from x: y It is good to calculate and mix so that Al may increase. When the Al 2 O 3 fine powder is less than x: y, unreacted rare earth oxide remains, which may cause the corrosion resistance to deteriorate. The rare earth oxide can be used as long as it reacts with Al 2 O 3 to form a compound of Ln x Al y 0 z , and in particular, Gd 2 O 3 , La 2 O 3 , Y 2 O 3 can be suitably used. Moreover, you may utilize multiple types of these oxides. As the particle size, an average particle size of 10 μm or less is desirable.

なお、例えば、円筒状セラミックフィルタは、数十、数百本をモジュールとして組み付けることから、ハンドリング、組み付けする際の負荷などを考慮して、数%程度のガラス分を添加して、初期のセラミックフィルタ強度を向上させるようにしても良い。この場合でも主たるAl粒子間の結合は、Alと希土類酸化物との化合物によって結合されているので、アルカリ処理後に前記ガラス分が溶出した場合でも問題ない。
次に、製造方法について、以下の説明する。
骨材としての純度99.5%以上のAl粒子100重量部に対して、純度99%以上Al微粒粉末を0〜30重量部と、少なくとも1種類の希土類酸化物粉末を0.1〜10重量部と水、デキストリン等の成形助材を適宜添加混合し、その後、混合物を押出し成形機など用途の応じた成形手段を用いて成形する。成形体は、大気中で、焼成温度1600℃〜1700℃程度で焼成する。
For example, since a cylindrical ceramic filter is assembled from several tens or hundreds as a module, an amount of glass of about several percent is added in consideration of handling and loading when assembling. The filter strength may be improved. Even in this case, since the bonds between the main Al 2 O 3 particles are bonded by a compound of Al 2 O 3 and a rare earth oxide, there is no problem even when the glass component is eluted after the alkali treatment.
Next, the manufacturing method will be described below.
With respect to 100 parts by weight of Al 2 O 3 particles having a purity of 99.5% or more as aggregate, 0 to 30 parts by weight of Al 2 O 3 fine particles having a purity of 99% or more and at least one kind of rare earth oxide powder 0.1 to 10 parts by weight and a molding aid such as water and dextrin are appropriately added and mixed, and then the mixture is molded using a molding means suitable for the application such as an extrusion molding machine. The molded body is fired in the air at a firing temperature of about 1600 ° C to 1700 ° C.

得られたアルミナ多孔体の組織を確認するために、X線回折装置(XRD)、走査電子顕微鏡(SEM)、エネルギー分散型蛍光X線分析装置(EDX)にて分析した。
例えば、希土類酸化物として、Gd、Laを添加した際の結果を例に説明する。
図2は、XRDの結果を示す。Gd、La共にGd、Laの残存ピークは見られず、また、共にAlと反応し、Gd添加については GdAlO3 が生成、また、La 添加については LaAl1118が生成することが分かった。
図3は、Gd添加について、(a)図は、SEM像、(b)図は、EDXのAl分布像、(c)図は、EDXのGd分布像を示す。また、図4は、La添加については (a)図は、SEM像、(b)図は、EDXのAl分布像、(c)図は、EDXのLa分布像を示す。 図3では、Gd元素が、Al粒子を包み込み込むように存在し、また、図4では、La元素が、Al粒子を包み込み込むように存在し、それらが結合材として、Al粒子間を結合していることがわかった。
In order to confirm the structure of the obtained porous alumina body, the structure was analyzed with an X-ray diffractometer (XRD), a scanning electron microscope (SEM), and an energy dispersive X-ray fluorescence analyzer (EDX).
For example, the results when Gd 2 O 3 and La 2 O 3 are added as rare earth oxides will be described as an example.
FIG. 2 shows the results of XRD. The residual peaks of Gd 2 O 3 and La 2 O 3 are not observed for both Gd 2 O 3 and La 2 O 3 , and both react with Al 2 O 3, and Gd2O 3 is produced when Gd 2 O 3 is added, In addition, it was found that LaAl 11 O 18 was formed when La 2 O 3 was added.
FIG. 3 shows Gd 2 O 3 addition. FIG. 3A shows an SEM image, FIG. 3B shows an EDX Al distribution image, and FIG. 3C shows an EDX Gd distribution image. FIG. 4 shows La 2 O 3 addition. FIG. 4A shows an SEM image, FIG. 4B shows an EDX Al distribution image, and FIG. 4C shows an EDX La distribution image. In FIG. 3, the Gd element is present so as to encapsulate the Al 2 O 3 particles, and in FIG. 4, the La element is present so as to encapsulate the Al 2 O 3 particles, and they are used as a binder. It was found that Al 2 O 3 particles were bonded.

本発明の実施例を以下に説明する。
(実施例)
平均粒径が約20μmのAl粗粒粉末に、平均粒径が約0.6μmのAl微粒粉末、及び、表1及び表2に示すように各種希土類酸化物粉末等を混合し、さらに、成形助材として、粉末100重量部に対し、1重量部のデキストリンと3重量部の水を添加混合し、成形圧力20kPaで、6mm×6mm×50mmの棒状サンプルを圧縮成形し、大気中で1650℃、2時間焼成し、実施例1〜24を作製した。
また、平均粒径が約35μmのAl粗粒粉末を用いた以外は、上記実施例と同様にしたものを実施例25とした。
ただし、希土類酸化物としてLaのみを用いた実施例2、5、7および9、並びにAl 微粒粉末の比率「なし」の実施例13から17および25は、本発明に対応しない参考例である。
Examples of the present invention will be described below.
(Example)
Al 2 O 3 coarse particles having an average particle size of about 20 μm, Al 2 O 3 fine particles having an average particle size of about 0.6 μm, and various rare earth oxide powders as shown in Tables 1 and 2 Furthermore, as a forming aid, 1 part by weight dextrin and 3 parts by weight of water are added to and mixed with 100 parts by weight of the powder, and a 6 mm × 6 mm × 50 mm rod-shaped sample is compression-molded at a molding pressure of 20 kPa. Then, it was baked at 1650 ° C. for 2 hours in the air to produce Examples 1 to 24.
In addition, Example 25 was made the same as the above example except that Al 2 O 3 coarse powder having an average particle diameter of about 35 μm was used.
However, Examples 2, 5, 7 and 9 using only La 2 O 3 as the rare earth oxide, and Examples 13 to 17 and 25 of “None” of the Al 2 O 3 fine powder correspond to the present invention. Not a reference example.

(比較例)
平均粒径が約20μmのAl粉末に、平均粒径が約0.6μmのAl粉末、粘土(0.4重量部)、ジルコニア(2重量部)と粉末100重量部に対し、1重量部のデキストリンと3重量部の水を添加混合し、成形圧力20kPaで、6mm×6mm×50mmの棒状サンプルを圧縮成形し、大気中で1650℃、2時間焼成し、比較例1として、アルミナ多孔体を作製した。
また、表1に示すように希土類酸化物粉末を添加しないものを同様の方法にて、比較例2、3を作製した。
(Comparative example)
The Al 2 O 3 powder having an average particle size of about 20 [mu] m, Al 2 O 3 powder having an average particle size of about 0.6 .mu.m, clay (0.4 parts by weight), and the powder 100 parts by weight of zirconia (2 parts by weight) On the other hand, 1 part by weight of dextrin and 3 parts by weight of water were added and mixed, a 6 mm × 6 mm × 50 mm rod-shaped sample was compression-molded at a molding pressure of 20 kPa, and calcined in the atmosphere at 1650 ° C. for 2 hours. As a result, an alumina porous body was produced.
Further, as shown in Table 1, Comparative Examples 2 and 3 were prepared by the same method except that the rare earth oxide powder was not added.

(耐アルカリ試験及び強度試験)
焼成後の各実施例及び各比較例のアルミナ多孔体を、NaOH12%の90℃加熱溶液に5時間浸漬させた後、曲げ強度をJIS R1601に基づいて測定した。結果を表1に示す。

(Alkali resistance test and strength test)
The alumina porous bodies of each Example and each Comparative Example after firing were immersed in a 90% heated solution of NaOH 12% for 5 hours, and then the bending strength was measured based on JIS R1601. The results are shown in Table 1.















従来のZrOを添加しているものや希土類酸化物粉末を混合しない比較例1〜3では、曲げ強度が10MPa前後であるのに対し、希土類酸化物粉末を混合した実施例1〜11は、1重量部の混合でも、曲げ強度が30前後〜40MPaでほぼ3倍以上になっていることが分かる。同実施例1〜11は、骨材のAl粒子間に、Alと希土類(Ln)酸化物との化合物(LnAl)が介在することが、XRDやEPMA等の分析で確認することができる。すなわち、耐アルカリ性に優れ、また、Alとの濡れ性の良いLnAlを、骨材のAl粒子間に形成させることによって、耐アルカリ試験後の強度を向上させることができる。 In Comparative Examples 1 to 3 in which the conventional ZrO 2 is added and the rare earth oxide powder is not mixed, the bending strength is around 10 MPa, while the examples 1 to 11 in which the rare earth oxide powder is mixed are It can be seen that even with 1 part by weight of the mixture, the bending strength is about 3 times or more at around 30 to 40 MPa. In Examples 1 to 11, it is XRD or EPMA that the compound of Al 2 O 3 and rare earth (Ln) oxide (Ln x Al y 0 z ) is interposed between the Al 2 O 3 particles of the aggregate. It can be confirmed by analysis. That is, excellent in alkali resistance, also, a wettable Ln x Al y 0 z and Al 2 O 3, by forming between Al 2 O 3 particles of the aggregate, improved strength after the alkali resistance test Can be made.

また、初期強度とアルカリ処理後の強度の割合を強度保持率で見た際にも、従来に比べ高い保持率を有し、このことは、強度劣化をもたらす成分の溶出が少ないことを意味し、溶出された成分の種々の影響を低減できるものとなる。例えば、分子ふるいとしてのゼオライト膜の担体として好適に利用できる。   In addition, when the ratio between the initial strength and the strength after alkali treatment is viewed as the strength retention rate, it has a higher retention rate than before, which means that there is less elution of components that cause strength deterioration. Thus, various effects of the eluted components can be reduced. For example, it can be suitably used as a support for a zeolite membrane as a molecular sieve.

また、GdとYとの複合添加系では、耐アルカリ強度を保ちつつ、初期強度からの強度劣化が無いので、微量のYの微粒添加は望ましい。また、Yの添加は、表面の色合いをより均一に保つ効果があり外観性を向上できる。 In addition, in the combined addition system of Gd 2 O 3 and Y 2 O 3 , since there is no strength deterioration from the initial strength while maintaining the alkali resistance strength, it is desirable to add a minute amount of fine particles of Y 2 O 3 . Further, the addition of Y 2 O 3 has an effect of keeping the surface color more uniform and can improve the appearance.

また、通常、セラミックフィルターの気孔率は、圧力損失の関係上、30%程度もしくはそれ以上であることが望ましい。気孔率が30%前後のセラミックフィルターは、通気性や通液性においても問題ない範囲である。   In general, the porosity of the ceramic filter is desirably about 30% or more in terms of pressure loss. A ceramic filter having a porosity of around 30% is in a range where there is no problem in air permeability and liquid permeability.

本発明の一実施形態を示す円筒状のセラミックフィルタの部分断面の模式図である。It is a schematic diagram of the partial cross section of the cylindrical ceramic filter which shows one Embodiment of this invention. 本発明のアルミナ多孔体のX線回折装置(XRD)を用いた分析結果を示す図である。It is a figure which shows the analysis result using the X-ray-diffraction apparatus (XRD) of the alumina porous body of this invention. 本発明のGd添加アルミナ多孔体の(a)は、走査電子顕微鏡(SEM)、(b)及び(c)はエネルギー分散型蛍光X線分析装置(EDX)を用いた分析結果を示す図である。(A) of the Gd 2 O 3 -added alumina porous body of the present invention shows the results of analysis using a scanning electron microscope (SEM), (b) and (c) using an energy dispersive X-ray fluorescence spectrometer (EDX). FIG. 本発明のLa添加アルミナ多孔体の(a)は、走査電子顕微鏡(SEM)、(b)及び(c)はエネルギー分散型蛍光X線分析装置(EDX)を用いた分析結果を示す図である。(A) of the La 2 O 3 -added alumina porous body of the present invention shows the results of analysis using a scanning electron microscope (SEM), and (b) and (c) using an energy dispersive X-ray fluorescence spectrometer (EDX). FIG.

符号の説明Explanation of symbols

1…セラミックフィルタ(アルミナ多孔体)
2…Al
3…結合材
4…孔



1 ... Ceramic filter (alumina porous body)
2 ... Al 2 O 3
3 ... Binder 4 ... Hole



Claims (2)

Al粒子間を結合することで構成されるアルミナ多孔体であって、前記Al粒子間は、平均粒径10〜50μmのAl粒子100重量部に対して、10〜30重量部のAl微粒粉末と0.1〜10重量部のGdまたはYとの化合物(GdAlOまたはYAl12)にて焼結により結合されていることを特徴とするアルミナ多孔体。 A porous alumina formed by coupling between Al 2 O 3 particles, between the Al 2 O 3 particles, relative to Al 2 O 3 particles 100 parts by weight of the average particle diameter of 10 to 50 [mu] m, 10 coupled by sintering at a compound of the Al 2 O 3 Gd 2 O 3 or Y 2 O 3 of fine powder and 0.1 to 10 parts by weight of 30 parts by weight (GdAlO 3 or Y 3 Al 5 O 12) A porous alumina body characterized by the above. 請求項1に記載のアルミナ多孔体において、SiOの含有率が0.2〜0.5重量%であることを特徴としたアルミナ多孔体。 The alumina porous body according to claim 1, wherein the content of SiO 2 is 0.2 to 0.5% by weight.
JP2006124588A 2005-04-28 2006-04-28 Alumina porous body Active JP5003016B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006124588A JP5003016B2 (en) 2005-04-28 2006-04-28 Alumina porous body

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005132129 2005-04-28
JP2005132129 2005-04-28
JP2006124588A JP5003016B2 (en) 2005-04-28 2006-04-28 Alumina porous body

Publications (2)

Publication Number Publication Date
JP2006327927A JP2006327927A (en) 2006-12-07
JP5003016B2 true JP5003016B2 (en) 2012-08-15

Family

ID=37550008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006124588A Active JP5003016B2 (en) 2005-04-28 2006-04-28 Alumina porous body

Country Status (1)

Country Link
JP (1) JP5003016B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5694695B2 (en) * 2010-07-13 2015-04-01 三井金属鉱業株式会社 Insulated refractory and method for producing the same
EP3199608B1 (en) * 2014-09-25 2021-08-11 Kabushiki Kaisha Toshiba Rare-earth cold storage material particles, refrigerator using same, superconducting magnet, inspection device, and cryopump
JP6478894B2 (en) * 2014-10-22 2019-03-06 クアーズテック株式会社 Porous ceramics

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60238146A (en) * 1984-05-11 1985-11-27 Hitachi Ltd Heat resistant carrier composition
JPH07109169A (en) * 1993-10-12 1995-04-25 Shinagawa Refract Co Ltd Highly corrosion-resistant alumina sintered body
JP3407284B2 (en) * 1994-02-28 2003-05-19 東陶機器株式会社 Translucent ceramics
JP3405083B2 (en) * 1996-08-22 2003-05-12 宇部興産株式会社 Porous ceramic material
EP1770142A3 (en) * 2000-10-06 2008-05-07 3M Innovative Properties Company A method of making agglomerate abrasive grain
JP2002274967A (en) * 2001-03-21 2002-09-25 Kyocera Corp Gamma alumina porous body, method for manufacturing the same and fluid separation filter by using the same
JP4873857B2 (en) * 2004-12-24 2012-02-08 京セラ株式会社 Corrosion-resistant member, manufacturing method thereof, and semiconductor / liquid crystal manufacturing apparatus member

Also Published As

Publication number Publication date
JP2006327927A (en) 2006-12-07

Similar Documents

Publication Publication Date Title
CA2480167C (en) Mullite bodies and methods of forming mullite bodies
EP2832712B1 (en) Porous material, honeycomb structure
US6576182B1 (en) Process for producing shrinkage-matched ceramic composites
US7485594B2 (en) Porous mullite bodies and methods of forming them
EP2832713B1 (en) Porous material and honeycomb structure
EP1754692B1 (en) Mullite bodies
KR101664648B1 (en) Alumina porous body and method for manufacturing same
EP1787968A1 (en) Method for manufacturing porous article, porous article and honeycomb structure
CN108585883A (en) Microfiltration ceramic membrane and preparation method thereof
MX2010014553A (en) Method for making porous acicular mullite bodies.
JP2014189447A (en) Porous material, honeycomb structure, and method for manufacturing porous material
JP5003016B2 (en) Alumina porous body
US11428138B2 (en) Porous material, honeycomb structure, and method of producing porous material
EP2130601A2 (en) Honeycomb structure
EP1197253B1 (en) Method for producing a silicon nitride filter
EP2903951A1 (en) Ceramic structures
JP6324563B2 (en) Method for producing porous material
JP2018505770A (en) SiC-nitride or SiC-oxynitride composite membrane filter
JP2003246676A (en) Sialon ceramic porous body and manufacturing method thereof
EP3122700A1 (en) Ceramic structures
WO2014088619A1 (en) Porous mullite bodies having improved thermal stability
JPH11322434A (en) Crystalline turbulent layer structure boron nitride-containing composite ceramic sintered body
JP2680127C (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110210

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120424

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120507

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5003016

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250