JP4992772B2 - Fuel injection system for diesel engine - Google Patents

Fuel injection system for diesel engine Download PDF

Info

Publication number
JP4992772B2
JP4992772B2 JP2008063141A JP2008063141A JP4992772B2 JP 4992772 B2 JP4992772 B2 JP 4992772B2 JP 2008063141 A JP2008063141 A JP 2008063141A JP 2008063141 A JP2008063141 A JP 2008063141A JP 4992772 B2 JP4992772 B2 JP 4992772B2
Authority
JP
Japan
Prior art keywords
combustion chamber
fuel
spray
wall surface
nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008063141A
Other languages
Japanese (ja)
Other versions
JP2009062971A (en
Inventor
大輔 志茂
昌彦 藤本
一司 片岡
尚▲けい▼ 金
大介 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2008063141A priority Critical patent/JP4992772B2/en
Priority to US12/190,463 priority patent/US7895986B2/en
Priority to EP08014375A priority patent/EP2025919B1/en
Publication of JP2009062971A publication Critical patent/JP2009062971A/en
Application granted granted Critical
Publication of JP4992772B2 publication Critical patent/JP4992772B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • Y02T10/125

Description

本発明は、気筒内の燃焼室に直接燃料を噴射するディーゼルエンジンの燃料噴射装置、特に、それぞれが2つの噴射孔からなる複数の噴孔群を有する燃料噴射ノズルを備えたディーゼルエンジンの燃料噴射装置に関する。   The present invention relates to a fuel injection device for a diesel engine that directly injects fuel into a combustion chamber in a cylinder, and in particular, a fuel injection for a diesel engine having a fuel injection nozzle having a plurality of injection hole groups each consisting of two injection holes. Relates to the device.

ディーゼルエンジンの燃料噴射ノズルを、複数の噴射孔からなる複数の噴孔群を有し、各噴孔群の複数の噴射孔から噴射される燃料がそれぞれ1つの燃料噴霧を形成するよう構成した、所謂、群噴孔ノズル(グループホールノズル、略してGHN)とし、噴射孔の径を小さくして燃料を微粒化しつつ、噴射孔の数を増やして全体としての噴射孔の流路面積を確保するようにしたものにおいて、各噴孔群を構成する噴射孔の噴孔間角度(噴孔中心軸間の角度)を工夫することで、燃料の微粒化促進による、すす(黒煙)の低減と、噴霧貫徹力(ペネトレーション)の強化を図ることが従来から提案されている(例えば、特許文献1参照。)。
特開2007−51624号公報
The fuel injection nozzle of the diesel engine has a plurality of injection hole groups composed of a plurality of injection holes, and the fuel injected from the plurality of injection holes of each injection hole group each forms one fuel spray. A so-called group nozzle hole nozzle (group hole nozzle, abbreviated as GHN) is used to reduce the diameter of the injection hole and atomize the fuel, while increasing the number of injection holes to ensure the entire flow area of the injection holes. In this way, by devising the angle between the injection holes (angle between the central axes of the injection holes) constituting each injection hole group, soot (black smoke) can be reduced by promoting atomization of fuel. In the past, it has been proposed to enhance the spray penetration (penetration) (for example, see Patent Document 1).
JP 2007-51624 A

ディーゼルエンジンから排出されるすす(黒煙)を低減するためには、群噴孔ノズル(GHN)を採用して燃料微粒化を促進することが有効であるが、特に、着火遅れを大きくし、燃料が燃焼室壁面に当たった後で着火するよう設定する場合に、すすを一層低減し、また、すすと共に窒素酸化物(NOx)を十分に低減するためには、燃料微粒化の促進とともに、燃焼室内の縦渦を強化して燃焼ガスの余剰空気との混合による再燃焼を促進することが重要である。そして、燃焼室内の縦渦を強化するためには、燃焼室壁面到達前の噴霧の貫徹力(ペネトレーション)を強化するのに加えて、燃料噴霧の壁面衝突後の貫徹力(ペネトレーション)を大きくして、燃焼領域下流での燃料噴霧および既燃焼ガスの縦方向の回り込みを強化する必要がある。   In order to reduce soot (black smoke) discharged from a diesel engine, it is effective to promote fuel atomization by using a group nozzle nozzle (GHN). In particular, the ignition delay is increased, When setting to ignite after the fuel hits the combustion chamber wall, in order to further reduce soot, and to sufficiently reduce nitrogen oxide (NOx) along with soot, in addition to promoting fuel atomization, It is important to enhance the vertical vortex in the combustion chamber and promote recombustion by mixing the combustion gas with surplus air. In order to strengthen the vertical vortex in the combustion chamber, in addition to strengthening the penetration force (penetration) of the spray before reaching the wall surface of the combustion chamber, the penetration force (penetration) after the fuel spray wall collision is increased. Therefore, it is necessary to strengthen the fuel spray downstream of the combustion region and the wraparound of the already burned gas.

ディーゼルエンジンの燃焼室に噴射された燃料の噴霧は、適度な噴霧ペネトレーションの設定により、着火遅れ期間にキャビティ壁面に衝突し、壁面に沿って広がる。そして、その燃料噴霧は壁面近傍で一番良く燃え、燃焼ガス(既燃ガス)が、燃料噴霧とともに燃焼膨張流による縦渦の流れに乗り、キャビティ壁面に沿って縦方向に回り込む。そして、その回り込んだ燃料噴霧と既燃ガスが、キャビティの中央付近まで素早く達すると、その辺りには燃焼に使われていない酸素を多量に含んだ低温の余剰空気があるため、高温の既焼ガスが低温の余剰空気と混じることによって急激に冷やされて、NOxの生成が低減され、また、既焼ガスに含まれている煤が酸素と触れ合って再燃焼することで、すす(黒煙)が低減される。そこで、燃料噴霧の壁面衝突後の貫徹力(ペネトレーション)を大きくして、燃料噴霧および既燃ガスの縦方向の回り込みを強化することで、既燃ガスを余剰空気と素早く混合させ、それより、NOxを低減することができるとともに、煤を再燃焼させて、すすを低減することが可能である。   The fuel spray injected into the combustion chamber of the diesel engine collides with the cavity wall surface during the ignition delay period and spreads along the wall surface by setting the appropriate spray penetration. The fuel spray burns best near the wall surface, and the combustion gas (burned gas) rides on the flow of the vertical vortex by the combustion expansion flow together with the fuel spray, and goes around the cavity wall surface in the vertical direction. When the entrained fuel spray and burned gas quickly reach the center of the cavity, there is low temperature surplus air that contains a large amount of oxygen that is not used for combustion. The burning gas is rapidly cooled by being mixed with low-temperature surplus air, so that the production of NOx is reduced, and soot contained in the burning gas comes into contact with oxygen and reburns, soot (black smoke) ) Is reduced. Therefore, by increasing the penetration force (penetration) after the wall surface collision of the fuel spray and strengthening the vertical wrapping of the fuel spray and the burnt gas, the burnt gas is quickly mixed with the surplus air, While being able to reduce NOx, it is possible to re-burn soot to reduce soot.

しかしながら、上記従来の技術は、微粒化された噴霧同士の衝突により噴霧の貫徹力を維持し、噴孔から燃焼室壁面に至る燃焼室空間の空気を無駄なく利用して、噴霧が燃焼室壁面に到達する前に実質的に燃焼終了させるためのもので、燃料噴霧の壁面衝突後の貫徹力の強化を考慮したものではなく、燃料噴霧の壁面衝突後の貫徹力(ペネトレーション)を強化して、窒素酸化物(NOx)およびすす(黒煙)の発生を十分に低減することができない。   However, the above conventional technique maintains the penetration force of the spray by collision between atomized sprays and uses the air in the combustion chamber space from the nozzle hole to the combustion chamber wall surface without waste. Is not intended to enhance the penetration force after the fuel spray wall collision, but to enhance the penetration force after the fuel spray wall collision. Further, generation of nitrogen oxides (NOx) and soot (black smoke) cannot be sufficiently reduced.

本発明は、気筒内の燃焼室に噴射した燃料により形成される噴霧の壁面衝突後の貫徹力を強化してNOxおよびすすの発生を十分に低減することができる燃料噴射ノズルを備えたディーゼルエンジンの燃料噴射装置を提供することを目的とする。   The present invention relates to a diesel engine equipped with a fuel injection nozzle that can sufficiently reduce the generation of NOx and soot by enhancing the penetration force after a wall collision of spray formed by fuel injected into a combustion chamber in a cylinder. An object of the present invention is to provide a fuel injection device.

本発明のディーゼルエンジンの燃料噴射装置は、ピストンの頂面中央部にピストンの動作方向における断面が凹形状に設けられて、燃焼室を形成するキャビティと、前記燃焼室の略中央に臨む位置に設けられ、燃焼室の側壁面に向けて燃料を噴射する燃料噴射ノズルとを備え、前記燃焼室は、ピストンの頂面に近い開口縁部がピストン径方向の内方へ突出する環状のリップ部を形成するとともに、ピストン径方向の中央に位置する底部中央部分が開口端側に向かって隆起した形状を有し、前記燃焼室に噴射された燃料の噴霧は、着火遅れ期間にキャビティ壁面に衝突して、混合気とともにキャビティの壁面に沿って広がり、その燃料の噴霧は、衝突する壁面の近傍で燃え、壁面衝突後の燃料噴霧と既燃ガスが、燃焼膨張流による縦渦の流れに乗って、キャビティの壁面および下部底面に沿って縦方向に回り込むよう構成されたディーゼルエンジンの燃料噴射装置であって、前記燃料噴射ノズルの噴射孔は、それぞれが2つの噴射孔からなる複数の噴孔群を構成し、前記燃焼室のリップ半径r/ボア半径が24/43<(r/ボア半径)<35/43で、各噴孔群の前記2つの噴射孔は、ノズル縦断面における噴孔間角度αが−5deg<α<+5deg、ノズル横断面における噴孔間角度βが7.5deg<β<12.5degに形成され、それら2つの噴射孔から噴射される燃料の噴霧が燃焼室壁面に衝突した後に噴孔群毎に1つの燃料噴霧を形成し、それら2つの噴射孔から噴射された燃料の噴霧が前記燃焼室壁面に衝突したときの衝突点の間の距離Xが4.5〜7.5mmとなることで、衝突後の噴霧の広がりが2つの噴射孔を結ぶ線に直交する方向に増幅されて楕円状に広がる特性により前記燃焼室壁面衝突後に得られる燃焼室縦方向の噴霧貫徹力が強化されて、該燃焼室縦方向の噴霧貫徹力が極大値近傍を維持する所定範囲内となり、それにより、壁面衝突後の燃料噴霧および既燃ガスの縦方向の回り込みが強化されることを特徴とするものである。 In the fuel injection device for a diesel engine according to the present invention, the piston is provided with a concave section at the center of the top surface of the piston, and a cavity that forms a combustion chamber and a position that faces the substantially center of the combustion chamber. A fuel injection nozzle that injects fuel toward the side wall surface of the combustion chamber, and the combustion chamber has an annular lip portion whose opening edge portion close to the top surface of the piston projects inward in the piston radial direction The bottom central portion located in the center of the piston radial direction has a shape that rises toward the opening end side, and the fuel spray injected into the combustion chamber collides with the cavity wall surface during the ignition delay period. The fuel spray spreads along the wall surface of the cavity along with the air-fuel mixture, and the fuel spray burns in the vicinity of the colliding wall surface, and the fuel spray and burned gas after the wall surface collision are converted into a vertical vortex flow by the combustion expansion flow. Thus, the fuel injection device of the diesel engine is configured to wrap around in the vertical direction along the wall surface and the lower bottom surface of the cavity, and the injection holes of the fuel injection nozzle each include a plurality of injection holes each having two injection holes. The two injection holes of each nozzle hole group are jet nozzles in the nozzle longitudinal section, which constitute a hole group, and the lip radius r / bore radius of the combustion chamber is 24/43 <(r / bore radius) <35/43. The inter-hole angle α is −5 deg <α <+5 deg, the inter-hole angle β in the nozzle cross section is 7.5 deg <β <12.5 deg, and the fuel spray injected from the two injection holes is the combustion chamber. One fuel spray is formed for each nozzle hole group after colliding with the wall surface, and the distance X between the collision points when the fuel spray injected from the two injection holes collides with the combustion chamber wall surface is 4. 5 to 7.5 mm As a result, the spray penetration force in the vertical direction of the combustion chamber obtained after the collision of the combustion chamber wall surface is enhanced by the characteristic that the spread of the spray after the collision is amplified in a direction perpendicular to the line connecting the two injection holes and spreads in an elliptical shape. Thus, the spray penetration force in the vertical direction of the combustion chamber is within a predetermined range that maintains the vicinity of the maximum value, thereby enhancing the vertical wrapping of the fuel spray and the burned gas after the wall collision. Is.

燃焼室中央部の上方から燃焼室の側壁面に向けて燃料を噴射する形態では、燃焼領域下流の燃料噴霧は燃焼室の側壁面近傍に比べて燃料噴射ノズル下方に位置する燃焼室中央付近で燃焼が促進されず余剰空気が残り易い特徴がある。そこで、上述のように燃料噴射ノズルを構成する。そうすることで、燃料微粒化を促進するとともに、壁面衝突後の燃焼室縦方向の噴霧貫徹力(ペネトレーション)を強化することができ、それにより燃焼領域下流の燃料噴霧および既燃ガスの縦方向の回り込みを強化することができるため、燃料噴霧および既燃ガスが燃焼室の壁面に沿って燃料噴射ノズル下方の燃焼室中央付近に到達するようになる。その結果、既燃ガスを余剰空気と素早く混合させることができて、既燃ガスを急激に冷やしてNOxの生成を抑制することができるとともに、既焼ガス中のすすの再燃焼を促進することができ、NOxおよびすすの発生を低減することができる。   In the form in which fuel is injected from the upper part of the combustion chamber toward the side wall surface of the combustion chamber, the fuel spray downstream of the combustion region is near the center of the combustion chamber located below the fuel injection nozzle as compared with the vicinity of the side wall surface of the combustion chamber. Combustion is not promoted and excess air tends to remain. Therefore, the fuel injection nozzle is configured as described above. By doing so, fuel atomization can be promoted and spray penetration (penetration) in the vertical direction of the combustion chamber after wall collision can be strengthened, whereby the vertical direction of fuel spray and burned gas downstream of the combustion region Therefore, the fuel spray and the burned gas reach the vicinity of the center of the combustion chamber below the fuel injection nozzle along the wall surface of the combustion chamber. As a result, the burned gas can be quickly mixed with the surplus air, the burned gas can be rapidly cooled to suppress the generation of NOx, and the soot reburning in the burned gas can be promoted. Generation of NOx and soot can be reduced.

2つの噴射孔から噴射された燃料の噴霧の壁面衝突後の噴霧粒径は、2つの噴射孔から噴射された燃料の噴霧が燃焼室壁面に衝突したときの衝突点の間の距離(これを「壁面衝突点距離」という)が大きくなるにつれて単調に微粒化が進む。一方、壁面衝突後の燃焼室縦方向の噴霧貫徹力(ペネトレーション)は、貫徹力が大きくなる壁面衝突点距離の範囲というのが途中にあって、その前後で単調に貫徹力が減少する。そして、この燃料噴霧の微粒化と壁面衝突後の燃焼室縦方向の噴霧貫徹力の特性は、燃焼室の大きさによらず壁面衝突点距離によって一義的に定まる。そのため、壁面衝突点距離を、壁面衝突後の燃焼室縦方向の噴霧貫徹力が極大値近傍を維持する所定範囲内となるようにすることで、壁面衝突後の貫徹力を強化しつつ、燃料微粒化を促進できる範囲に維持することができるのである。壁面衝突点距離は、2つの噴射孔の噴射孔間の距離および噴射孔間の角度と、燃焼室形状(ノズル中心から燃焼室壁面上の噴霧衝突点までの距離)の設定により基本的に定まる。   The spray particle diameter after the wall collision of the fuel spray injected from the two injection holes is the distance between the collision points when the fuel spray injected from the two injection holes collides with the combustion chamber wall. As the “wall collision point distance” increases, the atomization proceeds monotonously. On the other hand, the spray penetration force (penetration) in the vertical direction of the combustion chamber after the wall collision is in the middle of the range of the wall collision point distance where the penetration force increases, and the penetration force decreases monotonously before and after that. The characteristics of the atomization of the fuel spray and the spray penetration force in the longitudinal direction of the combustion chamber after the wall collision are uniquely determined by the wall collision point distance regardless of the size of the combustion chamber. Therefore, the wall surface collision point distance is set within a predetermined range in which the spray penetration force in the vertical direction of the combustion chamber after the wall surface collision is maintained in the vicinity of the maximum value, thereby enhancing the penetration force after the wall surface collision. It can be maintained within a range where atomization can be promoted. The wall collision point distance is basically determined by setting the distance between the injection holes of the two injection holes, the angle between the injection holes, and the shape of the combustion chamber (distance from the nozzle center to the spray collision point on the combustion chamber wall surface). .

ここで、燃焼室縦方向の噴霧貫徹力が極大値近傍を維持する所定範囲内とは、燃焼室縦方向の噴霧貫徹力が燃焼室横方向の噴霧貫徹力に対して少なくとも20%以上大きくなる範囲内である。   Here, within the predetermined range in which the spray penetration force in the vertical direction of the combustion chamber is maintained in the vicinity of the maximum value, the spray penetration force in the vertical direction of the combustion chamber is at least 20% or more larger than the spray penetration force in the horizontal direction of the combustion chamber. Within range.

そして、各噴孔群の2つの噴射孔は、2つの衝突点の間の距離(壁面衝突点距離)が4.5〜7.5mmの範囲内となるように、2つの噴射孔の噴射孔間の距離および噴射孔間の角度を設定するのがよい。そうすることで、壁面衝突後の噴霧貫徹力を強化しつつ、燃料微粒化を促進することができる。   The two injection holes of each injection hole group have two injection holes such that the distance between the two collision points (wall surface collision point distance) is in the range of 4.5 to 7.5 mm. The distance between them and the angle between the injection holes should be set. By doing so, fuel atomization can be promoted while strengthening the spray penetration force after the wall surface collision.

以上から明らかなように、本発明によれば、気筒内の燃焼室に噴射した燃料により形成される噴霧の壁面衝突後の貫徹力(ペネトレーション)を強化し、NOxおよびすすの発生を低減することができる。   As is apparent from the above, according to the present invention, the penetration force (penetration) after the collision of the spray wall formed by the fuel injected into the combustion chamber in the cylinder is strengthened, and the generation of NOx and soot is reduced. Can do.

以下、本発明の実施形態を図面に基づいて説明する。
図1〜図5は本発明の実施形態を示している。図1は実施形態に係るディーゼルエンジンの燃焼室近傍の断面図、図2は燃料噴霧の壁面衝突点距離Xを示す説明図、図3は燃料噴霧ノズルの噴孔レイアウトのパラメータを説明するもので、(a)はノズル縦断面における噴孔間距離Yおよび噴孔間角度αの説明図、(b)はノズル横断面における噴孔間距離Zおよび噴孔間角度βの説明図、(c)は燃焼室リップ半径rの説明図、図4は燃料噴霧の壁面衝突後の噴霧貫徹力(ペネトレーション)を説明する説明図、図5は燃料噴霧の壁面衝突点距離Xと、壁面衝突後の噴霧貫徹力(ペネトレーション)、燃料噴霧の平均粒径およびスモーク性能との関係を示すグラフである。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
1 to 5 show an embodiment of the present invention. FIG. 1 is a cross-sectional view of the vicinity of a combustion chamber of a diesel engine according to the embodiment, FIG. 2 is an explanatory diagram showing a wall spray collision distance X of fuel spray, and FIG. 3 is a diagram for explaining parameters of the nozzle hole layout of the fuel spray nozzle. (A) is explanatory drawing of inter-hole distance Y and nozzle hole angle (alpha) in a nozzle vertical cross section, (b) is explanatory drawing of inter-hole distance Z and nozzle hole angle (beta) in a nozzle cross section, (c). 4 is an explanatory view of the combustion chamber lip radius r, FIG. 4 is an explanatory view for explaining the penetration force (penetration) after the fuel spray wall collision, FIG. 5 is the fuel spray wall collision point distance X, and the spray after the wall collision. It is a graph which shows the relationship between penetration force (penetration), the average particle diameter of fuel spray, and smoke performance.

この実施形態のディーゼルエンジンは、直列多気筒エンジンで、図1に示すように、シリンダブロック1の上部にシリンダヘッド2が配置され、シリンダブロック1に形成された各気筒のシリンダボア3内に、上下作動自在にピストン4が配置され、シリンダヘッド2とシリンダボア3とピストン4とで燃焼室5が区画形成されている。そして、シリンダヘッド2には、気筒毎に、スワール生成式の吸気ポート(ヘリカルポート)6と、排気ボート7が設けられ、吸気ポート6および排気ポート7をそれぞれ開閉するよう吸気弁8および排気弁9が配設されている。また、シリンダヘッド2には、各気筒の燃焼室5の略中央に臨む位置に燃料噴射装置の燃料噴射弁10が取り付けられている。シリンダヘッド2はフラット型であり、吸気弁8および排気弁9は直立型である。   The diesel engine of this embodiment is an in-line multi-cylinder engine. As shown in FIG. 1, a cylinder head 2 is disposed on the upper part of the cylinder block 1, and the cylinder bore 3 of each cylinder formed in the cylinder block 1 is vertically moved. A piston 4 is operably disposed, and a combustion chamber 5 is defined by the cylinder head 2, the cylinder bore 3, and the piston 4. The cylinder head 2 is provided with a swirl-type intake port (helical port) 6 and an exhaust boat 7 for each cylinder, and an intake valve 8 and an exhaust valve are respectively opened and closed to open and close the intake port 6 and the exhaust port 7. 9 is disposed. In addition, a fuel injection valve 10 of a fuel injection device is attached to the cylinder head 2 at a position facing substantially the center of the combustion chamber 5 of each cylinder. The cylinder head 2 is a flat type, and the intake valve 8 and the exhaust valve 9 are upright.

ピストン4の頂部には、ピストン動作方向(図1において上下の方向)を軸線方向として凹入し開口端側で径が小さくなったリエントラント型のキャビティ11が形成されている。   At the top of the piston 4 is formed a reentrant cavity 11 which is recessed with the piston operating direction (vertical direction in FIG. 1) as the axial direction and having a smaller diameter on the opening end side.

キャビティ11は、燃焼室5を構成するもので、ピストン4の頂面に近い開口縁部がピストン径方向の内方へ突出する環状のリップ部12を形成し、リップ部12に続いてピストン径方向の外方に凹入した環状凹入部13を形成し、また、ピストン径方向の中央に位置するキャビティ11の底部中央部分が、該キャビティ11の開口端側に向かって隆起した凸部14を形成している。   The cavity 11 constitutes the combustion chamber 5 and forms an annular lip portion 12 whose opening edge near the top surface of the piston 4 protrudes inward in the piston radial direction. An annular recess 13 that is recessed outward in the direction is formed, and a bottom central portion of the cavity 11 located at the center in the piston radial direction has a raised portion 14 that protrudes toward the opening end side of the cavity 11. Forming.

燃料噴射弁10は、先端部が燃料噴射ノズル15を構成し、その燃料噴射ノズル15が、ピストン4頂部のキャビティ11に燃料を直接噴射するべく燃焼室5内に若干突出している。   The tip of the fuel injection valve 10 constitutes a fuel injection nozzle 15, and the fuel injection nozzle 15 slightly protrudes into the combustion chamber 5 so as to inject fuel directly into the cavity 11 at the top of the piston 4.

そして、その燃料噴射ノズル15には、それぞれが2つの噴射孔21,22からなる複数の噴孔群20(図2参照)が、略等間隔で周方向に並ぶ配置で設けられている。噴孔群20の数は、例えば5〜12個である。   The fuel injection nozzle 15 is provided with a plurality of nozzle hole groups 20 (see FIG. 2) each having two injection holes 21 and 22 arranged in the circumferential direction at substantially equal intervals. The number of the nozzle hole groups 20 is 5 to 12, for example.

各噴孔群20の噴射孔21,22からは、ピストン4頂部のキャビティ11のリップ部12壁面に向けて、キャビティ軸線方向(ピストン軸線方向)の上方から斜め下向きに燃料が噴射される。各噴孔群20は、2つの噴射孔21,22から噴射される燃料の噴霧が燃焼室壁面(キャビティ11の壁面)に衝突した後に噴孔群20毎に1つ(一塊)の燃料噴霧31を形成する。   From the injection holes 21 and 22 of each injection hole group 20, fuel is injected obliquely downward from above in the cavity axis direction (piston axis direction) toward the wall surface of the lip 12 of the cavity 11 at the top of the piston 4. Each nozzle hole group 20 has one (a lump) fuel spray 31 for each nozzle hole group 20 after the fuel spray injected from the two injection holes 21 and 22 collides with the combustion chamber wall surface (wall surface of the cavity 11). Form.

そして、それぞれの噴孔群20の各2つの噴射孔21,22は、図2に示すように、2つの噴射孔21,22から噴射される燃料の噴射方向(噴孔中心軸の方向)が、キャビティ11のリップ部12の壁面に、互に隣接する2点(衝突点Aおよび衝突点B)でそれぞれ略直交し、それら隣接する2点(衝突点Aおよび衝突点Bの間の距離すなわち壁面衝突点距離Xが、4.5〜7.5mmの範囲内となるように構成されている。 Each of the two injection holes 21 and 22 of each injection hole group 20 has an injection direction of fuel injected from the two injection holes 21 and 22 (direction of the injection hole central axis) as shown in FIG. The distance between the two adjacent points (collision point A and collision point B) is substantially perpendicular to the wall surface of the lip portion 12 of the cavity 11 at two points adjacent to each other (collision point A and collision point B ). That is, the wall surface collision point distance X is configured to be in the range of 4.5 to 7.5 mm.

壁面衝突点距離Xは、基本的には、2つの噴射孔21,22の噴射孔間の距離および噴射孔間の角度(噴孔中心軸間の角度)の設定と、ノズル中心から燃焼室壁面上の噴霧衝突点までの距離により定まる。ここで、噴射孔間の距離は、図3(a)に示すノズル縦断面における噴孔出口間距離Yと、図3(b)に示すノズル横断面における噴孔出口間距離Zとで決まり、噴射孔間の角度は、図3(a)に示すノズル縦断面における噴孔間角度αと、図3(b)に示すノズル横断面における噴孔間角度βとで決まる。また、ノズル中心から燃焼室壁面上の噴霧衝突点までの距離は、図3(c)に示す燃焼室リップ半径rである。   The wall collision point distance X is basically determined by setting the distance between the injection holes of the two injection holes 21 and 22 and the angle between the injection holes (angle between the central axes of the injection holes) and from the center of the nozzle to the wall surface of the combustion chamber. It is determined by the distance to the upper spray collision point. Here, the distance between the injection holes is determined by the distance Y between the nozzle holes in the nozzle longitudinal section shown in FIG. 3A and the distance Z between the nozzle holes in the nozzle cross section shown in FIG. The angle between the injection holes is determined by the injection hole angle α in the nozzle longitudinal section shown in FIG. 3A and the injection hole angle β in the nozzle cross section shown in FIG. Further, the distance from the nozzle center to the spray collision point on the combustion chamber wall surface is a combustion chamber lip radius r shown in FIG.

壁面衝突点距離Xを求める式は次のとおりである。

Figure 0004992772
The equation for obtaining the wall surface collision point distance X is as follows.
Figure 0004992772

図3(a)〜(c)に示すノズルスペックの各パラメータの設定範囲は、例えば、0.25<Y<0.5mm、0.25<Z<0.5mm、−5<α<+5deg、7.5<β<12.5deg、145<θ<160deg、24/43<(r/ボア半径)<35/43である。θは噴孔コーン角である。

The setting ranges of the parameters of the nozzle specifications shown in FIGS. 3A to 3C are, for example, 0.25 <Y <0.5 mm, 0.25 <Z <0.5 mm, −5 <α <+5 deg, 7.5 <β <12.5 deg, 145 <θ <160 deg, 24/43 <(r / bore radius) <35/43. θ is the nozzle cone angle.

図4に示すように、燃焼室5に噴射された燃料の噴霧(燃料噴霧31)は、着火遅れ期間にキャビティ11壁面に衝突し、混合気32とともにキャビティ11の壁面に沿って広がる。そして、その燃料噴霧31は、衝突する壁面の近傍で燃え、壁面衝突後の燃料噴霧31Aと既燃ガス(燃焼ガス)33が、燃焼膨張流による縦渦の流れに乗って、キャビティ11の壁面および下部底面に沿って縦方向に回り込む(矢印T)。そして、その回り込みが縦方向に強いと、燃料噴霧31Aと既燃ガス33がキャビティ11の中央まで素早く到達する。   As shown in FIG. 4, the fuel spray (fuel spray 31) injected into the combustion chamber 5 collides with the wall surface of the cavity 11 during the ignition delay period, and spreads along the wall surface of the cavity 11 together with the air-fuel mixture 32. The fuel spray 31 burns in the vicinity of the colliding wall surface, and the fuel spray 31A and the burned gas (combustion gas) 33 after the wall collision collide with the flow of the vertical vortex caused by the combustion expansion flow, And it goes around in the vertical direction along the bottom of the bottom (arrow T). When the wraparound is strong in the vertical direction, the fuel spray 31 </ b> A and the burned gas 33 quickly reach the center of the cavity 11.

キャビティ11の中央付近には、燃焼に使われていない酸素を多量に含んだ低温の余剰空気34が存在する。そして、壁面衝突後の燃料噴霧31Aおよび既燃ガス33の縦方向の貫徹力(ペネトレーション)が大きいと、燃焼領域35下流の燃料噴霧31Aおよび既燃ガス33が縦方向に回り込み、既燃ガス33が余剰空気34と素早く混合させることができて、既燃ガス33を急激に冷やしてNOxの生成を抑制することができるとともに、既焼ガス33中の煤の再燃焼を促進することができ、排出されるNOxおよびスモークを低減することができる。   Near the center of the cavity 11, there is low-temperature surplus air 34 containing a large amount of oxygen that is not used for combustion. When the penetration force (penetration) in the vertical direction of the fuel spray 31A and the burned gas 33 after the wall collision is large, the fuel spray 31A and the burned gas 33 downstream of the combustion region 35 wrap around in the vertical direction, and the burned gas 33 Can be quickly mixed with the surplus air 34, the burned gas 33 can be rapidly cooled to suppress the generation of NOx, and the reburning of soot in the burned gas 33 can be promoted. The exhausted NOx and smoke can be reduced.

この実施形態の燃料噴射ノズル15は、上記のように各噴孔群20の2つの噴射孔21,22のノズルスペックが、壁面衝突点距離Xが4.5〜7.5mmとなるよう構成されている。この場合、燃料噴霧の壁面衝突後の縦方向の噴霧貫徹力は強力で、燃料の微粒化も促進される。その結果、燃料微粒化を促進するとともに、燃料噴霧の壁面衝突後の噴霧貫徹力(ペネトレーション)を強化することができ、それにより燃焼領域下流の燃料噴霧および既燃ガスの縦方向の回り込みを強化することができ、既燃ガス33を余剰空気34と素早く混合させることができて、既燃ガス33を急激に冷やしてNOxの生成を抑制することができるとともに、既燃ガス33中のすすの再燃焼を促進することができ、NOxおよびすすの発生を、十分に低減することができる。   As described above, the fuel injection nozzle 15 of this embodiment is configured such that the nozzle specifications of the two injection holes 21 and 22 of each injection hole group 20 have a wall surface collision point distance X of 4.5 to 7.5 mm. ing. In this case, the vertical spray penetration after the fuel spray wall collision is strong, and fuel atomization is also promoted. As a result, atomization of the fuel can be promoted and the penetration force (penetration) of the fuel spray after the collision with the wall surface can be strengthened, thereby enhancing the fuel spray downstream of the combustion region and the wraparound of the burned gas in the vertical direction. The burned gas 33 can be quickly mixed with the surplus air 34, the burned gas 33 can be rapidly cooled to suppress the generation of NOx, and the soot in the burned gas 33 can be reduced. Reburning can be promoted, and the generation of NOx and soot can be sufficiently reduced.

図5に示すように、2つの噴射孔から噴射された燃料の噴霧の壁面衝突後の噴霧粒径は、壁面衝突点距離X(2つの噴射孔から噴射された燃料の噴霧が燃焼室壁面に衝突したときの衝突点の間の距離)が大きくなるにつれて単調に微粒化が進む。一方、壁面衝突後の燃焼室縦方向の噴霧貫徹力(ペネトレーション)は、貫徹力が大きくなる壁面衝突点距離の範囲というのが途中にあって、その前後で単調に貫徹力が減少する。そのため、壁面衝突点距離Xを、壁面衝突後の燃焼室縦方向の噴霧貫徹力が極大値近傍を維持する所定範囲を最適範囲として、その範囲内となるようにすることで、壁面衝突後の貫徹力を強化しつつ、燃料微粒化を促進できる範囲に維持することができる。   As shown in FIG. 5, the spray particle size after the wall collision of the fuel spray injected from the two injection holes is expressed as follows: Wall collision point distance X (the fuel spray injected from the two injection holes is applied to the combustion chamber wall surface) As the distance between the collision points at the time of collision increases, the atomization proceeds monotonously. On the other hand, the spray penetration force (penetration) in the vertical direction of the combustion chamber after the wall collision is in the middle of the range of the wall collision point distance where the penetration force increases, and the penetration force decreases monotonously before and after that. Therefore, by setting the wall surface collision point distance X to be within the predetermined range in which the spray penetration force in the vertical direction of the combustion chamber after the wall surface collision is maintained in the vicinity of the maximum value, While strengthening the penetration force, it can be maintained in a range where fuel atomization can be promoted.

壁面衝突後の燃焼室縦方向の噴霧貫徹力が極大値近傍を維持する所定範囲(最適範囲)内というのは、図5に示すように、壁面衝突点距離Xが4.5〜7.5mmの範囲内である。この最適範囲内は、燃焼室縦方向の噴霧貫徹力が燃焼室横方向の噴霧貫徹力に対して少なくとも20%以上大きく、下限である4.5mmは、燃焼室縦方向の噴霧貫徹力が燃焼室横方向の噴霧貫徹力に対して25%大きくなる壁面衝突点距離Xであり、上限である7.5mmは、燃焼室縦方向の噴霧貫徹力が燃焼室横方向の噴霧貫徹力に対して20%大きくなる壁面衝突点距離Xである。上限側は下限側よりも平均粒径が小さくなるため、その分、エミッション対応が有利であることから、燃焼室縦方向の噴霧貫徹力が燃焼室横方向の噴霧貫徹力に対して20%大きくなる壁面衝突点距離Xを閾値としている。例示する実機テストのデータ(実機スモーク性能)でも、衝突点間距離Xが4.5〜7.5mmの範囲内では、すす(スモーク)の排出量が十分低い。   As shown in FIG. 5, the wall collision point distance X is 4.5 to 7.5 mm within the predetermined range (optimum range) in which the spray penetration force in the vertical direction of the combustion chamber after the wall collision maintains the vicinity of the maximum value. Is within the range. Within this optimum range, the spray penetration force in the vertical direction of the combustion chamber is at least 20% greater than the spray penetration force in the horizontal direction of the combustion chamber, and the lower limit of 4.5 mm burns the spray penetration force in the vertical direction of the combustion chamber. The wall collision point distance X is 25% larger than the spray penetration force in the horizontal direction of the chamber, and the upper limit of 7.5 mm is such that the spray penetration force in the vertical direction of the combustion chamber is relative to the spray penetration force in the horizontal direction of the combustion chamber. The wall surface collision point distance X is increased by 20%. Since the average particle size is smaller on the upper limit side than on the lower limit side, it is advantageous to deal with emissions. Therefore, the spray penetration force in the vertical direction of the combustion chamber is 20% larger than the spray penetration force in the horizontal direction of the combustion chamber. The wall surface collision point distance X becomes a threshold value. Even in the actual machine test data (actual machine smoke performance) illustrated, the soot (smoke) discharge is sufficiently low when the distance X between the collision points is in the range of 4.5 to 7.5 mm.

図6は上記実施形態のディーゼルエンジンにおける燃料噴霧の壁面衝突後の噴霧貫徹力(ペネトレーション)に関連して、噴射孔が1つの場合と、2つの場合の、燃料を壁面に噴射した際の壁面衝突後の噴霧形状を計測した結果を示すもので、(a)および(b)は噴射孔が1つの場合の計測結果説明図、(c)および(d)は噴射孔が2つの場合の計測結果説明図である。図6に示す計測結果から、普通に1つの噴射孔23から噴射した燃料の噴霧31を壁面に衝突させると、衝突後の噴霧31Aは同心円状に広がるが、上記実施形態のように、2つの噴射孔21,22を隣接させて適度の距離をもって配置し、それら2個の噴射孔21,22から噴射した燃料の噴霧31は、1つの噴霧31となってキャビティ11の壁面に衝突し、その衝突後の噴霧31Aの広がりは、2つの噴射孔21,22を結ぶ線に直交する方向に増幅されて、楕円状に広がることが判る。この特性を利用することで、壁面衝突後の貫徹力(ペネトレーション)を強化することができ、それにより、壁面衝突後の燃料噴霧31Aおよび既燃ガス33の縦方向の回り込みを強化することができる。   FIG. 6 shows the wall surface when fuel is injected to the wall surface in the case of one and two injection holes in relation to the spray penetration force (penetration) after the fuel spray wall collision in the diesel engine of the above embodiment. The results of measurement of the spray shape after the collision are shown. (A) and (b) are explanatory diagrams of measurement results when there is one injection hole, and (c) and (d) are measurements when there are two injection holes. It is result explanatory drawing. From the measurement result shown in FIG. 6, when the fuel spray 31 normally injected from one injection hole 23 collides with the wall surface, the spray 31A after the collision spreads concentrically. The injection holes 21 and 22 are arranged adjacent to each other with an appropriate distance, and the fuel spray 31 injected from the two injection holes 21 and 22 becomes one spray 31 and collides with the wall surface of the cavity 11. It can be seen that the spread of the spray 31A after the collision is amplified in a direction orthogonal to the line connecting the two injection holes 21 and 22, and spreads in an elliptical shape. By utilizing this characteristic, the penetration force (penetration) after the wall collision can be strengthened, and thereby the wraparound in the vertical direction of the fuel spray 31A and the burned gas 33 after the wall collision can be strengthened. .

本発明の実施形態に係るディーゼルエンジンの燃焼室近傍の断面図である。It is sectional drawing of the combustion chamber vicinity of the diesel engine which concerns on embodiment of this invention. 本発明の実施形態のディーゼルエンジンにおける燃料噴霧の壁面衝突点距離Xを示す説明図である。It is explanatory drawing which shows the wall surface collision point distance X of the fuel spray in the diesel engine of embodiment of this invention. 本発明の実施形態のディーゼルエンジンにおける燃料噴霧ノズルの噴孔レイアウトのパラメータを説明するもので、(a)はノズル縦断面における噴孔間距離Yおよび噴孔間角度αの説明図、(b)はノズル横断面における噴孔間距離Zおよび噴孔間角度βの説明図、(c)は燃焼室リップ半径rの説明図である。The parameter of the nozzle hole layout of the fuel spray nozzle in the diesel engine of embodiment of this invention is demonstrated, (a) is explanatory drawing of the distance Y between nozzle holes and the angle α between nozzle holes in a nozzle vertical cross section, (b). Is an explanatory view of the inter-hole distance Z and the inter-hole angle β in the nozzle cross section, and FIG. 本発明の実施形態のディーゼルエンジンにおける燃料噴射ノズルから噴射された燃料噴霧の壁面衝突後の噴霧貫徹力(ペネトレーション)を説明する説明図である。It is explanatory drawing explaining the spray penetration force (penetration) after the wall surface collision of the fuel spray injected from the fuel injection nozzle in the diesel engine of embodiment of this invention. 本発明の実施形態のディーゼルエンジンにおける燃料噴射ノズルから噴射された燃料噴霧の壁面衝突点距離Xと、壁面衝突後の噴霧貫徹力(ペネトレーション)、燃料噴霧の平均粒径およびスモーク性能との関係を示すグラフである。The relationship between the wall collision point distance X of the fuel spray injected from the fuel injection nozzle in the diesel engine of the embodiment of the present invention, the spray penetration (penetration) after the wall collision, the average particle diameter of the fuel spray, and the smoke performance It is a graph to show. 本発明の実施形態のディーゼルエンジンにおける燃料噴射ノズルから噴射される燃料噴霧の壁面衝突後の噴霧貫徹力(ペネトレーション)に関連して、噴射孔が1つの場合と、2つの場合の、燃料を壁面に噴射した際の壁面衝突後の噴霧形状を計測した結果を示すもので、(a)および(b)は噴射孔が1つの場合の計測結果説明図、(c)および(d)は噴射孔が2つの場合の計測結果説明図である。In relation to the spray penetration force (penetration) after the wall collision of the fuel spray injected from the fuel injection nozzle in the diesel engine of the embodiment of the present invention, the fuel is supplied to the wall surface in the case of one injection hole and in the case of two injection holes. FIG. 4 shows the result of measuring the spray shape after a wall collision when being injected into the nozzle. FIGS. (A) and (b) are explanatory diagrams of measurement results when there is one injection hole, and (c) and (d) are the injection holes. It is measurement result explanatory drawing in the case of two.

符号の説明Explanation of symbols

5 燃焼室
10 燃料噴射弁
15 噴射ノズル
20 噴孔群
21、22 噴射孔
31、31A 燃料噴霧
32 混合気
33 既燃ガス(燃焼ガス)
34 余剰空気
35 燃焼領域
A、B 衝突点
X 壁面衝突点距離
Y ノズル縦断面における噴孔間距離
α ノズル縦断面における噴孔間角度
Z ノズル横断面における噴孔間距離
β ノズル横断面における噴孔間角度
r 燃焼室リップ半径
5 Combustion chamber 10 Fuel injection valve 15 Injection nozzle 20 Injection hole group 21, 22 Injection hole 31, 31A Fuel spray 32 Mixture 33 Burned gas (combustion gas)
34 Excess air 35 Combustion areas A, B Collision point X Wall collision point distance Y Distance between nozzle holes in nozzle vertical section α Angle between nozzle holes in nozzle vertical section Z Distance between nozzle holes in nozzle cross section β Hole in nozzle cross section Angle r Combustion chamber lip radius

Claims (2)

ピストンの頂面中央部にピストンの動作方向における断面が凹形状に設けられて、燃焼室を形成するキャビティと、前記燃焼室の略中央に臨む位置に設けられ、燃焼室の側壁面に向けて燃料を噴射する燃料噴射ノズルとを備え、前記燃焼室は、ピストンの頂面に近い開口縁部がピストン径方向の内方へ突出する環状のリップ部を形成するとともに、ピストン径方向の中央に位置する底部中央部分が開口端側に向かって隆起した形状を有し、前記燃焼室に噴射された燃料の噴霧は、着火遅れ期間にキャビティ壁面に衝突して、混合気とともにキャビティの壁面に沿って広がり、その燃料の噴霧は、衝突する壁面の近傍で燃え、壁面衝突後の燃料噴霧と既燃ガスが、燃焼膨張流による縦渦の流れに乗って、キャビティの壁面および下部底面に沿って縦方向に回り込むよう構成されたディーゼルエンジンの燃料噴射装置であって、
前記燃料噴射ノズルの噴射孔は、それぞれが2つの噴射孔からなる複数の噴孔群を構成し、前記燃焼室のリップ半径r/ボア半径が24/43<(r/ボア半径)<35/43で、各噴孔群の前記2つの噴射孔は、ノズル縦断面における噴孔間角度αが−5deg<α<+5deg、ノズル横断面における噴孔間角度βが7.5deg<β<12.5degに形成され、それら2つの噴射孔から噴射される燃料の噴霧が燃焼室壁面に衝突した後に噴孔群毎に1つの燃料噴霧を形成し、それら2つの噴射孔から噴射された燃料の噴霧が前記燃焼室壁面に衝突したときの衝突点の間の距離Xが4.5〜7.5mmとなることで、衝突後の噴霧の広がりが2つの噴射孔を結ぶ線に直交する方向に増幅されて楕円状に広がる特性により前記燃焼室壁面衝突後に得られる燃焼室縦方向の噴霧貫徹力が強化されて、該燃焼室縦方向の噴霧貫徹力が極大値近傍を維持する所定範囲内となり、それにより、壁面衝突後の燃料噴霧および既燃ガスの縦方向の回り込みが強化されることを特徴とするディーゼルエンジンの燃料噴射装置。
The piston is provided with a concave cross section in the center of the top surface of the piston, in a cavity that forms a combustion chamber, and at a position facing the approximate center of the combustion chamber, toward the side wall surface of the combustion chamber A fuel injection nozzle for injecting fuel, and the combustion chamber forms an annular lip portion with an opening edge near the top surface of the piston protruding inward in the piston radial direction, and at the center in the piston radial direction. The center portion of the bottom portion is shaped to protrude toward the opening end side, and the spray of fuel injected into the combustion chamber collides with the cavity wall surface during the ignition delay period, along with the air-fuel mixture along the wall surface of the cavity. The fuel spray burns in the vicinity of the colliding wall surface, and the fuel spray and burned gas after the wall collision ride along the vertical vortex flow caused by the combustion expansion flow along the cavity wall surface and bottom bottom surface. A fuel injection system for a diesel engine that is configured to wrap around the longitudinal direction,
The injection holes of the fuel injection nozzle constitute a plurality of injection hole groups each consisting of two injection holes, and the lip radius r / bore radius of the combustion chamber is 24/43 <(r / bore radius) <35 / 43 , the nozzle hole angle α in the nozzle longitudinal section is −5 deg <α <+5 deg, and the nozzle hole angle β in the nozzle cross section is 7.5 deg <β <12. After the fuel spray injected from these two injection holes collides with the combustion chamber wall surface, one fuel spray is formed for each injection hole group, and the fuel spray injected from these two injection holes When the distance X between the collision points when it collides with the combustion chamber wall surface becomes 4.5 to 7.5 mm, the spread of the spray after the collision is amplified in the direction orthogonal to the line connecting the two injection holes And the combustion chamber wall surface The combustion penetration in the longitudinal direction of the combustion chamber obtained later is strengthened, and the spray penetration in the longitudinal direction of the combustion chamber is within a predetermined range to maintain the vicinity of the maximum value, so that fuel spray and burned gas after wall collision A fuel injection device for a diesel engine, characterized in that the wraparound in the vertical direction is enhanced.
前記燃焼室縦方向の噴霧貫徹力が極大値近傍を維持する所定範囲内とは、前記燃焼室縦方向の噴霧貫徹力が燃焼室横方向の噴霧貫徹力に対して少なくとも20%以上大きくなる範囲内である請求項1記載のディーゼルエンジンの燃料噴射装置。 The predetermined range in which the spray penetration force in the vertical direction of the combustion chamber is maintained in the vicinity of the maximum value is a range in which the spray penetration force in the vertical direction of the combustion chamber is at least 20% larger than the spray penetration force in the horizontal direction of the combustion chamber. The fuel injection device for a diesel engine according to claim 1, wherein
JP2008063141A 2007-08-14 2008-03-12 Fuel injection system for diesel engine Expired - Fee Related JP4992772B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008063141A JP4992772B2 (en) 2007-08-14 2008-03-12 Fuel injection system for diesel engine
US12/190,463 US7895986B2 (en) 2007-08-14 2008-08-12 Diesel engine and fuel injection nozzle therefor
EP08014375A EP2025919B1 (en) 2007-08-14 2008-08-12 Diesel engine, fuel injection nozzle and fuel injection method therefor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007211323 2007-08-14
JP2007211323 2007-08-14
JP2008063141A JP4992772B2 (en) 2007-08-14 2008-03-12 Fuel injection system for diesel engine

Publications (2)

Publication Number Publication Date
JP2009062971A JP2009062971A (en) 2009-03-26
JP4992772B2 true JP4992772B2 (en) 2012-08-08

Family

ID=40557756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008063141A Expired - Fee Related JP4992772B2 (en) 2007-08-14 2008-03-12 Fuel injection system for diesel engine

Country Status (1)

Country Link
JP (1) JP4992772B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5239435B2 (en) * 2008-03-24 2013-07-17 マツダ株式会社 Fuel injection system for diesel engine
DE102011017479A1 (en) * 2011-04-19 2012-10-25 Daimler Ag Internal combustion engine

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0309590B1 (en) * 1987-04-07 1992-07-08 Kabushiki Kaisha Komatsu Seisakusho Internal combustion engine
JPH07167016A (en) * 1993-10-09 1995-07-04 Hino Motors Ltd Fuel injection device
JP3330745B2 (en) * 1994-09-30 2002-09-30 ヤンマーディーゼル株式会社 Diesel engine
JPH10176632A (en) * 1996-12-17 1998-06-30 Mitsubishi Motors Corp Fuel injection nozzle
JP2002332934A (en) * 2001-05-10 2002-11-22 Toyota Motor Corp Fuel injection valve
JP4682452B2 (en) * 2001-06-06 2011-05-11 マツダ株式会社 Fuel injection system for diesel engine
DE10210976A1 (en) * 2002-03-13 2003-09-25 Bosch Gmbh Robert Fuel injection valve for internal combustion engine has injection jets converging from at least one outer and one inner injection channel
FR2866393B1 (en) * 2004-02-13 2008-02-29 Peugeot Citroen Automobiles Sa INTERNAL COMBUSTION ENGINE WITH DIRECT INJECTION
JP2006207517A (en) * 2005-01-31 2006-08-10 Denso Corp Fuel injection nozzle
JP2007051624A (en) * 2005-08-19 2007-03-01 Denso Corp Fuel injection nozzle
JP2008267155A (en) * 2007-04-16 2008-11-06 Mazda Motor Corp Fuel injector for diesel engine
JP5239435B2 (en) * 2008-03-24 2013-07-17 マツダ株式会社 Fuel injection system for diesel engine

Also Published As

Publication number Publication date
JP2009062971A (en) 2009-03-26

Similar Documents

Publication Publication Date Title
JP4342481B2 (en) In-cylinder injection spark ignition internal combustion engine
US6799551B2 (en) Direct injection type internal combustion engine
JP4549222B2 (en) Direct spray diesel engine
US7895986B2 (en) Diesel engine and fuel injection nozzle therefor
KR100941193B1 (en) Cylinder injection spark ignition type internal combustion engine
KR20070044068A (en) Shape of combustion chamber of direct injection diesel engine
CN106715860B (en) The chamber structure of engine
JP2014533799A (en) Combustion method and internal combustion engine
JP4992772B2 (en) Fuel injection system for diesel engine
JP2008267155A (en) Fuel injector for diesel engine
JP5239435B2 (en) Fuel injection system for diesel engine
JPH04272425A (en) Combustion chamber for diesel engine
JP2007138780A (en) Auxiliary chamber type internal combustion engine
JP4385547B2 (en) diesel engine
JP4428273B2 (en) In-cylinder direct injection internal combustion engine
US9605585B2 (en) Internal combustion engine, in particular for a motor vehicle, and a method for operating such an internal combustion engine
JP4682452B2 (en) Fuel injection system for diesel engine
JP5071090B2 (en) Diesel engine fuel injection method and diesel engine
Muthusamy et al. Effect of Injector Cone Angle and NTP on Performance and Emissions of BS6 Engine
JP2003269176A (en) Cylinder direct injection engine
JP4183127B2 (en) Sub-chamber internal combustion engine
JP4026406B2 (en) Direct-injection spark ignition internal combustion engine
JP2004092496A (en) Diesel engine
JP2010031772A (en) Group injection hole nozzle and selecting method of its design specification
KR100960333B1 (en) A fuel injection nozzle for diesel engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110725

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110906

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111206

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20111214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120410

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120423

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4992772

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees