JP4993268B2 - Method for producing vinyl chloride polymer - Google Patents

Method for producing vinyl chloride polymer Download PDF

Info

Publication number
JP4993268B2
JP4993268B2 JP2006295855A JP2006295855A JP4993268B2 JP 4993268 B2 JP4993268 B2 JP 4993268B2 JP 2006295855 A JP2006295855 A JP 2006295855A JP 2006295855 A JP2006295855 A JP 2006295855A JP 4993268 B2 JP4993268 B2 JP 4993268B2
Authority
JP
Japan
Prior art keywords
polymerization
vinyl chloride
net
chloride polymer
stirring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006295855A
Other languages
Japanese (ja)
Other versions
JP2008111065A (en
Inventor
敬蔵 林
洋介 浅井
克富 永井
佳治 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2006295855A priority Critical patent/JP4993268B2/en
Publication of JP2008111065A publication Critical patent/JP2008111065A/en
Application granted granted Critical
Publication of JP4993268B2 publication Critical patent/JP4993268B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Polymerisation Methods In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

本発明は塩化ビニル系単量体の懸濁重合法に関し、詳しくは特定の転化率における重合機の内容積1m3あたりの正味撹拌動力を制御することにより、粒度の細かい粒子および粒度の大きい粒子の生成を抑制することができる塩化ビニル系単量体の懸濁重合法に関するものである。 The present invention relates to a suspension polymerization method of a vinyl chloride monomer, and more specifically, by controlling the net stirring power per 1 m 3 of an internal volume of a polymerization machine at a specific conversion rate, fine particles and large particles are controlled. The present invention relates to a suspension polymerization method of a vinyl chloride monomer capable of suppressing the formation of.

塩化ビニル系単量体の重合の多くは油溶性重合開始剤の存在下に水性媒体中で懸濁重合する方法が採用されている。得られた重合体の回収は、スラリーをスーパーデカンターなどのろ過機を用い、脱水した後、熱風で乾燥する。乾燥粉体はサイクロンなどの捕集装置を用い、集められる。この乾燥粉体に200メッシュ以下の微粉が多いと、収率が低く、経済的でなく、また、乾燥粉体に60メッシュ以上の粗大粒子が多いと、収率が低くなり経済的でなくなるとともに、フィッシュアイが増加し、品質問題を起こすという課題が生じる。   In many polymerizations of vinyl chloride monomers, a method of suspension polymerization in an aqueous medium in the presence of an oil-soluble polymerization initiator is employed. The obtained polymer is recovered by dehydrating the slurry using a filter such as a super decanter and then drying with hot air. The dry powder is collected using a collection device such as a cyclone. If this dry powder contains a fine powder of 200 mesh or less, the yield is low and not economical, and if the dry powder contains many coarse particles of 60 mesh or more, the yield is low and not economical. As a result, fish eyes increase, causing the problem of quality problems.

このような塩化ビニル系重合体に関する課題を解決するために、例えば、重合転化率が0.1%〜5.0%未満の間まで重合器内の内容液1m3あたりの正味の攪拌動力を1.0〜2.0kw/m3に制御し、その後重合転化率が0.2kw/m3以上1.0kw/m3未満に調整して重合を継続し、6時間以内に重合を完結する塩化ビニル系重合体の製造方法が開示されている(特許文献1)。しかし、この方法では、微粉が少ない重合体は得られるものの、粗粒が多く存在し、フィッシュアイも十分に低減できないという課題があった。 In order to solve such a problem related to the vinyl chloride polymer, for example, the net stirring power per 1 m 3 of the content liquid in the polymerization vessel is increased until the polymerization conversion is between 0.1% and less than 5.0%. controls to 1.0~2.0kw / m 3, then the polymerization conversion rate to continue adjusting the polymerization to less than 0.2kw / m 3 or more 1.0 kw / m 3, to complete polymerization within 6 hours A method for producing a vinyl chloride polymer is disclosed (Patent Document 1). However, this method has a problem that although a polymer with a small amount of fine powder can be obtained, there are many coarse particles and fish eyes cannot be sufficiently reduced.

また、重合開始から重合転化率が0.1%まで、重合器内の内容液1m3あたりの正味の攪拌動力を0.2kw/m3以上1.0kw/m3未満に制御して重合を行い、6時間以内に重合を完結する塩化ビニル系重合体の製造方法が開示されている(特許文献2)。しかし、この方法でも、やはり粗粒が多く存在し、フィッシュアイも十分に低減できないという課題があった。
特開平10−279629号公報 特開平10−279628号公報
Further, from the initiation of the polymerization to 0.1% polymerization conversion rate, by controlling the polymerization to less than 0.2kw / m 3 or more 1.0 kw / m 3 net agitation power per liquid content 1 m 3 in the polymerization vessel A method for producing a vinyl chloride polymer that is conducted and completes polymerization within 6 hours is disclosed (Patent Document 2). However, even this method has a problem that a lot of coarse grains are present and the fish eye cannot be sufficiently reduced.
JP-A-10-279629 JP-A-10-279628

本発明は、上記現状に鑑み、塩化ビニル系単量体の懸濁重合法に関し、詳しくは特定の転化率における重合機の内容積1m3あたりの正味撹拌動力を特定条件に制御することにより、粗大粒子の生成を抑制することができる塩化ビニル系重合体を提供するものである。 In view of the above-mentioned present situation, the present invention relates to a suspension polymerization method of a vinyl chloride monomer, and in particular, by controlling the net stirring power per 1 m 3 of the internal volume of the polymerizer at a specific conversion rate to a specific condition, The present invention provides a vinyl chloride polymer that can suppress the formation of coarse particles.

すなわち、本発明は
塩化ビニル系単量体を油溶性重合開始剤の存在下に水性媒体中で懸濁重合するに際し、重合開始から重合転化率6%までの間は攪拌動力(「重合機の内容積1m3あたりの正味撹拌動力」のことをいう)を0.8kw/m3以上1.9kw/m3以下(第一工程)とし、その後、重合転化率が25%までの間は撹拌動力を0.2kw/m3以上0.8kw/m3以下(第二工程)として重合することを特徴とする塩化ビニル系重合体の製造方法に関する(請求項1)、
リフラックスコンデンサーを設置した重合機を用い、リフラックスコンデンサーによる除熱割合が全除熱量の50%以上であることを特徴とする請求項1記載の塩化ビニル系重合体の製造方法に関する(請求項2)、
第二工程への切替時点が、重合転化率7%以降であることを特徴とする請求項1又は請求項2に記載の塩化ビニル系重合体の製造方法に関する(請求項3)、
第二工程の後、攪拌動力を0.8kw/m3以上1.9kw/m3以下とすることを特徴とする請求項1〜請求項3のいずれかに記載の塩化ビニル系重合体の製造方法に関する(請求項4)、ものである。
That is, according to the present invention, when a vinyl chloride monomer is subjected to suspension polymerization in an aqueous medium in the presence of an oil-soluble polymerization initiator, the stirring power ("polymerizer's The net stirring power per 1 m 3 of the internal volume ”is set to 0.8 kw / m 3 or more and 1.9 kw / m 3 or less (first step), and then stirring is performed until the polymerization conversion rate is up to 25%. power of 0.2kw / m 3 or more 0.8 kW / m 3 or less relates to a method for producing a vinyl chloride polymer which comprises polymerizing a (second step) (claim 1),
2. The method for producing a vinyl chloride polymer according to claim 1, wherein a polymerization machine equipped with a reflux condenser is used, and the heat removal rate by the reflux condenser is 50% or more of the total heat removal amount (claim). 2),
The time point of switching to the second step is a polymerization conversion rate of 7% or more, and relates to a method for producing a vinyl chloride polymer according to claim 1 or claim 2 (claim 3),
4. The production of the vinyl chloride polymer according to claim 1, wherein the stirring power is set to 0.8 kw / m 3 or more and 1.9 kw / m 3 or less after the second step. It relates to a method (claim 4).

本発明によれば、粗大粒子の生成を抑制することができる。   According to the present invention, generation of coarse particles can be suppressed.

本発明は、重合開始から重合転化率が6%までは重合機の内容積1m3あたりの正味撹拌動力を0.8kw/m3以上1.9kw/m3以下の範囲に制御する必要がある。この段階で0.8kw/m3以上1.9kw/m3以下の範囲であれば、分散性、初期の合一および再分散頻度が好ましく、生成する粒子に粗大粒子や微細粒子の形成が少ないため、好ましい。 In the present invention, it is necessary to control the net stirring power per 1 m 3 of the internal volume of the polymerization apparatus within the range of 0.8 kw / m 3 or more and 1.9 kw / m 3 or less from the start of polymerization until the polymerization conversion is 6%. . If it is in the range of 0.8 kw / m 3 or more and 1.9 kw / m 3 or less at this stage, dispersibility, initial coalescence and redispersion frequency are preferable, and formation of coarse particles and fine particles is small in the generated particles. Therefore, it is preferable.

この範囲での正味の攪拌動力は、0.8kw/m3以上1.8kw/m3以下であることがより好ましく、0.8kw/m3以上1.6kw/m3以下であることが更に好ましく、1.0kw/m3以上1.5kw/m3以下であることが特に好ましい。 Stirring power net in this range, more preferably at most 0.8 kW / m 3 or more 1.8 kW / m 3, not more than 0.8 kW / m 3 or more 1.6kw / m 3 further Preferably, it is 1.0 kw / m 3 or more and 1.5 kw / m 3 or less.

また、重合転化率が6%を越えて15%までの範囲で第一工程を継続しても構わない。重合転化率が7%以降に第一工程を終了することがより好ましい。第二工程への切替は13%までに行うことがより好ましく、10%までに行うことが更に好ましい。   Further, the first step may be continued in the range of the polymerization conversion rate exceeding 6% to 15%. More preferably, the first step is completed after the polymerization conversion rate is 7% or more. The switching to the second step is more preferably performed by 13%, and further preferably by 10%.

本発明は、重合転化率が第一工程終了後25%の間は重合機の内容積1m3あたりの正味撹拌動力を0.2kw/m3以上0.8kw/m3以下の範囲に制御する必要がある。この段階で、粒子の均一性および所望の粒子径が形成される。この範囲での正味の攪拌動力は、0.2kw/m3以上0.7kw/m3であることがより好ましく、0.2kw/m3以上0.6kw/m3以下であることが更に好ましい。 The present invention, during the polymerization conversion rate of 25% after completion of the first step to control the net stirring power per inner volume 1 m 3 polymerization machine 0.2kw / m 3 or more 0.8 kW / m 3 or less of the range There is a need. At this stage, particle uniformity and the desired particle size are formed. Stirring power net in this range, more preferably from 0.2kw / m 3 or more 0.7 kW / m 3, more preferably not more than 0.2kw / m 3 or more 0.6 kW / m 3 .

また、重合転化率が25%を越えて30%までの範囲で第二工程を継続しても構わない。   Moreover, you may continue a 2nd process in the range whose polymerization conversion rate exceeds 25% and to 30%.

第二工程終了後は、重合転化率に依存した重合機の内容積1m3あたりの正味撹拌動力の制限は特に無いが、除熱効率の観点から、正味の攪拌動力は0.8kw/m3以上1.9kw/m3であることが好ましい。0.8kw/m3以上1.6kw/m3以下であればより好ましく、1.0kw/m3以上1.5kw/m3以下であれば更に好ましい。 After the end of the second step, there is no particular limitation on the net stirring power per 1 m 3 of internal volume of the polymerization machine depending on the polymerization conversion rate, but from the viewpoint of heat removal efficiency, the net stirring power is 0.8 kw / m 3 or more. It is preferably 1.9 kw / m 3 . More preferably when 0.8 kW / m 3 or more 1.6kw / m 3 or less, further preferably equal to 1.0 kw / m 3 or more 1.5 kw / m 3 or less.

一例を挙げると、重合除熱の面で例を挙げると、内容積1500Lのステンレス製重合器を用いた場合、重合転化率が35%において、正味撹拌動力を1.2kw/m3と0.5kw/m3に調整した時のジャケット出口温度は、前者のほうが3.7℃高く、明らかに重合除熱の面で優れ、正味撹拌動力を重合初期と同様の状態にすることが望ましい。 For example, in terms of heat removal from polymerization, when a stainless steel polymerization vessel having an internal volume of 1500 L is used, the net stirring power is 1.2 kw / m 3 and 0. The jacket outlet temperature when adjusted to 5 kw / m 3 is 3.7 ° C. higher in the former, clearly superior in terms of heat removal from polymerization, and it is desirable that the net stirring power be in the same state as in the initial stage of polymerization.

本発明の塩化ビニル系重合体の製造方法は、次のような手順で重合が行われる。すなわち、重合機に所定量の脱イオン水、分散剤および開始剤を仕込み、重合機を密閉した後、真空ポンプで重合機内部を脱気する。次いで、所定量の塩化ビニル単量体を仕込み、同時に撹拌を開始する。塩化ビニル単量体を仕込んだ後、昇温を開始する。   In the method for producing a vinyl chloride polymer of the present invention, polymerization is carried out according to the following procedure. That is, a predetermined amount of deionized water, a dispersant, and an initiator are charged into a polymerization machine, and after the polymerization machine is sealed, the inside of the polymerization machine is deaerated with a vacuum pump. Next, a predetermined amount of vinyl chloride monomer is charged, and simultaneously stirring is started. After charging the vinyl chloride monomer, the temperature rise is started.

本発明の重合開始とは、重合系内の温度が目的の品質を得るために必要な分子量から設定される所定の重合温度に達した時点をいう。尚、本発明においては、原材料を重合器に仕込み始めて攪拌を開始してから所定の重合温度に達するまでの期間は、本発明の目的を奏する範囲であれば、正味の攪拌動力は0.8kw/m3以上1.9kw/m3以下であっても、それ以外の範囲であっても構わない。 The initiation of polymerization in the present invention refers to a point in time when the temperature in the polymerization system reaches a predetermined polymerization temperature set from the molecular weight necessary to obtain the desired quality. In the present invention, the period from when the raw materials are charged into the polymerization vessel until the predetermined polymerization temperature is reached after the start of stirring is within a range that satisfies the object of the present invention, the net stirring power is 0.8 kW. / M 3 or more and 1.9 kw / m 3 or less or other ranges.

本発明において、リフラックスコンデンサーを設置した重合機とは、リフラックスコンデンサーが重合機本体に直接接続されていること を意味する。また、リフラックスコンデンサーによる除熱割合が全除熱量の50%以上であるとは、その他の除熱を重合機本体のジャケット等で行うことを意味する。   In the present invention, the polymerization machine provided with a reflux condenser means that the reflux condenser is directly connected to the polymerization machine main body. Moreover, that the heat removal rate by the reflux condenser is 50% or more of the total heat removal amount means that other heat removal is performed by a jacket or the like of the main body of the polymerization machine.

本発明において使用される撹拌翼やバッフルなどの撹拌装置に特に制限はない。撹拌翼としては、タービン翼、傾斜パドル翼、ブルーマージン翼、ファウドラー翼などが挙げられる。バッフルとしては、板型、円筒型、ループ型、フィンガー型などが挙げられる。   There is no restriction | limiting in particular in stirring apparatuses, such as a stirring blade and a baffle used in this invention. Examples of the stirring blade include a turbine blade, an inclined paddle blade, a blue margin blade, and a fiddler blade. Examples of the baffle include a plate type, a cylindrical type, a loop type, and a finger type.

本発明に使用する単量体は、塩化ビニルを主成分とする単量体であり、具体的には、塩化ビニル単量体単独、または塩化ビニル単量体を70重量%以上含有し、塩化ビニルと共重合可能な単量体との混合物である。塩化ビニルと共重合可能な単量体としては、たとえば、酢酸ビニル、プロピオン酸ビニル等のビニルエステル類、エチレン、プロピレン、イソブチルビニルエーテル等のα−オレフィン類、1−クロロプロピレン、2−クロロブチレン等のクロル化オレフィン類、(メタ)アクリル酸メチル等の(メタ)アクリル酸エステル類、無水マレイン酸、アクリロニトリル、スチレン、塩化ビニリデン等が挙げられ、これらは単独で用いることも、2種以上組み合わせて用いることも可能である。   The monomer used in the present invention is a monomer mainly composed of vinyl chloride, and specifically includes a vinyl chloride monomer alone or 70% by weight or more of a vinyl chloride monomer, A mixture of vinyl and copolymerizable monomers. Examples of monomers copolymerizable with vinyl chloride include vinyl esters such as vinyl acetate and vinyl propionate, α-olefins such as ethylene, propylene and isobutyl vinyl ether, 1-chloropropylene, 2-chlorobutylene and the like. Chlorinated olefins, (meth) acrylic acid esters such as methyl (meth) acrylate, maleic anhydride, acrylonitrile, styrene, vinylidene chloride, and the like. These may be used alone or in combination of two or more. It is also possible to use it.

本発明に使用される分散安定剤としては、部分鹸化ポリ酢酸ビニル、メチルセルロース、ヒドロキシプロピルメチルセルロース、カルボキシメチルセルロース、ポリビニルピロリドン、ポリアクリル酸、酢酸ビニル−マレイン酸共重合体、スチレン−マレイン酸共重合体、ゼラチン、デンプン、ポリエチレンオキサイド等、公知の物を1種あるいは2種以上組み合わせて用いることができる。   Examples of the dispersion stabilizer used in the present invention include partially saponified polyvinyl acetate, methylcellulose, hydroxypropylmethylcellulose, carboxymethylcellulose, polyvinylpyrrolidone, polyacrylic acid, vinyl acetate-maleic acid copolymer, and styrene-maleic acid copolymer. , Gelatin, starch, polyethylene oxide and the like can be used alone or in combination of two or more.

これらの分散安定剤は、0.04〜0.2重量部 の範囲を使用することが好ましい。   These dispersion stabilizers are preferably used in the range of 0.04 to 0.2 parts by weight.

本発明に用いられる重合開始剤は、従来公知のものを用いればよいが、これらの開始剤のうち10時間半減期温度が30〜65℃のものを1種または2種以上使用するのが好ましい。このような重合開始剤としては、ターシャリーブチルパーオキシネオデカノエート、ターシャリーヘキシルパーオキシネオデカノエート、ターシャリーブチルパーオキシネオヘプタノエート、ターシャリーヘキシルパーオキシピバレート、ターシャリーブチルパーオキシピバレート、ターシャリーヘキシルパーオキシネオヘキサノエート、α−クミルパーオキシネオデカノエート、3,5,5、−トリメチルヘキサノイルパーオキサイド、1,1,3,3−テトラメチルブチルパーオキシネオデカノエート、1−シクロヘキシル−1−メチルエチルパーオキシネオデカノエート等のパーエステル化合物、1,1−ジメチル−3−ヒドロキシブチルパーオキシネオデカノエート等のパーエステル化合物、ジイソプロピルパーオキシジカーボネート、ジ−2−エチルヘキシルパーオキシジカーボネート、ジ−2−エトキシエチルパーオキシジカーボネート、ジメトキシイソプロピルパーオキシジカーボネート等のパーカーボネート化合物、ベンゾイルパーオキサイド、アセチルシクロヘキシルパーオキサイド等のパーオキサイド化合物、2,2‘−アゾビス−2,4−ジメチルバレロニトリル等のアゾ化合物を挙げることができ、これらを1種または2種以上組み合わせて使用することができる。さらにこれら開始剤は仕込工程の任意のタイミングで仕込むことが可能である。   As the polymerization initiator used in the present invention, conventionally known ones may be used, but it is preferable to use one or more of these initiators having a 10-hour half-life temperature of 30 to 65 ° C. . Such polymerization initiators include tertiary butyl peroxyneodecanoate, tertiary hexyl peroxyneodecanoate, tertiary butyl peroxyneoheptanoate, tertiary hexyl peroxypivalate, and tertiary butyl. Peroxypivalate, tertiary hexyl peroxyneohexanoate, α-cumylperoxyneodecanoate, 3,5,5, -trimethylhexanoyl peroxide, 1,1,3,3-tetramethylbutylper Perester compounds such as oxyneodecanoate, 1-cyclohexyl-1-methylethylperoxyneodecanoate, perester compounds such as 1,1-dimethyl-3-hydroxybutylperoxyneodecanoate, diisopropylper Oxy dicarbonate Peroxide compounds such as di-2-ethylhexyl peroxydicarbonate, di-2-ethoxyethyl peroxydicarbonate, dimethoxyisopropyl peroxydicarbonate, peroxide compounds such as benzoyl peroxide, acetylcyclohexyl peroxide, 2, An azo compound such as 2′-azobis-2,4-dimethylvaleronitrile can be given, and these can be used alone or in combination of two or more. Furthermore, these initiators can be charged at any timing in the charging process.

本発明における重合発熱の除熱方法は、従来の除熱方式、たとえば、ジャケットによる除熱、内部ジャケット等による除熱を用いればよい。また、生産性を向上させるため、リフラックスコンデンサーを設置した重合機を用いても良い。好ましくは、リフラックスコンデンサーによる除熱割合が全除熱量の50%以上で、残りをジャケット等で除熱する方式を採用するのが良い。   The heat removal method for the polymerization heat generation in the present invention may be a conventional heat removal method, for example, heat removal by a jacket, heat removal by an internal jacket or the like. Moreover, in order to improve productivity, you may use the polymerization machine which installed the reflux condenser. Preferably, a heat removal rate by the reflux condenser is 50% or more of the total heat removal amount, and the rest is removed by a jacket or the like.

また、本発明の効果を損なわない範囲で通常懸濁重合に使用される他の添加剤、例えば重合器内壁等へのスケール付着を防止することのできる安定剤、酸化防止剤等、平均重合度を調整する連鎖移動剤、消泡剤、重合水媒体のpHを調整するpH調整剤等を添加することができ、その使用量も従来公知の方法に従うことができる。   In addition, other additives usually used for suspension polymerization within a range that does not impair the effect of the present invention, for example, a stabilizer that can prevent scale adhesion to the inner wall of the polymerization vessel, an antioxidant, etc., an average degree of polymerization A chain transfer agent for adjusting the pH, an antifoaming agent, a pH adjusting agent for adjusting the pH of the polymerization aqueous medium, and the like can be added, and the amount used can also follow a conventionally known method.

本発明を実施するに際し、重合機への塩化ビニル単量体、水性媒体、分散安定剤、重合開始剤、各種重合助剤の仕込割合、仕込方法、あるいはスケール付着防止剤の種類や適用の方法も特に限定されるものではない。重合機からの未反応単量体の回収する方法、塩化ビニル系重合体から残留した塩化ビニル単量体を除去する方法、生成した塩化ビニル系重合体を水性媒体から分離し、乾燥するための方法等も、通常採用されている方法を用いればよい。   In carrying out the present invention, a vinyl chloride monomer, an aqueous medium, a dispersion stabilizer, a polymerization initiator, a charging ratio of various polymerization assistants, a charging method, a type of scale adhesion preventing agent and a method of application to a polymerization machine. Is not particularly limited. A method for recovering unreacted monomer from a polymerization machine, a method for removing residual vinyl chloride monomer from a vinyl chloride polymer, and a method for separating the produced vinyl chloride polymer from an aqueous medium and drying it. As the method, a method that is usually employed may be used.

以下、実施例を示して本発明を具体的に説明するが、本発明はこれによって限定されるものではない。
(実施例1)
内容積1500Lのステンレス製重合器にイオン交換水100部(塩化ビル単量体100部に対して、以下同じ)、分散剤として平均重合度2200で鹸化度が80%の部分鹸化ポリ酢酸ビニルを0.048部、平均分子量が450万であるPEOを0.009部、重合開始剤としてターシャリーブチルパーオキシネオデカノエートを0.017部及び3,5,5、−トリメチルヘキサノイルパーオキサイドを0.021部仕込み、真空ポンプで減圧し、酸素を除去した。続いて塩化ビニル単量体を100部仕込み、塩化ビニル単量体の仕込みと同時に撹拌を開始し、正味の撹拌所要動力が1.2kW/m3となるように回転数を調節した。重合器内温度を63℃に昇温して重合を開始した。
EXAMPLES Hereinafter, although an Example is shown and this invention is demonstrated concretely, this invention is not limited by this.
Example 1
In a 1500 L stainless steel polymerization vessel, ion-exchanged water 100 parts (the same applies to 100 parts of chlorinated monomer) and partially saponified polyvinyl acetate having an average polymerization degree of 2200 and a saponification degree of 80% as a dispersant. 0.048 part, 0.009 part of PEO having an average molecular weight of 4.5 million, 0.017 part of tertiary butyl peroxyneodecanoate as a polymerization initiator, and 3,5,5, -trimethylhexanoyl peroxide 0.021 part was charged and the pressure was reduced with a vacuum pump to remove oxygen. Subsequently, 100 parts of vinyl chloride monomer was charged, and stirring was started simultaneously with the charging of the vinyl chloride monomer, and the rotation speed was adjusted so that the net power required for stirring was 1.2 kW / m 3 . Polymerization was started by raising the temperature inside the polymerization vessel to 63 ° C.

重合転化率が7.4%になった時点で正味の撹拌所要動力が0.5kW/m3となるように回転数を調節した。 When the polymerization conversion rate reached 7.4%, the rotation speed was adjusted so that the net power required for stirring was 0.5 kW / m 3 .

さらに、重合転化率が26.5%で正味の撹拌所要動力が1.2kW/m3となるように回転数を調節した。重合機内圧が定常圧より0.15MPa低下した時点で重合を停止し、未反応単量体を回収して重合を終了した。得られたスラリーを脱水、乾燥して塩化ビニル重合体を得た。 Further, the rotational speed was adjusted so that the polymerization conversion rate was 26.5% and the net power required for stirring was 1.2 kW / m 3 . When the internal pressure of the polymerization machine decreased by 0.15 MPa from the steady pressure, the polymerization was stopped, and the unreacted monomer was recovered to complete the polymerization. The obtained slurry was dehydrated and dried to obtain a vinyl chloride polymer.

得られた塩化ビニル重合体はJIS Z 8801に準拠して粒度分布を測定した。   The obtained vinyl chloride polymer was measured for particle size distribution according to JIS Z 8801.

得られた塩化ビニル重合体は60メッシュオンが0%、200メッシュパスが9.5%の重合体粒子となった。
(実施例2)
実施例1で、重合転化率が7.4%〜26.5%の期間の正味の撹拌所要動力が0.25kW/m3となるように回転数を調節した以外は同様に実施した。得られた塩化ビニル重合体は60メッシュオンが0%、200メッシュパスが5.5%の重合体粒子であった。
(実施例3)
実施例1で、分散剤として平均重合度1000で鹸化度が80%の部分鹸化ポリ酢酸ビニルを0.048部、平均分子量が450万であるPEOを0.009部、を用いた以外は同様に実施した。得られた塩化ビニル重合体は60メッシュオンが0%、200メッシュパスが7.5%の重合体粒子であった。
(実施例4)
実施例1で、分散剤として平均重合度1000で鹸化度が80%の部分鹸化ポリ酢酸ビニルを0.048部、平均分子量が450万であるPEOを0.009部、を用い、重合転化率が7.4%〜26.5%の期間の正味の撹拌所要動力が0.25kW/m3となるように回転数を調節した以外は同様に実施した。得られた塩化ビニル重合体は60メッシュオンが0%、200メッシュパスが3.0%の重合体粒子であった。
The obtained vinyl chloride polymer was polymer particles having 60 mesh-on of 0% and 200 mesh pass of 9.5%.
(Example 2)
The same procedure as in Example 1 was carried out except that the rotation speed was adjusted so that the net stirring power required for the polymerization conversion rate from 7.4% to 26.5% was 0.25 kW / m 3 . The obtained vinyl chloride polymer was polymer particles having 60 mesh-on of 0% and 200 mesh pass of 5.5%.
(Example 3)
Same as Example 1, except that 0.048 parts of partially saponified polyvinyl acetate having an average degree of polymerization of 1000 and a saponification degree of 80% and 0.009 parts of PEO having an average molecular weight of 4.5 million were used as the dispersant. Implemented. The obtained vinyl chloride polymer was a polymer particle having 60 mesh-on of 0% and 200 mesh pass of 7.5%.
Example 4
In Example 1, 0.048 part of partially saponified polyvinyl acetate having an average degree of polymerization of 1000 and a degree of saponification of 80% was used as a dispersant, and 0.009 part of PEO having an average molecular weight of 4.5 million was used. Was carried out in the same manner except that the rotational speed was adjusted so that the net power required for stirring during the period of 7.4% to 26.5% was 0.25 kW / m 3 . The obtained vinyl chloride polymer was polymer particles having 60 mesh-on of 0% and 200 mesh pass of 3.0%.

Figure 0004993268
(比較例1)
実施例1で、正味の撹拌所要動力が1.2kW/m3となるように回転数を調節して重合し、重合終了までその攪拌所要動力を維持したこと以外は同様に実施した。得られた塩化ビニル重合体は60メッシュオンが2.0%、200メッシュパスが15.5%の重合体粒子であった。
(比較例2)
実施例1で、重合転化率が3.6%〜26,5%の期間の正味の撹拌所要動力が0.25kW/m3となるように回転数を調節した以外は同様に実施した。得られた塩化ビニル重合体は60メッシュオンが8.3%、200メッシュパスが3.5%の重合体粒子であった。
(比較例3)
実施例1で、重合転化率が3.6%までは正味の撹拌所要動力が0.25kW/m3、重合転化率が3.6%以降の期間の正味の撹拌所要動力が1.2kW/m3となるように回転数を調節して重合した以外は同様に実施した。得られた塩化ビニル重合体は60メッシュオンが6.3%、200メッシュパスが5.5%の重合体粒子であった。
(実施例5)
内容積1500Lのステンレス製重合器の内部をRCの内部と共に脱気した後、脱気したイオン交換水100部(塩化ビル単量体100部に対して、以下同じ)、塩化ビニル100部、分散剤として平均重合度2200で鹸化度が80%の部分鹸化ポリ酢酸ビニルを0.064重量部、平均分子量が450万であるPEOを0.009部、並びに重合開始剤としてターシャリーブチルパーオキシネオデカノエートを0.034重量部及び3,5,5、−トリメチルヘキサノイルパーオキサイドを0.057重量部を仕込み、重合器内温度を63℃に昇温した。重合器内温度が63℃に到達すると同時にRCを稼働させた。尚、重合中RCの冷却水温度及び重合器ジャケット温度を制御し、重合反応熱をRCと重合器ジャケットで除熱し、RCによる除熱は75%となるように調整した。重合開始から重合転化率8.6%に到達した時点で正味の撹拌所要動力が0.5kW/m3となるように回転数を調節した。
Figure 0004993268
(Comparative Example 1)
In Example 1, the polymerization was carried out in the same manner except that the polymerization was carried out by adjusting the rotation speed so that the net required power for stirring was 1.2 kW / m 3, and the required power for stirring was maintained until the polymerization was completed. The obtained vinyl chloride polymer was a polymer particle of 60 mesh on with 2.0% and 200 mesh pass with 15.5%.
(Comparative Example 2)
The same procedure as in Example 1 was performed except that the rotation speed was adjusted so that the net stirring power required for the polymerization conversion rate of 3.6% to 26.5% was 0.25 kW / m 3 . The obtained vinyl chloride polymer was polymer particles with 60 mesh-on of 8.3% and 200 mesh pass of 3.5%.
(Comparative Example 3)
In Example 1, the net required stirring power is 0.25 kW / m 3 until the polymerization conversion rate is 3.6%, and the net stirring required power is 1.2 kW / m 2 during the period after the polymerization conversion rate is 3.6%. except polymerized by adjusting the rotational speed so that m 3 was performed similarly. The obtained vinyl chloride polymer was polymer particles with 60 mesh-on of 6.3% and 200 mesh pass of 5.5%.
(Example 5)
After degassing the inside of the 1500L stainless steel polymerization vessel together with the inside of the RC, 100 parts of degassed ion exchange water (the same applies to 100 parts of the chlorinated monomer), 100 parts of vinyl chloride, dispersion 0.064 parts by weight of partially saponified polyvinyl acetate having an average degree of polymerization of 2200 and a saponification degree of 80% as an agent, 0.009 parts of PEO having an average molecular weight of 4.5 million, and tertiary butyl peroxyneo as a polymerization initiator 0.034 parts by weight of decanoate and 0.057 parts by weight of 3,5,5, -trimethylhexanoyl peroxide were charged, and the temperature in the polymerization vessel was raised to 63 ° C. The RC was operated at the same time as the temperature in the polymerization reactor reached 63 ° C. During the polymerization, the RC cooling water temperature and the polymerizer jacket temperature were controlled, and the polymerization reaction heat was removed by the RC and the polymerizer jacket, and the heat removal by RC was adjusted to 75%. When the polymerization conversion rate reached 8.6% from the start of polymerization, the rotational speed was adjusted so that the net power required for stirring was 0.5 kW / m 3 .

さらに、重合転化率が26.5%で正味の撹拌所要動力が1.2kW/m3となるように回転数を調節した。重合機内圧が定常圧より0.15MPa低下した時点で重合を停止し、未反応単量体を回収して重合を終了した。得られたスラリーを脱水、乾燥して塩化ビニル重合体を得た。得られた塩化ビニル重合体は60メッシュオンが0%、200メッシュパスが11.5%の重合体粒子となった。
(実施例6)
実施例5で、重合転化率が8.6%〜26.5%の期間の正味の撹拌所要動力が0.25kW/m3となるように回転数を調節した以外は同様に実施した。得られた塩化ビニル重合体は60メッシュオンが0%、200メッシュパスが4.5%の重合体粒子であった。
(実施例7)
実施例5で、分散剤として平均重合度2200で鹸化度が80%の部分鹸化ポリ酢酸ビニルを0.079重量部、平均分子量が450万であるPEOを0.009部重合転化率が8.6%〜26.5%の期間の正味の撹拌所要動力が0.5kW/m3となるように回転数を調節した以外は同様に実施した。得られた塩化ビニル重合体は60メッシュオンが0%、200メッシュパスが10.0%の重合体粒子であった。
(実施例8)
実施例5で、分散剤として平均重合度2200で鹸化度が80%の部分鹸化ポリ酢酸ビニルを0.079重量部、平均分子量が450万であるPEOを0.009部重合転化率が12%〜26.5%の期間の正味の撹拌所要動力が0.25kW/m3となるように回転数を調節した以外は同様に実施した。得られた塩化ビニル重合体は60メッシュオンが0%、200メッシュパスが16.3%の重合体粒子であった。
Further, the rotational speed was adjusted so that the polymerization conversion rate was 26.5% and the net power required for stirring was 1.2 kW / m 3 . When the internal pressure of the polymerization machine decreased by 0.15 MPa from the steady pressure, the polymerization was stopped, and the unreacted monomer was recovered to complete the polymerization. The obtained slurry was dehydrated and dried to obtain a vinyl chloride polymer. The obtained vinyl chloride polymer was a polymer particle having 60 mesh on 0% and 200 mesh pass 11.5%.
(Example 6)
The same procedure as in Example 5 was performed except that the rotation speed was adjusted so that the net stirring power required for the polymerization conversion rate from 8.6% to 26.5% was 0.25 kW / m 3 . The obtained vinyl chloride polymer was polymer particles having 60 mesh-on of 0% and 200 mesh pass of 4.5%.
(Example 7)
In Example 5, 0.079 parts by weight of partially saponified polyvinyl acetate having an average degree of polymerization of 2200 and a saponification degree of 80% as a dispersant, and 0.009 parts of PEO having an average molecular weight of 4.5 million have a polymerization conversion rate of 8. The same procedure was performed except that the rotation speed was adjusted so that the net power required for stirring during the period of 6% to 26.5% was 0.5 kW / m 3 . The obtained vinyl chloride polymer was polymer particles having 60 mesh-on of 0% and 200 mesh pass of 10.0%.
(Example 8)
In Example 5, 0.079 parts by weight of partially saponified polyvinyl acetate having an average degree of polymerization of 2200 and a saponification degree of 80% as a dispersant, 0.009 parts of PEO having an average molecular weight of 4.5 million, and a polymerization conversion rate of 12% The same procedure was carried out except that the rotational speed was adjusted so that the net power required for stirring during the period of ˜26.5% was 0.25 kW / m 3 . The obtained vinyl chloride polymer was polymer particles having 60 mesh-on of 0% and 200 mesh pass of 16.3%.

Figure 0004993268
Figure 0004993268

Figure 0004993268
(比較例4)
実施例5で、重合転化率が7.4%までの期間の正味の攪拌所要動力が1.2kW/m3、重合転化率が7.4%〜26.5%間での期間の正味の撹拌所要動力が1.2kW/m3となるように回転数を調節して重合した以外は同様に実施した。得られた塩化ビニル重合体は60メッシュオンが2.0%、200メッシュパスが16.5%の重合体粒子であった。
(比較例5)
実施例5で、重合転化率が3.6%までの期間の正味の撹拌所要動力が1.2kW/m3、重合転化率が3.6%〜26.5%の期間の正味の撹拌所要動力が0.25kW/m3となるように回転数を調節した以外は同様に実施した。得られた塩化ビニル重合体は60メッシュオンが10.3%、200メッシュパスが5.5%の重合体粒子であった。
(比較例6)
実施例5で、重合転化率が0%〜3.6%の期間の正味の撹拌所要動力が1.2kW/m3、重合転化率が3.6%以降重合終了までの期間の正味の撹拌所要動力が0.5kW/m3となるように回転数を調節した以外は同様に実施した。得られた塩化ビニル重合体は60メッシュオンが2.3%、200メッシュパスが2.8%の重合体粒子であった。
(比較例7)
実施例5で、重合転化率が0%〜2%の期間の正味の撹拌所要動力が1.2kW/m3、重合転化率が2%以降重合終了までの期間の正味の撹拌所要動力が0.5kW/m3となるように回転数を調節した以外は同様に実施した。得られた塩化ビニル重合体は60メッシュオンが3.5%、200メッシュパスが1.0%の重合体粒子であった。
Figure 0004993268
(Comparative Example 4)
In Example 5, the net stirring power required for a period of up to 7.4% in the polymerization conversion rate was 1.2 kW / m 3 , and the net power in the period of between 7.4% and 26.5% in the polymerization conversion rate. It carried out similarly except having superposed | polymerized by adjusting the rotation speed so that stirring required power might be set to 1.2 kW / m < 3 >. The obtained vinyl chloride polymer was a polymer particle having a mesh size of 60% on 2.0% and a 200 mesh pass of 16.5%.
(Comparative Example 5)
In Example 5, the net stirring power required for a period of polymerization conversion up to 3.6% is 1.2 kW / m 3 , and the net stirring is required for a period of polymerization conversion of 3.6% to 26.5%. It implemented similarly except having adjusted the rotation speed so that power might be set to 0.25 kW / m < 3 >. The obtained vinyl chloride polymer was polymer particles having 60 mesh-on of 10.3% and 200 mesh pass of 5.5%.
(Comparative Example 6)
In Example 5, the net agitation required power during the polymerization conversion rate of 0% to 3.6% is 1.2 kW / m 3 , and the net conversion during the polymerization conversion rate of 3.6% to the end of the polymerization. It implemented similarly except having adjusted the rotation speed so that required power might be set to 0.5 kW / m < 3 >. The resulting vinyl chloride polymer was a polymer particle having a 60 mesh-on of 2.3% and a 200 mesh pass of 2.8%.
(Comparative Example 7)
In Example 5, the net stirring power required for a period of polymerization conversion of 0% to 2% was 1.2 kW / m 3 , and the net stirring power for a period of polymerization conversion of 2% to the end of polymerization was 0 It implemented similarly except having adjusted the rotation speed so that it might be set to 0.5 kW / m < 3 >. The obtained vinyl chloride polymer was polymer particles having 3.5 mesh of 60 mesh on and 1.0% of 200 mesh pass.

Figure 0004993268
(比較例8)
実施例7で、重合転化率が0%〜0.5%の期間の正味の撹拌所要動力が1.2kW/m3、重合転化率が0.5%以降重合終了までの期間の正味の撹拌所要動力が0.25kW/m3となるように回転数を調節した以外は同様に実施した。得られた塩化ビニル重合体は60メッシュオンが3.5%、200メッシュパスが1.0%の重合体粒子であった。
(比較例9)
実施例7で、重合転化率が0%〜5%の期間の正味の撹拌所要動力が1.2kW/m3、重合転化率が0.5%以降重合終了までの期間の正味の撹拌所要動力が0.25kW/m3となるように回転数を調節した以外は同様に実施した。得られた塩化ビニル重合体は60メッシュオンが2.3%、200メッシュパスが2.8%の重合体粒子であった。
(比較例10)
実施例5で、重合転化率が0%〜7.4%の期間の正味の撹拌所要動力が1.2kW/m3、重合転化率が7.4%〜22%の期間の正味の撹拌所要動力が0.25kW/m3、22%以降重合終了までの期間の正味の攪拌所要動力が1.2kW/m3となるように回転数を調節した以外は同様に実施した。得られた塩化ビニル重合体は60メッシュオンが0.7%、200メッシュパスが5.6%の重合体粒子であった。
(比較例11)
実施例5で、重合転化率が0%〜7.4%の期間の正味の撹拌所要動力が2.0kW/m3、重合転化率が7.4%〜26.5%の期間の正味の撹拌所要動力が0.5kW/m3、重合転化率が26.5%以降の期間の正味の撹拌所要動力が1.2kW/m3となるように回転数を調節した以外は同様に実施した。得られた塩化ビニル重合体は60メッシュオンが2.2%、200メッシュパスが6.6%の重合体粒子であった。
(比較例12)
実施例1で、重合転化率が0%〜7.4%の期間の正味の撹拌所要動力が1.2kW/m3、重合転化率が7.4%〜29.5%の期間の正味の撹拌所要動力が0.1kW/m3、重合転化率が29.5%以降の期間の正味の撹拌所要動力が1.2kW/m3となるように回転数を調節した以外は同様に実施した。得られた塩化ビニル重合体は60メッシュオンが1.3%、200メッシュパスが3.0%の重合体粒子であった。
(比較例13)
実施例7で、重合転化率が0%〜0.5%の期間の正味の撹拌所要動力が0.2kW/m3、重合転化率が0.5%以降重合終了までの期間の正味の撹拌所要動力が1.2kW/m3となるように回転数を調節した以外は同様に実施した。得られた塩化ビニル重合体は60メッシュオンが4.3%、200メッシュパスが21.6%の重合体粒子であった。
Figure 0004993268
(Comparative Example 8)
In Example 7, the net agitation required power during the period of the polymerization conversion rate of 0% to 0.5% is 1.2 kW / m 3 , and the net agitation during the period of the polymerization conversion rate from 0.5% to the end of the polymerization It implemented similarly except having adjusted the rotation speed so that required power might be set to 0.25 kW / m < 3 >. The obtained vinyl chloride polymer was polymer particles having 3.5 mesh of 60 mesh on and 1.0% of 200 mesh pass.
(Comparative Example 9)
In Example 7, the net stirring power required for the period when the polymerization conversion was 0% to 5% was 1.2 kW / m 3 , and the net stirring power required for the period after the polymerization conversion was 0.5% until the polymerization was completed. Was carried out in the same manner except that the number of revolutions was adjusted so as to be 0.25 kW / m 3 . The resulting vinyl chloride polymer was a polymer particle having a 60 mesh-on of 2.3% and a 200 mesh pass of 2.8%.
(Comparative Example 10)
In Example 5, the net stirring power required for the period when the polymerization conversion is 0% to 7.4% is 1.2 kW / m 3 , and the net stirring is required for the period where the polymerization conversion is 7.4% to 22%. It was carried out in the same manner except that the rotational speed was adjusted so that the power required was 0.25 kW / m 3 and the net required stirring power during the period from 22% to the end of polymerization was 1.2 kW / m 3 . The obtained vinyl chloride polymer was a polymer particle of 0.7% at 60 mesh on and 5.6% at 200 mesh pass.
(Comparative Example 11)
In Example 5, the net agitation required power during the period of polymerization conversion of 0% to 7.4% is 2.0 kW / m 3 , and the net conversion of polymerization conversion is from 7.4% to 26.5%. This was carried out in the same manner except that the rotational speed was adjusted so that the required power for stirring was 0.5 kW / m 3 and the net required power for stirring during the period after the polymerization conversion rate was 26.5% was 1.2 kW / m 3 . . The obtained vinyl chloride polymer was polymer particles having a 60 mesh-on of 2.2% and a 200-mesh pass of 6.6%.
(Comparative Example 12)
In Example 1, the net power required for stirring with a period of polymerization conversion of 0% to 7.4% is 1.2 kW / m 3 , and the net conversion of conversion with a polymerization conversion ratio of 7.4% to 29.5%. This was carried out in the same manner except that the rotation speed was adjusted so that the power required for stirring was 0.1 kW / m 3 and the net power required for stirring during the period after the polymerization conversion rate was 29.5% was 1.2 kW / m 3 . . The obtained vinyl chloride polymer was polymer particles having 60 mesh-on of 1.3% and 200 mesh pass of 3.0%.
(Comparative Example 13)
In Example 7, the net agitation required power during the period of polymerization conversion of 0% to 0.5% is 0.2 kW / m 3 , and the net agitation during the period of polymerization conversion of 0.5% to the end of polymerization. It implemented similarly except having adjusted the rotation speed so that required power might be set to 1.2 kW / m < 3 >. The obtained vinyl chloride polymer was polymer particles with 60 mesh-on of 4.3% and 200 mesh pass of 21.6%.

Figure 0004993268
Figure 0004993268

Figure 0004993268
結果を表1〜6に示した。重合開始から重合転化率6%までの間を重合機の内容積1m3あたりの正味撹拌動力を0.8〜1.9kw/m3とし、その後、重合転化率が25%までの期間の重合機の内容積1m3あたりの正味撹拌動力を0.2〜0.8kw/m3として重合することにより、大粒子が減少したことが明らかである。
Figure 0004993268
The results are shown in Tables 1-6. From the start of polymerization to a polymerization conversion rate of 6%, the net stirring power per 1 m 3 of the internal volume of the polymerization machine is set to 0.8 to 1.9 kw / m 3, and then the polymerization is performed for a period of up to 25%. It is clear that the large particles were reduced by polymerization with a net stirring power per 1 m 3 of the machine of 0.2 to 0.8 kw / m 3 .

Claims (4)

塩化ビニル系単量体を油溶性重合開始剤の存在下に水性媒体中で懸濁重合するに際し、重合開始から重合転化率6%までの間は攪拌動力(「重合機の内容積1m3あたりの正味撹拌動力」のことをいう)を0.8kw/m3以上1.9kw/m3以下(第一工程)とし、その後、重合転化率が25%までの間は撹拌動力を0.2kw/m3以上0.8kw/m3以下(第二工程)として重合することを特徴とする塩化ビニル系重合体の製造方法。 When suspension polymerization of a vinyl chloride monomer in an aqueous medium in the presence of an oil-soluble polymerization initiator, the stirring power ("per unit volume of 1 m 3 of the polymerization machine is from the start of polymerization to a polymerization conversion of 6%). (The net stirring power of ”) is 0.8 kw / m 3 or more and 1.9 kw / m 3 or less (first step), and then the stirring power is 0.2 kw while the polymerization conversion is up to 25%. / M 3 or more and 0.8 kW / m 3 or less (second step) for polymerization, a method for producing a vinyl chloride polymer. リフラックスコンデンサーを設置した重合機を用い、リフラックスコンデンサーによる除熱割合が全除熱量の50%以上であることを特徴とする請求項1記載の塩化ビニル系重合体の製造方法。   2. The method for producing a vinyl chloride polymer according to claim 1, wherein a polymerization machine equipped with a reflux condenser is used, and a heat removal rate by the reflux condenser is 50% or more of the total heat removal amount. 第二工程への切替時点が、重合転化率7%以降であることを特徴とする請求項1又は請求項2に記載の塩化ビニル系重合体の製造方法。   The method for producing a vinyl chloride polymer according to claim 1 or 2, wherein the time point of switching to the second step is a polymerization conversion rate of 7% or more. 第二工程の後、攪拌動力を0.8kw/m3以上1.9kw/m3以下とすることを特徴とする請求項1〜請求項3のいずれかに記載の塩化ビニル系重合体の製造方法。 4. The production of the vinyl chloride polymer according to claim 1, wherein the stirring power is set to 0.8 kw / m 3 or more and 1.9 kw / m 3 or less after the second step. Method.
JP2006295855A 2006-10-31 2006-10-31 Method for producing vinyl chloride polymer Expired - Fee Related JP4993268B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006295855A JP4993268B2 (en) 2006-10-31 2006-10-31 Method for producing vinyl chloride polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006295855A JP4993268B2 (en) 2006-10-31 2006-10-31 Method for producing vinyl chloride polymer

Publications (2)

Publication Number Publication Date
JP2008111065A JP2008111065A (en) 2008-05-15
JP4993268B2 true JP4993268B2 (en) 2012-08-08

Family

ID=39443768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006295855A Expired - Fee Related JP4993268B2 (en) 2006-10-31 2006-10-31 Method for producing vinyl chloride polymer

Country Status (1)

Country Link
JP (1) JP4993268B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010270284A (en) * 2009-05-25 2010-12-02 Kaneka Corp Styrene-modified polyethylene resin foamed molded article
US20170008981A1 (en) * 2014-03-31 2017-01-12 Sekisui Chemical Co., Ltd. Production method for chlorinated vinyl chloride resin

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07116246B2 (en) * 1990-10-19 1995-12-13 日本ゼオン株式会社 Suspension polymerization method of vinyl chloride monomer
JPH1067807A (en) * 1996-08-29 1998-03-10 Sekisui Chem Co Ltd Production of vinyl chloride resin by suspension polymerization
JP3671592B2 (en) * 1997-04-10 2005-07-13 三菱化学株式会社 Method for producing vinyl chloride polymer
JPH11302307A (en) * 1998-04-16 1999-11-02 Taiyo Enbi Kk Production of vinyl chloride-based polymer
JP2000038405A (en) * 1998-07-22 2000-02-08 Tosoh Corp Production of vinyl chloride-based polymer

Also Published As

Publication number Publication date
JP2008111065A (en) 2008-05-15

Similar Documents

Publication Publication Date Title
JP4993268B2 (en) Method for producing vinyl chloride polymer
JP4024482B2 (en) Method for producing vinyl chloride polymer
JPH0118082B2 (en)
JP4688991B2 (en) Method for producing vinyl chloride polymer
JP2017061656A (en) Dispersion auxiliary agent for suspension polymerization and its aqueous liquid, and method for producing vinyl resin using them
JP4098482B2 (en) Method for producing vinyl chloride polymer
JP3041485B2 (en) Method for producing vinyl chloride polymer
JP2574078B2 (en) Suspension polymerization of vinyl chloride monomer
JP3115919B2 (en) Method for producing vinyl chloride polymer
JP4080600B2 (en) Method for producing vinyl chloride polymer
JP3749005B2 (en) Method for producing vinyl chloride polymer
JP5564160B2 (en) Method for producing vinyl chloride polymer
JP2000109504A (en) Production of vinyl chloride-based polymer
JPH066605B2 (en) Method for producing vinyl chloride resin
JPS6047007A (en) Suspension polymerization of venyl chloride monomer
JP3440646B2 (en) Method for producing vinyl chloride polymer
JPH1045814A (en) Production of vinyl chloride-based polymer
JPS6173714A (en) Production of vinyl chloride resin
JPH055008A (en) Method for polymerizing vinyl chloride-based monomer
JP2000038405A (en) Production of vinyl chloride-based polymer
JPS61195101A (en) Polymerization of vinyl chloride monomer
JP2023137813A (en) Method for producing vinyl chloride-based polymer
JP2001261718A (en) Method for producing vinyl chloride-based polymer
JP2000063432A (en) Preparation of vinyl chloride-based polymer
JPH11302307A (en) Production of vinyl chloride-based polymer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120425

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120426

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4993268

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees