JP4996061B2 - Polymer electrolyte fuel cell - Google Patents

Polymer electrolyte fuel cell Download PDF

Info

Publication number
JP4996061B2
JP4996061B2 JP2005153922A JP2005153922A JP4996061B2 JP 4996061 B2 JP4996061 B2 JP 4996061B2 JP 2005153922 A JP2005153922 A JP 2005153922A JP 2005153922 A JP2005153922 A JP 2005153922A JP 4996061 B2 JP4996061 B2 JP 4996061B2
Authority
JP
Japan
Prior art keywords
fuel
electrodes
electrode
oxidant
divided
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005153922A
Other languages
Japanese (ja)
Other versions
JP2006331860A (en
Inventor
泰忠 中川
貴洋 寺田
勇一 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2005153922A priority Critical patent/JP4996061B2/en
Publication of JP2006331860A publication Critical patent/JP2006331860A/en
Application granted granted Critical
Publication of JP4996061B2 publication Critical patent/JP4996061B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

本発明は、パッシブ型の固体高分子形燃料電池に関し、特に電圧損失を軽減し、出力を向上する電池構造を有するものに関する。   The present invention relates to a passive polymer electrolyte fuel cell, and more particularly to a cell having a battery structure that reduces voltage loss and improves output.

パッシブ型の固体高分子形燃料電池は、メタノール等の液体燃料と空気(酸化剤)とを電解質膜を介して化学反応させることで電力を得る電池部と、電子回路部品を有し電池部の起電動作を制御する発電制御部とを一体に備えている装置である。   A passive solid polymer fuel cell has a battery unit that obtains electric power by chemically reacting liquid fuel such as methanol and air (oxidant) through an electrolyte membrane, and an electronic circuit component. It is an apparatus that is integrally provided with a power generation control unit that controls electromotive operation.

図10は、固体高分子形燃料電池の基本構造を模式的に示す断面図である。液体燃料は、供給部101を通して燃料を保持する保液シート102に燃料を保持されている。保液シート102の直上には、多孔質の性質を備えた膜103があり、これら層を通して、各起電部108内に燃料が取り込まれる。起電部108は、燃料極105と空気極(酸化剤極)107及びこれら両電極にはさまれた電解質板106で構成される。また外気からは、吸気口104aを設けたカバー104及び多孔質の保湿シート109を介して、空気極107に空気が取り込まれる。このようにして燃料と酸素を反応させ電力を得る構造となっている。   FIG. 10 is a cross-sectional view schematically showing the basic structure of a polymer electrolyte fuel cell. The liquid fuel is held in the liquid retaining sheet 102 that holds the fuel through the supply unit 101. Immediately above the liquid retaining sheet 102 is a membrane 103 having a porous property, and fuel is taken into each electromotive unit 108 through these layers. The electromotive unit 108 includes a fuel electrode 105, an air electrode (oxidant electrode) 107, and an electrolyte plate 106 sandwiched between these electrodes. In addition, air is taken into the air electrode 107 from outside air through the cover 104 provided with the air inlet 104 a and the porous moisture retention sheet 109. Thus, the fuel and oxygen are reacted to obtain electric power.

例えば、燃料極、空気極、電解質板を持つ単電池を複数積層したスタック構造を具備し、燃料として用いる液体燃料を毛管力で各単電池内に導入するという燃料電池の基本特許が開示されている(例えば、特許文献1参照)。また、燃料や水分から燃料電池制御部の回路基板を確実に保護することができる装置構造が提供されている(例えば、特許文献2参照)。なお、スタック構造としては、例えば図11〜図13に示すようなものが知られている。図11中110はセパレータ、図12,10中111はインターコネクトを示している。
特開2000−106201号公報 特開2004−071259号公報
For example, a fuel cell basic patent is disclosed in which a stack structure in which a plurality of unit cells having a fuel electrode, an air electrode, and an electrolyte plate are stacked is provided, and liquid fuel used as fuel is introduced into each unit cell by capillary force. (For example, refer to Patent Document 1). Moreover, an apparatus structure that can reliably protect the circuit board of the fuel cell control unit from fuel and moisture is provided (for example, see Patent Document 2). As the stack structure, for example, the structure shown in FIGS. 11 to 13 is known. In FIG. 11, 110 indicates a separator, and 111 in FIGS. 12 and 10 indicates an interconnect.
JP 2000-106201 A JP 2004-071259 A

上述したパッシブ型の固体高分子形燃料電池では、次のような問題があった。すなわち、保液シート102に燃料を保持させる構造を有しているが、燃料供給部101は、必ずしも保液シート102の中央に設けられるわけではなく、むしろ装置構造上の他の制約により保液シート102の端に設けられることが多い。このような場合、拡散現象により液体燃料の保液シート102内で濃度勾配が発生する。保液シート102の中で濃度のばらつきがあると、そこから各起電部108に導入される燃料濃度にばらつきが発生してしまう。   The above-described passive polymer electrolyte fuel cell has the following problems. That is, although the liquid retaining sheet 102 has a structure for holding the fuel, the fuel supply unit 101 is not necessarily provided at the center of the liquid retaining sheet 102, but rather is retained due to other restrictions on the device structure. It is often provided at the end of the sheet 102. In such a case, a concentration gradient is generated in the liquid fuel retaining sheet 102 due to the diffusion phenomenon. If there is a variation in concentration in the liquid retaining sheet 102, the concentration of fuel introduced into each electromotive unit 108 will vary from there.

もし、適正な燃料よりも多く燃料が供給されてしまうと、燃料極105で反応しきれなかった燃料が電解質板106を通過して空気極107側に移動する。このような現象が起きると、燃料が発電に用いられないため無駄になるばかりか、空気極107の触媒表面積を低減させるため、電圧損失が生じてしまう。   If more fuel than the proper fuel is supplied, the fuel that could not be reacted at the fuel electrode 105 passes through the electrolyte plate 106 and moves to the air electrode 107 side. When such a phenomenon occurs, the fuel is not used for power generation and is wasted, and a voltage loss occurs because the catalyst surface area of the air electrode 107 is reduced.

一方、燃料が過度に少ない場合、反応を起こすエネルギが多くなり、このための燃料極105での電圧損失(活性化分極)が大きくなる。その他に、カバー104の吸気口104aの寸法や配置により空気供給が少ない場合には、空気極107での電圧損失(活性化分極)が大きくなる。   On the other hand, when the amount of fuel is excessively small, the energy causing the reaction increases, and the voltage loss (activation polarization) at the fuel electrode 105 for this purpose increases. In addition, when the air supply is small due to the size and arrangement of the intake port 104a of the cover 104, the voltage loss (activation polarization) at the air electrode 107 increases.

そこで本発明は、各燃料極、酸化剤極セルに対し適正な濃度の燃料や酸化剤を供給することで、電圧損失を防止し、出力を向上するとともに、燃料消費量を抑えることができる固体高分子形燃料電池を提供することを目的としている。   Therefore, the present invention supplies a fuel and an oxidant having an appropriate concentration to each fuel electrode and oxidant electrode cell, thereby preventing voltage loss, improving output, and suppressing fuel consumption. An object of the present invention is to provide a polymer fuel cell.

前記課題を解決し目的を達成するために、本発明の固体高分子形燃料電池は次のように構成されている。   In order to solve the problems and achieve the object, the polymer electrolyte fuel cell of the present invention is configured as follows.

(1)電解質膜を複数の燃料極及びこれら複数の燃料極にそれぞれ対向配置された複数の酸化剤極とで挟んで形成され電力を発生する起電部と、上記起電部の上記燃料極に液体燃料を供給する液体燃料供給部と、上記起電部の上記酸化剤極に酸化剤ガスを供給するガス供給部と、上記複数の燃料極及び上記複数の酸化剤極のうち、相対向しない燃料極及び酸化剤極とを電気的に結合する結合部材とを備え、上記複数の燃料極は、それぞれ複数の相互に並列結線された分割アノードを有するとともに、1の燃料極の分割アノード相互間に、他の燃料極の分割アノードが配置され、上記複数の酸化剤極は、それぞれ複数の相互に並列結線された分割カソードを有するとともに、1の酸化剤極の分割カソード相互間に、他の酸化剤極の分割カソードが配置されていることを特徴とする。 (1) An electromotive portion that is formed by sandwiching an electrolyte membrane between a plurality of fuel electrodes and a plurality of oxidant electrodes that are respectively disposed facing the plurality of fuel electrodes, and the fuel electrode of the electromotive portion. A liquid fuel supply unit that supplies liquid fuel to the gas generator, a gas supply unit that supplies an oxidant gas to the oxidant electrode of the electromotive unit, and a plurality of fuel electrodes and a plurality of oxidant electrodes that are opposed and a fuel electrode and the oxidant electrode without a coupling member for electrically coupling said plurality of fuel electrode, with each having a split anode is parallel connected to a plurality of mutually divided anode of the first fuel electrode therebetween, are arranged divided anode of the other fuel electrode, the plurality of oxidant electrode, with each having a split cathode in parallel connection to a plurality of mutually between split cathode mutual first oxidizer electrode Split cathode of other oxidant electrode Characterized in that it is arranged.

(2)前記(1)に記載された固体高分子形燃料電池であって、上記分割アノード及び上記分割カソードは、上記液体燃料又は上記酸化剤ガスの通流方向に交差する方向に分割されていることを特徴とする。 (2) The polymer electrolyte fuel cell according to (1), wherein the divided anode and the divided cathode are divided in a direction intersecting a flow direction of the liquid fuel or the oxidant gas. It is characterized by being.

(3)電解質膜を複数の燃料極及びこれら複数の燃料極にそれぞれ対向配置された複数の酸化剤極とで挟んで形成され電力を発生する起電部と、上記起電部の上記燃料極に液体燃料を供給する液体燃料供給部と、上記起電部の上記酸化剤極に酸化剤ガスを供給するガス供給部と、上記起電部で発生した電力を外部に導電する出力部と、上記複数の燃料極及び上記複数の酸化剤極のうち、相対向しない燃料極及び酸化剤極とを電気的に結合する結合部材とを備え、上記複数の燃料極は、上記電解質膜の面方向に離間した複数の相互に接続された分割アノード領域を有し、1の燃料極の分割アノード領域相互間に、他の燃料極の分割アノード領域が配置され、上記複数の酸化剤極は、上記電解質膜の面方向に離間した複数の相互に接続された分割カソード領域を有し、1の酸化剤極の分割カソード領域相互間に、他の酸化剤極の分割カソード領域が配置されていることを特徴とする。 (3) An electromotive part that is formed by sandwiching an electrolyte membrane between a plurality of fuel electrodes and a plurality of oxidant electrodes that are respectively disposed opposite to the plurality of fuel electrodes, and the fuel electrode of the electromotive part. A liquid fuel supply unit that supplies liquid fuel to the gas generator, a gas supply unit that supplies an oxidant gas to the oxidant electrode of the electromotive unit, an output unit that conducts power generated by the electromotive unit to the outside, A coupling member that electrically couples the fuel electrode and the oxidant electrode that are not opposite to each other among the plurality of fuel electrodes and the plurality of oxidant electrodes, wherein the plurality of fuel electrodes are in a plane direction of the electrolyte membrane has a split anode region connected to a plurality of mutually spaced, between the divided anode regions each other first fuel electrode, divided anode region of the other of the fuel electrode is disposed, the plurality of oxidant electrode, split connected to a plurality of mutually spaced in the plane direction of the electrolyte membrane It has a sword region, between the divided cathode region mutual first oxidizer electrode, characterized by dividing the cathode region of the other oxidizing agent electrode is disposed.

(3−1)前記(3)に記載された固体高分子形燃料電池であって、上記分割アノード領域及び上記分割カソード領域は、上記液体燃料又は上記酸化剤ガスの通流方向に交差する方向に離間していることを特徴とする。 (3-1) The polymer electrolyte fuel cell according to (3), wherein the divided anode region and the divided cathode region intersect a flow direction of the liquid fuel or the oxidant gas. It is characterized by being spaced apart.

(4)電解質膜を複数の燃料極及びこれら複数の燃料極にそれぞれ対向配置された複数の酸化剤極とで挟んで形成され電力を発生する起電部と、上記起電部の上記燃料極に液体燃料を供給する液体燃料供給部と、上記起電部の上記酸化剤極に酸化剤ガスを供給するガス供給部と、上記起電部で発生した電力を外部に導電する出力部と、上記複数の燃料極及び上記複数の酸化剤極のうち、相対向しない燃料極及び酸化剤極とを電気的に結合する結合部材とを備え、上記複数の燃料極は、上記電解質膜の面方向であって、かつ、異なる2方向に延設された複数の分割アノード部位を有し、少なくとも1方向に延設された分割アノード部位は、上記液体燃料の通流方向に沿って配置され、上記複数の酸化剤極は、上記電解質膜の面方向であって、かつ、異なる方向に延設された複数の分割カソード部位を有し、少なくとも1方向に延設された分割カソード部位は、上記酸化剤の通流方向に沿って配置されていることを特徴とする。 (4) An electromotive part that generates electricity by sandwiching an electrolyte membrane between a plurality of fuel electrodes and a plurality of oxidant electrodes that are respectively disposed facing the plurality of fuel electrodes, and the fuel electrode of the electromotive part A liquid fuel supply unit that supplies liquid fuel to the gas generator, a gas supply unit that supplies an oxidant gas to the oxidant electrode of the electromotive unit, an output unit that conducts power generated by the electromotive unit to the outside, A coupling member that electrically couples the fuel electrode and the oxidant electrode that are not opposite to each other among the plurality of fuel electrodes and the plurality of oxidant electrodes, wherein the plurality of fuel electrodes are in a plane direction of the electrolyte membrane And having a plurality of divided anode parts extending in two different directions, wherein the divided anode parts extended in at least one direction are arranged along the flow direction of the liquid fuel, The plurality of oxidizer electrodes are in the surface direction of the electrolyte membrane, and Has a plurality of divided cathode region which extends in a different direction, dividing the cathode region which extends at least one direction, characterized in that it is arranged along the flow direction of the oxidizing agent.

(5)電解質膜を複数の燃料極及びこれら複数の燃料極にそれぞれ対向配置された複数の酸化剤極とで挟んで形成され電力を発生する起電部と、上記起電部の上記燃料極に液体燃料を供給する液体燃料供給部と、上記起電部の上記酸化剤極に酸化剤ガスを供給するガス供給部と、上記起電部で発生した電力を外部に導電する出力部と、上記複数の燃料極及び上記複数の酸化剤極のうち、相対向しない燃料極及び酸化剤極とを電気的に結合する結合部材とを備え、上記複数の燃料極及び上記複数の酸化剤極は、上記電解質膜の面方向であって、かつ、上記液体燃料又は上記酸化剤の通流方向に沿って配置され、その間隔が上記所定の一方向に沿って漸次短くなるように配置されていることを特徴とする。 (5) An electromotive part that generates electricity by sandwiching an electrolyte membrane between a plurality of fuel electrodes and a plurality of oxidant electrodes that are respectively disposed facing the plurality of fuel electrodes, and the fuel electrode of the electromotive part A liquid fuel supply unit that supplies liquid fuel to the gas generator, a gas supply unit that supplies an oxidant gas to the oxidant electrode of the electromotive unit, an output unit that conducts power generated by the electromotive unit to the outside, Among the plurality of fuel electrodes and the plurality of oxidant electrodes, a coupling member that electrically couples the fuel electrode and the oxidant electrode that are not opposite to each other, and the plurality of fuel electrodes and the plurality of oxidant electrodes are And arranged in the surface direction of the electrolyte membrane and along the flow direction of the liquid fuel or the oxidant, and the interval is gradually shortened along the predetermined one direction. It is characterized by that.

本発明によれば、各セルに対し適正な濃度の燃料や酸化剤を供給することができるため、電圧損失を防止でき、出力が向上するとともに、燃料消費量を抑えることが可能となる。   According to the present invention, it is possible to supply an appropriate concentration of fuel and oxidant to each cell, so that voltage loss can be prevented, output can be improved, and fuel consumption can be suppressed.

図1は本発明の第1の実施の形態に係る固体高分子形の燃料電池10を模式的に示す断面図である。燃料電池10は、起電部20と、この起電部20の図1中下側に設けられた液体燃料供給部50と、起電部20の図1中上側に設けられた酸化剤供給部60とが積層配置されて構成されている。   FIG. 1 is a cross-sectional view schematically showing a polymer electrolyte fuel cell 10 according to a first embodiment of the present invention. The fuel cell 10 includes an electromotive unit 20, a liquid fuel supply unit 50 provided on the lower side of the electromotive unit 20 in FIG. 1, and an oxidant supply unit provided on the upper side of the electromotive unit 20 in FIG. 60 are stacked and arranged.

起電部20は、電解質板21と、この電解質板21を複数の燃料極(アノード)30〜32と、複数の空気極(酸化剤極/カソード)40〜42とで挟んで構成されている。燃料極30〜32は、それぞれ3つの分割アノード30a〜30c、31a〜31c、32a〜32cとを備えている。また、空気極40〜42は、それぞれ3つの分割カソード40a〜40c、41a〜41c、42a〜42cとを備えている。また、各セルは、燃料や酸化剤ガスを流通させると共に電子を通すように、導電性の多孔質体で形成されている。   The electromotive unit 20 is configured by sandwiching an electrolyte plate 21, and a plurality of fuel electrodes (anodes) 30 to 32 and a plurality of air electrodes (oxidant electrodes / cathodes) 40 to 42. . The fuel electrodes 30 to 32 include three divided anodes 30a to 30c, 31a to 31c, and 32a to 32c, respectively. The air electrodes 40 to 42 include three divided cathodes 40a to 40c, 41a to 41c, and 42a to 42c, respectively. Each cell is formed of a conductive porous body so that fuel and oxidant gas can flow and electrons can pass through.

液体燃料供給部50は、導入された液体燃料を気化させて燃料を気体の形で燃料極30〜32に供給する多孔質膜51と、この多孔質膜51に液体燃料を毛管力で導入するための保液シート52と、この保液シート52に液体燃料を供給する液体燃料導入口53とを備えている。酸化剤供給部60は、空気極40〜42側に設けられた保湿シート61と、この保湿シート61に重ねて配置されたカバー部材62とを備えている。カバー部材62には、吸気孔63が設けられている。   The liquid fuel supply unit 50 vaporizes the introduced liquid fuel and supplies the fuel to the fuel electrodes 30 to 32 in the form of gas, and introduces the liquid fuel into the porous film 51 by capillary force. A liquid retaining sheet 52 for supplying the liquid retaining sheet 52 and a liquid fuel inlet 53 for supplying liquid fuel to the liquid retaining sheet 52 are provided. The oxidant supply unit 60 includes a moisturizing sheet 61 provided on the air electrodes 40 to 42 side, and a cover member 62 disposed on the moisturizing sheet 61. The cover member 62 is provided with an intake hole 63.

分割アノード30a〜30c、31a〜31c、32a〜32c及び分割カソード40a〜40c、41a〜41c、42a〜42cは、図2に示すように結線されている。すなわち、各燃料極30〜32における分割アノード30a〜30c、31a〜31c、32a〜32cはそれぞれ並列に接続されている。また、各空気極40〜42における分割カソード40a〜40c、41a〜41c、42a〜42cはそれぞれ並列に接続されている。   The divided anodes 30a-30c, 31a-31c, 32a-32c and the divided cathodes 40a-40c, 41a-41c, 42a-42c are connected as shown in FIG. That is, the divided anodes 30a to 30c, 31a to 31c, and 32a to 32c in the fuel electrodes 30 to 32 are respectively connected in parallel. Further, the divided cathodes 40a to 40c, 41a to 41c, and 42a to 42c in the air electrodes 40 to 42 are connected in parallel, respectively.

さらに、分割アノード30bと分割カソード41b、分割アノード31bと分割カソード42bがインターコネクト(結合部材)70を介して直列に接続されている。すなわち、相対向しない燃料極30〜32及び空気極40〜42同士に直列に結合されていることとなる。   Further, the divided anode 30 b and the divided cathode 41 b, and the divided anode 31 b and the divided cathode 42 b are connected in series via an interconnect (coupling member) 70. That is, the fuel electrodes 30 to 32 and the air electrodes 40 to 42 that are not opposed to each other are coupled in series.

このように構成された燃料電池10においては、次のように作用する。なお、図2中矢印αは液体燃料の通流方向を示しており、進むにつれて燃料濃度が低くなる傾向にある。液体燃料導入口53から液体燃料が供給されると、保液シート52内を毛細管現象によって拡がってゆく。さらに、多孔質膜51により燃料は気化されて各燃料極30〜32に供給されることとなる。このとき、多孔質膜51や保液シート52内で燃料の濃度勾配が発生し、液体燃料導入口53により近い側の燃料濃度が高くなる傾向にあるが、上述したように、各燃料極30〜32は、電解質膜21の平面方向に沿って分散配置されているため、燃料濃度が均一化され、燃料の過不足が生じにくい。このため、電圧損失が発生せず、各セルにおいて最大の起電力を発生させることが可能となる。   The fuel cell 10 configured as described above operates as follows. Note that the arrow α in FIG. 2 indicates the flow direction of the liquid fuel, and there is a tendency that the fuel concentration decreases as it progresses. When the liquid fuel is supplied from the liquid fuel inlet 53, the inside of the liquid retaining sheet 52 expands by capillary action. Further, the fuel is vaporized by the porous film 51 and supplied to the fuel electrodes 30 to 32. At this time, a fuel concentration gradient is generated in the porous membrane 51 and the liquid retaining sheet 52, and the fuel concentration on the side closer to the liquid fuel introduction port 53 tends to increase. Since .about.32 are dispersedly arranged along the planar direction of the electrolyte membrane 21, the fuel concentration is made uniform and the excess or deficiency of the fuel hardly occurs. For this reason, voltage loss does not occur, and the maximum electromotive force can be generated in each cell.

図3は、上述したような分散配置をしなかった比較例と、本実施の形態における実施例1とを比較して示すものである。3つのセル1〜3を用いた場合、比較例では、十分な濃度で燃料が供給されているセル1,2では発電量が多く、燃料の不足により電圧損失が発生したセル3では発電量が少ない。これに対し、実施例1に示すように、全てのセル1〜3に適切な濃度で燃料が供給された場合、各セル1〜3では適切な発電が行われる。このため、実施例1は比較例に対して出力を向上させることが可能となる。また、燃料の過剰供給も防止することが可能となる。   FIG. 3 shows a comparison between the comparative example in which the above-described dispersion arrangement is not performed and Example 1 in the present embodiment. When three cells 1 to 3 are used, in the comparative example, the power generation amount is large in the cells 1 and 2 to which fuel is supplied at a sufficient concentration, and the power generation amount is high in the cell 3 in which voltage loss occurs due to the shortage of fuel. Few. On the other hand, as shown in Example 1, when fuel is supplied to all the cells 1 to 3 at an appropriate concentration, the cells 1 to 3 perform appropriate power generation. For this reason, Example 1 can improve an output with respect to a comparative example. It is also possible to prevent excessive supply of fuel.

上述したように、本第1の実施の形態に係る燃料電池10においては、各燃料極30〜32及び空気極40〜42に対し適正な濃度の燃料を供給することができるため、電圧損失を防止でき、出力が向上するとともに、燃料消費量を抑えることが可能となる。   As described above, in the fuel cell 10 according to the first embodiment, it is possible to supply fuel with an appropriate concentration to each of the fuel electrodes 30 to 32 and the air electrodes 40 to 42. As a result, the output can be improved and the fuel consumption can be reduced.

図4は本発明の第2の実施の形態に係る固体高分子形の燃料電池10における燃料極30,31及び空気極40,41の形状及び配置を模式的に示す説明図である。図4において図1,図2と同一機能部分には同一符号を付し、その詳細な説明は省略する。   FIG. 4 is an explanatory view schematically showing the shape and arrangement of the fuel electrodes 30 and 31 and the air electrodes 40 and 41 in the polymer electrolyte fuel cell 10 according to the second embodiment of the present invention. 4, the same functional parts as those in FIGS. 1 and 2 are denoted by the same reference numerals, and detailed description thereof is omitted.

本第2の実施の形態においては、各燃料極30,31は、電解質膜21の面方向に離間した複数の分割アノード領域30d,30e及び31d,31eを有し、燃料極30の分割アノード領域30d,30e相互間に、燃料極31の分割アノード領域31dが配置される関係にある。   In the second embodiment, each fuel electrode 30, 31 has a plurality of divided anode regions 30 d, 30 e and 31 d, 31 e that are separated in the surface direction of the electrolyte membrane 21. The split anode region 31d of the fuel electrode 31 is disposed between 30d and 30e.

同様に、各空気極40,41は、電解質膜21の面方向に離間した複数の分割カソード領域40d,40e及び41d,41eを有し、空気極40の分割アノード領域40d,40e相互間に、空気極41の分割アノード領域41dが配置される関係にある。   Similarly, each air electrode 40, 41 has a plurality of divided cathode regions 40 d, 40 e and 41 d, 41 e that are separated in the surface direction of the electrolyte membrane 21, and between the divided anode regions 40 d, 40 e of the air electrode 40, The split anode region 41d of the air electrode 41 is disposed.

本第2の実施の形態に係る燃料電池においても、各燃料極30,31及び空気極40,41に対し供給される燃料の濃度が均一化されるため、適切な量を供給することができ、電圧損失を防止でき、出力が向上するとともに、燃料消費量を抑えることが可能となる。   Also in the fuel cell according to the second embodiment, the concentration of fuel supplied to each fuel electrode 30, 31 and air electrode 40, 41 is made uniform, so that an appropriate amount can be supplied. Thus, voltage loss can be prevented, output can be improved, and fuel consumption can be suppressed.

図5は、上述した燃料極30,31及び空気極40,41の形状及び配置の変形例を示す説明図である。すなわち、本変形例においては、各燃料極30,31は、電解質膜21の面方向に離間した複数の分割アノード領域30d,30e及び31d,31eを有し、燃料極30の分割アノード領域30d,30e相互間に、燃料極31の分割アノード領域31d,31eが配置される関係にある。   FIG. 5 is an explanatory view showing a modification of the shape and arrangement of the fuel electrodes 30 and 31 and the air electrodes 40 and 41 described above. That is, in this modification, each fuel electrode 30, 31 has a plurality of divided anode regions 30 d, 30 e and 31 d, 31 e that are separated in the surface direction of the electrolyte membrane 21, and the divided anode regions 30 d, 30 d, The split anode regions 31d and 31e of the fuel electrode 31 are disposed between 30e.

同様に、各空気極40,41は、電解質膜21の面方向に離間した複数の分割カソード領域40d,40e及び41d,41eを有し、空気極40の分割アノード領域40d,40e相互間に、空気極41の分割アノード領域41d,41eが配置される関係にある。   Similarly, each air electrode 40, 41 has a plurality of divided cathode regions 40 d, 40 e and 41 d, 41 e that are separated in the surface direction of the electrolyte membrane 21, and between the divided anode regions 40 d, 40 e of the air electrode 40, The divided anode regions 41d and 41e of the air electrode 41 are arranged.

本変形例においても、各燃料極30,31及び空気極40,41に対し供給される燃料の濃度が均一化されるため、適切な量を供給することができ、電圧損失を防止でき、出力が向上するとともに、燃料消費量を抑えることが可能となる。   Also in this modification, since the concentration of the fuel supplied to the fuel electrodes 30, 31 and the air electrodes 40, 41 is made uniform, an appropriate amount can be supplied, voltage loss can be prevented, and output can be prevented. As a result, fuel consumption can be reduced.

図6は本発明の第3の実施の形態に係る固体高分子形の燃料電池10における燃料極30〜33及び空気極40〜43の形状及び配置を模式的に示す説明図である。図6において図1,図2と同一機能部分には同一符号を付し、その詳細な説明は省略する。   FIG. 6 is an explanatory diagram schematically showing the shapes and arrangements of the fuel electrodes 30 to 33 and the air electrodes 40 to 43 in the polymer electrolyte fuel cell 10 according to the third embodiment of the present invention. 6, the same functional parts as those in FIGS. 1 and 2 are denoted by the same reference numerals, and detailed description thereof is omitted.

本第3の実施の形態においては、各燃料極30〜33は、電解質膜21の面方向であって、かつ、異なる2方向に延設された複数の分割アノード部位30f,30g、31f,31g、32f,32g、33f,33gを有し、そのうち1方向に延設された分割アノード部位31f,32g,33f,30gは、液体燃料の通流方向αに沿って配置されている。   In the third embodiment, each of the fuel electrodes 30 to 33 is a plurality of divided anode portions 30f, 30g, 31f, 31g extending in two different directions in the surface direction of the electrolyte membrane 21. , 32f, 32g, 33f, and 33g, of which the divided anode portions 31f, 32g, 33f, and 30g extending in one direction are arranged along the flow direction α of the liquid fuel.

同様に、各空気極40〜43は、電解質膜21の面方向であって、かつ、異なる2方向に延設された複数の分割カソード部位40f,40g、41f,41g、42f,42g、43f,43gを有し、そのうち1方向に延設された分割アノード部位41f,42g,43f,40gは、液体燃料の通流方向αに沿って配置されている。   Similarly, each air electrode 40-43 is the surface direction of the electrolyte membrane 21, and is divided into a plurality of divided cathode portions 40f, 40g, 41f, 41g, 42f, 42g, 43f, extending in two different directions. The divided anode portions 41f, 42g, 43f, and 40g having 43g and extending in one direction are arranged along the flow direction α of the liquid fuel.

本第3の実施の形態に係る燃料電池においても、各燃料極30〜33及び空気極40〜43に対し供給される燃料が均一化あるいは燃料のばらつきを小さくできるため、適切な量を供給することができ、電圧損失を防止でき、出力が向上するとともに、燃料消費量を抑えることが可能となる。   Also in the fuel cell according to the third embodiment, since the fuel supplied to each of the fuel electrodes 30 to 33 and the air electrodes 40 to 43 can be made uniform or the variation in fuel can be reduced, an appropriate amount is supplied. Thus, voltage loss can be prevented, output can be improved, and fuel consumption can be suppressed.

図7は、上述した燃料極30〜33及び空気極40〜43の変形例を示す説明図である。本変形例においては、各燃料極30〜33及び空気極40〜43の配置は図6と同様であるが、液体燃料が各燃料極30〜33の中央に供給されることから、通流方向αは放射状となる。   FIG. 7 is an explanatory view showing a modified example of the fuel electrodes 30 to 33 and the air electrodes 40 to 43 described above. In this modification, the arrangement of the fuel electrodes 30 to 33 and the air electrodes 40 to 43 is the same as in FIG. 6, but the liquid fuel is supplied to the center of the fuel electrodes 30 to 33, so that the flow direction α is radial.

本変形例においては、各燃料極30〜33及び空気極40〜43に対し供給される燃料をさらに均一化することにより、燃料のばらつきを小さくできる。したがって、適切な量を供給することができ、電圧損失を防止でき、出力が向上するとともに、燃料消費量を抑えることが可能となる。   In this modification, the fuel variation can be reduced by making the fuel supplied to the fuel electrodes 30 to 33 and the air electrodes 40 to 43 more uniform. Accordingly, an appropriate amount can be supplied, voltage loss can be prevented, output can be improved, and fuel consumption can be suppressed.

図8は本発明の第4の実施の形態に係る固体高分子形の燃料電池10における電解質膜21、燃料極30〜36及び空気極40〜46の形状及び配置を模式的に示す説明図である。図8において図1,図2と同一機能部分には同一符号を付し、その詳細な説明は省略する。   FIG. 8 is an explanatory view schematically showing the shape and arrangement of the electrolyte membrane 21, the fuel electrodes 30 to 36, and the air electrodes 40 to 46 in the polymer electrolyte fuel cell 10 according to the fourth embodiment of the present invention. is there. 8, the same functional parts as those in FIGS. 1 and 2 are denoted by the same reference numerals, and detailed description thereof is omitted.

本第4の実施の形態においては、各燃料極30〜36は、電解質膜21の面方向であって、かつ、燃料の通流方向αに沿って順次配置されている。また、各燃料極30〜36の間隔は、燃料濃度が濃い部分では密に、燃料濃度が低い部分では疎となるように配置されている。各空気極40〜46は、上述した燃料極30〜36に対向配置されている。   In the fourth embodiment, the fuel electrodes 30 to 36 are sequentially arranged in the surface direction of the electrolyte membrane 21 and along the fuel flow direction α. Further, the intervals between the fuel electrodes 30 to 36 are arranged so as to be dense in a portion where the fuel concentration is high and sparse in a portion where the fuel concentration is low. The air electrodes 40 to 46 are disposed so as to face the fuel electrodes 30 to 36 described above.

このため、供給される燃料の多い部分では、多数の燃料極及び空気極により燃料を十分に供給し、供給される燃料が少ない部分では、少数燃料極及び空気極により燃料を十分に供給できるようにした。   For this reason, fuel can be sufficiently supplied by a large number of fuel electrodes and air electrodes in a portion where a large amount of fuel is supplied, and fuel can be sufficiently supplied by a small number of fuel electrodes and air electrodes in a portion where the supplied fuel is small. I made it.

本第4の実施の形態に係る燃料電池においても、各燃料極30〜33及び空気極40〜43に対し供給される燃料や酸化剤の濃度が均一化されるため、適切な量を供給することができ、電圧損失を防止でき、出力が向上するとともに、燃料消費量を抑えることが可能となる。   Also in the fuel cell according to the fourth embodiment, the concentration of fuel and oxidant supplied to each of the fuel electrodes 30 to 33 and the air electrodes 40 to 43 is made uniform, so that an appropriate amount is supplied. Thus, voltage loss can be prevented, output can be improved, and fuel consumption can be suppressed.

図9は、上述した電解質膜21、燃料極30〜33及び空気極40〜43の変形例を示す説明図である。本変形例においては、各燃料極30〜33は、電解質膜21の面方向であって、かつ、燃料の通流方向αに沿って順次配置されている。また、各燃料極30〜33のそれぞれの長さは、燃料濃度が濃い部分では長く、燃料濃度が低い部分では短くなるように配置されている。各空気極40〜43は、上述した燃料極30〜33に対向配置されている。   FIG. 9 is an explanatory view showing a modification of the electrolyte membrane 21, the fuel electrodes 30 to 33, and the air electrodes 40 to 43 described above. In the present modification, the fuel electrodes 30 to 33 are sequentially arranged along the surface direction of the electrolyte membrane 21 and along the fuel flow direction α. Further, the lengths of the fuel electrodes 30 to 33 are arranged so as to be long in the portion where the fuel concentration is high and short in the portion where the fuel concentration is low. The air electrodes 40 to 43 are disposed to face the fuel electrodes 30 to 33 described above.

このため、供給される燃料の多い部分では、大面積の燃料極及び空気極により燃料を十分に供給し、供給される燃料が少ない部分では、小面積の燃料極及び空気極により燃料を十分に供給できるようにした。   For this reason, fuel is sufficiently supplied by a large-area fuel electrode and air electrode in a portion where the supplied fuel is large, and fuel is sufficiently supplied by a small-area fuel electrode and air electrode in a portion where the supplied fuel is small. I was able to supply.

本変形例においても、各燃料極30〜33及び空気極40〜43に対し供給される燃料の濃度が均一化されるため、適切な量を供給することができ、電圧損失を防止でき、出力が向上するとともに、燃料消費量を抑えることが可能となる。   Also in this modification, since the concentration of the fuel supplied to each of the fuel electrodes 30 to 33 and the air electrodes 40 to 43 is made uniform, an appropriate amount can be supplied, voltage loss can be prevented, and the output As a result, fuel consumption can be reduced.

なお、本発明は上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。   Note that the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. In addition, various inventions can be formed by appropriately combining a plurality of components disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, constituent elements over different embodiments may be appropriately combined.

本発明の第1の実施の形態に係る固体高分子形の燃料電池を模式的に示す断面図。1 is a cross-sectional view schematically showing a solid polymer fuel cell according to a first embodiment of the present invention. 同燃料電池に組み込まれた燃料極及び空気極の分割アノード及び分割カソードの構成を模式的に示す説明図。Explanatory drawing which shows typically the structure of the division | segmentation anode and division | segmentation cathode of a fuel electrode and an air electrode which were integrated in the same fuel cell. 同燃料電池における起電力を比較するための説明図。Explanatory drawing for comparing the electromotive force in the fuel cell. 本発明の第2の実施の形態に係る固体高分子形の燃料電池に組み込まれた燃料極及び空気極の構成を模式的に示す説明図。Explanatory drawing which shows typically the structure of the fuel electrode and air electrode which were integrated in the polymer electrolyte fuel cell which concerns on the 2nd Embodiment of this invention. 同燃料極及び空気極の変形例を示す説明図。Explanatory drawing which shows the modification of the same fuel electrode and an air electrode. 本発明の第3の実施の形態に係る固体高分子形の燃料電池に組み込まれた燃料極及び空気極の構成を模式的に示す説明図。Explanatory drawing which shows typically the structure of the fuel electrode and air electrode which were integrated in the polymer electrolyte fuel cell which concerns on the 3rd Embodiment of this invention. 同燃料極及び空気極の変形例を示す説明図。Explanatory drawing which shows the modification of the same fuel electrode and an air electrode. 本発明の第4の実施の形態に係る固体高分子形の燃料電池に組み込まれた燃料極及び空気極の構成を模式的に示す説明図。Explanatory drawing which shows typically the structure of the fuel electrode and air electrode which were integrated in the polymer electrolyte fuel cell which concerns on the 4th Embodiment of this invention. 同燃料極及び空気極の変形例を示す説明図。Explanatory drawing which shows the modification of the same fuel electrode and an air electrode. 固体高分子形の燃料電池の一例を示す断面図。Sectional drawing which shows an example of a polymer electrolyte fuel cell. 固体高分子形の燃料電池のスタック構造の一例を模式的に示す説明図。Explanatory drawing which shows typically an example of the stack structure of a polymer electrolyte fuel cell. 固体高分子形の燃料電池のスタック構造の一例を模式的に示す説明図。Explanatory drawing which shows typically an example of the stack structure of a polymer electrolyte fuel cell. 固体高分子形の燃料電池のスタック構造の一例を模式的に示す説明図。Explanatory drawing which shows typically an example of the stack structure of a polymer electrolyte fuel cell.

符号の説明Explanation of symbols

10…燃料電池、20…起電部、21…電解質板、30〜36…燃料極(アノード)、30a〜30c、31a〜31c、32a〜32c…分割アノード、30d,30e、31d,31e…分割アノード領域、30f,30g、31f,31g、32f,32g、33f,33g…分割アノード部位、40〜46…空気極(カソード)、40a〜40c、41a〜41c、42a〜42c…分割カソード、40d,40e、41d,41e…分割カソード領域、40f,40g、41f,41g、42f,42g、43f,43g…分割カソード部位、50…液体燃料供給部、51…多孔質膜、52…保液シート、60…酸化剤供給部61…保湿シート、62…カバー部材、63…吸気孔。   DESCRIPTION OF SYMBOLS 10 ... Fuel cell, 20 ... Electromotive part, 21 ... Electrolyte plate, 30-36 ... Fuel electrode (anode), 30a-30c, 31a-31c, 32a-32c ... Split anode, 30d, 30e, 31d, 31e ... Split Anode region, 30f, 30g, 31f, 31g, 32f, 32g, 33f, 33g ... split anode part, 40-46 ... air electrode (cathode), 40a-40c, 41a-41c, 42a-42c ... split cathode, 40d, 40e, 41d, 41e ... split cathode region, 40f, 40g, 41f, 41g, 42f, 42g, 43f, 43g ... split cathode part, 50 ... liquid fuel supply part, 51 ... porous membrane, 52 ... liquid retaining sheet, 60 ... oxidant supply part 61 ... moisturizing sheet, 62 ... cover member, 63 ... intake hole.

Claims (5)

電解質膜を複数の燃料極及びこれら複数の燃料極にそれぞれ対向配置された複数の酸化剤極とで挟んで形成され電力を発生する起電部と、
上記起電部の上記燃料極に液体燃料を供給する液体燃料供給部と、
上記起電部の上記酸化剤極に酸化剤ガスを供給するガス供給部と、
上記複数の燃料極及び上記複数の酸化剤極のうち、相対向しない燃料極及び酸化剤極とを電気的に結合する結合部材とを備え、
上記複数の燃料極は、それぞれ複数の相互に並列結線された分割アノードを有するとともに、1の燃料極の分割アノード相互間に、他の燃料極の分割アノードが配置され、
上記複数の酸化剤極は、それぞれ複数の相互に並列結線された分割カソードを有するとともに、1の酸化剤極の分割カソード相互間に、他の酸化剤極の分割カソードが配置されていることを特徴とする固体高分子形燃料電池。
An electromotive part for generating electric power formed by sandwiching an electrolyte membrane between a plurality of fuel electrodes and a plurality of oxidant electrodes respectively opposed to the plurality of fuel electrodes;
A liquid fuel supply unit for supplying liquid fuel to the fuel electrode of the electromotive unit;
A gas supply unit for supplying an oxidant gas to the oxidant electrode of the electromotive unit;
A coupling member that electrically couples the fuel electrode and the oxidant electrode that are not opposite to each other among the plurality of fuel electrodes and the plurality of oxidant electrodes;
The plurality of fuel electrode, with each having a parallel-connected divided anode to a plurality of mutually between segmented anodes mutual 1 of the fuel electrode, is arranged divided anode of the other anode,
The plurality of oxidant electrode, with each having a split cathode in parallel connection to a plurality of mutually between split cathode mutual first oxidizer electrode, the divided cathode of another oxidizing agent electrode is arranged A polymer electrolyte fuel cell.
上記分割アノード及び上記分割カソードは、上記液体燃料又は上記酸化剤ガスの通流方向に交差する方向に分割されていることを特徴とする請求項1に記載の固体高分子形燃料電池。   2. The polymer electrolyte fuel cell according to claim 1, wherein the divided anode and the divided cathode are divided in a direction intersecting a flow direction of the liquid fuel or the oxidant gas. 電解質膜を複数の燃料極及びこれら複数の燃料極にそれぞれ対向配置された複数の酸化剤極とで挟んで形成され電力を発生する起電部と、
上記起電部の上記燃料極に液体燃料を供給する液体燃料供給部と、
上記起電部の上記酸化剤極に酸化剤ガスを供給するガス供給部と、
上記起電部で発生した電力を外部に導電する出力部と、
上記複数の燃料極及び上記複数の酸化剤極のうち、相対向しない燃料極及び酸化剤極とを電気的に結合する結合部材とを備え、
上記複数の燃料極は、上記電解質膜の面方向に離間した複数の相互に接続された分割アノード領域を有し、1の燃料極の分割アノード領域相互間に、他の燃料極の分割アノード領域が配置され、
上記複数の酸化剤極は、上記電解質膜の面方向に離間した複数の相互に接続された分割カソード領域を有し、1の酸化剤極の分割カソード領域相互間に、他の酸化剤極の分割カソード領域が配置されていることを特徴とする固体高分子形燃料電池。
An electromotive part for generating electric power formed by sandwiching an electrolyte membrane between a plurality of fuel electrodes and a plurality of oxidant electrodes respectively opposed to the plurality of fuel electrodes;
A liquid fuel supply unit for supplying liquid fuel to the fuel electrode of the electromotive unit;
A gas supply unit for supplying an oxidant gas to the oxidant electrode of the electromotive unit;
An output unit that conducts electricity generated by the electromotive unit to the outside;
A coupling member that electrically couples the fuel electrode and the oxidant electrode that are not opposite to each other among the plurality of fuel electrodes and the plurality of oxidant electrodes;
The plurality of fuel electrode has a plurality of interconnected divided anode regions spaced in the plane direction of the electrolyte membrane, between the divided anode regions each other first fuel electrode, segmented anode of the other anode The area is placed,
The plurality of oxidant electrode has a split cathode region connected to a plurality of mutually spaced in the plane direction of the electrolyte membrane, between the divided cathode region mutual first oxidizer electrode, other oxidant electrode A solid polymer fuel cell characterized in that a divided cathode region is arranged.
電解質膜を複数の燃料極及びこれら複数の燃料極にそれぞれ対向配置された複数の酸化剤極とで挟んで形成され電力を発生する起電部と、
上記起電部の上記燃料極に液体燃料を供給する液体燃料供給部と、
上記起電部の上記酸化剤極に酸化剤ガスを供給するガス供給部と、
上記起電部で発生した電力を外部に導電する出力部と、
上記複数の燃料極及び上記複数の酸化剤極のうち、相対向しない燃料極及び酸化剤極とを電気的に結合する結合部材とを備え、
上記複数の燃料極は、上記電解質膜の面方向であって、かつ、異なる2方向に延設された複数の分割アノード部位を有し、少なくとも1方向に延設された分割アノード部位は、上記液体燃料の通流方向に沿って配置され、
上記複数の酸化剤極は、上記電解質膜の面方向であって、かつ、異なる方向に延設された複数の分割カソード部位を有し、少なくとも1方向に延設された分割カソード部位は、上記酸化剤の通流方向に沿って配置されていることを特徴とする固体高分子形燃料電池。
An electromotive part for generating electric power formed by sandwiching an electrolyte membrane between a plurality of fuel electrodes and a plurality of oxidant electrodes respectively opposed to the plurality of fuel electrodes;
A liquid fuel supply unit for supplying liquid fuel to the fuel electrode of the electromotive unit;
A gas supply unit for supplying an oxidant gas to the oxidant electrode of the electromotive unit;
An output unit that conducts electricity generated by the electromotive unit to the outside;
A coupling member that electrically couples the fuel electrode and the oxidant electrode that are not opposite to each other among the plurality of fuel electrodes and the plurality of oxidant electrodes;
The plurality of fuel electrodes have a plurality of divided anode parts extending in two different directions in the surface direction of the electrolyte membrane, and the divided anode parts extended in at least one direction are Arranged along the flow direction of the liquid fuel,
The plurality of oxidizer electrodes have a plurality of divided cathode portions extending in different directions in the surface direction of the electrolyte membrane, and the divided cathode portions extended in at least one direction are A polymer electrolyte fuel cell, characterized by being disposed along a flow direction of an oxidant.
電解質膜を複数の燃料極及びこれら複数の燃料極にそれぞれ対向配置された複数の酸化剤極とで挟んで形成され電力を発生する起電部と、
上記起電部の上記燃料極に液体燃料を供給する液体燃料供給部と、
上記起電部の上記酸化剤極に酸化剤ガスを供給するガス供給部と、
上記起電部で発生した電力を外部に導電する出力部と、
上記複数の燃料極及び上記複数の酸化剤極のうち、相対向しない燃料極及び酸化剤極とを電気的に結合する結合部材とを備え、
上記複数の燃料極及び上記複数の酸化剤極は、上記電解質膜の面方向であって、かつ、上記液体燃料又は上記酸化剤の通流方向に沿って配置され、その間隔が上記所定の一方向に沿って漸次短くなるように配置されていることを特徴とする固体高分子形燃料電池。
An electromotive part for generating electric power formed by sandwiching an electrolyte membrane between a plurality of fuel electrodes and a plurality of oxidant electrodes respectively opposed to the plurality of fuel electrodes;
A liquid fuel supply unit for supplying liquid fuel to the fuel electrode of the electromotive unit;
A gas supply unit for supplying an oxidant gas to the oxidant electrode of the electromotive unit;
An output unit that conducts electricity generated by the electromotive unit to the outside;
A coupling member that electrically couples the fuel electrode and the oxidant electrode that are not opposite to each other among the plurality of fuel electrodes and the plurality of oxidant electrodes;
The plurality of fuel electrodes and the plurality of oxidizer electrodes are arranged along the surface direction of the electrolyte membrane and along the flow direction of the liquid fuel or the oxidizer, and the intervals thereof are the predetermined one. A solid polymer fuel cell, characterized by being arranged so as to be gradually shorter along a direction.
JP2005153922A 2005-05-26 2005-05-26 Polymer electrolyte fuel cell Expired - Fee Related JP4996061B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005153922A JP4996061B2 (en) 2005-05-26 2005-05-26 Polymer electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005153922A JP4996061B2 (en) 2005-05-26 2005-05-26 Polymer electrolyte fuel cell

Publications (2)

Publication Number Publication Date
JP2006331860A JP2006331860A (en) 2006-12-07
JP4996061B2 true JP4996061B2 (en) 2012-08-08

Family

ID=37553341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005153922A Expired - Fee Related JP4996061B2 (en) 2005-05-26 2005-05-26 Polymer electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP4996061B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009140824A (en) * 2007-12-07 2009-06-25 Sony Corp New fuel cell, and power supply device and electronic device using the fuel cell
JP5334559B2 (en) * 2008-12-19 2013-11-06 本田技研工業株式会社 Fuel cell

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1241725B1 (en) * 2001-03-16 2010-05-12 Samsung SDI Co., Ltd. Monopolar cell pack of direct methanol fuel cells
JP2003197225A (en) * 2001-12-28 2003-07-11 Dainippon Printing Co Ltd High polymer electrolyte fuel cell
KR100450820B1 (en) * 2002-04-23 2004-10-01 삼성에스디아이 주식회사 Air breathing direct methanol fuel cell pack
CN100514735C (en) * 2003-02-18 2009-07-15 日本电气株式会社 Fuel cell and method for manufacturing the same
FR2857163B1 (en) * 2003-07-01 2008-12-26 Commissariat Energie Atomique FUEL CELL IN WHICH A FLUID CIRCULARLY CIRCUMSTANCES PARALLEL TO THE ELECTROLYTIC MEMBRANE AND METHOD OF MANUFACTURING SUCH A FUEL CELL
JP2005129261A (en) * 2003-10-21 2005-05-19 Yuasa Corp Direct liquid supply type fuel cell
JP4794178B2 (en) * 2004-05-10 2011-10-19 新光電気工業株式会社 Solid electrolyte fuel cell

Also Published As

Publication number Publication date
JP2006331860A (en) 2006-12-07

Similar Documents

Publication Publication Date Title
JP4996061B2 (en) Polymer electrolyte fuel cell
JP5241430B2 (en) Fuel cell stack device, fuel cell module and fuel cell device
KR100627373B1 (en) Stack for fuel cell
JP5011749B2 (en) Fuel cell device
KR100637487B1 (en) Fuel cell system and stack of the same
KR100637490B1 (en) Stack for fuel cell and fuel cell system with the same
KR100684781B1 (en) Stack and fuel cell apparatus with the same
KR100796656B1 (en) Fuel cell system
JP2005310794A (en) Fuel cell system
JP6117690B2 (en) Cell stack device, fuel cell module and fuel cell device
JP6810300B1 (en) Cell stack device, module and module containment device
KR101181821B1 (en) Fuel cell system and stack of the same
JP2021022476A (en) Cell stack device, fuel cell module, and fuel cell device
KR100599690B1 (en) Fuel cell system and stack of the same
JP2005340210A (en) Fuel cell system and stack
JP2007299646A (en) Cell stack unit of fuel cell and fuel cell equipped with it
JP2017208260A (en) Cell stack device, module, and module housing device
JP6599709B2 (en) Cell stack, cell stack device, module and module housing device
KR100590010B1 (en) Fuel cell system and stack of the same
JP5099491B2 (en) Flat fuel cell stack
KR20060020024A (en) Fuel cell system and stack
KR101173857B1 (en) Fuel cell system and stack and separator of the same
KR101126204B1 (en) Fuel cell system
JP2004071426A (en) Fuel cell package and electronic equipment using fuel cell
KR100627389B1 (en) Fuel cell system and stack of the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080513

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110628

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120417

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120511

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4996061

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120529

A072 Dismissal of procedure [no reply to invitation to correct request for examination]

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20121009

LAPS Cancellation because of no payment of annual fees