JP4997395B2 - Hollow particles having unique shell and method for producing the same - Google Patents

Hollow particles having unique shell and method for producing the same Download PDF

Info

Publication number
JP4997395B2
JP4997395B2 JP2006051502A JP2006051502A JP4997395B2 JP 4997395 B2 JP4997395 B2 JP 4997395B2 JP 2006051502 A JP2006051502 A JP 2006051502A JP 2006051502 A JP2006051502 A JP 2006051502A JP 4997395 B2 JP4997395 B2 JP 4997395B2
Authority
JP
Japan
Prior art keywords
silica
shell
water
hollow
dissolved
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006051502A
Other languages
Japanese (ja)
Other versions
JP2007230794A (en
Inventor
正浩 藤原
佳子 中原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2006051502A priority Critical patent/JP4997395B2/en
Publication of JP2007230794A publication Critical patent/JP2007230794A/en
Application granted granted Critical
Publication of JP4997395B2 publication Critical patent/JP4997395B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacturing Of Micro-Capsules (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Silicon Compounds (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Description

本発明は、特異な構造を有する中空粒子およびその製造方法に関する。   The present invention relates to hollow particles having a unique structure and a method for producing the same.

材料内部に大きな中空部分を持つ球状粒子材料は、材料内部に空気を含め様々な化合物・材料等を内包できるため、応用の可能性の高い材料である。無機材料からなるマイクロカプセル材料として、例えば、シリカでできたマイクロカプセルの合成は、特許文献1や特許文献2で報告されている。また、炭酸塩のマイクロカプセルの製法も知られている(特許文献3,4等)。これらはW/O/Wエマルジョンを用いる界面反応法で合成される無機マイクロカプセルであるが、合成の際に自動的に中空構造を作るため、化合物内包化マイクロカプセルの合成においても特に優位性を持っている。これらのマイクロカプセルを溶液から合成する際に、水相に溶解しない種々の化合物をW/O/Wエマルジョンの内水相にあらかじめ添加しておけば、マイクロカプセル内にこれら粉体を直接封入することも可能である。マイクロカプセル内に化合物を内包させる方法としては、出来上がったマイクロカプセルの殻中に存在する細孔を通じて、化合物を充填する方法があるが、上述の方法では殻中の細孔よりも大きな粒子を封入することもできる。この方法で充填される粉体状物質としては、無機粉体(特許文献5)、着色料(特許文献6)、油滴(特許文献7)、固定化酒酵母(特許文献8)、固定化微生物(特許文献9)、脱臭剤(特許文献10、特許文献11)などがある。一方、W/O/Wエマルジョンの内水相に可溶な生体マクロ分子を添加しても、この生体マクロ分子がマイクロカプセル内に内包させることができることも報告された(特許文献12)。   A spherical particle material having a large hollow portion inside the material is a material with high possibility of application because it can contain various compounds and materials including air inside the material. As a microcapsule material made of an inorganic material, for example, synthesis of microcapsules made of silica has been reported in Patent Document 1 and Patent Document 2. In addition, a method for producing carbonate microcapsules is also known (Patent Documents 3, 4, etc.). These are inorganic microcapsules synthesized by an interfacial reaction method using a W / O / W emulsion, but since a hollow structure is automatically formed during the synthesis, it is particularly advantageous in the synthesis of compound-encapsulated microcapsules. have. When these microcapsules are synthesized from a solution, if various compounds that do not dissolve in the aqueous phase are added in advance to the inner aqueous phase of the W / O / W emulsion, these powders are directly encapsulated in the microcapsules. It is also possible. As a method of encapsulating the compound in the microcapsule, there is a method of filling the compound through pores existing in the shell of the finished microcapsule. In the above method, particles larger than the pores in the shell are encapsulated. You can also Examples of powdery substances filled by this method include inorganic powder (Patent Document 5), colorant (Patent Document 6), oil droplets (Patent Document 7), immobilized sake yeast (Patent Document 8), and immobilization. There are microorganisms (Patent Document 9), deodorizers (Patent Document 10, Patent Document 11), and the like. On the other hand, it has been reported that even when a biological macromolecule soluble in the inner aqueous phase of the W / O / W emulsion is added, the biological macromolecule can be encapsulated in the microcapsule (Patent Document 12).

無機マイクロカプセルの合成は、W/Oエマルジョンをもう一つの水相(外水相)に加えてW/O/Wエマルジョンを形成させ、この内水相と外水相とが混合することによって迅速に無機沈殿を生成させることがキーポイントである。化合物の内包化は、この内水相と外水相との反応によりマイクロカプセルが形成される際に、内水相に加えられた化合物が内部に取り残されて充填されるということである。しかしながら、水に容易に溶解し、水中での拡散速度の速い化合物は、カプセル殻の無機沈殿ができる前に外水相に拡散してしまい、ほとんど内包されないものと考えられる。   The synthesis of inorganic microcapsules is rapid by adding a W / O emulsion to another aqueous phase (outer aqueous phase) to form a W / O / W emulsion and mixing the inner aqueous phase with the outer aqueous phase. The key point is to form an inorganic precipitate. The encapsulation of the compound means that when a microcapsule is formed by the reaction between the inner aqueous phase and the outer aqueous phase, the compound added to the inner aqueous phase is left inside and filled. However, it is considered that a compound that dissolves easily in water and has a high diffusion rate in water diffuses into the outer water phase before inorganic precipitation of the capsule shell, and is hardly encapsulated.

シリカ粒子は、本質的にミクロ孔(直径2nm以下)、メソ孔(直径2〜60nm)を作る性質があるため、これらミクロ孔、およびメソ孔を持つものが多い。しかしながら、マクロ孔(直径60nm以上)、特に100nm以上のマクロ孔を持つシリカ粒子の合成は必ずしも、容易ではない。さらに、粒子形状が球状であり、かつ内部に大きな空洞を有する中空粒子(マイクロカプセル)で、カプセルの殻の部分にそのようなマクロ孔を持つシリカ粒子の例はほとんど無い。   Silica particles have the property of essentially forming micropores (diameter 2 nm or less) and mesopores (diameter 2 to 60 nm), and therefore many of them have these micropores and mesopores. However, it is not always easy to synthesize silica particles having macropores (diameter 60 nm or more), particularly macropores of 100 nm or more. Further, there are almost no examples of silica particles having a spherical particle shape and having a large cavity inside (microcapsule) and having such macropores in the capsule shell.

中空シリカ粒子の合成例として最も代表的なものは、水中でエマルジョンや微粒子を形成する油滴や有機ポリマー微粒子上にシリカを析出させコア(核)・シェル(殻)構造の材料を作り、内部の油滴、ポリマー等を焼成や溶媒抽出で取り除き、中空にする方法である。コア部分を取り除く処理の際に殻の一部が破裂して、1つの大きな穴(マクロ孔)を持つ中空体ができるという報告がある(例えば、特許文献13、14、15。G. Zhang et al., J. Colloid Interface Sci. vol.263, p.467-472 (2003); G. Fornasieri et al., Adv. Mater. vol.16, p.1094-1097 (2004))。また、重合性モノマーを水系懸濁重合後、ポリアルコキシシロキサンオリゴマーを縮合させて重合体粒子の表面の一部を露出するようにシリカで被覆した粒子を焼成すると、球状粒子に一つの大きなマクロ孔サイズの穴を合成できるという報告がある(特許文献16)。一方、中空ではないシリカ球状粒子中
に、多数のマクロ孔が形成されている材料も報告されている(例えば、F. Iskandar et al., Nano Lett., vol.1, p.231-234 (2001); A. Kulak et al., Chem. Commun. P.576-577 (2004))。しかしながら、球状の中空シリカ粒子で、その殻の部分に無数の類似なマクロ孔が形成されている材料は知られていない。
特開昭63-270306 特開昭61-227913 特許1184016号 特許1049606号 特開昭53-22530 特開昭61-47410 特開昭61-57236 特開昭62-44185 特開昭62-158485 特開昭62-212315 特開昭62-212316 特願2005-200390 特開平08-091821 特開平07-257919 特開平11-029318 特開2004-307332
The most representative example of the synthesis of hollow silica particles is the deposition of silica on oil droplets and organic polymer particles that form emulsions and fine particles in water to create a core (core) / shell structure material. In this method, oil droplets, polymer, etc. are removed by baking or solvent extraction. There is a report that a part of the shell is ruptured during the process of removing the core part to form a hollow body having one large hole (macropore) (for example, Patent Documents 13, 14, and 15; G. Zhang et al.). al., J. Colloid Interface Sci. vol.263, p.467-472 (2003); G. Fornasieri et al., Adv. Mater. vol.16, p.1094-1097 (2004)). In addition, after the polymerizable monomer is subjected to aqueous suspension polymerization, the polyalkoxysiloxane oligomer is condensed and the particles coated with silica so as to expose a part of the surface of the polymer particles are baked. There is a report that a hole of a size can be synthesized (Patent Document 16). On the other hand, a material in which a large number of macropores are formed in non-hollow silica spherical particles has also been reported (for example, F. Iskandar et al., Nano Lett., Vol.1, p.231-234 ( 2001); A. Kulak et al., Chem. Commun. P.576-577 (2004)). However, there is no known material in which spherical hollow silica particles are formed with innumerable similar macropores in the shell portion.
JP 63-270306 JP 61-227913 Patent 1184016 Patent 1049606 JP 53-22530 JP 61-47410 JP 61-57236 JP 62-44185 JP 62-158485 JP 62-212315 JP-A 62-212316 Japanese Patent Application 2005-200390 JP 08-091821 JP 07-257919 JP 11-029318 JP2004-307332

本発明は、シリカおよび水不溶性珪酸塩の中空粒子の殻にマクロ孔を複数形成させる技術、およびそのような中空粒子に関する技術を提供するものである。   The present invention provides a technique for forming a plurality of macropores in the shell of silica and water-insoluble silicate hollow particles, and a technique relating to such hollow particles.

上記のような観点から、中空粒子合成過程において、W/Oエマルジョンの水相である内水相に孔形成用水溶性化合物を加え、W/O/Wエマルジョンでのシリカ、および水不溶性珪酸塩の生成過程で、マクロ孔形成用水溶性化合物を内水相から外水相へと拡散させ、形成されるシリカ、および水不溶性珪酸塩の中に、拡散した孔形成用水溶性化合物による孔を作らせることで、マクロ孔を有する殻を持つシリカ、および水不溶性珪酸塩の中空粒子を製造することに成功し、本発明に至った。   From the above viewpoint, in the hollow particle synthesis process, a water-soluble compound for pore formation is added to the inner aqueous phase that is the aqueous phase of the W / O emulsion, and the silica in the W / O / W emulsion and the water-insoluble silicate During the formation process, the water-soluble compound for macropore formation is diffused from the inner aqueous phase to the outer aqueous phase, and pores are formed in the formed silica and water-insoluble silicate by the diffused water-soluble compound for pore formation. Thus, the present inventors have succeeded in producing silica having shells having macropores and hollow particles of water-insoluble silicate, leading to the present invention.

本発明は、以下の中空粒子及びその製造方法を提供するものである。   The present invention provides the following hollow particles and a method for producing the same.

1. 複数のマクロ孔を有するケイ素系の殻から構成される中空粒子。   1. Hollow particles composed of a silicon-based shell having a plurality of macropores.

2. 前記殻がシリカまたはアルカリ土類金属珪酸塩から構成される、項1に記載の中空粒子。   2. Item 2. The hollow particles according to Item 1, wherein the shell is composed of silica or alkaline earth metal silicate.

3. マクロ孔の大きさが、60nm〜30μmである項1に記載の中空粒子。   3. Item 2. The hollow particles according to Item 1, wherein the macropore size is 60 nm to 30 µm.

4. 水溶性珪酸塩とマクロ孔形成用水溶性化合物を含む第1水相粒子を油相中に分散してなるW/Oエマルジョンに沈殿剤水溶液を作用させることを特徴とする、複数のマクロ孔を有するケイ素系の殻から構成される中空粒子。   4). A plurality of macropores, characterized in that a precipitant aqueous solution is allowed to act on a W / O emulsion in which first water phase particles containing a water-soluble silicate and a water-soluble compound for forming macropores are dispersed in an oil phase. Hollow particles composed of a silicon shell.

5. 前記沈殿剤が塩化アンモニウム、硝酸アンモニウム、硫酸アンモニウム、硫酸水素アンモニウム、臭化アンモニウム、ヨウ化アンモニウム、炭酸水素アンモニウム、炭酸アンモニウム、酢酸アンモニウム、ギ酸アンモニウム、酒石酸アンモニウム、クエン酸ア
ンモニウム、アルカリ金属の炭酸水素塩、炭酸塩、セスキ炭酸塩からなる群から選ばれる少なくとも1種であり、ケイ素系の殻がシリカである、項4に記載の方法。
5. The precipitant is ammonium chloride, ammonium nitrate, ammonium sulfate, ammonium hydrogen sulfate, ammonium bromide, ammonium iodide, ammonium hydrogen carbonate, ammonium carbonate, ammonium acetate, ammonium formate, ammonium tartrate, ammonium citrate, alkali metal hydrogen carbonate, Item 5. The method according to Item 4, wherein the method is at least one selected from the group consisting of carbonates and sesquicarbonates, and the silicon-based shell is silica.

6. 前記沈殿剤がアルカリ土類金属のハロゲン化物、硫酸塩、硝酸塩、ギ酸塩および酢酸塩からなる群から選択される少なくとも1種であり、ケイ素系の殻がアルカリ土類金属塩である、項4に記載の方法。   6). Item 4. The precipitant is at least one selected from the group consisting of alkaline earth metal halides, sulfates, nitrates, formates and acetates, and the silicon-based shell is an alkaline earth metal salt. The method described in 1.

本特許の中空粒子は、カプセル殻の細孔に複数のマクロ孔を有するため、巨大生体分子や細胞、ウィルス等を内包でき、長期間保存することができ、また、超音波、衝撃波などの物理的手段、あるいは高pH、フッ素処理などの化学的手段により内部の材料を選択的に放出することができる。   Since the hollow particles of this patent have a plurality of macropores in the capsule shell pores, they can enclose macrobiomolecules, cells, viruses, etc., and can be stored for a long period of time. The internal material can be selectively released by chemical means such as high pH or fluorination.

本発明の概念図を図1に示す。
マクロ孔を殻に有するシリカ、および水不溶性珪酸塩中空粒子は、既存のシリカ・中空粒子合成を改良することで得ることができる。殻を構成する水不溶性珪酸塩の種類としては、珪酸カルシウム、珪酸マグネシウム、珪酸ストロンチウム、珪酸バリウムなどのアルカリ土類金属珪酸塩を挙げることができる。すなわち、シリカおよび水不溶性珪酸塩のいずれかのケイ素系の殻を有する中空粒子の原料となる珪酸ナトリウム(好ましくは水ガラス)の水溶液である水相に、水溶性化合物を溶解させる(図2の水相1)。水相1に溶解させた添加物が適切な場合、生成するシリカおよび水不溶性珪酸塩のいずれかから構成される殻に複数のマクロ孔を形成させることができる。このような目的に適したマクロ孔形成用水溶性化合物としては、特に限定されないが、水溶性有機ポリマーまたはその塩、アルカリ性条件下でアルカリ塩を形成可能な有機ポリマー、あるいは中性の無機塩等をあげることができる。中性の無機塩としては、特に限定されないが、例えば塩化ナトリウム、臭化ナトリウム、塩化カリウム、臭化カリウム等が挙げられる。
A conceptual diagram of the present invention is shown in FIG.
Silica having macropores in the shell and water-insoluble silicate hollow particles can be obtained by improving the existing silica / hollow particle synthesis. Examples of the water-insoluble silicate constituting the shell include alkaline earth metal silicates such as calcium silicate, magnesium silicate, strontium silicate, and barium silicate. That is, a water-soluble compound is dissolved in an aqueous phase that is an aqueous solution of sodium silicate (preferably water glass) that is a raw material of hollow particles having a silicon-based shell of either silica or water-insoluble silicate (FIG. 2). Aqueous phase 1). When the additive dissolved in the aqueous phase 1 is appropriate, a plurality of macropores can be formed in the shell composed of either the silica to be formed or the water-insoluble silicate. The water-soluble compound for forming macropores suitable for such purposes is not particularly limited, but includes water-soluble organic polymers or salts thereof, organic polymers capable of forming alkali salts under alkaline conditions, or neutral inorganic salts. I can give you. Although it does not specifically limit as neutral inorganic salt, For example, sodium chloride, sodium bromide, potassium chloride, potassium bromide etc. are mentioned.

用いる珪酸ナトリウムなどの水溶性珪酸塩は特に限定されないが、市販のJIS規格の1号から3号の水ガラス、4号水ガラス、メタ珪酸ナトリウム等を用いれば良い。また、水相1中における水溶性珪酸塩の濃度も特に限定されないが、0.5〜6Mが良く、特に2〜5Mが良い。水相2に用いる沈殿剤の種類や濃度は、シリカ、および水不溶性珪酸塩の沈殿が生成できるものであれば特に限定されない。沈殿剤の種類としては、殻がシリカから構成される場合は、塩化アンモニウム、硝酸アンモニウム、硫酸アンモニウム、硫酸水素アンモニウム、臭化アンモニウム、ヨウ化アンモニウム、炭酸水素アンモニウム、炭酸アンモニウム、酢酸アンモニウム、ギ酸アンモニウム、酒石酸アンモニウム、クエン酸アンモニウム、アルカリ金属の炭酸水素塩、炭酸塩、セスキ炭酸塩などが挙げられ、好ましくは塩化アンモニウム、硝酸アンモニウム、硫酸アンモニウム、臭化アンモニウム、ヨウ化アンモニウム、炭酸水素アンモニウム、炭酸水素ナトリウム、炭酸水素カリウム等をあげることができる。殻が水不溶性珪酸塩から構成される場合は、カルシウム、マグネシウム、ストロンチウム、バリウムのハロゲン化物、硫酸塩、硝酸、ギ酸塩、酢酸塩などを沈殿剤として用いればよい。沈殿剤の絶対量としては、そのモル数が水溶性珪酸塩中のケイ素のモル数より多いことが求められ、通常はケイ素のモル数の2〜5倍用いることが好ましい。濃度としては、1〜5Mが良く、特に1.5〜3Mが好ましい。   The water-soluble silicate such as sodium silicate to be used is not particularly limited, but commercially available JIS standard No. 1 to No. 3 water glass, No. 4 water glass, sodium metasilicate and the like may be used. Further, the concentration of the water-soluble silicate in the aqueous phase 1 is not particularly limited, but is preferably 0.5 to 6M, particularly 2 to 5M. The kind and density | concentration of the precipitant used for the water phase 2 will not be specifically limited if the precipitation of a silica and a water-insoluble silicate can produce | generate. As the type of precipitant, when the shell is made of silica, ammonium chloride, ammonium nitrate, ammonium sulfate, ammonium hydrogen sulfate, ammonium bromide, ammonium iodide, ammonium hydrogen carbonate, ammonium carbonate, ammonium acetate, ammonium formate, tartaric acid Ammonium, ammonium citrate, alkali metal hydrogen carbonate, carbonate, sesqui carbonate, etc. are mentioned, preferably ammonium chloride, ammonium nitrate, ammonium sulfate, ammonium bromide, ammonium iodide, ammonium hydrogen carbonate, sodium hydrogen carbonate, carbonic acid Examples thereof include potassium hydrogen. When the shell is composed of a water-insoluble silicate, calcium, magnesium, strontium, barium halide, sulfate, nitric acid, formate, acetate, or the like may be used as a precipitant. The absolute amount of the precipitating agent is required to be greater than the number of moles of silicon in the water-soluble silicate, and usually 2 to 5 times the number of moles of silicon is preferably used. The concentration is preferably 1 to 5M, particularly preferably 1.5 to 3M.

マクロ孔形成用水溶性化合物である有機ポリマーの塩としては、水に溶かした場合に酸性にならないものであれば特に限定されないが、ポリアクリル酸のアルカリ金属塩、ポリメタクリル酸のアルカリ金属塩、ポリスチレンスルフォン酸のアルカリ金属塩等をあげることができる。この中には、アルカリ性条件下でアルカリ塩になり、かつ溶液全体は酸性にはならない高分子化合物も含まれ、例えば、グリコーゲン、ポリビニルアルコール等を
あげることができる。これら有機ポリマーあるいは有機ポリマー塩の濃度としては、添加物を加えることで水ガラスなどの水溶性珪酸塩水溶液よりシリカ沈殿が生成しない限り特に限定されないが、良好なマクロ孔を中空粒子の殻に形成させるには、一定量以上のポリマー塩の濃度が望ましい。用いるポリマー塩にもよるが、50g/L〜180g/Lが良く、80g/L〜120g/Lが特に好ましい。用いる有機ポリマーの平均分子量は特に限定されないが、3000〜5,000,000が好ましい。適切な平均分子量はポリマーに依存するが、ポリアクリル酸塩、ポリメタクリル酸塩の場合は、5,000〜15,000程度が特に好ましい。ポリスチレンスルフォン酸塩の場合は、500,000〜3,000,000が好ましい。塩となる金属としては、ポリマー塩の水溶性を維持できるものならば特に限定されないが、アルカリ金属、アンモニウム塩をあげることができる。
The salt of the organic polymer that is a water-soluble compound for forming macropores is not particularly limited as long as it does not become acidic when dissolved in water, but an alkali metal salt of polyacrylic acid, an alkali metal salt of polymethacrylic acid, polystyrene Examples thereof include alkali metal salts of sulfonic acid. This includes a high molecular compound which becomes an alkali salt under alkaline conditions and does not become acidic in the whole solution, and examples thereof include glycogen and polyvinyl alcohol. The concentration of these organic polymers or organic polymer salts is not particularly limited as long as silica precipitates are not generated from water-soluble silicate aqueous solutions such as water glass by adding additives, but good macropores are formed in the shells of hollow particles. To achieve this, a concentration of polymer salt above a certain amount is desirable. Although depending on the polymer salt used, 50 g / L to 180 g / L is good, and 80 g / L to 120 g / L is particularly preferable. Although the average molecular weight of the organic polymer to be used is not particularly limited, it is preferably 3000 to 5,000,000. An appropriate average molecular weight depends on the polymer, but in the case of polyacrylate and polymethacrylate, about 5,000 to 15,000 is particularly preferable. In the case of polystyrene sulfonate, 500,000 to 3,000,000 are preferable. The metal to be a salt is not particularly limited as long as it can maintain the water solubility of the polymer salt, and examples thereof include alkali metals and ammonium salts.

マクロ孔形成用水溶性化合物である中性の無機塩としては、塩化ナトリウム、塩化カリウム、臭化ナトリウム、塩化リチウム等のアルカリ金属塩のハロゲン化塩をあげることができる。その塩の水相1への添加量は特に限定されないが、良好にシリカ、および水不溶性珪酸塩のマイクロカプセルの殻にマクロ孔を形成させるには、50g/L〜180g/Lが良く、80g/L〜120g/Lが特に好ましい。   Examples of neutral inorganic salts that are water-soluble compounds for forming macropores include halogenated salts of alkali metal salts such as sodium chloride, potassium chloride, sodium bromide, and lithium chloride. The amount of the salt added to the aqueous phase 1 is not particularly limited, but 50 g / L to 180 g / L is preferable to form macropores in the shell of the microcapsules of silica and water-insoluble silicate. / L to 120 g / L is particularly preferable.

この際、シリカ、および水不溶性珪酸塩中空粒子中に形成されるマクロ孔は、水相1の添加剤の種類や濃度のみならず、油相の構成成分にも依存する。用いる有機溶媒としては、水とほとんど混ざらなく、アルカリとほとんど反応をしないものなら特に限定されないが、炭化水素類が好ましく、特にヘキサン、オクタン、デカン等のパラフィン系炭化水素が特によい。また、油相に加える界面活性剤としては、W/Oエマルジョンを安定化させる効果を持つものならば特に限定されないが、ソルビタン系の脂肪酸エステルが好ましく、特にTweenやSpan類が好ましい。これらを単独で用いることも可能であるが、この両者の混合系としても良い。エマルジョン形成時のホモジェナイザーの回転数も特に限定されないが、回転数が5000以上が好ましい。またホモジェナイザーによるエマルジョン形成のための時間も特に限定されないが、1〜3分程度で良い。さらに、水相2に加えた後の撹拌時間も特に限定されないが、10分〜5時間程度が良く、30分〜3時間程度が特に好ましい。   At this time, the macropores formed in the silica and the water-insoluble silicate hollow particles depend not only on the type and concentration of the additive of the aqueous phase 1 but also on the components of the oil phase. The organic solvent to be used is not particularly limited as long as it is hardly mixed with water and hardly reacts with alkali, but hydrocarbons are preferable, and paraffinic hydrocarbons such as hexane, octane and decane are particularly preferable. The surfactant added to the oil phase is not particularly limited as long as it has an effect of stabilizing the W / O emulsion, but sorbitan fatty acid esters are preferable, and Tween and Spans are particularly preferable. These can be used alone, but a mixture of both may be used. The rotation speed of the homogenizer at the time of forming the emulsion is not particularly limited, but the rotation speed is preferably 5000 or more. Further, the time for forming the emulsion by the homogenizer is not particularly limited, but may be about 1 to 3 minutes. Further, the stirring time after addition to the aqueous phase 2 is not particularly limited, but is preferably about 10 minutes to 5 hours, and particularly preferably about 30 minutes to 3 hours.

マクロ孔の孔径としては、60nm〜30μm程度、好ましくは100nm〜25μm程度、より好ましくは300nm〜20μm程度、さらに好ましくは500nm〜10μm程度である。   The pore size of the macropores is about 60 nm to 30 μm, preferably about 100 nm to 25 μm, more preferably about 300 nm to 20 μm, and still more preferably about 500 nm to 10 μm.

中空粒子の大きさは、例えば0.2〜100μm程度、好ましくは0.5〜50μm程度、より好ましくは1〜20μm程度である。中空粒子の粒径は、W/Oエマルジョンの粒径(エマルジョンの製造条件)により制御可能である。   The size of the hollow particles is, for example, about 0.2 to 100 μm, preferably about 0.5 to 50 μm, more preferably about 1 to 20 μm. The particle size of the hollow particles can be controlled by the particle size of the W / O emulsion (emulsion production conditions).

中空粒子当たりのマクロ孔の数は、2以上、好ましくは3〜100程度、より好ましくは5〜50程度、さらに好ましくは5〜30程度である。   The number of macropores per hollow particle is 2 or more, preferably about 3 to 100, more preferably about 5 to 50, and still more preferably about 5 to 30.

得られたマクロ孔を有する殻のシリカ、および水不溶性珪酸塩マイクロカプセルの形態や細孔構造は、光学顕微鏡、電子顕微鏡、あるいは窒素の吸着等温線により確認することができる。得られるマクロ孔の大きさは、用いるポリマーの種類や濃度、界面活性剤や沈殿剤の種類により異なり、出来上がったシリカ、および水不溶性珪酸塩中空粒子内に数百nmから数ミクロンないし数十ミクロンの大きさの化合物を充填することが可能である。また、殻のマクロ孔よりも大きな化合物ならば、水相1に溶解するあるいは不溶に関係なく、直接内包化し、中空粒子マイクロカプセル内に閉じこめることも可能である。   The form and pore structure of the obtained shell silica having macropores and water-insoluble silicate microcapsules can be confirmed by an optical microscope, an electron microscope, or an adsorption isotherm of nitrogen. The size of the macropores obtained depends on the type and concentration of the polymer used, the type of surfactant and the precipitating agent, and varies from several hundred nm to several tens to several tens of microns in the finished silica and water-insoluble silicate hollow particles. It is possible to fill a compound of the size of If the compound is larger than the macropores of the shell, it can be directly encapsulated and enclosed in the hollow particle microcapsules regardless of whether it is dissolved or insoluble in the aqueous phase 1.

以下、実施例によって本発明を具体的に説明するが、本発明はこれら実施例のみに限定されるものではない。
実施例1:マクロ孔殻シリカ・マイクロカプセルの合成−1
水ガラス3号(29.88g、ケイ素含有量144mmol)とポリメタクリル酸ナトリウム水溶液(13.3g、ポリマー4g;アルドリッチ社製:Mw〜6500;30%水溶液)を溶かし、全体積を36mlとした水溶液(図1の水相1)に、Tween80(1.01g:モル数は混
合物につき不明)とSpan80(0.50g:モル数は混合物につき不明)をn−ヘキサンに溶かし全体積を72mlとした溶液(図1の油相)と混合し、ホモジェナイザーを用いて回転数約8300回転で乳化させる。この乳化処理を1分行ったのち、炭酸水素アンモニウム(39.8
g、504mmol)を水に溶解させ全体積を250mlとした溶液(図2の水相2)に加えた。2時間撹拌(回転数:約250回転)の後、ろ別により生成した沈殿を得た。
EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited only to these Examples.
Example 1: Synthesis of Macroporous Shell Silica Microcapsules-1
Water glass 3 (29.88 g, silicon content 144 mmol) and poly (sodium methacrylate) aqueous solution (13.3 g, polymer 4 g; manufactured by Aldrich: Mw-6500; 30% aqueous solution) were dissolved in an aqueous solution having a total volume of 36 ml ( A solution of Tween80 (1.01 g: the number of moles is unknown for the mixture) and Span80 (0.50 g: the number of moles is unknown for the mixture) dissolved in n-hexane to a total volume of 72 ml (FIG. 1) Oil phase) and emulsified with a homogenizer at about 8300 revolutions. After this emulsification treatment for 1 minute, ammonium bicarbonate (39.8
g, 504 mmol) was dissolved in water to a total volume of 250 ml (aqueous phase 2 in FIG. 2). After stirring for 2 hours (rotation speed: about 250 rotations), a precipitate formed by filtration was obtained.

得られたマクロ孔殻シリカ・マイクロカプセルの光学顕微鏡像と電子顕微鏡像を図2、3に示す。水相1に添加物を加えず、水ガラスのみを溶解させた通常のシリカ・マイクロカプセルの光学顕微鏡像(図2右)では、カプセル内部は光が通り明るく見えるが、このマクロ孔殻シリカ・マイクロカプセルでは(図2左)、一粒子が黒い点のように見えるのが特徴である。また電子顕微鏡像図より、この粒子は中空球状体があることが確認された。さらに、中空マイクロカプセルの殻の部分に、電子顕微鏡により観測されるほどの大きさの細孔が形成されていることもわかった。細孔の大きさは、電子顕微鏡像より3〜500nm程度であることもわかった。
実施例2:マクロ孔殻シリカ・マイクロカプセルの合成−2
水ガラス3号(29.88g、ケイ素含有量144mmol)とポリメタクリル酸ナトリウム水溶液(13.3g、ポリマー4g;アルドリッチ社製:Mw〜6500;30%水溶液)を溶かし、全体積を36mlとした水溶液(図1の水相1)に、Tween80(1.01g:モル数は混
合物につき不明)とSpan80(0.50g:モル数は混合物につき不明)をn−ヘキサンに溶かし全体積を72mlとした溶液(図1の油相)と混合し、ホモジェナイザーを用いて回転数約8300回転で乳化させる。この乳化処理を1分行ったのち、塩化アンモニウム(27.0g、504mmol)を水に溶解させ全体積を250mlとした溶液(図2の水相2)に加えた。2時間
撹拌(回転数:約250回転)の後、ろ別により生成した沈殿を得た。
The optical microscopic image and electron microscopic image of the obtained macroporous silica-microcapsule are shown in FIGS. In the optical microscopic image of a normal silica microcapsule in which only water glass is dissolved without adding an additive to the aqueous phase 1 (right side of FIG. 2), the inside of the capsule looks bright and light, but this macroporous silica / The microcapsule (left in FIG. 2) is characterized in that one particle looks like a black dot. Moreover, it was confirmed from an electron microscope image that this particle has a hollow sphere. Furthermore, it was also found that pores having such a size as to be observed with an electron microscope were formed in the shell portion of the hollow microcapsule. The size of the pore was also found to be about 3 to 500 nm from an electron microscope image.
Example 2: Synthesis of Macroporous Shell Silica Microcapsule-2
Water glass 3 (29.88 g, silicon content 144 mmol) and poly (sodium methacrylate) aqueous solution (13.3 g, polymer 4 g; manufactured by Aldrich: Mw-6500; 30% aqueous solution) were dissolved in an aqueous solution having a total volume of 36 ml ( A solution of Tween80 (1.01 g: the number of moles is unknown for the mixture) and Span80 (0.50 g: the number of moles is unknown for the mixture) dissolved in n-hexane to a total volume of 72 ml (FIG. 1) Oil phase) and emulsified with a homogenizer at about 8300 revolutions. After this emulsification treatment for 1 minute, ammonium chloride (27.0 g, 504 mmol) was dissolved in water and added to a solution having a total volume of 250 ml (aqueous phase 2 in FIG. 2). After stirring for 2 hours (rotation speed: about 250 rotations), a precipitate formed by filtration was obtained.

得られたマクロ孔殻シリカ・マイクロカプセルの電子顕微鏡像を図4に示す。この電子顕微鏡像図より、実施例1と同様に中空球状体であることも確認された。中空マイクロカプセルの殻部分の細孔の大きさは、電子顕微鏡像より1〜3μm程度であることもわかった。
実施例3:マクロ孔殻シリカ・マイクロカプセルの合成−3
水ガラス3号(29.88g、ケイ素含有量144mmol)とポリ−p−スチレンスルフォン酸ナトリウム水溶液(4g、ポリマー1g;アルドリッチ社製:Mw〜1,000,000;25%水溶液)を溶かし、全体積を36mlとした水溶液(図1の水相1)に、Tween80(1.01g:モル数は混合物につき不明)とSpan80(0.50g:モル数は混合物につき不明)を
n−ヘキサンに溶かし全体積を72mlとした溶液(図1の油相)と混合し、ホモジェナイザーを用いて回転数約8300回転で乳化させる。この乳化処理を1分行ったのち、炭酸水素
アンモニウム(39.8g、504mmol)を水に溶解させ全体積を250mlとした溶液(図2の水相2)に加えた。2時間撹拌(回転数:約250回転)の後、ろ別により生成した沈殿を得
た。
FIG. 4 shows an electron microscope image of the obtained macroporous shell silica microcapsule. From this electron microscope image, it was also confirmed to be a hollow sphere as in Example 1. It was also found from the electron microscope image that the pore size of the shell portion of the hollow microcapsule was about 1 to 3 μm.
Example 3: Synthesis of macroporous silica microcapsules-3
Water glass No. 3 (29.88 g, silicon content 144 mmol) and poly-p-styrene sulfonate sodium aqueous solution (4 g, polymer 1 g; manufactured by Aldrich: Mw to 1,000,000; 25% aqueous solution) were dissolved, and the total volume was dissolved. Tween 80 (1.01 g: the number of moles is unknown about the mixture) and Span 80 (0.50 g: the number of moles are unknown about the mixture) were dissolved in n-hexane in an aqueous solution of 36 ml of water (aqueous phase 1 in FIG. 1), and the total volume was 72 ml. The resulting solution (oil phase in FIG. 1) is mixed and emulsified using a homogenizer at a rotational speed of about 8300. After this emulsification treatment for 1 minute, ammonium hydrogen carbonate (39.8 g, 504 mmol) was dissolved in water and added to a solution having a total volume of 250 ml (aqueous phase 2 in FIG. 2). After stirring for 2 hours (rotation speed: about 250 rotations), a precipitate formed by filtration was obtained.

得られたマクロ孔殻シリカ・マイクロカプセルの電子顕微鏡像を図5に示す。この電子顕微鏡像図より、実施例1と同様に中空球状体であることも確認された。また、中空マイクロカプセルの殻の内部に中空部分が確認された。この殻中の中空部の大きさは、電子顕微鏡像より数百nm〜1μm程度であることもわかった。
実施例4:マクロ孔殻シリカ・マイクロカプセルの合成−4
水ガラス3号(29.88g、ケイ素含有量144mmol)とポリ−p−スチレンスルフォン酸ナトリウム水溶液(4g、ポリマー1g;アルドリッチ社製:Mw〜1,000,000;25%水溶液)を溶かし、全体積を36mlとした水溶液(図1の水相1)に、Tween80(1.01g:モル数は混合物につき不明)とSpan80(0.50g:モル数は混合物につき不明)を
n−ヘキサンに溶かし全体積を72mlとした溶液(図1の油相)と混合し、ホモジェナイザーを用いて回転数約8300回転で乳化させる。この乳化処理を1分行ったのち、塩化アン
モニウム(27.0g、504mmol)を水に溶解させ全体積を250mlとした溶液(図2の水相2)に加えた。2時間撹拌(回転数:約250回転)の後、ろ別により生成した沈殿を得た。
An electron microscopic image of the obtained macroporous silica microcapsule is shown in FIG. From this electron microscope image, it was also confirmed to be a hollow sphere as in Example 1. Moreover, a hollow part was confirmed inside the shell of the hollow microcapsule. The size of the hollow part in the shell was also found to be about several hundred nm to 1 μm from an electron microscope image.
Example 4 Synthesis of Macroporous Shell Silica Microcapsules-4
Water glass No. 3 (29.88 g, silicon content 144 mmol) and poly-p-styrene sulfonate sodium aqueous solution (4 g, polymer 1 g; manufactured by Aldrich: Mw to 1,000,000; 25% aqueous solution) were dissolved, and the total volume was dissolved. Tween 80 (1.01 g: the number of moles is unknown about the mixture) and Span 80 (0.50 g: the number of moles are unknown about the mixture) were dissolved in n-hexane in an aqueous solution of 36 ml of water (aqueous phase 1 in FIG. 1), and the total volume was 72 ml. The resulting solution (oil phase in FIG. 1) is mixed and emulsified using a homogenizer at a rotational speed of about 8300. After this emulsification treatment for 1 minute, ammonium chloride (27.0 g, 504 mmol) was dissolved in water and added to a solution having a total volume of 250 ml (aqueous phase 2 in FIG. 2). After stirring for 2 hours (rotation speed: about 250 rotations), a precipitate formed by filtration was obtained.

得られたマクロ孔殻シリカ・マイクロカプセルの電子顕微鏡像を図6に示す。電子顕微鏡像図より、実施例1と同様に中空球状体であることも確認された。また、中空マイクロカプセルの殻の内部や殻全体には、数百nm〜数μm程度のマクロ孔が形成されていることもわかった。
実施例5:マクロ孔殻シリカ・マイクロカプセルの合成−5
水ガラス3号(29.88g、ケイ素含有量144mmol)とポリメタクリル酸ナトリウム水溶液(13.3g、ポリマー4g;アルドリッチ社製Mw〜9500;30%水溶液)を溶かし、全体積を36mlとした水溶液(図1の水相1)に、Tween80(1.01g:モル数は混合
物につき不明)とSpan80(0.50g:モル数は混合物につき不明)をn−ヘキサンに溶かし全体積を72mlとした溶液(図1の油相)と混合し、ホモジェナイザーを用いて回転数約8300回転で乳化させる。この乳化処理を1分行ったのち、炭酸水素アンモニウム(39.8g
、504mmol)を水に溶解させ全体積を250mlとした溶液(図2の水相2)に加えた。2時間撹拌(回転数:約250回転)の後、ろ別により生成した沈殿を得た。
An electron microscopic image of the obtained macroporous silica microcapsule is shown in FIG. From the electron micrograph, it was also confirmed to be a hollow sphere as in Example 1. It was also found that macropores of several hundred nm to several μm were formed inside the shell of the hollow microcapsule or the entire shell.
Example 5 Synthesis of Macroporous Shell Silica Microcapsules-5
Water glass No. 3 (29.88 g, silicon content: 144 mmol) and poly (sodium methacrylate) aqueous solution (13.3 g, polymer 4 g; Aldrich Mw-9500; 30% aqueous solution) were dissolved to make a total volume of 36 ml (Fig. 1) Aqueous phase 1) was prepared by dissolving Tween80 (1.01 g: the number of moles is unknown for the mixture) and Span80 (0.50 g: the number of moles is unknown for the mixture) in n-hexane to a total volume of 72 ml (FIG. 1). Oil phase) and emulsified with a homogenizer at a rotational speed of about 8300. After this emulsification treatment for 1 minute, ammonium bicarbonate (39.8 g
504 mmol) was dissolved in water to a total volume of 250 ml (aqueous phase 2 in FIG. 2). After stirring for 2 hours (rotation speed: about 250 rotations), a precipitate formed by filtration was obtained.

得られたマクロ孔殻シリカ・マイクロカプセルの電子顕微鏡像を図7に示す。電子顕微鏡像図より、実施例1と同様に中空球状体であることも確認されたが、中空マイクロカプセルの殻に数百nm〜数μm程度のマクロ孔が形成されていることもわかった。
実施例6:マクロ孔殻シリカ・マイクロカプセルの合成−6
水ガラス3号(29.88g、ケイ素含有量144mmol)とポリアクリル酸ナトリウム水溶液(8.89g、ポリマー4g;アルドリッチ社製Mw〜8000;45%水溶液)を溶かし、全体積を36mlとした水溶液(図1の水相1)に、Tween80(1.01g:モル数は混合物
につき不明)とSpan80(0.50g:モル数は混合物につき不明)をn−ヘキサンに溶かし全体積を72mlとした溶液(図1の油相)と混合し、ホモジェナイザーを用いて回転数約8300回転で乳化させる。この乳化処理を1分行ったのち、炭酸水素アンモニウム(39.8g、504mmol)を水に溶解させ全体積を250mlとした溶液(図2の水相2)に加えた。2時間
撹拌(回転数:約250回転)の後、ろ別により生成した沈殿を得た。
An electron microscopic image of the obtained macroporous shell silica microcapsule is shown in FIG. From the electron micrograph, it was also confirmed that it was a hollow sphere like Example 1, but it was also found that macropores of about several hundred nm to several μm were formed in the shell of the hollow microcapsule.
Example 6 Synthesis of Macroporous Shell Silica Microcapsules-6
Water glass No. 3 (29.88 g, silicon content 144 mmol) and sodium polyacrylate aqueous solution (8.89 g, polymer 4 g; Aldrich Mw to 8000; 45% aqueous solution) were dissolved in an aqueous solution having a total volume of 36 ml (Fig. 1) Aqueous phase 1) was prepared by dissolving Tween80 (1.01 g: the number of moles is unknown for the mixture) and Span80 (0.50 g: the number of moles is unknown for the mixture) in n-hexane to a total volume of 72 ml (FIG. 1). Oil phase) and emulsified with a homogenizer at a rotational speed of about 8300. After this emulsification treatment for 1 minute, ammonium hydrogen carbonate (39.8 g, 504 mmol) was dissolved in water and added to a solution having a total volume of 250 ml (aqueous phase 2 in FIG. 2). After stirring for 2 hours (rotation speed: about 250 rotations), a precipitate formed by filtration was obtained.

得られたマクロ孔殻シリカ・マイクロカプセルの電子顕微鏡像を図8に示す。電子顕微鏡像図より、実施例1と同様に中空球状体であることも確認されたが、中空マイクロカプセルの殻に数百nm程度のマクロ孔が形成されていることもわかった。
実施例7:マクロ孔殻シリカ・マイクロカプセルの合成−7
水ガラス3号(29.88g、ケイ素含有量144mmol)とグリコーゲン4gを溶かし全体積を36mlとした水溶液(図1の水相1)に、Tween80(1.01g:モル数は混合物につき不明
)とSpan80(0.50g:モル数は混合物につき不明)をn−ヘキサンに溶かし全体積を72mlとした溶液(図1の油相)と混合し、ホモジェナイザーを用いて回転数約8300回転で乳化させる。この乳化処理を1分行ったのち、炭酸水素アンモニウム(39.8g、504mmol)を水に溶解させ全体積を250mlとした溶液(図2の水相2)に加えた。2時間撹拌(回転
数:約250回転)の後、ろ別により生成した沈殿を得た。
An electron microscopic image of the obtained macroporous shell silica microcapsule is shown in FIG. From the electron microscopic image, it was confirmed that it was a hollow sphere as in Example 1, but it was also found that a macropore of about several hundred nm was formed in the shell of the hollow microcapsule.
Example 7 Synthesis of Macroporous Shell Silica Microcapsules-7
Water glass 3 (29.88 g, silicon content 144 mmol) and glycogen 4 g were dissolved in an aqueous solution (aqueous phase 1 in FIG. 1) to a total volume of 36 ml. 0.50 g: the number of moles is unknown for the mixture) is dissolved in n-hexane and mixed with a solution (oil phase in FIG. 1) having a total volume of 72 ml, and emulsified with a homogenizer at a rotational speed of about 8300. After this emulsification treatment for 1 minute, ammonium hydrogen carbonate (39.8 g, 504 mmol) was dissolved in water and added to a solution having a total volume of 250 ml (aqueous phase 2 in FIG. 2). After stirring for 2 hours (rotation speed: about 250 rotations), a precipitate formed by filtration was obtained.

得られたマクロ孔殻シリカ・マイクロカプセルの電子顕微鏡像を図9に示す。電子顕微鏡像図より、実施例1と同様に中空球状体であることも確認され、中空マイクロカプセル
の殻に数百nm〜数μm程度のマクロ孔が形成されていることもわかった。
実施例8:マクロ孔殻シリカ・マイクロカプセルの合成−8
水ガラス3号(29.88g、ケイ素含有量144mmol)とグリコーゲン4gを溶かし全体積を36mlとした水溶液(図1の水相1)に、Tween80(1.01g:モル数は混合物につき不明
)とSpan80(0.50g:モル数は混合物につき不明)をn−ヘキサンに溶かし全体積を72mlとした溶液(図1の油相)と混合し、ホモジェナイザーを用いて回転数約8300回転で乳化させる。この乳化処理を1分行ったのち、塩化アンモニウム(27.0g、504mmol)を水に溶解させ全体積を250mlとした溶液(図2の水相2)に加えた。2時間撹拌(回転数:
約250回転)の後、ろ別により生成した沈殿を得た。
An electron microscopic image of the obtained macroporous shell silica microcapsule is shown in FIG. From the electron micrograph, it was confirmed that it was a hollow sphere like Example 1, and it was also found that macropores of several hundred nm to several μm were formed in the shell of the hollow microcapsule.
Example 8 Synthesis of Macroporous Shell Silica Microcapsules-8
Water glass No. 3 (29.88 g, silicon content 144 mmol) and glycogen 4 g were dissolved in an aqueous solution (water phase 1 in FIG. 1) to a total volume of 36 ml, and Tween 80 (1.01 g: the number of moles is unknown for the mixture) and Span 80 ( 0.50 g: the number of moles is unknown for the mixture) is dissolved in n-hexane and mixed with a solution (oil phase in FIG. 1) having a total volume of 72 ml, and emulsified with a homogenizer at a rotational speed of about 8300. After this emulsification treatment for 1 minute, ammonium chloride (27.0 g, 504 mmol) was dissolved in water and added to a solution having a total volume of 250 ml (aqueous phase 2 in FIG. 2). Stir for 2 hours (rotation speed:
After about 250 revolutions), a precipitate formed by filtration was obtained.

得られたマクロ孔殻シリカ・マイクロカプセルの電子顕微鏡像を図10に示す。電子顕微鏡像図より、実施例1と同様に中空球状体であることも確認され、中空マイクロカプセルの殻に数百nm程度のマクロ孔が形成されていることもわかった。
実施例9:マクロ孔殻シリカ・マイクロカプセルの合成−9
水ガラス3号(29.88g、ケイ素含有量144mmol)と塩化ナトリウム6gを溶かし全体積を36mlとした水溶液(図1の水相1)に、Tween80(1.01g:モル数は混合物につき不
明)とSpan80(0.50g:モル数は混合物につき不明)をn−ヘキサンに溶かし全体積を72mlとした溶液(図1の油相)と混合し、ホモジェナイザーを用いて回転数約8300回転で乳化させる。この乳化処理を1分行ったのち、塩化アンモニウム(27.0g、504mmol)を水に溶解させ全体積を250mlとした溶液(図2の水相2)に加えた。2時間撹拌(回転数
:約250回転)の後、ろ別により生成した沈殿を得た。
An electron microscopic image of the obtained macroporous shell silica microcapsule is shown in FIG. From the electron micrograph, it was confirmed that it was a hollow sphere like Example 1, and it was also found that a macropore of about several hundred nm was formed in the shell of the hollow microcapsule.
Example 9 Synthesis of Macroporous Shell Silica Microcapsule-9
Water glass 3 (29.88 g, silicon content 144 mmol) and sodium chloride 6 g were dissolved in an aqueous solution (aqueous phase 1 in FIG. 1) to a total volume of 36 ml, and Tween 80 (1.01 g: the number of moles is unknown for the mixture) and Span 80 (0.50 g: the number of moles is unknown for the mixture) is dissolved in n-hexane and mixed with a solution (oil phase in FIG. 1) having a total volume of 72 ml, and emulsified with a homogenizer at about 8300 revolutions. After this emulsification treatment for 1 minute, ammonium chloride (27.0 g, 504 mmol) was dissolved in water and added to a solution having a total volume of 250 ml (aqueous phase 2 in FIG. 2). After stirring for 2 hours (rotation speed: about 250 rotations), a precipitate formed by filtration was obtained.

得られたマクロ孔殻シリカ・マイクロカプセルの電子顕微鏡像を図11に示す。電子顕微鏡像図より、実施例1と同様に中空球状体であることも確認され、中空マイクロカプセルの殻は数百nm程度の微粒子により構成され、その微粒子間にマクロ孔が形成されていることもわかった。
実施例10:マクロ孔殻シリカ・マイクロカプセルの合成−1
水ガラス3号(29.88g、ケイ素含有量144mmol)とポリメタクリル酸ナトリウム水溶液(13.3g、ポリマー4g;アルドリッチ社製:Mw〜6500;30%水溶液)を溶かし、全体積を36mlとした水溶液(図1の水相1)に、Span80(1.51g:モル数は混合物につき不明)をn−ヘキサンに溶かし全体積を72mlとした溶液(図1の油相)と混合し、ホモジェナイザーを用いて回転数約8300回転で乳化させる。この乳化処理を1分行っ
たのち、炭酸水素アンモニウム(39.8g、504mmol)を水に溶解させ全体積を250mlとした溶液(図2の水相2)に加えた。2時間撹拌(回転数:約250回転)の後、ろ別により
生成した沈殿を得た。
An electron microscopic image of the obtained macroporous shell silica microcapsule is shown in FIG. From the electron micrograph, it was also confirmed that it was a hollow sphere like Example 1, and the shell of the hollow microcapsule was composed of fine particles of about several hundred nm, and macropores were formed between the fine particles. I understand.
Example 10 Synthesis of Macroporous Shell Silica Microcapsules-1
Water glass 3 (29.88 g, silicon content 144 mmol) and poly (sodium methacrylate) aqueous solution (13.3 g, polymer 4 g; manufactured by Aldrich: Mw-6500; 30% aqueous solution) were dissolved in an aqueous solution having a total volume of 36 ml ( In the aqueous phase 1) in Fig. 1, Span80 (1.51 g: the number of moles is unknown for the mixture) is dissolved in n-hexane and mixed to a total volume of 72 ml (oil phase in Fig. 1), and a homogenizer is used. And emulsify at about 8300 revolutions. After this emulsification treatment for 1 minute, ammonium hydrogen carbonate (39.8 g, 504 mmol) was dissolved in water and added to a solution having a total volume of 250 ml (aqueous phase 2 in FIG. 2). After stirring for 2 hours (rotation speed: about 250 rotations), a precipitate formed by filtration was obtained.

得られたマクロ孔殻シリカ・マイクロカプセルの電子顕微鏡像を図12に示す。また電子顕微鏡像図より、この粒子は中空球状体があることが確認され、中空マイクロカプセルの殻は数百nm程度の微粒子により構成され、その微粒子間にマクロ孔が形成されていることもわかった。
実施例11:マクロ孔殻シリカ・マイクロカプセルの合成−11
水ガラス3号(29.88g、ケイ素含有量144mmol)とポリメタクリル酸ナトリウム水溶液(13.3g、ポリマー4g;アルドリッチ社製:Mw〜6500;30%水溶液)を溶かし、全体積を36mlとした水溶液(図1の水相1)に、Tween80(0.50g:モル数は混
合物につき不明)とSpan80(1.01g:モル数は混合物につき不明)をn−ヘキサンに溶かし全体積を72mlとした溶液(図1の油相)と混合し、ホモジェナイザーを用いて回転数約8300回転で乳化させる。この乳化処理を1分行ったのち、炭酸水素アンモニウム(39.8
g、504mmol)を水に溶解させ全体積を250mlとした溶液(図2の水相2)に加えた。2時間撹拌(回転数:約250回転)の後、ろ別により生成した沈殿を得た。
An electron microscopic image of the obtained macroporous shell silica microcapsule is shown in FIG. From the electron micrograph, it was confirmed that the particles had hollow spheres, and the shell of the hollow microcapsules was composed of fine particles of about several hundred nm, and it was also found that macropores were formed between the fine particles. It was.
Example 11 Synthesis of Macroporous Shell Microcapsules-11
Water glass 3 (29.88 g, silicon content 144 mmol) and poly (sodium methacrylate) aqueous solution (13.3 g, polymer 4 g; manufactured by Aldrich: Mw-6500; 30% aqueous solution) were dissolved in an aqueous solution having a total volume of 36 ml ( In the aqueous phase 1) of FIG. 1, Tween80 (0.50 g: the number of moles is unknown for the mixture) and Span80 (1.01 g: the number of moles is unknown for the mixture) were dissolved in n-hexane to give a total volume of 72 ml (FIG. 1). Oil phase) and emulsified with a homogenizer at about 8300 revolutions. After this emulsification treatment for 1 minute, ammonium bicarbonate (39.8
g, 504 mmol) was dissolved in water to a total volume of 250 ml (aqueous phase 2 in FIG. 2). After stirring for 2 hours (rotation speed: about 250 rotations), a precipitate formed by filtration was obtained.

得られたマクロ孔殻シリカ・マイクロカプセルの電子顕微鏡像を図13に示す。また電子顕微鏡像図より、この粒子は中空球状体があることが確認され、中空マイクロカプセルの殻は数百nm〜数μm程度のマクロ孔が形成されていることもわかった。
実施例12:マクロ孔殻シリカ・マイクロカプセルの合成−12
水ガラス3号(29.88g、ケイ素含有量144mmol)とポリメタクリル酸ナトリウム水溶液(13.3g、ポリマー4g;アルドリッチ社製:Mw〜6500;30%水溶液)を溶かし、全体積を36mlとした水溶液(図1の水相1)に、Tween80(0.50g:モル数は混
合物につき不明)とSpan80(1.01g:モル数は混合物につき不明)をn−ヘキサンに溶かし全体積を72mlとした溶液(図1の油相)と混合し、ホモジェナイザーを用いて回転数約8300回転で乳化させる。この乳化処理を1分行ったのち、塩化アンモニウム(27.0g、504mmol)を水に溶解させ全体積を250mlとした溶液(図2の水相2)に加えた。2時間
撹拌(回転数:約250回転)の後、ろ別により生成した沈殿を得た。
An electron microscopic image of the obtained macroporous shell silica microcapsule is shown in FIG. From the electron microscope image, it was confirmed that the particles had hollow spheres, and it was also found that the hollow microcapsule shells were formed with macropores of several hundred nm to several μm.
Example 12 Synthesis of Macroporous Shell Microcapsules-12
Water glass 3 (29.88 g, silicon content 144 mmol) and poly (sodium methacrylate) aqueous solution (13.3 g, polymer 4 g; manufactured by Aldrich: Mw-6500; 30% aqueous solution) were dissolved in an aqueous solution having a total volume of 36 ml ( In the aqueous phase 1) of FIG. 1, Tween80 (0.50 g: the number of moles is unknown for the mixture) and Span80 (1.01 g: the number of moles is unknown for the mixture) were dissolved in n-hexane to give a total volume of 72 ml (FIG. 1). Oil phase) and emulsified with a homogenizer at about 8300 revolutions. After this emulsification treatment for 1 minute, ammonium chloride (27.0 g, 504 mmol) was dissolved in water and added to a solution having a total volume of 250 ml (aqueous phase 2 in FIG. 2). After stirring for 2 hours (rotation speed: about 250 rotations), a precipitate formed by filtration was obtained.

得られたマクロ孔殻シリカ・マイクロカプセルの電子顕微鏡像を図14に示す。また電子顕微鏡像図より、この粒子は中空球状体があることが確認され、中空マイクロカプセルの殻は1〜2μm程度の微粒子で構成され、その微粒子間に数μm程度のマクロ孔が形成されていることもわかった。
実施例13:マクロ孔殻シリカ・マイクロカプセルの合成−13
水ガラス3号(29.88g、ケイ素含有量144mmol)とポリメタクリル酸ナトリウム水溶液(13.3g、ポリマー4g;アルドリッチ社製:Mw〜6500;30%水溶液)を溶かし、全体積を36mlとした水溶液(図1の水相1)に、Tween80(1.01g:モル数は混
合物につき不明)とSpan80(0.50g:モル数は混合物につき不明)をn−ヘキサンに溶かし全体積を72mlとした溶液(図1の油相)と混合し、ホモジェナイザーを用いて回転数約8300回転で乳化させる。この乳化処理を1分行ったのち、塩化カルシウム二水和物(59.3g、403 mmol)を水に溶解させ全体積を250mlとした溶液(図2の水相2)に加えた。2時間撹拌(回転数:約250回転)の後、ろ別により生成した沈殿を得た。
FIG. 14 shows an electron microscopic image of the obtained macroporous shell silica microcapsule. From the electron microscope image, it was confirmed that the particles had hollow spheres, the shell of the hollow microcapsule was composed of fine particles of about 1 to 2 μm, and macropores of about several μm were formed between the fine particles. I also found out.
Example 13 Synthesis of Macroporous Shell Silica Microcapsules-13
Water glass 3 (29.88 g, silicon content 144 mmol) and poly (sodium methacrylate) aqueous solution (13.3 g, polymer 4 g; manufactured by Aldrich: Mw-6500; 30% aqueous solution) were dissolved in an aqueous solution having a total volume of 36 ml ( A solution of Tween80 (1.01 g: the number of moles is unknown for the mixture) and Span80 (0.50 g: the number of moles is unknown for the mixture) dissolved in n-hexane to a total volume of 72 ml (FIG. 1) Oil phase) and emulsified with a homogenizer at about 8300 revolutions. After this emulsification treatment for 1 minute, calcium chloride dihydrate (59.3 g, 403 mmol) was dissolved in water and added to a solution having a total volume of 250 ml (aqueous phase 2 in FIG. 2). After stirring for 2 hours (rotation speed: about 250 rotations), a precipitate formed by filtration was obtained.

得られたマクロ孔殻珪酸カルシウム・マイクロカプセルの電子顕微鏡像を図15に示す。この電子顕微鏡像図より、実施例1と同様に中空球状体であることも確認された。中空マイクロカプセルの殻部分の細孔の大きさは、電子顕微鏡像より3〜6μm程度であることもわかった。   An electron microscopic image of the obtained macroporous shell calcium silicate microcapsule is shown in FIG. From this electron microscope image, it was also confirmed to be a hollow sphere as in Example 1. It was also found from the electron microscope image that the pore size of the shell portion of the hollow microcapsule was about 3 to 6 μm.

想定される応用例
本特許で新しく調製され、見いだされた材料の応用は、種々想定されるが、例えば以下のような応用が考えられる。
Possible application examples Various applications of the materials newly prepared and found in this patent are envisaged. For example, the following applications are conceivable.

中空シリカ粒子は、液晶表示スペーサー、セラミック原料、クロマトグラフィー用充填剤、光学材料、精密研磨剤など、半導体産業、医療品産業、先端材料産業、環境産業などの分野への利用が期待される。さらに高い空隙率等より、軽量の炉材、サヤ材あるいは断熱材に適するとも期待できる。さらに、多孔性中空シリカ粒子は、油脂や有機溶剤等の吸着・分離剤として多く使用されているが、その吸着能力を高めるには、空孔率の高い多孔質シリカ粒子が必要となる。特に、殻の部分の細孔がマクロ孔となると粘性の高い高分子状油脂等の吸着性能が向上するものと期待される。   Hollow silica particles are expected to be used in fields such as the semiconductor industry, medical products industry, advanced materials industry, and environmental industry, such as liquid crystal display spacers, ceramic raw materials, chromatographic fillers, optical materials, and precision abrasives. Furthermore, it can be expected that it is suitable for light-weight furnace material, sheath material or heat insulating material because of its high porosity. Furthermore, porous hollow silica particles are often used as an adsorbing / separating agent for oils and fats, organic solvents, and the like, but porous silica particles having a high porosity are required to increase the adsorption capacity. In particular, it is expected that when the pores of the shell portion become macropores, the adsorption performance of highly viscous polymer oils and the like is improved.

さらに、大きなサイズのタンパク質、細胞、核酸等を中空粒子内に充填することにより、ドラッグデリバリーシステム、ジーンデリバリーシステムへの応用も有望である。巨大な生体物質の封入による不安定生体材料の長期保存への利用や、酵素タンパク質を内包させたバイオリアクターへの応用も想定される。   Furthermore, application to drug delivery systems and gene delivery systems is also promising by filling hollow particles with large-sized proteins, cells, nucleic acids and the like. Application to long-term storage of unstable biomaterials by enclosing huge biomaterials and bioreactors encapsulating enzyme proteins are also envisaged.

マクロ孔をカプセル殻に有するシリカ及び水不溶性珪酸塩中空粒子合成の概念図Conceptual diagram of silica and water-insoluble silicate hollow particle synthesis with macropores in capsule shell マクロ孔殻シリカ・マイクロカプセル(左)と通常のシリカ・マイクロカプセル(右)の光学顕微鏡像(1000倍)Optical microscopic images (1000x) of macroporous silica microcapsules (left) and normal silica microcapsules (right) マクロ孔殻シリカ・マイクロカプセルの電子顕微鏡像Electron microscope image of macroporous silica microcapsules マクロ孔殻シリカ・マイクロカプセルの電子顕微鏡像Electron microscope image of macroporous silica microcapsules マクロ孔殻シリカ・マイクロカプセルの電子顕微鏡像Electron microscope image of macroporous silica microcapsules マクロ孔殻シリカ・マイクロカプセルの電子顕微鏡像Electron microscope image of macroporous silica microcapsules マクロ孔殻シリカ・マイクロカプセルの電子顕微鏡像Electron microscope image of macroporous silica microcapsules マクロ孔殻シリカ・マイクロカプセルの電子顕微鏡像Electron microscope image of macroporous silica microcapsules マクロ孔殻シリカ・マイクロカプセルの電子顕微鏡像Electron microscope image of macroporous silica microcapsules マクロ孔殻シリカ・マイクロカプセルの電子顕微鏡像Electron microscope image of macroporous silica microcapsules マクロ孔殻シリカ・マイクロカプセルの電子顕微鏡像Electron microscope image of macroporous silica microcapsules マクロ孔殻シリカ・マイクロカプセルの電子顕微鏡像Electron microscope image of macroporous silica microcapsules マクロ孔殻シリカ・マイクロカプセルの電子顕微鏡像Electron microscope image of macroporous silica microcapsules マクロ孔殻シリカ・マイクロカプセルの電子顕微鏡像Electron microscope image of macroporous silica microcapsules マクロ孔殻珪酸カルシウム・マイクロカプセルの電子顕微鏡像Electron microscope image of macroporous calcium silicate microcapsules

Claims (1)

シリカの殻の部分に孔径60nm〜0μmのマクロ孔を5〜100個し、粒径が0.2〜100μmであることを特徴とする、中空粒子。 The macro pores having a pore diameter of 60 nm to 1 0 .mu.m to 5 to 100 Yes in part of the silica mosquito shell, wherein the particle size is 0.2~100Myuemu, hollow particles.
JP2006051502A 2006-02-28 2006-02-28 Hollow particles having unique shell and method for producing the same Expired - Fee Related JP4997395B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006051502A JP4997395B2 (en) 2006-02-28 2006-02-28 Hollow particles having unique shell and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006051502A JP4997395B2 (en) 2006-02-28 2006-02-28 Hollow particles having unique shell and method for producing the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011273080A Division JP5429945B2 (en) 2011-12-14 2011-12-14 Hollow particles having unique shell and method for producing the same

Publications (2)

Publication Number Publication Date
JP2007230794A JP2007230794A (en) 2007-09-13
JP4997395B2 true JP4997395B2 (en) 2012-08-08

Family

ID=38551769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006051502A Expired - Fee Related JP4997395B2 (en) 2006-02-28 2006-02-28 Hollow particles having unique shell and method for producing the same

Country Status (1)

Country Link
JP (1) JP4997395B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104138733A (en) * 2013-05-08 2014-11-12 中国石油天然气股份有限公司 Silica hollow microsphere with through macropores on surface and preparation method thereof

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008110979A2 (en) * 2007-03-13 2008-09-18 Philips Intellectual Property & Standards Gmbh Insulator material and method for manufacturing thereof
JP2009274934A (en) * 2008-05-16 2009-11-26 Yazaki Corp Method of manufacturing ceramic hollow particle, and ceramic hollow particle
JP5283111B2 (en) * 2008-08-27 2013-09-04 独立行政法人産業技術総合研究所 Light reflecting material
US20100129455A1 (en) * 2008-10-15 2010-05-27 National Institute Of Advanced Industrial Science And Technology Nanoparticle-dispersed fine glass beads having a cavity therein, and method of producing the same
JP5464573B2 (en) * 2009-03-31 2014-04-09 独立行政法人産業技術総合研究所 Method for producing hollow particles
JP5627957B2 (en) * 2010-09-02 2014-11-19 株式会社ブリヂストン Perforated hollow silica particles
CN105518100B (en) 2013-08-23 2019-06-21 国立大学法人神户大学 Hard shell microencapsulation latent heat transmission material and preparation method thereof
CN109956479A (en) * 2017-12-25 2019-07-02 北京化工大学 A kind of hollow microsphere and preparation method thereof
CN113149022B (en) * 2021-04-30 2022-07-22 南昌大学 Silica @ calcium silicate hollow nanosphere and preparation method and application thereof
CN114604874B (en) * 2022-04-01 2022-11-11 金三江(肇庆)硅材料股份有限公司 High-refraction macroporous precipitated silica for high-transparency silicone rubber and preparation method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58185432A (en) * 1982-04-23 1983-10-29 Osaka Packing Seizosho:Kk Spherical secondary particle of calcium silicate and preparation thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104138733A (en) * 2013-05-08 2014-11-12 中国石油天然气股份有限公司 Silica hollow microsphere with through macropores on surface and preparation method thereof
CN104138733B (en) * 2013-05-08 2016-02-03 中国石油天然气股份有限公司 Silica hollow microsphere with through macropores on surface and preparation method thereof

Also Published As

Publication number Publication date
JP2007230794A (en) 2007-09-13

Similar Documents

Publication Publication Date Title
JP4997395B2 (en) Hollow particles having unique shell and method for producing the same
JP5051490B2 (en) Inorganic microcapsule encapsulating macro-biomaterial and method for producing the same
Bao et al. Recent progress in hollow silica: Template synthesis, morphologies and applications
Petkovich et al. Controlling macro-and mesostructures with hierarchical porosity through combined hard and soft templating
Ciriminna et al. From molecules to systems: sol− gel microencapsulation in silica-based materials
JP4704039B2 (en) Porous beads and method for producing the same
WO2013061104A2 (en) Method for the preparation of composite silica alcogels, aerogels and xerogels, apparatus for carrying out the method continuously, and novel composite silica alcogels, aerogels and xerogels
JP4967101B2 (en) Method for producing hollow microcapsules
Bean et al. Preparation of aqueous core/silica shell microcapsules
JP2002528259A (en) Process for producing capsules comprising a liquid active substance core surrounded by an inorganic shell
JP2012520173A (en) Templating systems and methods using particles such as colloidal particles
JPS63258642A (en) Hollow inorganic powder and grain materials and preparation of same
Liu et al. From hollow nanosphere to hollow microsphere: mild buffer provides easy access to tunable silica structure
Makki et al. Hollow Microtubes and Shells from Reactant‐Loaded Polymer Beads
NZ555534A (en) Solid particles from controlled destabilisation of microemulsions
Zabiegaj et al. Carbon based porous materials from particle stabilized wet foams
CN103933903B (en) The method of preparation hollow-core construction nano-organosilicon microsphere
JP5429945B2 (en) Hollow particles having unique shell and method for producing the same
Gurung et al. Hollow silica nano and micro spheres with polystyrene templating: a mini-review
EP2043955B1 (en) Metal oxide hydrogels and hydrosols, their preparation and use
Sakurai et al. Hollow polylactic acid microcapsules fabricated by gas/oil/water and bubble template methods
Kulak et al. Controlled assembly of nanoparticle-containing gold and silica microspheres and silica/gold nanocomposite spheroids with complex form
JP2008285356A (en) Silicon-based particulates having unique surface, method for producing the same, and cosmetics using the particulates
KR101520443B1 (en) Preparation method of organic mircro-bubble complex particle, organic mircro-bubble complex particle, and ultrasound contrast agent
Zhu et al. Advancing inorganic microcapsule fabrication through frozen-assisted interfacial reactions utilizing liquid marbles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100928

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20101110

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20111214

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120321

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120404

R150 Certificate of patent or registration of utility model

Ref document number: 4997395

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150525

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees