JP5000403B2 - Magnification optical system and imaging device - Google Patents

Magnification optical system and imaging device Download PDF

Info

Publication number
JP5000403B2
JP5000403B2 JP2007174314A JP2007174314A JP5000403B2 JP 5000403 B2 JP5000403 B2 JP 5000403B2 JP 2007174314 A JP2007174314 A JP 2007174314A JP 2007174314 A JP2007174314 A JP 2007174314A JP 5000403 B2 JP5000403 B2 JP 5000403B2
Authority
JP
Japan
Prior art keywords
lens
lens group
optical system
group
variable magnification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007174314A
Other languages
Japanese (ja)
Other versions
JP2008268833A (en
Inventor
哲也 小里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2007174314A priority Critical patent/JP5000403B2/en
Priority to US12/051,672 priority patent/US7630138B2/en
Priority to CN200810086255A priority patent/CN100595623C/en
Priority to EP08005695A priority patent/EP1975668A3/en
Priority to KR1020080028623A priority patent/KR100975300B1/en
Publication of JP2008268833A publication Critical patent/JP2008268833A/en
Application granted granted Critical
Publication of JP5000403B2 publication Critical patent/JP5000403B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/145Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only
    • G02B15/1451Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only the first group being positive
    • G02B15/145113Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only the first group being positive arranged +-++-
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/041Lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/009Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras having zoom function
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/16Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group
    • G02B15/20Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having an additional movable lens or lens group for varying the objective focal length
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/22Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with movable lens means specially adapted for focusing at close distances
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0087Simple or compound lenses with index gradient
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/02Bodies
    • G03B17/12Bodies with means for supporting objectives, supplementary lenses, filters, masks, or turrets
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Nonlinear Science (AREA)
  • Lenses (AREA)

Description

本発明は、撮像機能を有する小型の機器、特にデジタルスチルカメラ、カメラ付き携帯電話機、および情報携帯端末(PDA:Personal Digital Assistance)等に好適に用いられる変倍光学系および撮像装置に関する。   The present invention relates to a variable power optical system and an image pickup apparatus that are suitably used for small devices having an image pickup function, in particular, digital still cameras, camera-equipped mobile phones, and personal digital assistants (PDAs).

近年、デジタルスチルカメラ等の撮像装置においては、CCD(Charge Coupled Device)やCMOS(Complementary Metal Oxide Semiconductor)等の撮像素子の小型化が進むにつれて、装置全体としてもさらなる小型化が求められている。これに伴い撮影用レンズ、特に変倍光学系(ズームレンズ)は全長の短縮等による薄型化が求められている。従来、デジタルスチルカメラ等に用いられる変倍光学系としては例えば、特許文献1に開示されているように全体として5群構成のものが知られている。特許文献1に記載の変倍光学系は、レンズ系を構成する各光学部材を、光軸の方向を変更することなく一方向に直線的に配列したいわゆるストレートタイプの光学系となっている。ここで、撮像装置の厚み方向の大きさは最も物体側の光学部材から撮像素子までの長さで事実上決定される。一方、近年の撮像素子の高画素化および高性能化の要求を満足するためにレンズの枚数が増え、レンズ系の全長を短縮するのが困難になってきている。そのため、撮像装置全体の薄型化を達成することが困難になってきている。そこで、撮像装置を薄型化するためにレンズ系の光路を途中で折り曲げた、いわゆる屈曲光学系が開発されている。   In recent years, in an imaging apparatus such as a digital still camera, as the imaging element such as a CCD (Charge Coupled Device) and a CMOS (Complementary Metal Oxide Semiconductor) has been miniaturized, further miniaturization of the entire apparatus is required. Accordingly, a photographic lens, particularly a variable magnification optical system (zoom lens) is required to be thinned by shortening the entire length or the like. Conventionally, as a variable power optical system used for a digital still camera or the like, for example, a five-group configuration as a whole as disclosed in Patent Document 1 is known. The zoom optical system described in Patent Document 1 is a so-called straight type optical system in which optical members constituting a lens system are linearly arranged in one direction without changing the direction of the optical axis. Here, the size of the imaging device in the thickness direction is substantially determined by the length from the most object-side optical member to the imaging device. On the other hand, the number of lenses has increased in order to satisfy recent demands for higher pixel and higher performance imaging devices, and it has become difficult to shorten the overall length of the lens system. For this reason, it has become difficult to achieve a reduction in the thickness of the entire imaging apparatus. In order to reduce the thickness of the imaging apparatus, a so-called bending optical system has been developed in which the optical path of the lens system is bent halfway.

屈曲光学系では、第1レンズ群内に直角プリズム等の反射部材を配置し、光路を途中で略90°折り曲げることによって、光学系の厚さ方向の長さを短縮している。そのような屈曲タイプによる変倍光学系としては従来、全体として4群構成で、変倍時に第2レンズ群と第4レンズ群を移動させるものが知られている。また、近年ではより高変倍比のものへの要求があるため、屈曲タイプによる変倍光学系で、全体として5群構成として4群構成のものに比べて高変倍比化を図ったものが開発されている(特許文献2ないし4参照)。特許文献3に記載の変倍光学系は、変倍時に第2レンズ群と第4レンズ群のみを移動させるものであるが、特許文献2および4に記載の変倍光学系では、第2レンズ群と第4レンズ群に加え、第5レンズ群をも変倍時に移動させる方式となっている。特許文献2に記載の変倍光学系では、第5レンズ群が合焦機能を有し、第5レンズ群を像面側に移動させることにより、無限遠から近距離へのフォーカシングを行っている。また、変倍時には、第2レンズ群および第4レンズ群の線形動作により焦点距離変更を行い、第5レンズ群の非線形動作により像面変動の補正を行っている。
特許第3196283号公報 特開2006−301543号公報 特開2006−323051号公報 特開2006−98686号公報
In the bending optical system, a reflecting member such as a right-angle prism is disposed in the first lens group, and the length of the optical system in the thickness direction is shortened by bending the optical path approximately 90 ° in the middle. As such a variable magnification optical system of the bent type, an optical system having a four-group configuration as a whole and moving the second lens group and the fourth lens group at the time of zooming is known. In recent years, since there is a demand for a higher zoom ratio, a variable magnification optical system of a bent type, which has a five-group configuration as a whole and has a higher zoom ratio than a four-group configuration. Have been developed (see Patent Documents 2 to 4). The zoom optical system described in Patent Document 3 moves only the second lens group and the fourth lens group at the time of zooming. In the zoom optical system described in Patent Documents 2 and 4, In addition to the group and the fourth lens group, the fifth lens group is also moved during zooming. In the variable magnification optical system described in Patent Document 2, the fifth lens group has a focusing function, and focusing from infinity to a short distance is performed by moving the fifth lens group to the image plane side. At the time of zooming, the focal length is changed by the linear operation of the second lens group and the fourth lens group, and the image plane variation is corrected by the non-linear operation of the fifth lens group.
Japanese Patent No. 3196283 JP 2006-301543 A JP 2006-323051 A JP 2006-98686 A

しかしながら、特許文献1に記載の光学系は、第1レンズ群の焦点距離f1が長く、レンズ全長が長くなるため小型化に不利である。また、特許文献2に記載の光学系は、第5レンズ群を像面側に移動させて合焦を行う方式のため、第5レンズ群を合焦時に移動させる際に、射出瞳距離の変動が大きく、シェーディングの変化が生じやすい。また、第5レンズ群が合焦時に像面に近づくために、第5レンズ群のレンズ表面に付着するゴミや、キズが画質に影響を与えやすいという問題がある。また、特許文献3に記載の光学系は、第1レンズ群を反射面より前群と後群とに分けた場合において、第1レンズ群中の後群の焦点距離f1rが長く設定されているため、レンズ全長が長くなり小型化に不利である。また、特許文献4に記載の光学系は、第2レンズ群の焦点距離f2が長く設定されているため、レンズ全長が長くなり小型化に不利である。   However, the optical system described in Patent Document 1 is disadvantageous for miniaturization because the focal length f1 of the first lens group is long and the total lens length is long. In addition, since the optical system described in Patent Document 2 is a system that performs focusing by moving the fifth lens group to the image plane side, when the fifth lens group is moved at the time of focusing, fluctuations in the exit pupil distance are caused. And shading changes are likely to occur. In addition, since the fifth lens group approaches the image plane when focused, there is a problem that dust and scratches attached to the lens surface of the fifth lens group easily affect the image quality. In the optical system described in Patent Document 3, when the first lens group is divided into the front group and the rear group from the reflecting surface, the focal length f1r of the rear group in the first lens group is set to be long. For this reason, the total lens length becomes long, which is disadvantageous for downsizing. In the optical system described in Patent Document 4, since the focal length f2 of the second lens group is set to be long, the total length of the lens becomes long, which is disadvantageous for downsizing.

本発明はかかる問題点に鑑みてなされたもので、その目的は、良好な光学性能を維持しつつ、レンズ全長を短くし、小型化を達成できるようにした変倍光学系および撮像装置を提供することにある。   The present invention has been made in view of such problems, and an object thereof is to provide a variable magnification optical system and an imaging apparatus that can achieve a reduction in size while reducing the overall lens length while maintaining good optical performance. There is to do.

本発明に係る変倍光学系は、物体側より順に、変倍および合焦の際に固定の正の屈折力の第1レンズ群と、変倍の際に移動する負の屈折力の第2レンズ群と、変倍および合焦の際に固定の正の屈折力の第3レンズ群と、変倍の際に移動すると共に合焦機能を有する正の屈折力の第4レンズ群と、変倍の際に移動する負の屈折力の第5レンズ群とを備え、第1レンズ群が、物体側より順に、負の屈折力を有する前群と、光路を折り曲げる反射部材と、正の屈折力を有する後群とで構成され、かつ以下の条件式を満足するように構成されているものである。式中、f1fは第1レンズ群における前群の焦点距離、f1rは第1レンズ群における後群の焦点距離を示す。
−3.5<f1f/f1r<−1.8 ……(
また、以下の条件式を満足するように構成されていることが好ましい。式中、fwは広角端での全系の焦点距離、f2は第2レンズ群の焦点距離、f1は第1レンズ群の焦点距離を示す。
0.5<|f2/fw|<0.8 ……(2)
0.4<fw/f1<0.8 ……(3)
The zoom lens system according to onset Ming, in order from the object side, a first lens unit having a positive refractive power fixed during zooming and focusing, the negative refractive power and moves during zooming A second lens group, a third lens group having a positive refractive power that is fixed during zooming and focusing, and a fourth lens group having a positive refractive power that moves during zooming and has a focusing function; A fifth lens unit having a negative refractive power that moves during zooming, and the first lens unit includes, in order from the object side, a front group having a negative refractive power, a reflecting member that bends the optical path, and a positive It is comprised by the rear group which has refractive power, and is comprised so that the following conditional expressions may be satisfied. In the formula, f1f represents the focal length of the front group in the first lens group, and f1r represents the focal length of the rear group in the first lens group.
−3.5 <f1f / f1r <−1.8 ( 1 )
Moreover, it is preferable to be configured so as to satisfy the following conditional expression. In the equation, fw is the focal length of the entire system at the wide-angle end, f2 is the focal length of the second lens group, and f1 is the focal length of the first lens group .
0.5 <| f2 / fw | <0.8 (2)
0.4 <fw / f1 <0.8 (3)

本発明に係る変倍光学系では、全体として5群構成で、変倍時に第2レンズ群、第4レンズ群および第5レンズ群を移動させる方式とすることで、高変倍比化に有利となる。また、第1レンズ群内に配置された反射部材によって光路が折り曲げられる屈曲光学系の構成とされていることで、良好な光学性能を維持しつつ、光学系の厚さ方向の長さが抑えられ、撮像装置に組み込んだときの薄型化が容易となる。屈曲光学系では、撮像装置に組み込んだ場合、その厚みはレンズの全長よりも、光路を折り曲げる部分である第1レンズ群の大きさに大きく依存する。条件式()を満足することで、全長の短縮化と共に、反射部材を含めた第1レンズ群の小型化が容易となる。また、第4レンズ群に合焦機能を持たせたことで、第5レンズ群に合焦機能を持たせた場合に比べて、合焦時にも射出瞳距離の変動が少なく、シェーディングの変化が少なくなる。さらに、合焦時において最も像面に近い第5レンズ群G5のレンズ表面に付着するゴミや、キズが画質に影響を与えることも少なくなる。 In the zoom lens system according to onset bright, generally at 5-group configuration, the second lens group during zooming, by a method of moving the fourth lens group and the fifth lens group, the high zoom ratio It will be advantageous. In addition, since the optical path is bent by the reflecting member disposed in the first lens group, the length in the thickness direction of the optical system is suppressed while maintaining good optical performance. Therefore, it is easy to reduce the thickness when incorporated in an imaging apparatus. When the bending optical system is incorporated in an image pickup apparatus, the thickness of the bending optical system largely depends on the size of the first lens group, which is a portion that bends the optical path, rather than the total length of the lens. Satisfying the conditional expression ( 1 ) makes it easy to reduce the overall length and reduce the size of the first lens group including the reflecting member. In addition, since the fourth lens group has a focusing function, the variation in the exit pupil distance is less during focusing and the shading change is smaller than when the fifth lens group has a focusing function. Less. Furthermore, dust and scratches attached to the lens surface of the fifth lens group G5 closest to the image plane at the time of focusing are less likely to affect the image quality.

本発明に係る変倍光学系において、変倍時に、第2レンズ群および第5レンズ群が、光軸上で互いに異なる移動方向で、かつ、共に線形直線運動をするように移動すると共に、第4レンズ群が、非線形運動をするように移動するものであっても良い。
これにより、第2レンズ群および第5レンズ群を移動させる際、単一のモータで移動させることができ、本来移動レンズ群ごとに必要であるモータの個数削減化と移動制御の簡略化が達成可能となり、機構を含めた撮影装置の小型化と低廉化が達成される。
In the zoom lens system according to onset Ming, during zooming, the second lens group and the fifth lens group, at different movement direction on the optical axis, and move together to the linear linear motion, The fourth lens group may move so as to make a non-linear motion.
As a result, when the second lens group and the fifth lens group are moved, they can be moved by a single motor, and the number of motors originally required for each moving lens group and the simplification of movement control are achieved. This makes it possible to reduce the size and cost of the photographing apparatus including the mechanism.

また、本発明に係る変倍光学系において、第1ないし第5レンズ群のそれぞれのレンズ群中に、少なくとも1枚のプラスチックレンズを含んでいても良い。これにより、光学系の軽量化と低廉化に有利となる。 Further, in the zoom lens system according to onset bright, while each lens group of the first to fifth lens group may include at least one plastic lens. This is advantageous for reducing the weight and cost of the optical system.

また、本発明に係る変倍光学系において、第1レンズ群が後群中に少なくとも1枚の正レンズを有し、第2レンズ群が少なくとも1枚の負レンズを有している場合に、第1レンズ群における後群中の少なくとも1枚の正レンズにプラスチックレンズを用い、第2レンズ群中の少なくとも1枚の負レンズにプラスチックレンズを用いることが好ましい。これにより、プラスチックレンズを用いたことによる温度変化時の焦点移動が低減される。 Further, in the zoom lens system according to onset bright, when the first lens group has at least one positive lens in the rear group, the second lens group has at least one negative lens Preferably, a plastic lens is used for at least one positive lens in the rear group in the first lens group, and a plastic lens is used for at least one negative lens in the second lens group. Thereby, the focal movement at the time of temperature change by using a plastic lens is reduced.

本発明による撮像装置は、本発明に係る変倍光学系と、この変倍光学系によって形成された光学像に応じた撮像信号を出力する撮像素子とを備えたものである。
本発明による撮像装置では、本発明の変倍光学系によって得られた高解像の光学像に基づいて高解像の撮像信号が得られる。
Imaging apparatus according to the present invention, a zoom lens system according to onset bright, in which an imaging device that outputs an imaging signal corresponding to an optical image formed by the variable power optical system.
In the imaging device according to the present invention, a high-resolution imaging signal is obtained based on the high-resolution optical image obtained by the variable power optical system of the present invention.

本発明に係る変倍光学系によれば、全体として5群構成で、変倍時に第2レンズ群、第4レンズ群および第5レンズ群を移動させる方式とし、かつ、第1レンズ群内に配置された反射部材によって光路が折り曲げられる屈曲光学系の構成とし、第1レンズ群内の前群および後群の焦点距離に関して適切な条件を満足するようにしたので、良好な光学性能を維持しつつ、レンズ全長を短くし、小型化を達成できる。 According to the variable-power optical system according to the present onset bright, generally at 5-group configuration, the second lens group during zooming, the fourth lens group and the fifth lens group and a method of moving, and the first lens group The optical path is bent by the reflecting member placed on the lens, and the appropriate conditions are satisfied with respect to the focal lengths of the front group and the rear group in the first lens group, so that good optical performance is maintained. However, it is possible to reduce the overall length of the lens and reduce the size.

また、本発明の撮像装置によれば、上記本発明の高性能の変倍光学系によって形成された光学像に応じた撮像信号を出力するようにしたので、高解像の撮像信号を得ることができる。   In addition, according to the imaging apparatus of the present invention, since an imaging signal corresponding to the optical image formed by the high-performance variable magnification optical system of the present invention is output, a high-resolution imaging signal can be obtained. Can do.

以下、本発明の実施の形態について図面を参照して詳細に説明する。
図1(A),(B)は、本発明の一実施の形態に係る変倍光学系の第1の構成例を示している。この構成例は、後述の第1の数値実施例(図9(A)、図9(B)および図10)のレンズ構成に対応している。なお、図1(A)は広角端(最短焦点距離状態)での光学系配置、図1(B)は望遠端(最長焦点距離状態)での光学系配置に対応している。同様にして、後述の第2ないし第7の数値実施例のレンズ構成に対応する第2ないし第7の構成例の断面構成を、図2(A),(B)〜図7(A),(B)に示す。図1(A),(B)〜図7(A),(B)において、符号Riは、最も物体側の構成要素の面を1番目として、像側(結像側)に向かうに従い順次増加するようにして符号を付したi番目の面の曲率半径を示す。符号Diは、i番目の面とi+1番目の面との光軸Z1上の面間隔を示す。なお符号Diについては、変倍に伴って変化する部分の面間隔D8,D13,D16,D21,D23のみ符号を付す。なお、各構成例共に基本的な構成は同じなので、以下では図1(A),(B)に示した第1の構成例を基本にして説明する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
1A and 1B show a first configuration example of a variable magnification optical system according to an embodiment of the present invention. This configuration example corresponds to a lens configuration of a first numerical example (FIGS. 9A, 9B, and 10) described later. 1A corresponds to the optical system arrangement at the wide-angle end (shortest focal length state), and FIG. 1B corresponds to the optical system arrangement at the telephoto end (longest focal length state). Similarly, cross-sectional configurations of second to seventh configuration examples corresponding to lens configurations of second to seventh numerical examples to be described later are shown in FIGS. 2 (A), (B) to FIG. 7 (A), Shown in (B). In FIGS. 1A and 1B to FIGS. 7A and 7B, the symbol Ri increases sequentially toward the image side (imaging side), with the surface of the component closest to the object side being the first. In this way, the radius of curvature of the i-th surface that is labeled is shown. The symbol Di indicates the surface interval on the optical axis Z1 between the i-th surface and the i + 1-th surface. In addition, about the code | symbol Di, the code | symbol is attached | subjected only to the surface intervals D8, D13, D16, D21, and D23 of the part which changes with scaling. Since the basic configuration is the same for each configuration example, the following description is based on the first configuration example shown in FIGS. 1 (A) and 1 (B).

この変倍光学系は、撮像機能を有する小型の機器、例えばデジタルスチルカメラ、カメラ付き携帯電話機、およびPDA等に搭載されて使用されるものである。この変倍光学系は、光軸Z1に沿って物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、光量を調節する開口絞りStと、正の屈折力を有する第4レンズ群G4と、負の屈折力を有する第5レンズ群G5とを備えている。   This variable magnification optical system is used by being mounted on a small device having an imaging function, such as a digital still camera, a mobile phone with a camera, and a PDA. This variable magnification optical system has a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a positive refractive power in order from the object side along the optical axis Z1. It includes a third lens group G3, an aperture stop St for adjusting the amount of light, a fourth lens group G4 having a positive refractive power, and a fifth lens group G5 having a negative refractive power.

この変倍光学系の結像面には、CCD等の撮像素子100が配置される。少なくとも、この変倍光学系と撮像素子100とで、本発明における撮像装置が構成されている。第5レンズ群G5と撮像素子100との間には、レンズを装着するカメラ側の構成に応じて、種々の光学部材GCが配置されていても良い。例えば撮像面保護用のカバーガラスや赤外線カットフィルタなどの平板状の光学部材が配置されていても良い。   An imaging device 100 such as a CCD is disposed on the imaging surface of the variable magnification optical system. At least the zoom optical system and the image sensor 100 constitute an image pickup apparatus according to the present invention. Various optical members GC may be arranged between the fifth lens group G5 and the image sensor 100 according to the configuration on the camera side where the lens is mounted. For example, a flat optical member such as a cover glass for protecting the imaging surface or an infrared cut filter may be disposed.

この変倍光学系は、第1レンズ群G1および第3レンズ群G3が変倍および合焦の際に常時固定であり、変倍時に第2レンズ群G2、第4レンズ群G4および第5レンズ群G5が光軸Z1上で移動するようになっている。また、第4レンズ群G4は合焦機能を有しており、変倍時のほか、合焦時にも第4レンズ群G4が光軸Z1上で移動するようになっている。この変倍光学系は、広角端から望遠端へと変倍させるに従い、各移動群は、図1(A)の状態から図1(B)の状態へと、図に実線で示した軌跡を描くように移動する。この場合において、第2レンズ群G2および第5レンズ群G5は、光軸Z1上で互いに異なる移動方向で、かつ、共に線形直線運動をするように移動する。第4レンズ群G4は、非線形運動をするように移動する。第2レンズ群G2および第5レンズ群G5が主に変倍作用を担い、第4レンズ群G4は変倍に伴う像面変動の補正作用を担っている。   This zoom optical system is always fixed when the first lens group G1 and the third lens group G3 are zoomed and focused, and the second lens group G2, the fourth lens group G4, and the fifth lens are fixed at the time of zooming. The group G5 moves on the optical axis Z1. The fourth lens group G4 has a focusing function, and the fourth lens group G4 moves on the optical axis Z1 not only at the time of zooming but also at the time of focusing. As this zooming optical system zooms from the wide-angle end to the telephoto end, each moving group moves from the state shown in FIG. 1A to the state shown in FIG. Move like drawing. In this case, the second lens group G2 and the fifth lens group G5 move on the optical axis Z1 in different moving directions and so as to perform linear linear motions together. The fourth lens group G4 moves so as to make a non-linear motion. The second lens group G2 and the fifth lens group G5 are mainly responsible for the zooming action, and the fourth lens group G4 is responsible for correcting the image plane variation accompanying the zooming.

第1レンズ群G1は、物体側より順に、負の屈折力を有する前群G1fと、光路を折り曲げる反射部材G1pと、正の屈折力を有する後群G1rとで構成されている。前群G1fは例えば、1枚の負レンズL11からなる。後群G1rは例えば、2つの正レンズL12,L13からなる。反射部材G1pは例えば、光路を略90°折り曲げる内部反射面を有する直角プリズムLPで構成されている。   The first lens group G1 includes, in order from the object side, a front group G1f having a negative refractive power, a reflecting member G1p that bends the optical path, and a rear group G1r having a positive refractive power. The front group G1f includes, for example, one negative lens L11. The rear group G1r includes, for example, two positive lenses L12 and L13. The reflecting member G1p is configured by, for example, a right-angle prism LP having an internal reflection surface that bends the optical path by approximately 90 °.

第2レンズ群G2は例えば、物体側から順に、1枚の負レンズL21と、負レンズL22および正レンズL23からなる接合レンズとで構成されている。第3レンズ群G3は例えば1枚の正レンズL31で構成されている。第4レンズ群G4は例えば、物体側から順に、2つのレンズL41,L42からなる接合レンズと物体側に凸面を向けた正レンズL43とで構成されている。第5レンズ群G5は例えば、1枚の負レンズL51で構成されている。   For example, the second lens group G2 includes, in order from the object side, a single negative lens L21 and a cemented lens including a negative lens L22 and a positive lens L23. The third lens group G3 is composed of, for example, one positive lens L31. For example, the fourth lens group G4 includes, in order from the object side, a cemented lens including two lenses L41 and L42 and a positive lens L43 having a convex surface facing the object side. For example, the fifth lens group G5 includes one negative lens L51.

この変倍光学系は、以下の条件式(1)を満足している。式中、f1fは第1レンズ群G1における前群G1fの焦点距離、f1rは第1レンズ群G1における後群G1rを示す。
−3.5<f1f/f1r<−1.8 ……(1)
This variable magnification optical system satisfies the following conditional expression (1 ) . In the formula, f1f represents the focal length of the front group G1f in the first lens group G1, and f1r represents the rear group G1r in the first lens group G1 .
−3.5 <f1f / f1r <−1.8 (1)

この変倍光学系は、以下の条件式(2)、(3)を満足することが好ましい。式中、fwは広角端での全系の焦点距離、f2は第2レンズ群G2の焦点距離、f1は第1レンズ群G1の焦点距離を示す。
0.5<|f2/fw|<0.8 ……(2)
0.4<fw/f1<0.8 ……(3)
This zoom optical system preferably satisfies the following conditional expressions (2) and (3). In the equation, fw is the focal length of the entire system at the wide-angle end, f2 is the focal length of the second lens group G2, and f1 is the focal length of the first lens group G1 .
0.5 <| f2 / fw | <0.8 (2)
0.4 <fw / f1 <0.8 (3)

図8は、この変倍光学系におけるレンズ移動機構の構成例を示している。なお、図8はこの変倍光学系を正面側(光の入射側)から見た構成を示している。このレンズ移動機構は、第2レンズ群G2および第5レンズ群G5を移動させる線形移動機構と、第4レンズ群G4を非線形移動させる非線形移動機構とを備えている。   FIG. 8 shows a configuration example of a lens moving mechanism in the variable magnification optical system. FIG. 8 shows a configuration of the variable magnification optical system as viewed from the front side (light incident side). This lens moving mechanism includes a linear moving mechanism that moves the second lens group G2 and the fifth lens group G5, and a non-linear moving mechanism that moves the fourth lens group G4 non-linearly.

非線形移動機構は、単一のモータM2と、モータM2に接続されたシャフト20と、シャフト20に螺合された伝達ブロック21とを有している。シャフト20には、雄ネジが形成されており、モータM2の回転に伴いシャフト20が自転すれば、シャフト20に螺合された伝達ブロック21が直線移動するようになっている。図示しないレンズ駆動制御部は、このモータM2の回転量等を制御することにより、第4レンズ群G4を非線形移動させている。   The nonlinear moving mechanism includes a single motor M2, a shaft 20 connected to the motor M2, and a transmission block 21 screwed to the shaft 20. The shaft 20 is formed with a male screw. When the shaft 20 rotates with the rotation of the motor M2, the transmission block 21 screwed into the shaft 20 moves linearly. A lens drive control unit (not shown) nonlinearly moves the fourth lens group G4 by controlling the amount of rotation of the motor M2.

線形移動機構は、単一のモータM1と、これに接続されるシャフト10と、シャフト10に螺合された2つの伝達ブロック11,12とを有している。モータM1は、図示しないレンズ駆動制御部からの指示に応じて駆動し、その回転力をシャフト10に供給する。シャフト10は、直角プリズムLPによる反射後の光軸と平行に配置されており、第2レンズ群G2の移動範囲に相当する部分に第1雄ネジ10Aが、第5レンズ群G5の移動範囲に相当する部分に第2雄ネジ10Bが形成されている。   The linear movement mechanism includes a single motor M1, a shaft 10 connected to the motor M1, and two transmission blocks 11 and 12 screwed to the shaft 10. The motor M1 is driven in accordance with an instruction from a lens drive control unit (not shown) and supplies the rotational force to the shaft 10. The shaft 10 is arranged in parallel with the optical axis after being reflected by the right-angle prism LP, and a first male screw 10A is provided in the moving range of the fifth lens group G5 in a portion corresponding to the moving range of the second lens group G2. A second male screw 10B is formed in the corresponding part.

第1雄ネジ10Aと第2雄ネジ10Bは、そのネジ巻方向が反対方向となっている。つまり、第1雄ネジ10Aが右ネジであれば、第2雄ネジ10Bは左ネジとなる。また、第1雄ネジ10Aと第2雄ネジ10Bは、そのリード量も異なっている。したがって、シャフト10を一回転させた際の、第1雄ネジ10Aの進み量と第2雄ネジ10Bの進み量が異なる。この第1雄ネジ10Aには第1伝達ブロック11が、第2雄ネジ10Bには第2伝達ブロック12が、それぞれ螺合されている。そして、第1伝達ブロック11は第2レンズ群G2に、第2伝達ブロック12は第5レンズ群G5にそれぞれ物理的に接続されている。その結果、モータM1の駆動により、シャフト10が自転すれば、第1伝達ブロック11および第2伝達ブロック12がそれぞれ直線駆動する。このとき、第1雄ネジ10Aおよび第2雄ネジ10Bは、そのネジ巻方向が反対であるため、これらに螺合されている第1伝達ブロック11および第2伝達ブロック12は、互いに反対方向に移動する。そして、この第1伝達ブロック11および第2伝達ブロック12に物理的に接続されている第2レンズ群G2および第5レンズ群G5も互いに反対方向に移動する。また、第1雄ネジ10Aおよび第2雄ネジ10Bは、リード量も互いに異なるため、第1伝達ブロック11および第2伝達ブロック12の移動量も互いに異なり、結果として、第2レンズ群G2および第5レンズ群G5の移動量も異なってくる。その結果、単一のモータM1を駆動するだけで、第2レンズ群G2および第5レンズ群G5を所望の方向に、所望の移動量で線形直線運動させることができる。   The first male screw 10A and the second male screw 10B have opposite winding directions. That is, if the first male screw 10A is a right screw, the second male screw 10B is a left screw. Further, the lead amounts of the first male screw 10A and the second male screw 10B are also different. Therefore, the amount of advancement of the first male screw 10A and the amount of advancement of the second male screw 10B differ when the shaft 10 is rotated once. The first transmission block 11 is screwed to the first male screw 10A, and the second transmission block 12 is screwed to the second male screw 10B. The first transmission block 11 is physically connected to the second lens group G2, and the second transmission block 12 is physically connected to the fifth lens group G5. As a result, when the shaft 10 rotates by driving the motor M1, the first transmission block 11 and the second transmission block 12 are linearly driven. At this time, the first male screw 10A and the second male screw 10B are opposite in the winding direction, so that the first transmission block 11 and the second transmission block 12 screwed together are in opposite directions. Moving. The second lens group G2 and the fifth lens group G5 that are physically connected to the first transmission block 11 and the second transmission block 12 also move in directions opposite to each other. Further, since the first male screw 10A and the second male screw 10B have different lead amounts, the movement amounts of the first transmission block 11 and the second transmission block 12 are also different from each other. As a result, the second lens group G2 and the second male screw 10B The amount of movement of the five lens group G5 is also different. As a result, the second lens group G2 and the fifth lens group G5 can be linearly moved in a desired direction with a desired amount of movement only by driving a single motor M1.

このレンズ移動機構では、変倍時における、第2レンズ群G2および第5レンズ群G5の焦点距離変更動作と、第4レンズ群G4の像面位置補正動作とを分離している。これにより、第2レンズ群G2および第5レンズ群G5の移動機構を簡略化でき、その結果、コスト削減や省スペース化を図ることができる。なお、図8の線形移動機構は一例であり、第2レンズ群G2および第5レンズ群G5を線形移動させることができるのであれば、他の形態でも良い。例えば、上述の例では、シャフト10と伝達ブロック11,12とを有する伝達機構を用いているが、単一のモータM1からの駆動力を、移動方向および移動量が異なる直線運動として2つのレンズ群G2,G5に同時に伝達でき得る構成であれば、他の伝達機構を用いても良い。例えば、ピッチが互いに異なり、共にモータの回転軸に接続された2種類のピニオンと、その2種類のピニオンに係合する2種類のラックとを有する伝達機構などでも良い。   In this lens moving mechanism, the focal length changing operation of the second lens group G2 and the fifth lens group G5 and the image plane position correcting operation of the fourth lens group G4 at the time of zooming are separated. Thereby, the moving mechanism of the 2nd lens group G2 and the 5th lens group G5 can be simplified, As a result, cost reduction and space saving can be achieved. The linear movement mechanism in FIG. 8 is an example, and other forms may be used as long as the second lens group G2 and the fifth lens group G5 can be linearly moved. For example, in the above-described example, a transmission mechanism having the shaft 10 and the transmission blocks 11 and 12 is used, but the two driving lenses are driven by a single motor M1 as linear motions having different movement directions and movement amounts. Other transmission mechanisms may be used as long as they can transmit to the groups G2 and G5 at the same time. For example, a transmission mechanism having two types of pinions having different pitches and both connected to the rotating shaft of the motor and two types of racks engaged with the two types of pinions may be used.

次に、以上のように構成された変倍光学系の作用および効果を説明する。
この変倍光学系では、全体として5群構成で、変倍時に第2レンズ群G2、第4レンズ群G4および第5レンズ群G5を移動させる方式とすることで、高変倍比化に有利な構成とし、第1レンズ群G1および第2レンズ群G2の焦点距離に関して適切な条件式(),(2)を満たしていることで、良好な光学性能を維持しつつ、レンズ全長を短くして小型化が容易となる。
Next, operations and effects of the variable magnification optical system configured as described above will be described.
This zoom optical system has a five-group configuration as a whole, and is advantageous in increasing the zoom ratio by moving the second lens group G2, the fourth lens group G4, and the fifth lens group G5 during zooming. By satisfying the appropriate conditional expressions ( 3 ) and (2) regarding the focal lengths of the first lens group G1 and the second lens group G2, the total lens length is shortened while maintaining good optical performance. Thus, downsizing becomes easy.

条件式()は、第1レンズ群G1の焦点距離f1に関する式で、この式を満足することで、光学系を小型化でき、変倍全域での収差を良好に補正することができる。条件式()の下限を下回ると第1レンズ群G1の屈折力が小さくなるため、レンズ全長が長くなり、また反射部材G1pを含めた第1レンズ群G1の外径も拡大されるため、光学系の小型化を達成することができない。上限を上回ると第1レンズ群G1の屈折力が強くなるため、光学系の小型化には有利であるが、第1レンズ群G1にて発生する収差が増大されるため、変倍全域にて良好に収差を補正することが困難となる。
Conditional expression ( 3 ) is an expression relating to the focal length f1 of the first lens group G1, and by satisfying this expression, the optical system can be miniaturized and aberrations in the entire zooming range can be corrected well. If the lower limit of conditional expression ( 3 ) is not reached, the refractive power of the first lens group G1 becomes small, so that the total lens length becomes long, and the outer diameter of the first lens group G1 including the reflecting member G1p is also enlarged. Miniaturization of the optical system cannot be achieved. If the value exceeds the upper limit, the refractive power of the first lens group G1 becomes strong, which is advantageous for downsizing the optical system. However, since the aberration generated in the first lens group G1 is increased, the entire zooming range is increased. It becomes difficult to correct aberrations satisfactorily.

条件式(2)は、第2レンズ群G2の焦点距離f2に関する式で、この式を満足することで、光学系を小型化でき、変倍全域での収差を良好に補正することができる。条件式(2)の下限を下回ると第2レンズ群G2の屈折力が大きくなり、小型化には有利であるが、第2レンズ群G2で発生する収差が増大し、変倍全域での収差を良好に補正することが困難である。上限を上回ると第2レンズ群G2の屈折力が小さくなり、第2レンズ群G2で発生する収差が縮小するが、レンズの全長が長くなり小型化を達成することができない。   Conditional expression (2) is an expression relating to the focal length f2 of the second lens group G2. By satisfying this expression, the optical system can be miniaturized and aberrations in the entire zooming range can be corrected well. If the lower limit of conditional expression (2) is not reached, the refractive power of the second lens group G2 increases, which is advantageous for downsizing, but the aberration generated in the second lens group G2 increases, and aberrations in the entire zoom range. Is difficult to correct well. If the upper limit is exceeded, the refractive power of the second lens group G2 will be reduced and the aberration generated in the second lens group G2 will be reduced, but the overall length of the lens will be increased and miniaturization cannot be achieved.

この変倍光学系では、第1レンズ群G1に入射した物体光が、直角プリズムLPの内部反射面によって第2レンズ群G2側に略90°折り曲げられ、第1レンズ群G1の入射面に対し直交するように配置された撮像素子100上に結像する。このような屈曲光学系の構成とされていることで、良好な光学性能を維持しつつ、光学系の厚さ方向の長さを抑えることができ、撮像装置に組み込んだときの薄型化を達成することが可能になる。このような屈曲光学系の構成において、第1レンズ群G1を物体側より順に、負の屈折力を有する前群G1fと光路を折り曲げる反射部材G1pと正の屈折力を有する後群G1rとで構成し、反射部材G1pの前に負の屈折力を有する前群G1fを配置することで、反射部材G1pの小型化を達成することができ、光学系の薄型化を達成することができる。   In this variable magnification optical system, the object light incident on the first lens group G1 is bent by approximately 90 ° toward the second lens group G2 by the internal reflection surface of the right-angle prism LP, and is incident on the incident surface of the first lens group G1. An image is formed on the image sensor 100 arranged to be orthogonal. By adopting such a bending optical system configuration, it is possible to suppress the length of the optical system in the thickness direction while maintaining good optical performance, and achieve thinning when incorporated in an imaging device. It becomes possible to do. In such a bending optical system, the first lens group G1 is composed of, in order from the object side, a front group G1f having a negative refractive power, a reflecting member G1p that bends the optical path, and a rear group G1r having a positive refractive power. By disposing the front group G1f having negative refractive power in front of the reflecting member G1p, the reflecting member G1p can be reduced in size and the optical system can be reduced in thickness.

条件式()は、第1レンズ群G1内の負の屈折力を有する前群G1fと正の屈折力を有する後群G1rとの焦点距離f1f,f1rに関する式で、この式を満足することで、反射部材G1pを含めた第1レンズ群G1の外径の小型化とレンズ全長の短縮化を達成することができる。条件式()の下限を下回ると第1レンズ群G1内の前群G1fの屈折力が小さくなるため、反射部材G1pを通過する光束径が大きくなるため、反射部材G1pを含めた第1レンズ群G1の外径が大きくなってしまう。上限を上回ると第1レンズ群G1内の後群G1rの屈折力が小さくなるため、レンズ全長が長くなってしまう。 Conditional expression ( 1 ) is an expression relating to the focal lengths f1f and f1r between the front group G1f having negative refractive power and the rear group G1r having positive refractive power in the first lens group G1, and satisfies this expression. Thus, it is possible to reduce the outer diameter of the first lens group G1 including the reflecting member G1p and shorten the overall lens length. If the lower limit of conditional expression ( 1 ) is not reached, the refractive power of the front group G1f in the first lens group G1 decreases, and the diameter of the light beam passing through the reflecting member G1p increases, so the first lens including the reflecting member G1p. The outer diameter of group G1 will become large. If the upper limit is exceeded, the refractive power of the rear group G1r in the first lens group G1 becomes small, and the total lens length becomes long.

さらに、この変倍光学系では、変倍時に第2レンズ群G2、および第5レンズ群G5を移動させる際、異なる移動方向で、ともに線形直線運動とすることで、第2レンズ群G2、および第5レンズ群G5を移動させる際、図8に示したように単一のモータM1で移動させることができる。これにより、本来移動レンズ群ごとに必要であるモータの個数削減化と移動制御の簡略化を達成することで、機構を含めた撮影装置の小型化と低廉化を達成することができる。また、第4レンズ群G4を合焦時に移動させることで、合焦時にも射出瞳距離の変動が少なく、シェーディングの変化を少なくすることができる。さらに、合焦時に、最も像面に近い第5レンズ群G5を移動させる方式と比べて、第5レンズ群G5のレンズ表面に付着するゴミやキズが、画質に影響を与えることも少なくなる。   Furthermore, in this zoom optical system, when the second lens group G2 and the fifth lens group G5 are moved during zooming, both the second lens group G2 and the second lens group G2, When the fifth lens group G5 is moved, it can be moved by a single motor M1 as shown in FIG. As a result, the reduction in the number of motors originally required for each moving lens group and the simplification of the movement control can be achieved, whereby the downsizing and cost reduction of the photographing apparatus including the mechanism can be achieved. Further, by moving the fourth lens group G4 at the time of focusing, the variation of the exit pupil distance is small even at the time of focusing, and the change in shading can be reduced. Furthermore, dust and scratches attached to the lens surface of the fifth lens group G5 are less likely to affect the image quality as compared with the method of moving the fifth lens group G5 closest to the image plane during focusing.

また、この変倍光学系において、第1ないし第5レンズ群G1〜G5のそれぞれのレンズ群中に、少なくとも1枚のプラスチックレンズが含まれていても良い。これにより、光学系の軽量化と低廉化が図れる。この場合、第1レンズ群G1における後群G1r中の少なくとも1枚の正レンズにプラスチックレンズを用い、第2レンズ群G2中の少なくとも1枚の負レンズにプラスチックレンズを用いることが好ましい。プラスチックレンズは温度変化時の屈折率変化と膨張率がガラスレンズより大きく、そのためプラスチックレンズを多用すると、温度変化時の焦点移動が増大するが、第1レンズ群G1における後群G1r中の少なくとも1枚の正レンズにプラスチックレンズを用い、第2レンズ群G2中の少なくとも1枚の負レンズにプラスチックレンズを用いることで、温度変化時の焦点移動を低減することができる。   In the zoom optical system, at least one plastic lens may be included in each of the first to fifth lens groups G1 to G5. As a result, the weight and cost of the optical system can be reduced. In this case, it is preferable that a plastic lens is used for at least one positive lens in the rear group G1r in the first lens group G1, and a plastic lens is used for at least one negative lens in the second lens group G2. The plastic lens has a larger refractive index change and expansion coefficient than the glass lens when the temperature changes. Therefore, if a lot of plastic lenses are used, the focal point shift when the temperature changes increases, but at least one of the rear group G1r in the first lens group G1. By using a plastic lens as one positive lens and using a plastic lens as at least one negative lens in the second lens group G2, it is possible to reduce the focal shift when the temperature changes.

以上説明したように、本実施の形態に係る変倍光学系によれば、良好な光学性能を維持しつつ、レンズ全長を短くし、小型化された光学系を達成できる。また、本実施の形態に係る撮像装置によれば、本実施の形態に係る高性能の変倍光学系によって形成された光学像に応じた撮像信号を出力するようにしたので、高解像の撮像信号を得ることができる。   As described above, according to the variable magnification optical system according to the present embodiment, it is possible to achieve a miniaturized optical system by shortening the entire lens length while maintaining good optical performance. In addition, according to the imaging apparatus according to the present embodiment, since an imaging signal corresponding to the optical image formed by the high-performance variable magnification optical system according to the present embodiment is output, high resolution is achieved. An imaging signal can be obtained.

次に、本実施の形態に係る変倍光学系の具体的な数値実施例について説明する。以下では、第1ないし第7の数値実施例をまとめて説明する。   Next, specific numerical examples of the variable magnification optical system according to the present embodiment will be described. Hereinafter, the first to seventh numerical examples will be described together.

図9(A),(B)および図10は、図1(A),(B)に示した変倍光学系の構成に対応する具体的なレンズデータを示している。特に図9(A)にはその基本的なレンズデータを示し、図9(B)および図10にはその他のデータを示す。図9(A)に示したレンズデータにおける面番号Siの欄には、実施例1に係る変倍光学系について、最も物体側の構成要素の面を1番目として、像側に向かうに従い順次増加するようにして符号を付したi番目(i=1〜25)の面の番号を示している。曲率半径Riの欄には、図1において付した符号Riに対応させて、物体側からi番目の面の曲率半径の値(mm)を示す。面間隔Diの欄についても、同様に物体側からi番目の面Siとi+1番目の面Si+1との光軸上の間隔(mm)を示す。Ndiの欄には、物体側からi番目の面Siとi+1番目の面Si+1との間におけるd線(587.6nm)に対する屈折率の値を示す。νdjの欄には、物体側からj番目の光学要素のd線に対するアッベ数の値を示す。図8(A)にはまた、諸データとして、広角端および望遠端における全系の近軸焦点距離f(mm)、Fナンバー(FNO.)、および画角2ω(ω:半画角)の値についても示す。   FIGS. 9A, 9B and 10 show specific lens data corresponding to the configuration of the variable magnification optical system shown in FIGS. 1A and 1B. In particular, FIG. 9A shows the basic lens data, and FIGS. 9B and 10 show other data. In the field of the surface number Si in the lens data shown in FIG. 9A, in the variable magnification optical system according to Example 1, the surface of the component closest to the object side is the first, and sequentially increases toward the image side. The number of the i-th surface (i = 1 to 25) with the reference numerals attached is shown. In the column of the curvature radius Ri, the value (mm) of the curvature radius of the i-th surface from the object side is shown in correspondence with the reference symbol Ri in FIG. Similarly, the column of the surface interval Di indicates the interval (mm) on the optical axis between the i-th surface Si and the i + 1-th surface Si + 1 from the object side. The column of Ndi shows the value of the refractive index for the d-line (587.6 nm) between the i-th surface Si and the i + 1-th surface Si + 1 from the object side. The column of νdj shows the Abbe number value for the d-line of the j-th optical element from the object side. FIG. 8A also shows various data of the paraxial focal length f (mm), F number (FNO.), And field angle 2ω (ω: half field angle) of the entire system at the wide angle end and the telephoto end. The values are also shown.

実施例1に係る変倍光学系は、変倍に伴って第2レンズ群G2、第4レンズ群G4、および第5レンズ群G5が光軸上を移動するため、これらの各群の前後の面間隔D8,D13,D16,D21,D23の値は可変となっている。図9(B)には、これらの面間隔D8,D13,D16,D21,D23の変倍時のデータとして、広角端および望遠端における値を示す。   In the variable magnification optical system according to Example 1, the second lens group G2, the fourth lens group G4, and the fifth lens group G5 move on the optical axis as the magnification changes. The values of the surface intervals D8, D13, D16, D21, and D23 are variable. FIG. 9B shows values at the wide-angle end and the telephoto end as data at the time of zooming of these surface intervals D8, D13, D16, D21, and D23.

図9(A)のレンズデータにおいて、面番号の左側に付された記号「*」は、そのレンズ面が非球面形状であることを示す。実施例1に係る変倍光学系は、第1レンズ群G1内のレンズL13の両面S7,S8と、第3レンズ群G3のレンズL31の両面S14,S15と第4レンズ群G4内のレンズL43の両面S20,S21とがすべて非球面形状となっている。図9(A)の基本レンズデータには、これらの非球面の曲率半径として、光軸近傍の曲率半径の数値を示している。   In the lens data of FIG. 9A, the symbol “*” attached to the left side of the surface number indicates that the lens surface has an aspherical shape. The variable magnification optical system according to Example 1 includes both surfaces S7 and S8 of the lens L13 in the first lens group G1, both surfaces S14 and S15 of the lens L31 in the third lens group G3, and a lens L43 in the fourth lens group G4. Both surfaces S20 and S21 are aspherical. The basic lens data in FIG. 9A shows the numerical values of the curvature radii near the optical axis as the curvature radii of these aspheric surfaces.

図10には実施例1に係る変倍光学系における非球面データを示す。非球面データとして示した数値において、記号“E”は、その次に続く数値が10を底とした“べき指数”であることを示し、その10を底とした指数関数で表される数値が“E”の前の数値に乗算されることを示す。例えば、「1.0E−02」であれば、「1.0×10-2」であることを示す。 FIG. 10 shows aspherical data in the variable magnification optical system according to the first example. In the numerical values shown as aspherical data, the symbol “E” indicates that the subsequent numerical value is a “power exponent” with a base of 10, and the numerical value represented by an exponential function with the base of 10 is Indicates that the value before “E” is multiplied. For example, “1.0E-02” indicates “1.0 × 10 −2 ”.

実施例1に係る変倍光学系の非球面データとしては、以下の式(A)によって表される非球面形状の式における各係数An,Kの値を記す。Zは、より詳しくは、光軸から高さYの位置にある非球面上の点から、非球面の頂点の接平面(光軸に垂直な平面)に下ろした垂線の長さ(mm)を示す。
実施例1に係る変倍光学系は、非球面係数AnとしてA3〜A20までの次数を適宜有効に用いて表されている。
Z=C・Y2/{1+(1−K・C2・Y21/2}+ΣAn・Yn ……(A)
(n=3以上の整数)
ただし、
Z:非球面の深さ(mm)
Y:光軸からレンズ面までの距離(高さ)(mm)
K:離心率
C:近軸曲率=1/R
(R:近軸曲率半径)
n:第n次の非球面係数
As the aspherical data of the variable magnification optical system according to Example 1, the values of the coefficients An and K in the aspherical shape expression represented by the following expression (A) are described. More specifically, Z is the length (mm) of a perpendicular line drawn from a point on the aspheric surface at a height Y from the optical axis to the tangential plane (plane perpendicular to the optical axis) of the apex of the aspheric surface. Show.
Example variable magnification optical system according to 1 are represented appropriately effectively using order of up to A 3 to A 20 as aspherical coefficients A n.
Z = C · Y 2 / {1+ (1−K · C 2 · Y 2 ) 1/2 } + ΣA n · Y n (A)
(N = an integer greater than 3)
However,
Z: Depth of aspheric surface (mm)
Y: Distance from the optical axis to the lens surface (height) (mm)
K: eccentricity C: paraxial curvature = 1 / R
(R: paraxial radius of curvature)
A n : nth-order aspheric coefficient

以上の実施例1に係る変倍光学系と同様にして、図2(A),(B)に示した変倍光学系の構成に対応する具体的なレンズデータを実施例2として、図11(A)、図11(B)および図12に示す。また同様にして、図3(A),(B)に示した変倍光学系の構成に対応する具体的なレンズデータを実施例3として、図13(A)、図13(B)および図14に示す。また同様にして、図4(A),(B)に示した変倍光学系の構成に対応する具体的なレンズデータを実施例4として、図15(A)、図15(B)および図16に示す。また同様にして、図5(A),(B)に示した変倍光学系の構成に対応する具体的なレンズデータを実施例5として、図17(A)、図17(B)および図18に示す。また同様にして、図6(A),(B)に示した変倍光学系の構成に対応する具体的なレンズデータを実施例6として、図19(A)、図19(B)および図20に示す。また同様にして、図7(A),(B)に示した変倍光学系の構成に対応する具体的なレンズデータを実施例7として、図21(A)、図21(B)および図22に示す。   In the same manner as the variable magnification optical system according to the first embodiment, specific lens data corresponding to the configuration of the variable magnification optical system shown in FIGS. (A), FIG. 11 (B) and FIG. Similarly, specific lens data corresponding to the configuration of the variable magnification optical system shown in FIGS. 3A and 3B is set as Example 3, and FIGS. 13A, 13B, and FIG. 14 shows. Similarly, specific lens data corresponding to the configuration of the variable magnification optical system shown in FIGS. 4A and 4B is taken as Example 4, and FIGS. 15A, 15B, and FIG. 16 shows. Similarly, specific lens data corresponding to the configuration of the variable magnification optical system shown in FIGS. 5A and 5B is taken as Example 5, and FIGS. 17A, 17B, and FIG. 18 shows. Similarly, specific lens data corresponding to the configuration of the variable magnification optical system shown in FIGS. 6A and 6B is taken as Example 6, and FIGS. 19A, 19B, and FIG. 20 shows. Similarly, specific lens data corresponding to the configuration of the variable magnification optical system shown in FIGS. 7A and 7B is taken as Example 7, and FIGS. 21A, 21B, and FIG. 22 shows.

なお、実施例2ないし6のいずれの変倍光学系についても、実施例1に係る変倍光学系と同様、第1レンズ群G1内のレンズL13の両面S7,S8と、第3レンズ群G3のレンズL31の両面S14,S15と第4レンズ群G4内のレンズL43の両面S20,S21とがすべて非球面形状となっている。   In any of the variable magnification optical systems of Examples 2 to 6, similarly to the variable magnification optical system according to Example 1, both surfaces S7 and S8 of the lens L13 in the first lens group G1 and the third lens group G3 are used. Both surfaces S14 and S15 of the lens L31 and both surfaces S20 and S21 of the lens L43 in the fourth lens group G4 are aspherical.

実施例7の変倍光学系についても、実施例1に係る変倍光学系と同様、第1レンズ群G1内のレンズL13の両面S7,S8と、第3レンズ群G3のレンズL31の両面S14,S15と第4レンズ群G4内のレンズL43の両面S20,S21とがすべて非球面形状となっている。さらに、実施例7の変倍光学系においては、それらに加え、第2レンズ群G2内のレンズL21の両面S9,S10が非球面形状となっている。また、実施例7の変倍光学系では、第1ないし第5レンズ群G1〜G5のそれぞれのレンズ群中に、1枚のプラスチックレンズが含まれている。具体的には、第1レンズ群G1の後群G1r中の正レンズL13と、第2レンズ群G2中の負レンズL21と、第3レンズ群G3中の正レンズL31と、第4レンズ群G4中の正レンズL43と、第5レンズ群G5中の負レンズL51とにプラスチックレンズが用いられている。   Similarly to the variable magnification optical system according to Example 1, the variable magnification optical system according to Example 7 includes both surfaces S7 and S8 of the lens L13 in the first lens group G1, and both surfaces S14 of the lens L31 in the third lens group G3. , S15 and both surfaces S20, S21 of the lens L43 in the fourth lens group G4 are all aspherical. Furthermore, in the variable magnification optical system of Example 7, both surfaces S9 and S10 of the lens L21 in the second lens group G2 are aspherical in addition to them. In the variable magnification optical system of Example 7, one plastic lens is included in each of the first to fifth lens groups G1 to G5. Specifically, the positive lens L13 in the rear group G1r of the first lens group G1, the negative lens L21 in the second lens group G2, the positive lens L31 in the third lens group G3, and the fourth lens group G4. Plastic lenses are used for the positive lens L43 in the middle and the negative lens L51 in the fifth lens group G5.

図23には、上述の各条件式に関する値を、各実施例についてまとめたものを示す。図23から分かるように、各実施例の値が、各条件式の数値範囲内となっている。   FIG. 23 shows a summary of values relating to the above-described conditional expressions for the respective examples. As can be seen from FIG. 23, the value of each example is within the numerical range of each conditional expression.

図24(A)〜図24(D)はそれぞれ、実施例1に係る変倍光学系における広角端での球面収差、非点収差、ディストーション(歪曲収差)、および倍率色収差を示している。図25(A)〜図25(D)は、望遠端における同様の各収差を示している。各収差図には、d線(587.6nm)を基準波長とした収差を示す。球面収差図および倍率色収差図には、波長460nm,615nmについての収差も示す。非点収差図において、実線はサジタル方向、破線はタンジェンシャル方向の収差を示す。FNO.はF値、ωは半画角を示す。   24A to 24D show spherical aberration, astigmatism, distortion (distortion aberration), and lateral chromatic aberration at the wide angle end in the variable magnification optical system according to Example 1, respectively. FIGS. 25A to 25D show similar aberrations at the telephoto end. Each aberration diagram shows an aberration with the d-line (587.6 nm) as a reference wavelength. The spherical aberration diagram and the lateral chromatic aberration diagram also show aberrations at wavelengths of 460 nm and 615 nm. In the astigmatism diagram, the solid line indicates the sagittal direction and the broken line indicates the tangential direction. FNO. Indicates an F value, and ω indicates a half angle of view.

同様に、実施例2に係る変倍光学系についての諸収差を図26(A)〜図26(D)(広角端)、および図27(A)〜図27(D)(望遠端)に示す。同様にして、実施例3に係る変倍光学系についての諸収差を図28(A)〜図28(D)(広角端)および図29(A)〜図29(D)(望遠端)に、実施例4に係る変倍光学系についての諸収差を図30(A)〜図30(D)(広角端)および図31(A)〜図31(D)(望遠端)に、実施例5に係る変倍光学系についての諸収差を図32(A)〜図32(D)(広角端)および図33(A)〜図33(D)(望遠端)に、実施例6に係る変倍光学系についての諸収差を図34(A)〜図34(D)(広角端)および図35(A)〜図35(D)(望遠端)に示す。また、実施例7に係る変倍光学系についての諸収差を図36(A)〜図36(D)(広角端)および図37(A)〜図37(D)(望遠端)に示す。   Similarly, various aberrations of the variable magnification optical system according to Example 2 are shown in FIGS. 26 (A) to 26 (D) (wide angle end) and FIGS. 27 (A) to 27 (D) (telephoto end). Show. Similarly, various aberrations of the variable magnification optical system according to Example 3 are shown in FIGS. 28A to 28D (wide-angle end) and FIGS. 29A to 29D (telephoto end). FIGS. 30A to 30D (wide angle end) and FIGS. 31A to 31D (telephoto end) are shown in FIG. FIG. 32A to FIG. 32D (wide angle end) and FIG. 33A to FIG. 33D (telephoto end) are shown in FIG. Various aberrations regarding the variable magnification optical system are shown in FIGS. 34 (A) to 34 (D) (wide-angle end) and FIGS. 35 (A) to 35 (D) (telephoto end). In addition, various aberrations of the variable magnification optical system according to Example 7 are shown in FIGS. 36A to 36D (wide-angle end) and FIGS. 37A to 37D (telephoto end).

以上の各数値データおよび各収差図から分かるように、各実施例について、諸収差が良好に補正され、良好な光学性能を維持しつつ、レンズ全長を短くし、小型化を達成して撮像装置に搭載して薄型化するのに適した変倍光学系が実現できている。   As can be seen from the above numerical data and aberration diagrams, for each example, the various aberrations are corrected well, while maintaining good optical performance, the entire lens length is shortened, and miniaturization is achieved. A variable magnification optical system suitable for being mounted and thinned is realized.

なお、本発明は、上記実施の形態および各実施例に限定されず種々の変形実施が可能である。例えば、各レンズ成分の曲率半径、面間隔および屈折率の値などは、上記各数値実施例で示した値に限定されず、他の値をとり得る。   In addition, this invention is not limited to the said embodiment and each Example, A various deformation | transformation implementation is possible. For example, the radius of curvature, the surface interval, and the refractive index of each lens component are not limited to the values shown in the above numerical examples, and may take other values.

本発明の一実施の形態に係る変倍光学系の第1の構成例を示すものであり、実施例1に対応するレンズ断面図である。1 is a lens cross-sectional view corresponding to Example 1, illustrating a first configuration example of a variable magnification optical system according to an embodiment of the present invention. FIG. 本発明の一実施の形態に係る変倍光学系の第2の構成例を示すものであり、実施例2に対応するレンズ断面図である。2 is a lens cross-sectional view corresponding to Example 2 and illustrating a second configuration example of a variable magnification optical system according to an embodiment of the present invention. FIG. 本発明の一実施の形態に係る変倍光学系の第3の構成例を示すものであり、実施例3に対応するレンズ断面図である。FIG. 6 is a lens cross-sectional view illustrating a third configuration example of a variable magnification optical system according to an embodiment of the present invention and corresponding to Example 3; 本発明の一実施の形態に係る変倍光学系の第4の構成例を示すものであり、実施例4に対応するレンズ断面図である。FIG. 9 is a lens cross-sectional view illustrating a fourth configuration example of a variable magnification optical system according to an embodiment of the present invention and corresponding to Example 4; 本発明の一実施の形態に係る変倍光学系の第5の構成例を示すものであり、実施例5に対応するレンズ断面図である。5 is a lens cross-sectional view corresponding to Example 5 and illustrating a fifth configuration example of a variable magnification optical system according to an embodiment of the present invention. FIG. 本発明の一実施の形態に係る変倍光学系の第6の構成例を示すものであり、実施例6に対応するレンズ断面図である。6 is a lens cross-sectional view illustrating a sixth configuration example of a variable magnification optical system according to an embodiment of the present invention and corresponding to Example 6. FIG. 本発明の一実施の形態に係る変倍光学系の第7の構成例を示すものであり、実施例7に対応するレンズ断面図である。7 is a lens cross-sectional view illustrating a seventh configuration example of a variable magnification optical system according to an embodiment of the present invention and corresponding to Example 7. FIG. 本発明の一実施の形態に係る変倍光学系におけるレンズ移動機構の例を示す断面図である。It is sectional drawing which shows the example of the lens moving mechanism in the variable magnification optical system which concerns on one embodiment of this invention. 実施例1に係る変倍光学系のレンズデータを示す図であり、(A)は基本的なレンズデータを示し、(B)は変倍に伴って移動する部分の面間隔のデータを示す。2A and 2B are diagrams illustrating lens data of a variable magnification optical system according to Example 1. FIG. 1A illustrates basic lens data, and FIG. 3B illustrates surface distance data of a portion that moves with zooming. 実施例1に係る変倍光学系の非球面に関するデータを示す図である。FIG. 4 is a diagram illustrating data relating to an aspherical surface of the variable magnification optical system according to Example 1. 実施例2に係る変倍光学系のレンズデータを示す図であり、(A)は基本的なレンズデータを示し、(B)は変倍に伴って移動する部分の面間隔のデータを示す。FIG. 6 is a diagram illustrating lens data of a variable magnification optical system according to Example 2, wherein (A) illustrates basic lens data, and (B) illustrates data of a surface interval of a portion that moves with zooming. 実施例2に係る変倍光学系の非球面に関するデータを示す図である。FIG. 6 is a diagram illustrating data relating to an aspherical surface of a variable magnification optical system according to Example 2. 実施例3に係る変倍光学系のレンズデータを示す図であり、(A)は基本的なレンズデータを示し、(B)は変倍に伴って移動する部分の面間隔のデータを示す。FIG. 6 is a diagram illustrating lens data of a variable magnification optical system according to Example 3, wherein (A) illustrates basic lens data, and (B) illustrates data of a surface interval of a portion that moves with zooming. 実施例3に係る変倍光学系の非球面に関するデータを示す図である。FIG. 6 is a diagram illustrating data relating to an aspherical surface of a variable magnification optical system according to Example 3. 実施例4に係る変倍光学系のレンズデータを示す図であり、(A)は基本的なレンズデータを示し、(B)は変倍に伴って移動する部分の面間隔のデータを示す。FIG. 10 is a diagram illustrating lens data of a variable magnification optical system according to Example 4, wherein (A) illustrates basic lens data, and (B) illustrates data of a surface interval of a portion that moves with zooming. 実施例4に係る変倍光学系の非球面に関するデータを示す図である。FIG. 10 is a diagram illustrating data relating to an aspherical surface of a variable magnification optical system according to Example 4. 実施例5に係る変倍光学系のレンズデータを示す図であり、(A)は基本的なレンズデータを示し、(B)は変倍に伴って移動する部分の面間隔のデータを示す。FIG. 10 is a diagram illustrating lens data of a variable magnification optical system according to Example 5, wherein (A) illustrates basic lens data, and (B) illustrates data of a surface interval of a portion that moves with zooming. 実施例5に係る変倍光学系の非球面に関するデータを示す図である。FIG. 10 is a diagram illustrating data relating to an aspherical surface of a variable magnification optical system according to Example 5. 実施例6に係る変倍光学系のレンズデータを示す図であり、(A)は基本的なレンズデータを示し、(B)は変倍に伴って移動する部分の面間隔のデータを示す。FIG. 10 is a diagram illustrating lens data of a variable magnification optical system according to Example 6, wherein (A) illustrates basic lens data, and (B) illustrates data of a surface interval of a portion that moves with zooming. 実施例6に係る変倍光学系の非球面に関するデータを示す図である。FIG. 10 is a diagram illustrating data relating to an aspherical surface of a variable magnification optical system according to Example 6. 実施例7に係る変倍光学系のレンズデータを示す図であり、(A)は基本的なレンズデータを示し、(B)は変倍に伴って移動する部分の面間隔のデータを示す。FIG. 10 is a diagram illustrating lens data of a variable magnification optical system according to Example 7, wherein (A) illustrates basic lens data, and (B) illustrates data of a surface interval of a portion that moves with zooming. 実施例7に係る変倍光学系の非球面に関するデータを示す図である。FIG. 10 is a diagram illustrating data relating to an aspherical surface of a variable magnification optical system according to Example 7. 条件式に関する値を各実施例についてまとめて示した図である。It is the figure which showed the value regarding a conditional expression collectively about each Example. 実施例1に係る変倍光学系の広角端における諸収差を示す収差図であり、(A)は球面収差、(B)は非点収差、(C)はディストーション、(D)は倍率色収差を示す。FIG. 4 is an aberration diagram showing various aberrations at the wide-angle end of the variable magnification optical system according to Example 1. (A) shows spherical aberration, (B) shows astigmatism, (C) shows distortion, and (D) shows chromatic aberration of magnification. Show. 実施例1に係る変倍光学系の望遠端における諸収差を示す収差図であり、(A)は球面収差、(B)は非点収差、(C)はディストーション、(D)は倍率色収差を示す。FIG. 4 is an aberration diagram showing various aberrations at the telephoto end of the variable magnification optical system according to Example 1. (A) shows spherical aberration, (B) shows astigmatism, (C) shows distortion, and (D) shows chromatic aberration of magnification. Show. 実施例2に係る変倍光学系の広角端における諸収差を示す収差図であり、(A)は球面収差、(B)は非点収差、(C)はディストーション、(D)は倍率色収差を示す。FIG. 6 is an aberration diagram showing various aberrations at the wide-angle end of the variable magnification optical system according to Example 2, wherein (A) shows spherical aberration, (B) shows astigmatism, (C) shows distortion, and (D) shows chromatic aberration of magnification. Show. 実施例2に係る変倍光学系の望遠端における諸収差を示す収差図であり、(A)は球面収差、(B)は非点収差、(C)はディストーション、(D)は倍率色収差を示す。FIG. 6 is an aberration diagram showing various aberrations at the telephoto end of the variable magnification optical system according to Example 2, wherein (A) shows spherical aberration, (B) shows astigmatism, (C) shows distortion, and (D) shows chromatic aberration of magnification. Show. 実施例3に係る変倍光学系の広角端における諸収差を示す収差図であり、(A)は球面収差、(B)は非点収差、(C)はディストーション、(D)は倍率色収差を示す。FIG. 6 is an aberration diagram showing various aberrations at the wide-angle end of the variable magnification optical system according to Example 3, wherein (A) shows spherical aberration, (B) shows astigmatism, (C) shows distortion, and (D) shows chromatic aberration of magnification. Show. 実施例3に係る変倍光学系の望遠端における諸収差を示す収差図であり、(A)は球面収差、(B)は非点収差、(C)はディストーション、(D)は倍率色収差を示す。FIG. 6 is an aberration diagram showing various aberrations at the telephoto end of the variable magnification optical system according to Example 3. (A) shows spherical aberration, (B) shows astigmatism, (C) shows distortion, and (D) shows chromatic aberration of magnification. Show. 実施例4に係る変倍光学系の広角端における諸収差を示す収差図であり、(A)は球面収差、(B)は非点収差、(C)はディストーション、(D)は倍率色収差を示す。FIG. 6 is an aberration diagram showing various aberrations at the wide-angle end of the variable magnification optical system according to Example 4, wherein (A) shows spherical aberration, (B) shows astigmatism, (C) shows distortion, and (D) shows chromatic aberration of magnification. Show. 実施例4に係る変倍光学系の望遠端における諸収差を示す収差図であり、(A)は球面収差、(B)は非点収差、(C)はディストーション、(D)は倍率色収差を示す。FIG. 10 is an aberration diagram showing various aberrations at the telephoto end of the variable magnification optical system according to Example 4, wherein (A) shows spherical aberration, (B) shows astigmatism, (C) shows distortion, and (D) shows chromatic aberration of magnification. Show. 実施例5に係る変倍光学系の広角端における諸収差を示す収差図であり、(A)は球面収差、(B)は非点収差、(C)はディストーション、(D)は倍率色収差を示す。FIG. 10 is an aberration diagram showing various aberrations at the wide-angle end of the variable magnification optical system according to Example 5, wherein (A) shows spherical aberration, (B) shows astigmatism, (C) shows distortion, and (D) shows chromatic aberration of magnification. Show. 実施例5に係る変倍光学系の望遠端における諸収差を示す収差図であり、(A)は球面収差、(B)は非点収差、(C)はディストーション、(D)は倍率色収差を示す。FIG. 10 is an aberration diagram showing various aberrations at the telephoto end of the variable magnification optical system according to Example 5, where (A) is spherical aberration, (B) is astigmatism, (C) is distortion, and (D) is chromatic aberration of magnification. Show. 実施例6に係る変倍光学系の広角端における諸収差を示す収差図であり、(A)は球面収差、(B)は非点収差、(C)はディストーション、(D)は倍率色収差を示す。FIG. 11 is an aberration diagram showing various aberrations at the wide-angle end of the variable magnification optical system according to Example 6, wherein (A) shows spherical aberration, (B) shows astigmatism, (C) shows distortion, and (D) shows chromatic aberration of magnification. Show. 実施例6に係る変倍光学系の望遠端における諸収差を示す収差図であり、(A)は球面収差、(B)は非点収差、(C)はディストーション、(D)は倍率色収差を示す。FIG. 10 is an aberration diagram showing various aberrations at the telephoto end of the variable magnification optical system according to Example 6, wherein (A) shows spherical aberration, (B) shows astigmatism, (C) shows distortion, and (D) shows chromatic aberration of magnification. Show. 実施例7に係る変倍光学系の広角端における諸収差を示す収差図であり、(A)は球面収差、(B)は非点収差、(C)はディストーション、(D)は倍率色収差を示す。FIG. 10 is an aberration diagram showing various aberrations at the wide-angle end of the variable magnification optical system according to Example 7, wherein (A) is spherical aberration, (B) is astigmatism, (C) is distortion, and (D) is chromatic aberration of magnification. Show. 実施例7に係る変倍光学系の望遠端における諸収差を示す収差図であり、(A)は球面収差、(B)は非点収差、(C)はディストーション、(D)は倍率色収差を示す。FIG. 10 is an aberration diagram showing various aberrations at the telephoto end of the variable magnification optical system according to Example 7, wherein (A) is spherical aberration, (B) is astigmatism, (C) is distortion, and (D) is chromatic aberration of magnification. Show.

符号の説明Explanation of symbols

GC…光学部材、G1…第1レンズ群、G2…第2レンズ群、G3…第3レンズ群、G4…第4レンズ群、G5…第5レンズ群、G1f…第1レンズ群内の前群、G1r…第1レンズ群内の後群、G1p…反射部材、LP…直角プリズム、St…絞り、Ri…物体側から第i番目のレンズ面の曲率半径、Di…物体側から第i番目と第i+1番目のレンズ面との面間隔、Z1…光軸、100…撮像素子。   GC ... optical member, G1 ... first lens group, G2 ... second lens group, G3 ... third lens group, G4 ... fourth lens group, G5 ... fifth lens group, G1f ... front group in the first lens group G1r: rear group in the first lens group, G1p: reflecting member, LP: right-angle prism, St ... diaphragm, Ri ... curvature radius of the i-th lens surface from the object side, Di: i-th from the object side Surface distance from the (i + 1) th lens surface, Z1... Optical axis, 100.

Claims (7)

物体側より順に、変倍および合焦の際に固定の正の屈折力の第1レンズ群と、変倍の際に移動する負の屈折力の第2レンズ群と、変倍および合焦の際に固定の正の屈折力の第3レンズ群と、変倍の際に移動すると共に合焦機能を有する正の屈折力の第4レンズ群と、変倍の際に移動する負の屈折力の第5レンズ群とからなり
前記第1レンズ群が、物体側より順に、負の屈折力を有する前群と、光路を折り曲げる反射部材と、正の屈折力を有する後群とで構成され、かつ以下の条件式を満足するように構成されている
ことを特徴とする変倍光学系。
−3.5<f1f/f1r<−1.8 ……(
ただし、
f1f:第1レンズ群における前群の焦点距離
f1r:第1レンズ群における後群の焦点距離
とする。
In order from the object side, a first lens unit having a fixed positive refractive power during zooming and focusing, a second lens unit having a negative refractive power moving during zooming, and zooming and focusing. A third lens group having a fixed positive refractive power, a fourth lens group having a positive refractive power that moves during zooming and has a focusing function, and a negative refractive power that moves during zooming It consists of a fifth lens group,
The first lens group includes, in order from the object side, a front group having negative refractive power, a reflecting member that bends the optical path, and a rear group having positive refractive power, and satisfies the following conditional expression: A variable magnification optical system characterized by being configured as follows.
−3.5 <f1f / f1r <−1.8 ( 1 )
However,
f1f: focal length of the front group in the first lens group f1r: focal length of the rear group in the first lens group.
さらに、以下の条件式を満足している
ことを特徴とする請求項に記載の変倍光学系。
0.5<|f2/fw|<0.8 ……(2)
ただし、
fw:広角端での全系の焦点距離
f2:第2レンズ群の焦点距離
とする。
The zoom lens system according to claim 1 , further satisfying the following conditional expression:
0.5 <| f2 / fw | <0.8 (2)
However,
fw: focal length of the entire system at the wide angle end f2: the focal length of the second lens group.
さらに、以下の条件式を満足しているFurthermore, the following conditional expression is satisfied
ことを特徴とする請求項1または2に記載の変倍光学系。The variable magnification optical system according to claim 1 or 2, wherein
0.4<fw/f1<0.8 ……(3)0.4 <fw / f1 <0.8 (3)
ただし、However,
fw:広角端での全系の焦点距離fw: focal length of the entire system at the wide-angle end
f1:第1レンズ群の焦点距離f1: Focal length of the first lens group
変倍時に、前記第2レンズ群および前記第5レンズ群が、光軸上で互いに異なる移動方向で、かつ、共に線形直線運動をするように移動すると共に、前記第4レンズ群が、非線形運動をするように移動する
ことを特徴とする請求項1ないしのいずれか1項に記載の変倍光学系。
At the time of zooming, the second lens group and the fifth lens group move in different movement directions on the optical axis and move linearly together, and the fourth lens group moves nonlinearly. The zoom lens system according to any one of claims 1 to 3 , wherein the zoom lens system moves so as to perform.
前記第1ないし第5レンズ群のそれぞれのレンズ群中に少なくとも1枚のプラスチックレンズを含む
ことを特徴とする請求項1ないしのいずれか1項に記載の変倍光学系。
The first to the variable-power optical system according to any one of claims 1 to 4, characterized in that it comprises at least one plastic lens in the fifth lens each lens group of the group.
前記第1レンズ群は、前記後群中に少なくとも1枚の正レンズを有し、
前記第2レンズ群は、少なくとも1枚の負レンズを有し、
前記第1レンズ群における前記後群中の少なくとも1枚の前記正レンズにプラスチックレンズが用いられると共に、前記第2レンズ群中の少なくとも1枚の前記負レンズにプラスチックレンズが用いられている
ことを特徴とする請求項ないしのいずれか1項に記載の変倍光学系。
The first lens group has at least one positive lens in the rear group,
The second lens group has at least one negative lens,
A plastic lens is used for at least one of the positive lenses in the rear group in the first lens group, and a plastic lens is used for at least one of the negative lenses in the second lens group. variable-power optical system according to any one of claims 1 to 5, characterized.
請求項1ないしのいずれか1項に記載の変倍光学系と、
前記変倍光学系によって形成された光学像に応じた撮像信号を出力する撮像素子と
を備えたことを特徴とする撮像装置。
A variable magnification optical system according to any one of claims 1 to 6 ,
An imaging device comprising: an imaging element that outputs an imaging signal corresponding to an optical image formed by the zoom optical system.
JP2007174314A 2007-03-28 2007-07-02 Magnification optical system and imaging device Expired - Fee Related JP5000403B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2007174314A JP5000403B2 (en) 2007-03-28 2007-07-02 Magnification optical system and imaging device
US12/051,672 US7630138B2 (en) 2007-03-28 2008-03-19 Variable-power optical system and imaging device
CN200810086255A CN100595623C (en) 2007-03-28 2008-03-24 Variable-power optical system and imaging device
EP08005695A EP1975668A3 (en) 2007-03-28 2008-03-26 Zoom lens
KR1020080028623A KR100975300B1 (en) 2007-03-28 2008-03-27 Variable-power optical system and imaging device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007084086 2007-03-28
JP2007084086 2007-03-28
JP2007174314A JP5000403B2 (en) 2007-03-28 2007-07-02 Magnification optical system and imaging device

Publications (2)

Publication Number Publication Date
JP2008268833A JP2008268833A (en) 2008-11-06
JP5000403B2 true JP5000403B2 (en) 2012-08-15

Family

ID=39995642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007174314A Expired - Fee Related JP5000403B2 (en) 2007-03-28 2007-07-02 Magnification optical system and imaging device

Country Status (3)

Country Link
JP (1) JP5000403B2 (en)
KR (1) KR100975300B1 (en)
CN (1) CN100595623C (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5126661B2 (en) * 2007-10-23 2013-01-23 株式会社ニコン Zoom lens and optical apparatus equipped with the same
US8405914B2 (en) * 2009-01-21 2013-03-26 Konica Minolta Opto, Inc. Zoom lens and image pickup apparatus
US8320051B2 (en) 2009-10-13 2012-11-27 Panasonic Corporation Zoom lens system, imaging device and camera
CN103250083B (en) 2010-12-07 2015-06-17 富士胶片株式会社 Zoom lens and imaging device
CN102253473B (en) * 2011-01-17 2012-07-18 深圳市保千里电子有限公司 Low-cost and high-resolution optical zoom lens
CN102914854A (en) * 2011-08-04 2013-02-06 苏州莱能士光电科技有限公司 Day/night high-resolution zoom lens with high zoom ratio
JP5811779B2 (en) * 2011-11-04 2015-11-11 株式会社ニコン Magnification optical system and optical equipment
US9857568B2 (en) 2013-07-04 2018-01-02 Corephotonics Ltd. Miniature telephoto lens assembly
CN103901587B (en) * 2014-04-15 2017-04-12 中山联合光电科技有限公司 Optical system structure
CN106154518B (en) * 2016-08-17 2018-08-21 福建福光股份有限公司 Big target surface high-resolution zoom digital camera lens
US11079575B2 (en) 2016-10-18 2021-08-03 Nikon Corporation Variable magnification optical system, optical device, and method for manufacturing variable magnification optical system
EP4235249A3 (en) * 2017-07-23 2023-12-06 Corephotonics Ltd. Compact folded lenses with large apertures
EP4066036A4 (en) 2020-12-01 2023-01-25 Corephotonics Ltd. Folded camera with continuously adaptive zoom factor
WO2023283810A1 (en) * 2021-07-14 2023-01-19 Huawei Technologies Co., Ltd. Low refractive power zoom lens and optical system thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3097150B2 (en) * 1991-03-08 2000-10-10 ミノルタ株式会社 Zoom lens
JP3196283B2 (en) * 1992-02-13 2001-08-06 ミノルタ株式会社 Zoom lens device
JPH08129202A (en) * 1994-10-31 1996-05-21 Canon Inc Variable power finder optical system
JP2005321545A (en) * 2004-05-07 2005-11-17 Sony Corp Imaging apparatus
JP2006098686A (en) * 2004-09-29 2006-04-13 Olympus Corp Zoom lens and electronic imaging apparatus using the same
JP2006209100A (en) * 2004-12-28 2006-08-10 Konica Minolta Opto Inc Zoom lens and imaging apparatus
JP4853764B2 (en) * 2005-09-29 2012-01-11 コニカミノルタオプト株式会社 Zoom lens
JP4888029B2 (en) * 2006-10-11 2012-02-29 株式会社ニコン Zoom lens, imaging device, zoom lens zooming method

Also Published As

Publication number Publication date
CN101276045A (en) 2008-10-01
JP2008268833A (en) 2008-11-06
KR20080088477A (en) 2008-10-02
KR100975300B1 (en) 2010-08-12
CN100595623C (en) 2010-03-24

Similar Documents

Publication Publication Date Title
JP5000403B2 (en) Magnification optical system and imaging device
JP4717480B2 (en) Zoom lens
US7630138B2 (en) Variable-power optical system and imaging device
JP4980772B2 (en) Zoom lens and imaging device
US8896938B2 (en) Catadioptric lens system and imaging apparatus
JP4929903B2 (en) Zoom lens, imaging device, zoom lens zooming method
JP5373515B2 (en) Zoom lens and imaging device
JP5275769B2 (en) Zoom lens and imaging device
JP5065150B2 (en) Zoom lens and imaging device
JP5939912B2 (en) Zoom lens and imaging apparatus having the same
JP2007279351A (en) Variable power optical system
JP2008052214A (en) Zoom lens
JP2006267677A (en) Zoom lens with image blur correcting function
JP2007256564A (en) Zoom lens
JP5042913B2 (en) Zoom lens and imaging device
JP5202076B2 (en) Zoom lens and imaging apparatus having the same
JP2011059494A (en) Zoom lens and imaging device
JP2007233045A (en) Zoom lens and imaging device
JP4984608B2 (en) Zoom lens and imaging apparatus
JP2005181774A (en) Zoom lens
JP5529475B2 (en) Zoom lens and imaging device
JP2011059497A (en) Zoom lens and imaging device
JP5185037B2 (en) Zoom lens and imaging device
JP4981568B2 (en) Zoom lens and imaging device
JP2006267676A (en) Variable power optical system with image blur correcting function

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100415

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120515

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120516

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150525

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees