JP4997259B2 - Water electrolysis system - Google Patents

Water electrolysis system Download PDF

Info

Publication number
JP4997259B2
JP4997259B2 JP2009045708A JP2009045708A JP4997259B2 JP 4997259 B2 JP4997259 B2 JP 4997259B2 JP 2009045708 A JP2009045708 A JP 2009045708A JP 2009045708 A JP2009045708 A JP 2009045708A JP 4997259 B2 JP4997259 B2 JP 4997259B2
Authority
JP
Japan
Prior art keywords
water
hydrogen
pressure
water electrolysis
electrolysis system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009045708A
Other languages
Japanese (ja)
Other versions
JP2010196149A (en
Inventor
淳 武内
昌規 岡部
孝治 中沢
憲司 樽家
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2009045708A priority Critical patent/JP4997259B2/en
Priority to US12/712,733 priority patent/US20100219066A1/en
Publication of JP2010196149A publication Critical patent/JP2010196149A/en
Application granted granted Critical
Publication of JP4997259B2 publication Critical patent/JP4997259B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/08Supplying or removing reactants or electrolytes; Regeneration of electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0656Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants by electrochemical means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

本発明は、直流電源からの通電により水を電気分解し、水素と酸素とを発生させる水電解装置と、前記水電解装置から前記水素を排出する水素排出口の下流に接続され、排出された前記水素中の水を吸着する水吸着装置とを備える水電解システムに関する。   The present invention is connected to and discharged from a water electrolysis device that electrolyzes water by energization from a DC power source to generate hydrogen and oxygen, and a hydrogen discharge port that discharges the hydrogen from the water electrolysis device. The present invention relates to a water electrolysis system comprising a water adsorbing device that adsorbs water in the hydrogen.

例えば、固体高分子型燃料電池は、アノード側電極に燃料ガス(主に水素を含有するガス、例えば、水素ガス)が供給される一方、カソード側電極に酸化剤ガス(主に酸素を含有するガス、例えば、空気)が供給されることにより、直流の電気エネルギを得ている。   For example, in a polymer electrolyte fuel cell, a fuel gas (a gas containing mainly hydrogen, such as hydrogen gas) is supplied to the anode side electrode, while an oxidant gas (mainly containing oxygen) is supplied to the cathode side electrode. By supplying a gas (for example, air), direct current electric energy is obtained.

一般的に、燃料ガスである水素ガスを製造するために、水電解装置が採用されている。この水電解装置は、水を分解して水素(及び酸素)を発生させるため、固体高分子電解質膜(イオン交換膜)を用いている。固体高分子電解質膜の両面には、電極触媒層が設けられて電解質膜・電極構造体が構成されるとともに、前記電解質膜・電極構造体の両側には、給電体を配設してユニットが構成されている。すなわち、ユニットは、実質的には、上記の燃料電池と同様に構成されている。   In general, a water electrolysis apparatus is employed to produce hydrogen gas that is a fuel gas. This water electrolysis apparatus uses a solid polymer electrolyte membrane (ion exchange membrane) in order to decompose water and generate hydrogen (and oxygen). Electrode catalyst layers are provided on both sides of the solid polymer electrolyte membrane to form an electrolyte membrane / electrode structure, and a power feeder is provided on both sides of the electrolyte membrane / electrode structure. It is configured. That is, the unit is configured substantially in the same manner as the above fuel cell.

そこで、複数のユニットが積層された状態で、積層方向両端に電圧が付与されるとともに、アノード側給電体に水が供給される。このため、電解質膜・電極構造体のアノード側では、水が分解されて水素イオン(プロトン)が生成され、この水素イオンが固体高分子電解質膜を透過してカソード側に移動し、電子と結合して水素が製造される。一方、アノード側では、水素と共に生成された酸素が、余剰の水を伴ってユニットから排出される。   Therefore, in a state where a plurality of units are stacked, a voltage is applied to both ends in the stacking direction, and water is supplied to the anode-side power feeding body. For this reason, water is decomposed and hydrogen ions (protons) are generated on the anode side of the electrolyte membrane / electrode structure, and the hydrogen ions permeate the solid polymer electrolyte membrane and move to the cathode side to bond with electrons. Thus, hydrogen is produced. On the other hand, on the anode side, oxygen produced together with hydrogen is discharged from the unit with excess water.

この種の水電解システムでは、数十MPaの高圧水素を生成するため、例えば、特許文献1に開示された高圧水素の製造方法及び製造装置が知られている。高圧水素製造装置は、図7に示すように、酸素高圧容器1、差圧調整装置2、水素高圧容器3、電解セル4、水分吸着筒5、背圧弁6及び脱酸素筒7を備えている。   Since this type of water electrolysis system generates high-pressure hydrogen of several tens of MPa, for example, a high-pressure hydrogen production method and production apparatus disclosed in Patent Document 1 are known. As shown in FIG. 7, the high-pressure hydrogen production apparatus includes an oxygen high-pressure vessel 1, a differential pressure adjusting device 2, a hydrogen high-pressure vessel 3, an electrolysis cell 4, a moisture adsorption cylinder 5, a back pressure valve 6, and a deoxygenation cylinder 7. .

酸素高圧容器1内の純水は、循環ポンプ8を介して電解セル4の陽極側に送られるとともに、電源9から前記電解セル4に通電することによって、前記純水が電気分解されている。この電気分解により電解セル4に発生した酸素は、循環ポンプ8の循環水戻り純水とともに、酸素高圧容器1に送られている。   The pure water in the oxygen high-pressure vessel 1 is sent to the anode side of the electrolysis cell 4 through the circulation pump 8, and the pure water is electrolyzed by energizing the electrolysis cell 4 from the power source 9. Oxygen generated in the electrolysis cell 4 by this electrolysis is sent to the oxygen high-pressure vessel 1 together with the circulating water returning pure water of the circulation pump 8.

電解セル4の陰極に発生した水素は、透過水とともに、水素高圧容器3内に放出されている。その際、差圧調整装置2により酸素高圧容器1内の圧力と水素高圧容器3内の圧力が等しくなっている。   Hydrogen generated at the cathode of the electrolytic cell 4 is released into the hydrogen high-pressure vessel 3 together with the permeated water. At that time, the pressure in the oxygen high-pressure vessel 1 and the pressure in the hydrogen high-pressure vessel 3 are made equal by the differential pressure adjusting device 2.

水素高圧容器3に貯留された水素は、脱酸素筒7を介して該水素中に含まれる酸素が除去された後、背圧弁6に連絡されている水分吸着筒5で水分が除去されることにより、製品水素が得られている。   The hydrogen stored in the hydrogen high-pressure vessel 3 is removed from the moisture adsorption cylinder 5 connected to the back pressure valve 6 after the oxygen contained in the hydrogen is removed via the deoxygenation cylinder 7. As a result, product hydrogen is obtained.

特開2007−100204号公報JP 2007-100204 A

ところで、上記の特許文献1では、水素高圧容器3に貯留された高圧水素が、背圧弁6に連絡されている水分吸着筒5に急激に導入される場合がある。その際、水素流速が過大となって、水分吸着筒5で水素中の水分を良好に吸着することができないおそれがある。従って、水分吸着筒5では、水分の吸着機能を高めるために、多量の吸着材が必要になり、前記水分吸着筒5が相当に大型化するとともに、経済的ではないという問題がある。   By the way, in the above-mentioned Patent Document 1, high-pressure hydrogen stored in the hydrogen high-pressure vessel 3 may be suddenly introduced into the moisture adsorption cylinder 5 communicated with the back pressure valve 6. At this time, the hydrogen flow rate becomes excessive, and there is a possibility that moisture in the hydrogen cannot be satisfactorily adsorbed by the moisture adsorption cylinder 5. Therefore, the moisture adsorption cylinder 5 requires a large amount of adsorbent in order to enhance the moisture adsorption function, and there is a problem that the moisture adsorption cylinder 5 is considerably enlarged and is not economical.

しかも、水分吸着筒5と燃料電池車両の水素タンクとの差圧が大きい場合、前記水分吸着筒5が脱圧され易い。これにより、水分吸着筒5内の水分が吸着剤から離脱され、この水分が水素タンクに導入されるおそれがある。   In addition, when the differential pressure between the moisture adsorption cylinder 5 and the hydrogen tank of the fuel cell vehicle is large, the moisture adsorption cylinder 5 is easily depressurized. Thereby, the moisture in the moisture adsorption cylinder 5 is detached from the adsorbent, and this moisture may be introduced into the hydrogen tank.

本発明はこの種の問題を解決するものであり、簡単な構成で、水素中の水分が水吸着装置を通過することを確実に阻止し、所望のドライ水素を効率的に供給することが可能な水電解システムを提供することを目的とする。   The present invention solves this kind of problem, and with a simple configuration, it is possible to reliably prevent moisture in hydrogen from passing through the water adsorption device and to efficiently supply the desired dry hydrogen. An object of the present invention is to provide a simple water electrolysis system.

本発明は、直流電源からの通電により水を電気分解し、水素と酸素とを発生させる水電解装置と、前記水電解装置から前記水素を排出する水素排出口の下流に接続され、排出された前記水素中の水を吸着する水吸着装置とを備える水電解システムに関するものである。   The present invention is connected to and discharged from a water electrolysis device that electrolyzes water by energization from a DC power source to generate hydrogen and oxygen, and a hydrogen discharge port that discharges the hydrogen from the water electrolysis device. The present invention relates to a water electrolysis system comprising a water adsorption device that adsorbs water in the hydrogen.

この水電解システムは、水素排出口と水吸着装置との間に配置され、水電解装置により生成された水素圧力を、第1設定圧力まで昇圧させための第1圧力調整弁と、前記水吸着装置の下流側に配置され、前記第1圧力調整弁を通過した水素を、前記第1設定圧力と同圧又は該第1設定圧力より高圧な第2設定圧力まで加圧保持する第2圧力調整弁とを備えている。 The water electrolysis system, is disposed between the hydrogen outlet port and the water adsorption unit, the hydrogen pressure generated by the water electrolysis device, a first pressure regulating valve for Ru is raised to a first set pressure, the water disposed downstream of the adsorber, the hydrogen that has passed through the first pressure regulating valve, the first set pressure and the pressure or the second you dwell than the first set pressure to a high pressure of the second set pressure And a pressure regulating valve.

さらに、この水電解システムは、水素排出口と水吸着装置との間には、流れ方向に沿って気液分離器、冷却器及び第1圧力調整弁の順に配置されることが好ましい。   Furthermore, this water electrolysis system is preferably arranged in the order of the gas-liquid separator, the cooler, and the first pressure regulating valve along the flow direction between the hydrogen outlet and the water adsorption device.

さらにまた、この水電解システムは、第1圧力調整弁及び第2圧力調整弁が、背圧弁であることが好ましい。   Furthermore, in this water electrolysis system, it is preferable that the first pressure regulating valve and the second pressure regulating valve are back pressure valves.

また、この水電解システムは、水電解装置が常圧よりも高圧な高圧水素を排出することが好ましい。   In this water electrolysis system, it is preferable that the water electrolysis apparatus discharges high-pressure hydrogen having a pressure higher than normal pressure.

本発明によれば、水吸着装置の下流側に第2圧力調整弁が配置されるため、前記水吸着装置に作用する圧力を、所定の圧力に維持することができる。従って、水分を含んだ水素が、水吸着装置を急速に通過することがなく、前記水分を確実に吸着することが可能になる。しかも、水吸着装置にかかる圧力が設定されるため、前記水吸着装置から水分が離脱し、この水分が該水吸着装置の下流に移動することを阻止することができる。   According to the present invention, since the second pressure regulating valve is disposed on the downstream side of the water adsorption device, the pressure acting on the water adsorption device can be maintained at a predetermined pressure. Therefore, hydrogen containing moisture does not rapidly pass through the water adsorption device, and the moisture can be reliably adsorbed. In addition, since the pressure applied to the water adsorbing device is set, it is possible to prevent moisture from detaching from the water adsorbing device and moving to the downstream of the water adsorbing device.

また、水素排出口と水吸着装置との間には、第1圧力調整弁が配置されるため、前記水吸着装置を上流側から遮断させることが可能になる。このため、水吸着装置の洗浄作業等を容易且つ効率的に行うことができる。これにより、水素に含まれている水分が水吸着装置を通過することを、簡単な構成で、確実に阻止するとともに、所望のドライ水素を効率的に供給することが可能になる。   Further, since the first pressure regulating valve is disposed between the hydrogen discharge port and the water adsorption device, the water adsorption device can be shut off from the upstream side. For this reason, the washing | cleaning operation | work etc. of a water adsorption apparatus can be performed easily and efficiently. Accordingly, it is possible to reliably prevent moisture contained in hydrogen from passing through the water adsorption device with a simple configuration and to efficiently supply desired dry hydrogen.

本発明の実施形態に係る水電解システムの概略構成説明図である。It is a schematic structure explanatory view of a water electrolysis system concerning an embodiment of the present invention. 前記水電解システムを構成する第1及び第2背圧弁の圧力状態の説明図である。It is explanatory drawing of the pressure state of the 1st and 2nd back pressure valve which comprises the said water electrolysis system. 前記第1背圧弁までの昇圧状態の説明図である。It is explanatory drawing of the pressure | voltage rise state to the said 1st back pressure valve. 前記第2背圧弁までの昇圧状態の説明図である。It is explanatory drawing of the pressure | voltage rise state to the said 2nd back pressure valve. 運転再開時の前記圧力状態の説明図である。It is explanatory drawing of the said pressure state at the time of a driving | operation restart. 水吸着装置の脱圧処理と運転再開時の前記圧力状態の説明図である。It is explanatory drawing of the said pressure state at the time of the depressurization process of a water adsorption apparatus, and driving | operation restart. 特許文献1に開示された高圧水素製造装置の概略説明図である。1 is a schematic explanatory diagram of a high-pressure hydrogen production apparatus disclosed in Patent Document 1. FIG.

図1に示すように、本発明の実施形態に係る水電解システム10は、純水供給装置12を介して市水から生成された純水が供給され、この純水を電気分解することによって高圧水素(常圧よりも高圧)を製造する水電解装置14と、前記水電解装置14から水素導出路16に導出される前記高圧水素に含まれる水分を除去する気液分離器18と、前記気液分離器18から排出される水素を冷却する冷却器20と、前記冷却器20から排出される冷却された水素に含まれる水分を吸着して除去する水吸着装置22と、前記水吸着装置22に連通するドライ水素供給路24に導出される前記水素(ドライ水素)を貯留可能な水素タンク26とを備える。なお、水素タンク26は、必要に応じて備えていればよく、この水素タンク26を削除することも可能である。   As shown in FIG. 1, a water electrolysis system 10 according to an embodiment of the present invention is supplied with pure water generated from city water via a pure water supply device 12, and electrolyzes the pure water to generate a high pressure. A water electrolyzer 14 for producing hydrogen (higher than normal pressure), a gas-liquid separator 18 for removing moisture contained in the high-pressure hydrogen led out from the water electrolyzer 14 to the hydrogen lead-out path 16, and the gas A cooler 20 that cools the hydrogen discharged from the liquid separator 18, a water adsorber 22 that adsorbs and removes moisture contained in the cooled hydrogen discharged from the cooler 20, and the water adsorber 22. And a hydrogen tank 26 capable of storing the hydrogen (dry hydrogen) led out to the dry hydrogen supply path 24 communicating with the gas. Note that the hydrogen tank 26 may be provided as necessary, and the hydrogen tank 26 may be deleted.

水電解装置14は、複数の水分解セル28が積層されており、前記水分解セル28の積層方向両端には、エンドプレート30a、30bが配設される。水電解装置14には、直流電源である電解電源32が接続される。水電解装置14の陽極(アノード)は、電解電源32のプラス極に接続される一方、陰極(カソード)は、前記電解電源32のマイナス極に接続される。   The water electrolysis apparatus 14 includes a plurality of water decomposition cells 28 stacked, and end plates 30a and 30b are disposed at both ends of the water decomposition cell 28 in the stacking direction. The water electrolysis device 14 is connected to an electrolysis power source 32 that is a DC power source. The anode (anode) of the water electrolysis apparatus 14 is connected to the positive electrode of the electrolytic power supply 32, while the cathode (cathode) is connected to the negative electrode of the electrolytic power supply 32.

エンドプレート30aには、配管34aが接続されるとともに、エンドプレート30bには、配管34b、34cが接続される。配管34a、34bは、循環路35を介して純水供給装置12から純水の循環が行われる一方、水素排出口である配管34cは、水素導出路16から気液分離器18に接続される。   A pipe 34a is connected to the end plate 30a, and pipes 34b and 34c are connected to the end plate 30b. The pipes 34 a and 34 b circulate pure water from the pure water supply device 12 through the circulation path 35, while the pipe 34 c that is a hydrogen discharge port is connected to the gas-liquid separator 18 from the hydrogen outlet path 16. .

水素導出路16には、配管34cと水吸着装置22との間に位置して、より具体的には、冷却器20と前記水吸着装置22との間に位置して、第1背圧弁(第1圧力調整弁)36が配置されるとともに、前記第1背圧弁36と前記水吸着装置22との間に位置して圧抜き経路38が配置される。この圧抜き経路38には、開閉弁、例えば、電磁弁40が配設される。   The hydrogen lead-out path 16 is positioned between the pipe 34 c and the water adsorption device 22, more specifically, between the cooler 20 and the water adsorption device 22, and the first back pressure valve ( A first pressure regulating valve 36 is disposed, and a pressure relief path 38 is disposed between the first back pressure valve 36 and the water adsorption device 22. An opening / closing valve such as an electromagnetic valve 40 is disposed in the pressure release path 38.

水吸着装置22は、水素に含まれる水蒸気(水分)を物理的吸着作用で吸着するとともに、水分を外部に放出して再生される水分吸着材を充填した吸着塔(図示せず)を備える。水吸着装置22の下流側(出口側)には、第2背圧弁(第2圧力調整弁)42を介してドライ水素供給路24が接続される。第2背圧弁42の第2設定圧力は、第1背圧弁36の第1設定圧力と同圧又は前記第1設定圧力よりも高圧に設定される。なお、第1及び第2背圧弁36、42に代えて、電磁弁等の種々の弁を使用してもよい。   The water adsorbing device 22 includes an adsorption tower (not shown) filled with a moisture adsorbing material that adsorbs water vapor (moisture) contained in hydrogen by a physical adsorption action and releases the moisture to the outside. A dry hydrogen supply path 24 is connected to the downstream side (outlet side) of the water adsorption device 22 via a second back pressure valve (second pressure regulating valve) 42. The second set pressure of the second back pressure valve 42 is set to the same pressure as the first set pressure of the first back pressure valve 36 or higher than the first set pressure. Note that various valves such as electromagnetic valves may be used instead of the first and second back pressure valves 36 and 42.

ドライ水素供給路24に配設される水素タンク26には、水素供給路46が開閉弁48を介して接続される。この水素供給路46は、燃料電池車両50の燃料タンクに、直接、あるいは、図示しない貯留タンクを介して接続可能である。   A hydrogen supply path 46 is connected to the hydrogen tank 26 disposed in the dry hydrogen supply path 24 via an on-off valve 48. The hydrogen supply path 46 can be connected to the fuel tank of the fuel cell vehicle 50 directly or via a storage tank (not shown).

このように構成される水電解システム10の動作について、以下に説明する。   The operation of the water electrolysis system 10 configured as described above will be described below.

先ず、水電解システム10の始動時には、純水供給装置12を介して市水から生成された純水が水電解装置14に供給される。この水電解装置14では、電解電源32から通電されることにより、純水が電気分解されて水素の生成が開始される。   First, when the water electrolysis system 10 is started, pure water generated from city water is supplied to the water electrolysis device 14 via the pure water supply device 12. In this water electrolysis apparatus 14, when energized from the electrolysis power supply 32, pure water is electrolyzed and generation of hydrogen is started.

水電解装置14内に生成された水素は、水素導出路16を介して気液分離器18に送られる。この気液分離器18では、水素に含まれる水蒸気が、この水素から分離されるとともに、前記水蒸気が除去された前記水素は、冷却器20に送られて冷却される。従って、水素中の水分が凝縮され、凝縮水として水素から分離される。   Hydrogen generated in the water electrolysis device 14 is sent to the gas-liquid separator 18 through the hydrogen lead-out path 16. In the gas-liquid separator 18, the water vapor contained in the hydrogen is separated from the hydrogen, and the hydrogen from which the water vapor has been removed is sent to the cooler 20 to be cooled. Therefore, moisture in hydrogen is condensed and separated from hydrogen as condensed water.

冷却器20の下流には、第1背圧弁36が配設されている。このため、図2に示すように、冷却器20では、第1背圧弁36の第1設定圧力に至るまで(時間T1まで)、水素を加圧することができる(図3参照)。これにより、水素中の水分をより確実に凝縮分離させることが可能になる。   A first back pressure valve 36 is disposed downstream of the cooler 20. For this reason, as shown in FIG. 2, in the cooler 20, hydrogen can be pressurized until the first set pressure of the first back pressure valve 36 is reached (until time T1) (see FIG. 3). This makes it possible to more reliably condense and separate moisture in hydrogen.

水電解装置14から冷却器20までの水素系内の水素圧力が、第1背圧弁36の第1設定圧力まで昇圧されると、前記第1背圧弁36が開放される。これにより、所定の設定圧力に昇圧された高圧水素は、水吸着装置22に送られ、水素に含まれる水蒸気が吸着されて乾燥状態の水素(ドライ水素)が得られる。   When the hydrogen pressure in the hydrogen system from the water electrolysis device 14 to the cooler 20 is increased to the first set pressure of the first back pressure valve 36, the first back pressure valve 36 is opened. As a result, the high-pressure hydrogen boosted to a predetermined set pressure is sent to the water adsorption device 22, where water vapor contained in the hydrogen is adsorbed to obtain dry hydrogen (dry hydrogen).

ここで、水吸着装置22の下流には、第2背圧弁42が配置されている。従って、図2に示すように、水吸着装置22内の水素圧力が、第2設定圧力に至るまで(時間T1〜時間T2まで)、水素を前記水吸着装置22内に加圧保持することができる(図4参照)。そして、水吸着装置22内の水素圧力が、第2設定圧力に至ると、第2背圧弁42が開放されて、前記水吸着装置22からドライ水素供給路24にドライ水素が導出される。   Here, a second back pressure valve 42 is disposed downstream of the water adsorption device 22. Therefore, as shown in FIG. 2, hydrogen can be kept pressurized in the water adsorbing device 22 until the hydrogen pressure in the water adsorbing device 22 reaches the second set pressure (from time T1 to time T2). Yes (see FIG. 4). When the hydrogen pressure in the water adsorption device 22 reaches the second set pressure, the second back pressure valve 42 is opened, and dry hydrogen is led from the water adsorption device 22 to the dry hydrogen supply path 24.

ドライ水素供給路24に導出されたドライ水素は、水素タンク26に貯蔵される。この水素タンク26に貯蔵されたドライ水素は、必要に応じて開閉弁48の開放作用下に、水素供給路46を介して燃料電池車両50に充填される。   The dry hydrogen led out to the dry hydrogen supply path 24 is stored in the hydrogen tank 26. The dry hydrogen stored in the hydrogen tank 26 is charged into the fuel cell vehicle 50 via the hydrogen supply path 46 under the opening action of the on-off valve 48 as necessary.

この場合、本実施形態では、水吸着装置22の下流側に第2背圧弁42が配置されている。このため、水吸着装置22に作用する圧力を所定の圧力(第2設定圧力)に維持することができる。具体的には、水吸着装置22の上流側に配置されている第1背圧弁36が開放されてから第2背圧弁42が開放されるまでの間、すなわち、図2中、時間T1〜時間T2までの間、前記水吸着装置22内の水素の流速が0になっている。   In this case, in the present embodiment, the second back pressure valve 42 is disposed on the downstream side of the water adsorption device 22. For this reason, the pressure acting on the water adsorption device 22 can be maintained at a predetermined pressure (second set pressure). Specifically, the period from when the first back pressure valve 36 disposed upstream of the water adsorption device 22 is opened until the second back pressure valve 42 is opened, that is, time T1 to time in FIG. Until the time T2, the flow rate of hydrogen in the water adsorption device 22 is zero.

従って、冷却器20から導入された水分を含んだ水素が、水吸着装置22を急速に通過することがなく、前記水分を吸着材(図示せず)により確実に吸着することが可能になるという効果が得られる。   Therefore, hydrogen containing moisture introduced from the cooler 20 does not rapidly pass through the water adsorbing device 22, and the moisture can be reliably adsorbed by an adsorbent (not shown). An effect is obtained.

しかも、水吸着装置22にかかる圧力が設定されるため、前記水吸着装置22から水分が離脱し、この水分が該水吸着装置22の下流、すなわち、水素タンク26に移動することを阻止することができる。   In addition, since the pressure applied to the water adsorbing device 22 is set, moisture is desorbed from the water adsorbing device 22 and this water is prevented from moving to the downstream of the water adsorbing device 22, that is, to the hydrogen tank 26. Can do.

また、水電解装置14と水吸着装置22との間には、より具体的には、冷却器20と前記水吸着装置22との間には、第1背圧弁36が配置されている。これにより、水吸着装置22を上流側(冷却器20側)から遮断させることが可能になる。このため、水吸着装置22の洗浄作業等を容易且つ効率的に行うことができるという利点がある。   Further, more specifically, a first back pressure valve 36 is disposed between the water electrolysis device 14 and the water adsorption device 22 between the cooler 20 and the water adsorption device 22. Thereby, it becomes possible to interrupt the water adsorption device 22 from the upstream side (cooler 20 side). For this reason, there exists an advantage that the washing | cleaning operation | work of the water adsorption | suction apparatus 22, etc. can be performed easily and efficiently.

従って、水電解システム10では、水素に含まれている水分が水吸着装置22を通過することを、簡単な構成で、確実に阻止するとともに、所望のドライ水素を効率的に供給することが可能になるという効果が得られる。   Therefore, in the water electrolysis system 10, it is possible to reliably prevent moisture contained in hydrogen from passing through the water adsorption device 22 with a simple configuration and to efficiently supply desired dry hydrogen. The effect of becoming.

さらに、水吸着装置22は、第1背圧弁36を介して水電解装置14から遮断可能である。このため、水電解システム10の運転が一旦停止された際、水吸着装置22内を所望の圧力に維持することができる。これにより、図5に示すように、水電解システム10の運転が再開される際には(時間T3)、水吸着装置22の昇圧時間が有効に削減されるという利点がある。   Further, the water adsorption device 22 can be shut off from the water electrolysis device 14 via the first back pressure valve 36. For this reason, when the operation of the water electrolysis system 10 is temporarily stopped, the inside of the water adsorption device 22 can be maintained at a desired pressure. Thereby, as shown in FIG. 5, when the operation of the water electrolysis system 10 is resumed (time T3), there is an advantage that the pressure increase time of the water adsorption device 22 is effectively reduced.

さらにまた、水吸着装置22の洗浄に伴う脱圧処理では、図6に示すように、水吸着装置22の運転が停止されるとともに、電磁弁40が開放されて前記水吸着装置22の脱圧が行われる(時間T4)。次いで、運転が再開されると(時間T5)、第2背圧弁42が閉塞された状態で、水電解装置14から水吸着装置22までの圧力が上昇される(時間T6)。従って、水分が水吸着装置22を急速に通過することがなく、前記水分を吸着材(図示せず)により確実に吸着することが可能になる。   Furthermore, in the depressurization process accompanying the cleaning of the water adsorption device 22, as shown in FIG. 6, the operation of the water adsorption device 22 is stopped and the electromagnetic valve 40 is opened to depressurize the water adsorption device 22. Is performed (time T4). Next, when the operation is resumed (time T5), the pressure from the water electrolysis device 14 to the water adsorption device 22 is increased with the second back pressure valve 42 closed (time T6). Therefore, moisture does not rapidly pass through the water adsorbing device 22, and the moisture can be reliably adsorbed by the adsorbent (not shown).

10…水電解システム 12…純水供給装置
14…水電解装置 16…水素導出路
18…気液分離器 20…冷却器
22…水吸着装置 24…ドライ水素供給路
26…水素タンク 28…水電解セル
32…電解電源 34a〜34c…配管
36、42…背圧弁 38…圧抜き経路
DESCRIPTION OF SYMBOLS 10 ... Water electrolysis system 12 ... Pure water supply apparatus 14 ... Water electrolysis apparatus 16 ... Hydrogen lead-out path 18 ... Gas-liquid separator 20 ... Cooler 22 ... Water adsorption apparatus 24 ... Dry hydrogen supply path 26 ... Hydrogen tank 28 ... Water electrolysis Cell 32 ... Electrolytic power supply 34a-34c ... Piping 36, 42 ... Back pressure valve 38 ... Pressure release path

Claims (5)

直流電源からの通電により水を電気分解し、水素と酸素とを発生させる水電解装置と、
前記水電解装置から前記水素を排出する水素排出口の下流に接続され、排出された前記水素中の水を吸着する水吸着装置と、
を備える水電解システムであって、
前記水素排出口と前記水吸着装置との間に配置され、前記水電解装置により生成された水素圧力を、第1設定圧力まで昇圧させための第1圧力調整弁と、
前記水吸着装置の下流側に配置され、前記第1圧力調整弁を通過した前記水素を、前記第1設定圧力と同圧又は該第1設定圧力より高圧な第2設定圧力まで加圧保持する第2圧力調整弁と、
を備えることを特徴とする水電解システム。
A water electrolysis device that electrolyzes water by energization from a DC power source to generate hydrogen and oxygen;
A water adsorption device connected downstream of a hydrogen outlet for discharging the hydrogen from the water electrolysis device and adsorbing water in the discharged hydrogen;
A water electrolysis system comprising:
Said disposed between the hydrogen outlet and the water suction device, the hydrogen pressure generated by the water electrolysis device, the first pressure regulating valve for Ru is raised to a first set pressure,
The hydrogen that is disposed downstream of the water adsorbing device and that has passed through the first pressure regulating valve is pressurized and held up to a second set pressure that is the same as or higher than the first set pressure. A second pressure regulating valve,
A water electrolysis system comprising:
請求項1記載の水電解システムにおいて、前記水素排出口と前記水吸着装置との間には、流れ方向に沿って気液分離器、冷却器及び前記第1圧力調整弁の順に配置されることを特徴とする水電解システム。 In claim 1 Symbol placement of water electrolysis system, between the water suction device and the hydrogen discharge port, the gas-liquid separator in the flow direction, are arranged in the order of the cooler and the first pressure regulating valve A water electrolysis system characterized by that. 請求項1又は2記載の水電解システムにおいて、前記第1圧力調整弁及び前記第2圧力調整弁は、背圧弁であることを特徴とする水電解システム。 The water electrolysis system according to claim 1 or 2 , wherein the first pressure regulating valve and the second pressure regulating valve are back pressure valves. 請求項1〜のいずれか1項に記載の水電解システムにおいて、前記水電解装置は、常圧よりも高圧な高圧水素を排出することを特徴とする水電解システム。 The water electrolysis system according to any one of claims 1 to 3 , wherein the water electrolysis apparatus discharges high-pressure hydrogen having a pressure higher than normal pressure. 請求項1〜4のいずれか1項に記載の水電解システムにおいて、前記第1圧力調整弁と前記第2圧力調整弁との間に設けられ、前記水吸着装置を脱圧する際に開放される開放弁を有することを特徴とする水電解システム。5. The water electrolysis system according to claim 1, wherein the water electrolysis system is provided between the first pressure adjustment valve and the second pressure adjustment valve and is opened when the water adsorption device is depressurized. A water electrolysis system comprising an open valve.
JP2009045708A 2009-02-27 2009-02-27 Water electrolysis system Expired - Fee Related JP4997259B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009045708A JP4997259B2 (en) 2009-02-27 2009-02-27 Water electrolysis system
US12/712,733 US20100219066A1 (en) 2009-02-27 2010-02-25 Water electrolysis system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009045708A JP4997259B2 (en) 2009-02-27 2009-02-27 Water electrolysis system

Publications (2)

Publication Number Publication Date
JP2010196149A JP2010196149A (en) 2010-09-09
JP4997259B2 true JP4997259B2 (en) 2012-08-08

Family

ID=42666541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009045708A Expired - Fee Related JP4997259B2 (en) 2009-02-27 2009-02-27 Water electrolysis system

Country Status (2)

Country Link
US (1) US20100219066A1 (en)
JP (1) JP4997259B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5048814B2 (en) * 2010-07-20 2012-10-17 本田技研工業株式会社 Operation method of hydrogen filling system
JP5462754B2 (en) * 2010-09-24 2014-04-02 本田技研工業株式会社 Operation method of high pressure water electrolysis system
US20130316254A1 (en) * 2011-03-08 2013-11-28 Panasonic Corporation Energy system
JP5879878B2 (en) * 2011-09-28 2016-03-08 スズキ株式会社 Motorcycle
EP2617875B1 (en) * 2012-01-18 2014-09-17 H-TEC Systems GmbH Method for starting an electrolyser
US10290880B2 (en) * 2014-04-23 2019-05-14 GM Global Technology Operations LLC Fuel cell cathode balance of plant freeze strategy
JP6190782B2 (en) * 2014-09-01 2017-08-30 本田技研工業株式会社 Operation method of water electrolysis system
US11015763B2 (en) * 2016-02-23 2021-05-25 Tokico System Solutions, Ltd. Expansion turbine and compressor-type high-pressure hydrogen filling system and control method for same
JP6708505B2 (en) * 2016-07-14 2020-06-10 株式会社日立プラントメカニクス High-pressure hydrogen expansion turbine filling system
JP7178598B2 (en) * 2018-03-01 2022-11-28 パナソニックIpマネジメント株式会社 hydrogen system
JP7190677B2 (en) * 2018-03-06 2022-12-16 パナソニックIpマネジメント株式会社 hydrogen system
JP7363419B2 (en) 2019-11-29 2023-10-18 株式会社豊田中央研究所 water electrolysis system

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH062734Y2 (en) * 1986-07-22 1994-01-26 シ−ケ−デイ株式会社 Dehumidifier
JPH03237196A (en) * 1990-02-14 1991-10-23 Chubu Gas Kk Operation of dehydration apparatus for city gas
JPH03109627U (en) * 1990-02-23 1991-11-11
DE19645693C1 (en) * 1996-11-06 1998-05-14 Deutsch Zentr Luft & Raumfahrt Controlling introduction of replacement especially water to electrolytic process
JP3772261B2 (en) * 2002-05-31 2006-05-10 日立造船株式会社 Hydrogen supply device using solid polymer water electrolyzer
AU2003286064A1 (en) * 2002-11-27 2004-06-18 Hydrogenics Corporation An electrolyzer module for producing hydrogen for use in a fuel cell power unit
US20050211567A1 (en) * 2004-03-29 2005-09-29 Fleming Edward A Apparatus and method for integrated hypochlorite and hydrogen fuel production and electrochemical power generation
JP2007100204A (en) * 2005-10-07 2007-04-19 Mitsubishi Corp Method and apparatus for producing high pressure hydrogen
JP2008147346A (en) * 2006-12-08 2008-06-26 Konica Minolta Holdings Inc Method of manufacturing organic thin-film transistor, and organic thin-film transistor manufactured by the method
JP5380787B2 (en) * 2007-05-16 2014-01-08 株式会社Ihi Oxygen concentrator
JP4798076B2 (en) * 2007-06-27 2011-10-19 株式会社Ihi Oxygen concentrator

Also Published As

Publication number Publication date
US20100219066A1 (en) 2010-09-02
JP2010196149A (en) 2010-09-09

Similar Documents

Publication Publication Date Title
JP4997259B2 (en) Water electrolysis system
JP5061140B2 (en) How to stop water electrolysis system
JP5048814B2 (en) Operation method of hydrogen filling system
JP5192001B2 (en) Operation method of water electrolysis system
JP5437968B2 (en) Water electrolysis system
JP5139924B2 (en) Operation method of hydrogen generation system
JP5192004B2 (en) How to stop water electrolysis system
JP2009191333A (en) Hydrogen generating system
JP6090798B2 (en) High pressure water electrolysis system and control method thereof
JP7104110B2 (en) Water electrolysis system
JP2014080634A (en) High pressure water electrolysis system and method for operating the same
JP2011162818A (en) Water electrolysis system and method of replacing adsorption device
JP6348143B2 (en) Depressurization method for high pressure water electrolysis system
JP2011168862A (en) Water electrolysis system and method for operating the same
JP5798166B2 (en) Differential pressure type high pressure water electrolysis system and its starting method
JP2007231383A (en) Hydrogen generation system
JP2012067368A (en) Operating method of high-pressure water electrolytic system
JP2020176309A (en) Water electrolysis system and its control method
JP5462754B2 (en) Operation method of high pressure water electrolysis system
JP6367860B2 (en) Adsorbent replacement method for high pressure water electrolysis system
JP5350879B2 (en) Water electrolysis system
JP5912878B2 (en) Hydrogen oxygen generator and operation method of hydrogen oxygen generator
JP2013049907A (en) Water electrolysis system
US20210147264A1 (en) Water treatment device and water treatment method
JP6190782B2 (en) Operation method of water electrolysis system

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120424

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120514

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4997259

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees