JP4991235B2 - Magnetic resonance imaging system - Google Patents

Magnetic resonance imaging system Download PDF

Info

Publication number
JP4991235B2
JP4991235B2 JP2006272416A JP2006272416A JP4991235B2 JP 4991235 B2 JP4991235 B2 JP 4991235B2 JP 2006272416 A JP2006272416 A JP 2006272416A JP 2006272416 A JP2006272416 A JP 2006272416A JP 4991235 B2 JP4991235 B2 JP 4991235B2
Authority
JP
Japan
Prior art keywords
magnetic field
shim coil
magnetic resonance
shim
resonance imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006272416A
Other languages
Japanese (ja)
Other versions
JP2008086613A (en
Inventor
伸 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP2006272416A priority Critical patent/JP4991235B2/en
Publication of JP2008086613A publication Critical patent/JP2008086613A/en
Application granted granted Critical
Publication of JP4991235B2 publication Critical patent/JP4991235B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、磁気共鳴イメージング装置に係り、特に計測空間の静磁場均一度を動的に補正するシムコイルを安定に動作させる技術に関する。   The present invention relates to a magnetic resonance imaging apparatus, and more particularly to a technique for stably operating a shim coil that dynamically corrects the static magnetic field uniformity in a measurement space.

核磁気共鳴(NMR)現象を利用して被検体を構成する主要物質プロトンの体内における密度分布や、被検体内における核スピンの緩和時間の空間分布から人体の断層画像を得る磁気共鳴イメージング装置(以下、MRI装置と記す場合がある)は広く医療機関で使用されている。   A magnetic resonance imaging system that uses the nuclear magnetic resonance (NMR) phenomenon to obtain tomographic images of the human body from the density distribution in the body of the main substance protons that make up the subject and the spatial distribution of the relaxation time of nuclear spins in the subject ( Hereinafter, it may be referred to as an MRI apparatus) is widely used in medical institutions.

このMRI装置は、コントラスト分解能に優れていること、電離放射線を使用しないため無侵襲と考えられること、得られる画像が骨や空気による影響を受けにくいこと、流体の挙動に敏感であるため血管系疾患や脊髄領域の診断にも有効であること等の特長を有している。   This MRI device has excellent contrast resolution, is considered non-invasive because it does not use ionizing radiation, the images obtained are less susceptible to bone and air, and is sensitive to fluid behavior, so it is vascular It has features such as being effective for diagnosis of diseases and spinal cord regions.

前記の特長を有するMRI装置において、近年、イメージングに要する時間の短縮化のニーズに対応するために、シングルショット、あるいはマルチショットEPI(echo planar imaging)等の超高速撮像法が開発され、実用化されている。このような超高速撮像法に対応するために、傾斜磁場パルスの高速反転を伴うパルスシーケンスを用いて計測対象から発せられる各々の信号に位置情報を与える必要がある。このため、静磁場中に置かれた傾斜磁場コイルにパルス状の大電流を流すので、前記傾斜磁場コイルには大きなローレンツ力が作用し、該傾斜磁場コイルに機械的歪みを生じさせる。
そして、この現象が繰り返し作用するため、傾斜磁場コイルが振動して、さらに傾斜磁場パルスを高速反転すると、前記振動は増大する。
In recent years, ultra-high-speed imaging methods such as single-shot or multi-shot EPI (echo planar imaging) have been developed and put into practical use in order to meet the need for shortening the time required for imaging. Has been. In order to cope with such an ultra-high-speed imaging method, it is necessary to give positional information to each signal emitted from the measurement object using a pulse sequence accompanied by high-speed inversion of the gradient magnetic field pulse. For this reason, since a large pulse current flows through the gradient coil placed in the static magnetic field, a large Lorentz force acts on the gradient coil, causing mechanical distortion in the gradient coil.
Since this phenomenon repeatedly acts, if the gradient magnetic field coil vibrates and further the gradient magnetic field pulse is reversed at high speed, the vibration increases.

このような傾斜磁場パルスを発生させると、前記ローレンツ力により傾斜磁場コイル、高周波コイルのコイルユニット等に機械的歪みを起こさせ、これによってユニット全体が振動する。   When such a gradient magnetic field pulse is generated, mechanical distortion occurs in the gradient magnetic field coil, the coil unit of the high frequency coil, and the like by the Lorentz force, thereby vibrating the entire unit.

この振動によって前記コイルユニットの金属部品どうしの擦れ合いにより発生するB電波や誘導電子のために、画質が劣化する問題が発生する。
そこで、前記B電波や誘導電子の問題を解決する技術として特許文献1に開示されたものがある。
これは、前記ユニットを構成する複数の構成部品の締結個所の少なくとも一部において、電気的な接続を必要とする箇所では、構成部品同士は金属接触させられ、かつ、取り付けネジと構成部品との金属接触が回避されており、電気的な接続を必要とせず物理的な固定を必要とする箇所では、複数の構成部品及び取り付けネジそれぞれとの間で金属接触が回避されるものである。
特開2003-102703号公報
Due to this vibration, the image quality deteriorates due to the B radio waves and induction electrons generated by the friction between the metal parts of the coil unit.
Therefore, there is a technique disclosed in Patent Document 1 as a technique for solving the problem of the B radio wave and induction electrons.
This is because, in at least a part of the fastening parts of the plurality of component parts constituting the unit, the component parts are brought into metal contact with each other at a place requiring electrical connection, and the mounting screw and the component part The metal contact is avoided, and the metal contact is avoided between each of the plurality of component parts and the mounting screw at a place where an electrical connection is not required and a physical fixation is required.
Japanese Patent Laid-Open No. 2003-102703

しかし、前記傾斜磁場コイルに作用するローレンツ力に起因して発生する画質劣化の要因は、前記コイルユニットの金属部品どうしの擦れ合いにより発生するB電波や誘導電子以外に、静磁場の不均一を補正するシムコイルの端子を固定する固定部の接触抵抗が変化し、これによってシムコイルに流す静磁場補正電流が変化することによる画質劣化も懸念されるが、上記特許文献1にはシムコイル端子固定部の接触抵抗の変化によって発生する静磁場変動の問題までは考慮されていない。   However, the cause of image quality degradation caused by the Lorentz force acting on the gradient magnetic field coil is the non-uniformity of the static magnetic field in addition to the B radio wave and induction electrons generated by the friction between the metal parts of the coil unit. Although the contact resistance of the fixed part that fixes the terminal of the shim coil to be corrected changes, and there is a concern about image quality deterioration due to the change in the static magnetic field correction current that flows through the shim coil, the above-mentioned Patent Document 1 describes the shim coil terminal fixing part. Even the problem of static magnetic field fluctuations caused by changes in contact resistance is not taken into consideration.

すなわち、傾斜磁場コイルのローレンツ力による振動がシムコイル部に伝達すると、このシムコイルの端子を固定する金属部材が振動し、該固定部の接触抵抗値が変化して静磁場を乱し、これによって画像アーチファクトを発生させることがあるが、これについては、最近まではそれほど問題視されることは無かった。   That is, when vibration due to the Lorentz force of the gradient magnetic field coil is transmitted to the shim coil portion, the metal member that fixes the terminal of the shim coil vibrates, and the contact resistance value of the fixed portion changes to disturb the static magnetic field, thereby causing an image. Artifacts may occur, but this has not been seen as a problem until recently.

しかし、上記したように、近年の超高速撮像法に対応するために、傾斜磁場にはさらなる高速化及び高強度化が要求される。
このために、傾斜磁場電流を供給する傾斜磁場電源は、大電流化や高電圧化が進み、それに伴って前記振動によるシムコイル端子の固定部の抵抗変化もますます大きくなる傾向にある。
However, as described above, the gradient magnetic field is required to have higher speed and higher strength in order to cope with recent ultrahigh-speed imaging methods.
For this reason, the gradient magnetic field power source for supplying the gradient magnetic field current has been increased in current and voltage, and accordingly, the resistance change of the fixed portion of the shim coil terminal due to the vibration tends to become larger.

また、静磁場均一度も向上し、高機能シーケンスが可能となったことにより、わずかな磁場の乱れも問題視されるようになっている。
このため、現在では既に、前記シムコイル端子の固定部の接触抵抗変化に起因して生じる静磁場不均一による画像アーチファクトが無視できないものとなっている。
In addition, since the uniformity of the static magnetic field is improved and a high-function sequence is possible, a slight disturbance of the magnetic field is regarded as a problem.
For this reason, image artifacts due to the static magnetic field inhomogeneity caused by the change in the contact resistance of the fixed portion of the shim coil terminal are already negligible.

さらに、前記シムコイル端子の固定部の接触抵抗が変化しないようにして前記画像アーチファクトのない高画質の画像を安定して得るために、前記接触抵抗の変化によるシムコイル部の抵抗値を監視し、該抵抗値を常に所定の範囲になるように前記固定部をメンテナンスする必要がある。   Further, in order to stably obtain a high-quality image free from the image artifact so that the contact resistance of the fixed portion of the shim coil terminal does not change, the resistance value of the shim coil portion due to the change of the contact resistance is monitored, It is necessary to maintain the fixed portion so that the resistance value is always within a predetermined range.

そこで、本発明は、静磁場不均一を補正するシムコイル端子の固定部の接触抵抗が傾斜磁場コイルに作用するローレンツ力の影響を受けない構造とすることおよび前記シムコイル端子の固定部の接触抵抗値を監視して前記抵抗値を常に所定の範囲になるように前記固定部をメンテナンスすることによって前記画像アーチファクトを低減して高画質の画像を安定して取得できる磁気共鳴イメージング装置を提供することを目的とする。   Therefore, the present invention has a structure in which the contact resistance of the fixed portion of the shim coil terminal for correcting the static magnetic field inhomogeneity is not affected by the Lorentz force acting on the gradient magnetic field coil, and the contact resistance value of the fixed portion of the shim coil terminal. And providing a magnetic resonance imaging apparatus that can stably acquire a high-quality image by reducing the image artifacts by maintaining the fixed portion so that the resistance value is always within a predetermined range. Objective.

前記目的を達成するため、本発明の磁気共鳴イメージング装置は以下のように構成される。すなわち、被検体が配置される計測空間内に静磁場を与える静磁場発生手段と、前記静磁場の不均一を補正するためのフィルム状基材に形成したパターンに金属導体を配線して成る複数のシムコイルと、前記静磁場領域内に傾斜磁場を発生する傾斜磁場発生手段と、前記被検体に核磁気共鳴を起させるための高周波磁場を発生する高周波磁場発生手段と、前記被検体からの核磁気共鳴信号を受信する受信手段と、該受信手段で受信した核磁気共鳴信号を用いて画像再構成演算を行う信号処理手段と、前記核磁気共鳴信号を計測するパルスシーケンスを制御するパルスシーケンス制御手段とを備えた磁気共鳴イメージング装置であって、前記複数のシムコイルの端子を固定する固定部に前記フィルム状基材のフィルムよりも機械的強度が強い補強部材による補強手段を設ける。   In order to achieve the above object, the magnetic resonance imaging apparatus of the present invention is configured as follows. That is, a plurality of static magnetic field generating means for applying a static magnetic field in a measurement space in which a subject is arranged, and a plurality of metal conductors wired to a pattern formed on a film-like substrate for correcting the non-uniformity of the static magnetic field Shim coils, a gradient magnetic field generating means for generating a gradient magnetic field in the static magnetic field region, a high frequency magnetic field generating means for generating a high frequency magnetic field for causing nuclear magnetic resonance in the subject, and a nucleus from the subject Receiving means for receiving a magnetic resonance signal, signal processing means for performing image reconstruction calculation using the nuclear magnetic resonance signal received by the receiving means, and pulse sequence control for controlling a pulse sequence for measuring the nuclear magnetic resonance signal A magnetic resonance imaging apparatus comprising: means for fixing a plurality of shim coil terminals having a mechanical strength higher than that of the film of the film base material. Providing the reinforcing means by members.

前記補強手段の補強部材をガラス繊維含有樹脂材で構成し、さらに前記補強部材を接着硬化後に前記フィルム状基材のフィルムよりも機械的強度が強い接着材で前記固定部を接着して固定する。
さらに、前記複数のシムコイルの端子から電信信号を導き出すリード線まで前記接着材で接着する。
前記補強部材の周囲に前記補強部材と前記フィルム基材との接触面の機械的強度を大きくするスリットを設ける。
The reinforcing member of the reinforcing means is made of a glass fiber-containing resin material, and after the reinforcing member is bonded and cured, the fixing portion is bonded and fixed with an adhesive having a mechanical strength stronger than the film of the film-like substrate. .
Further, the adhesive material is used to bond the lead wires from which the telegraph signals are derived from the terminals of the plurality of shim coils.
A slit for increasing the mechanical strength of the contact surface between the reinforcing member and the film base is provided around the reinforcing member.

また、本発明の磁気共鳴イメージング装置は、前記複数のシムコイル端子固定部の抵抗を含むシムコイルの抵抗を検出する抵抗検出手段と、この手段で検出した抵抗値と予め設定された基準値とを比較する比較手段と、この手段での比較結果に基づいて前記シムコイル端子の固定部の抵抗値が正常か異常かを判定する判定手段と、この判定手段で判定した結果を報知する報知手段とをさらに備えた。   Further, the magnetic resonance imaging apparatus of the present invention compares resistance detection means for detecting the resistance of the shim coil including the resistances of the plurality of shim coil terminal fixing portions with the resistance value detected by this means and a preset reference value. Comparison means, determination means for determining whether the resistance value of the fixed portion of the shim coil terminal is normal or abnormal based on the comparison result of the means, and notification means for notifying the determination result by the determination means Prepared.

前記抵抗検出手段は、前記シムコイルに流れる電流を検出する電流検出手段と、前記シムコイルと該シムコイル端子の固定部に印加される電圧を検出する電圧検出手段と、この電圧検出手段で検出した電圧値を前記電流検出手段で検出した電流値で除算する除算手段とを備えて構成する。   The resistance detecting means includes a current detecting means for detecting a current flowing through the shim coil, a voltage detecting means for detecting a voltage applied to the shim coil and a fixed portion of the shim coil terminal, and a voltage value detected by the voltage detecting means. And dividing means for dividing by the current value detected by the current detecting means.

なお、前記抵抗検出手段は、複数のシムコイル端子固定部のみの抵抗値を検出して、前記比較手段により前記検出した抵抗値が所定の範囲内(基準値)にあるかどうかを判定手段で判定し、この判定結果を前記報知手段で報知する構成でも良い。この場合の前記電圧検出手段で検出する電圧はシムコイル端子固定部の電圧である。   The resistance detection means detects only the resistance values of the plurality of shim coil terminal fixing portions, and the determination means determines whether the resistance value detected by the comparison means is within a predetermined range (reference value). The determination result may be notified by the notification means. In this case, the voltage detected by the voltage detecting means is the voltage of the shim coil terminal fixing portion.

本発明によれば、前記複数のシムコイル端子を固定する固定部を前記フィルム状基材のフィルムよりも機械的強度が強い補強部材で補強して前記傾斜磁場コイルに作用するローレンツ力の影響を受けない構造としたので、前記シムコイル端子固定部の電気抵抗値の変動が低減されて前記静磁場の均一度をほぼ一定に保つことができ、これによって前記静磁場強度変動による画像アーチファクトが低減され、高画質の画像を安定して取得できる磁気共鳴イメージング装置を提供することができる。   According to the present invention, the fixing portion for fixing the plurality of shim coil terminals is reinforced by the reinforcing member having a mechanical strength stronger than that of the film of the film base material, and is affected by the Lorentz force acting on the gradient magnetic field coil. Since there is no structure, the variation of the electric resistance value of the shim coil terminal fixing part can be reduced, and the uniformity of the static magnetic field can be kept substantially constant, thereby reducing image artifacts due to the static magnetic field strength fluctuation, A magnetic resonance imaging apparatus that can stably acquire a high-quality image can be provided.

さらに、前記複数のシムコイル端子固定部の抵抗値が前記静磁場強度がほぼ一定となる所定の範囲内にあるかどうかを判定して、この結果を報知するようにしたので、この報知された情報により前記シムコイル端子の固定部を適切にメンテナンスすることができ、これによって高画質の画像を安定して取得できる磁気共鳴イメージング装置を提供することができる。   Further, since it is determined whether or not the resistance values of the plurality of shim coil terminal fixing portions are within a predetermined range in which the static magnetic field strength is substantially constant, the result is notified. Thus, the fixing portion of the shim coil terminal can be properly maintained, and thereby a magnetic resonance imaging apparatus that can stably acquire a high-quality image can be provided.

以下、本発明の実施例を添付図面に基づいて説明する。なお、発明の実施の形態を説明するための全図において、同一機能を有するものは同一符号を付け、その繰り返しの説明は省略する。   Embodiments of the present invention will be described below with reference to the accompanying drawings. Note that components having the same function are denoted by the same reference symbols throughout the drawings for describing the embodiment of the invention, and the repetitive description thereof is omitted.

MRI装置は核磁気共鳴(以下、「NMR」という)現象を利用して被検体の検査部位の断層像を得るものであり、図1は本発明に係る磁気共鳴イメージング(以下、「MRI」という)装置の全体斜視図で、ガントリ1と、各種の信号を処理する信号処理装置等を含む外部ユニット2と、このユニット2と前記ガントリ1の各構成要素とを電気的に接続する中継ケーブル3とを備えて構成される。   The MRI apparatus uses a nuclear magnetic resonance (hereinafter referred to as “NMR”) phenomenon to obtain a tomographic image of an examination site of a subject, and FIG. 1 shows magnetic resonance imaging (hereinafter referred to as “MRI”) according to the present invention. ) In an overall perspective view of the apparatus, a gantry 1, an external unit 2 including a signal processing apparatus for processing various signals, and the relay cable 3 for electrically connecting the unit 2 and each component of the gantry 1 And is configured.

前記ガントリ1は、被検体の周りに静磁場を発生させる静磁場発生装置4と、被検体を構成する水素原子核にNMR現象を誘起させるための高周波磁場を照射するRFコイル5(頭部用の例)と、被検体から発せられるNMR信号に位置情報を与えるための傾斜磁場を発生する傾斜磁場コイル(図1には省略してある)等で構成される。
なお、前記RFコイル5は、頭部用の例で、本発明はこれに限定するものではなく、全身も含む他の部位にも適用するものである。
The gantry 1 includes a static magnetic field generating device 4 that generates a static magnetic field around the subject, and an RF coil 5 (for the head) that irradiates a high-frequency magnetic field for inducing an NMR phenomenon in a hydrogen nucleus constituting the subject. Example) and a gradient magnetic field coil (not shown in FIG. 1) for generating a gradient magnetic field for giving position information to an NMR signal emitted from the subject.
The RF coil 5 is an example for the head, and the present invention is not limited to this, but can be applied to other parts including the whole body.

図2に図1のガントリの断面図を示す。被検体が挿入される計測空間Aを間に挟んで、前記静磁場発生装置4として静磁場発生磁石6a、6b(以下、これらをまとめて6と記す)が上下に対向配置(aは下側、bは上側を表す。以下同じ)され、これらの磁石の空間A側にはそれぞれ蓋をするように、被検体にX、Y、Zの三軸方向の傾斜磁場を印加するための傾斜磁場コイル7a、7b(以下、これらをまとめて7と記す)が取り付けられている。
さらに、前記静磁場発生磁石6と傾斜磁場コイル7との間に前記静磁場磁石6で発生した静磁場を均一に補正するためのシムコイル8a、8b (以下、これらをまとめて7と記す)が配置されている。
FIG. 2 shows a cross-sectional view of the gantry of FIG. The static magnetic field generating magnets 6a and 6b (hereinafter collectively referred to as 6) as the static magnetic field generating device 4 are vertically opposed to each other with the measurement space A in which the subject is inserted therebetween (a is the lower side) , B represents the upper side, the same applies hereinafter), and a gradient magnetic field for applying a gradient magnetic field in the three-axis directions of X, Y, and Z to the subject so as to cover each space A side of these magnets. Coils 7a and 7b (hereinafter collectively referred to as 7) are attached.
Further, shim coils 8a and 8b (hereinafter collectively referred to as 7) for uniformly correcting the static magnetic field generated by the static magnetic field magnet 6 between the static magnetic field generating magnet 6 and the gradient magnetic field coil 7 are provided. Has been placed.

このように形成された磁気回路は、空間A中に静磁場を形成し、傾斜磁場コイル7にパルス状の電流を供給することにより傾斜磁場を形成する。   The magnetic circuit thus formed forms a gradient magnetic field by forming a static magnetic field in the space A and supplying a pulsed current to the gradient magnetic field coil 7.

また、前記傾斜磁場コイル7の空間A側には、被検体に高周波磁場を照射する照射RFコイル9a、9b(以下、これらをまとめて9と記す)が配置され、さらに、図示省略の受信コイル(図1のRFコイル5)を有する。
さらに、前記静磁場発生磁石6と各コイルとにより構成された磁界発生装置の外周部をカバー10で覆う構造とし、このカバー10は、美観および絶縁などの安全面において必要なものである。
Further, on the space A side of the gradient magnetic field coil 7, irradiation RF coils 9a and 9b (hereinafter collectively referred to as 9) for irradiating a subject with a high-frequency magnetic field are arranged, and further, a receiving coil (not shown) is illustrated. (RF coil 5 in FIG. 1).
Further, the outer peripheral portion of the magnetic field generating device constituted by the static magnetic field generating magnet 6 and each coil is covered with a cover 10, and this cover 10 is necessary for safety such as aesthetics and insulation.

前記外部ユニット2は、図示は省略するが、前記信号処理装置の他に、前記信号処理装置で処理された再構成画像等を表示する表示装置と、前記被検者を載置して該被検者の体軸方向に移動可能なベッドと、このベッドの移動を制御するベッド制御部と、撮影シーケンス、撮影に必要なパラメータ及び撮影断面等を設定して撮影操作を行なう操作コンソールと、この操作コンソールで設定した操作信号に基づいて前記核磁気共鳴信号を計測するパルスシーケンスを制御するパルスシーケンス制御を含むシステム全体を制御する制御装置等とを備えて構成される。   Although not shown, the external unit 2 has a display device for displaying a reconstructed image or the like processed by the signal processing device in addition to the signal processing device, and a subject placed on the subject. A bed movable in the body axis direction of the examiner, a bed control unit for controlling the movement of the bed, an operation console for performing a photographing operation by setting a photographing sequence, parameters necessary for photographing, a photographing section, and the like; And a control device for controlling the entire system including a pulse sequence control for controlling a pulse sequence for measuring the nuclear magnetic resonance signal based on an operation signal set by an operation console.

このように構成されたMRI装置は、前記受信コイルにより核磁気共鳴による被検体が発するNMR信号を受信し、前記外部ユニット2の信号処理装置で前記受信したNMR信号を用いて画像再構成演算を行って前記表示装置にMRI画像を表示し、診断に供するものである。   The MRI apparatus configured as described above receives an NMR signal emitted from the subject by nuclear magnetic resonance by the receiving coil, and performs image reconstruction calculation using the received NMR signal by the signal processing apparatus of the external unit 2. The MRI image is displayed on the display device for diagnosis.

なお、前記静磁場発生装置4は、その静磁場の方向は垂直型でも水平型でも良く、また静磁場発生方式も永久磁石方式又は常電導方式或いは超電導方式でも良い。すなわち、本発明は、静磁場方向および静磁場発生方式に限定するものではなく、静磁場の方向および静磁場発生方式に対応して前記磁場発生装置を構成すれば良い。   The direction of the static magnetic field of the static magnetic field generator 4 may be vertical or horizontal, and the static magnetic field generation method may be a permanent magnet method, a normal conduction method, or a superconductivity method. That is, the present invention is not limited to the static magnetic field direction and the static magnetic field generation method, and the magnetic field generation device may be configured to correspond to the static magnetic field direction and the static magnetic field generation method.

次に、本発明の要部であるシムコイル8について説明する。シムコイル8は、前記したように静磁場を均一に補正するためのコイルで、このコイルは複数のコイル群からなり、このコイル群と前記RFコイル9、傾斜磁場コイル7との配置関係の一例として、前記図2の下側部分の断面を拡大した図3を用いてより詳しく説明する。   Next, the shim coil 8, which is a main part of the present invention, will be described. As described above, the shim coil 8 is a coil for uniformly correcting the static magnetic field, and this coil includes a plurality of coil groups. As an example of the arrangement relationship between the coil group, the RF coil 9, and the gradient magnetic field coil 7, This will be described in more detail with reference to FIG. 3 in which the cross section of the lower part of FIG. 2 is enlarged.

図3において、シムコイル8a(上側は8b)は複数のコイル81a〜85b(上側は81b〜85b)からなり(特定の空間成分のみを持つ磁場を出力するコイルの集合体)、ZXチャンネルのコイル81a(上側は81b)と、ZYチャンネルのコイル82a(上側は82b)と、XYチャンネルのコイル83a(上側は83b)と、X2-Y2チャンネルのコイル84a(上側は84b)と、Znチャンネルのコイル85a(上側は85b)とで構成される。 In FIG. 3, a shim coil 8a (upper is 8b) is composed of a plurality of coils 81a to 85b (upper is 81b to 85b) (an assembly of coils that output a magnetic field having only a specific spatial component), and a ZX channel coil 81a (upper 81b) and, with the ZY channel coil 82a (upper 82b), and the XY channel coil 83a (upper 83 b), and X 2 -Y 2 channels of coils 84a (upper 84b), Z n-channel Coil 85a (the upper side is 85b).

図4は前記シムコイル8に静磁場の不均一を補正する電流を供給する回路構成で(以下、シム補正回路と記す)、静磁場補正用のシム電源40と、この電源に接続されたシム補正電流供給回路50と、このシム補正電流供給回路から補正電流が供給されるシムコイル群のシムコイルユニット51(51aは下側シムコイルユニット、51bは上側シムコイルユニット)とで構成され、前記シム補正電流供給回路50とシムコイルユニット51は、ZXチャンネルのシムコイル81a、81bへ静磁場補正用電流を供給するZXシム補正電流供給回路41と、ZYチャンネルのシムコイル82a、82bへ静磁場補正用電流を供給するZYシム補正電流供給回路42と、XYチャンネルのシムコイル83a、83bへ静磁場補正用電流を供給するXYシム補正電流供給回路43と、X2-Y2チャンネルのシムコイル84a、84bへ静磁場補正用電流を供給するXYシム補正電流供給回路44と、Znチャンネルのシムコイル85a、85bへ静磁場補正用電流を供給するZnシム補正電流供給回路45とを備えて構成される。 FIG. 4 is a circuit configuration for supplying a current for correcting the non-uniformity of the static magnetic field to the shim coil 8 (hereinafter referred to as a shim correction circuit), a shim power source 40 for static magnetic field correction, and a shim correction connected to this power source. The shim correction current supply circuit includes a current supply circuit 50 and a shim coil unit 51 (51a is a lower shim coil unit and 51b is an upper shim coil unit) of a shim coil group to which correction current is supplied from the shim correction current supply circuit. 50 and the shim coil unit 51 are a ZX shim correction current supply circuit 41 for supplying a static magnetic field correction current to the ZX channel shim coils 81a and 81b, and a ZY shim for supplying a static magnetic field correction current to the ZY channel shim coils 82a and 82b. a correction current supply circuit 42, a shim coil 83a of the XY channel, the XY shim correction current supply circuit 43 for supplying a static magnetic field correction current to 83 b, X 2 -Y 2 channels shim coils 84a, a static magnetic field to 84b An XY shim correction current supply circuit 44 for supplying a Tadashiyo current, constituted by a shim coil 85a of Z n-channel, and supplies a static magnetic field correction current to 85b Z n shim correction current supply circuit 45.

このように構成されたシム補正回路により、各シムコイルに供給する補正電流を所望の値に調整し、静磁場に対して所要のppm以下の空間的均一性を得るように補正電流を流してシミングを行なう。   The shim correction circuit configured in this way adjusts the correction current supplied to each shim coil to a desired value, and flows the correction current to obtain a spatial uniformity of the required ppm or less with respect to the static magnetic field. To do.

前記複数のシムコイル群は、フィルム状基材に所定のパターンを形成し、このパターン上に金属導体を配線する構成で、前記フィルム状基材に端子を設けて前記中継ケーブル3とを接続し、この接続点を固定部材で固定する。   The plurality of shim coil groups form a predetermined pattern on the film-like base material, and in a configuration in which a metal conductor is wired on this pattern, a terminal is provided on the film-like base material to connect the relay cable 3, This connection point is fixed by a fixing member.

このような構成のシムコイル群において、前記傾斜磁場コイルに発生するローレンツ力により傾斜磁場コイル、高周波コイルのコイルユニット等に機械的歪みが起きて、これによりユニット全体が振動し、この振動が前記シムコイル群を含むシムコイルユニットに伝達すると、前記シムコイル群を固定する金属部材の振動による該固定部の接触抵抗値が変化する。
この接触抵抗値が変化すると、シムコイルに流れる補正電流が変化して静磁場を乱し、これによって画像アーチファクトを発生させる。
In the shim coil group having such a configuration, the Lorentz force generated in the gradient magnetic field coil causes mechanical distortion in the gradient magnetic field coil, the coil unit of the high-frequency coil, and the like, which causes the entire unit to vibrate. When transmitted to the shim coil unit including the group, the contact resistance value of the fixing portion changes due to the vibration of the metal member that fixes the shim coil group.
When this contact resistance value changes, the correction current flowing through the shim coil changes and disturbs the static magnetic field, thereby generating image artifacts.

以下に、本発明の目的である、傾斜磁場コイルのローレンツ力の影響を受けないシムコイル実装部の構造および前記シムコイル端子固定部の接触抵抗値を監視して前記抵抗値を常に所定の範囲になるように前記固定部のメンテナンスを支援する手段について説明する。
《第1の実施形態》
Hereinafter, the structure of the shim coil mounting part that is not affected by the Lorentz force of the gradient magnetic field coil and the contact resistance value of the shim coil terminal fixing part, which are the objects of the present invention, are monitored, and the resistance value is always within a predetermined range. A means for supporting the maintenance of the fixed part will be described.
<< First Embodiment >>

図5は、本発明によるシムコイル実装部の構造で、同図(a)は複数のシムコイルおよびこれらのシムコイルの入出力端子と外部ユニットとを電気的に接続してこの接続部を固定する固定部の構造を示す平面図、(b)はその断面図である。   FIG. 5 shows the structure of a shim coil mounting portion according to the present invention. FIG. 5 (a) shows a plurality of shim coils and a fixing portion for electrically connecting input / output terminals of these shim coils and an external unit to fix the connecting portion. The top view which shows the structure of (2), (b) is the sectional drawing.

図5(a)において、シムコイル群は、前記したように、フィルム状基材8cに所定のパターンを形成して該パターン上に薄い金属導体8dを配線し、この金属導体8dと前記外部ユニット2(図1参照)とを接続するための中継用としてのリード線8eを有している。
そして、このリード線8eに圧着端子8fを接続し、この圧着端子8fと前記薄い金属導体8dとをリベット8gで結合し、この結合部をフィルム状基材8cに固定する。
In FIG. 5 (a), as described above, the shim coil group forms a predetermined pattern on the film-like substrate 8c, and a thin metal conductor 8d is wired on the pattern, and the metal conductor 8d and the external unit 2 are wired. And a lead wire 8e for relaying (see FIG. 1).
Then, a crimp terminal 8f is connected to the lead wire 8e, the crimp terminal 8f and the thin metal conductor 8d are coupled by a rivet 8g, and the coupling portion is fixed to the film-like substrate 8c.

このような構造のシムコイルユニットに静磁場中に配置された傾斜磁場コイル7にパルス状の電流が印加されて該傾斜磁場コイル7は振動し、この振動が前記シムコイルユニットに伝わると、フィルム状基材8c、薄い金属導体8dが変形する。   When a pulsed current is applied to the gradient coil 7 arranged in the static magnetic field in the shim coil unit having such a structure, the gradient coil 7 vibrates, and when this vibration is transmitted to the shim coil unit, the film-like substrate The material 8c and the thin metal conductor 8d are deformed.

図6は変形前後の様子を示す模式図で、(a)は変形前、(b)は変形後で、このように変形することによって、圧着端子8fと薄い金属導体8dとの接触面積が動的に変化する。このため、シムコイルの見かけ上の抵抗値が変化し、該シムコイルに流れる補正電流が変化して静磁場が乱れ、所定の静磁場均一度が得られなくなる可能性が生じる。   Fig. 6 is a schematic diagram showing the state before and after deformation. (A) is before deformation, (b) is after deformation, and the contact area between the crimp terminal 8f and the thin metal conductor 8d is changed by this deformation. Changes. For this reason, the apparent resistance value of the shim coil changes, the correction current flowing through the shim coil changes, the static magnetic field is disturbed, and a predetermined static magnetic field uniformity cannot be obtained.

そこで、前記図5に示すように、リベット8gとフィルム状基材8c、薄い金属導体8dおよび圧着端子8fとの間に補強部材としての補強板8h(補強手段)を配置し、この補強板8hを前記フィルム状基材8cに接着剤で接着して上記振動による変形を防止するものである。
前記補強部材は、ガラス繊維を含有した樹脂で構成された補強板で、これにより、前記圧着端子8fと薄い金属導体8dとをリベット8gで結合した場合よりもはるかに機械的強度を大きくすることができる。
Therefore, as shown in FIG. 5, a reinforcing plate 8h (reinforcing means) as a reinforcing member is disposed between the rivet 8g and the film-like substrate 8c, the thin metal conductor 8d, and the crimp terminal 8f, and this reinforcing plate 8h Is adhered to the film-like substrate 8c with an adhesive to prevent deformation due to the vibration.
The reinforcing member is a reinforcing plate made of a resin containing glass fiber, thereby making the mechanical strength much greater than when the crimp terminal 8f and the thin metal conductor 8d are coupled with a rivet 8g. Can do.

このように、補強板8hを設けることによって、シムコイルユニットが振動してもリベット周囲は補強板8hに囲まれているため、補強部材の外周部とフィルム状基材8cとの境界で局所的な変形が起こるだけで、補強部材の内側は一様な平面として動くことになる。このため、圧着端子8fと薄い金属導体8dとの接触面は変動しないので、該接触面の接触抵抗はほぼ一定となり安定した磁場補正を行なうことが可能となる。   Thus, by providing the reinforcing plate 8h, even if the shim coil unit vibrates, the periphery of the rivet is surrounded by the reinforcing plate 8h. Therefore, a local area is formed at the boundary between the outer peripheral portion of the reinforcing member and the film-like substrate 8c. Only by deformation, the inside of the reinforcing member moves as a uniform plane. For this reason, since the contact surface between the crimp terminal 8f and the thin metal conductor 8d does not fluctuate, the contact resistance of the contact surface becomes substantially constant, and stable magnetic field correction can be performed.

さらに前記接触面の機械的強度を大きくするために、前記補強部材(補強板8h)をフィルム基材8cに接着する接着剤に該接着硬化後の機械的強度が前記薄い金属導体8dの機械的強度よりもはるかに強い、例えばエポキシ系の接着剤を用いる。   Further, in order to increase the mechanical strength of the contact surface, the adhesive member that bonds the reinforcing member (reinforcing plate 8h) to the film substrate 8c is mechanically bonded to the thin metal conductor 8d. For example, an epoxy adhesive is used that is much stronger than the strength.

このような機械的強度の強い接着剤で圧着端子8fを完全に覆うように塗布することで、シムコイルが振動しても薄い金属導体8dと圧着端子8fの接触面は変動しないので、さらに安定した磁場補正を行なうことが可能となる。   By applying such a strong mechanical strength adhesive to cover the crimp terminal 8f completely, the contact surface between the thin metal conductor 8d and the crimp terminal 8f does not fluctuate even if the shim coil vibrates. Magnetic field correction can be performed.

さらに前記接触面の機械的強度を大きくするために、前記補強部材8hの周囲にスリット8iを設けることにより、その近傍の補強部材8hとフィルム基材8cとの機械的強度差を大きくする。
これにより、振動による変形が端子部では生じないようになるために、さらに補強部材内のリベット部は安定した接触状態を保つことができる。
Further, in order to increase the mechanical strength of the contact surface, a slit 8i is provided around the reinforcing member 8h, thereby increasing the mechanical strength difference between the reinforcing member 8h and the film base 8c in the vicinity thereof.
Thereby, since deformation due to vibration does not occur in the terminal portion, the rivet portion in the reinforcing member can be kept in a stable contact state.

上記の第1の実施形態によれば、前記複数のシムコイル端子を固定する固定部を前記フィルム状基材のフィルムよりも機械的強度が強い補強部材で補強して前記傾斜磁場コイルに作用するローレンツ力の影響を受けない構造としたので、前記シムコイル端子固定部の電気抵抗値の変動が低減されて前記静磁場の均一度をほぼ一定に保つことができ、これによって前記静磁場強度変動による画像アーチファクトが低減され、高画質の安定した画像を取得できる。   According to the first embodiment, the Lorentz that acts on the gradient magnetic field coil by reinforcing the fixing portion for fixing the plurality of shim coil terminals with the reinforcing member having higher mechanical strength than the film of the film-like substrate. Since the structure is not affected by force, the variation of the electric resistance value of the shim coil terminal fixing portion can be reduced, and the uniformity of the static magnetic field can be kept almost constant, thereby the image due to the fluctuation of the static magnetic field strength. Artifacts are reduced, and stable images with high image quality can be acquired.

《第2の実施形態》
次に、前記シムコイル端子固定部の接触抵抗値を監視して前記抵抗値を常に所定の範囲になるように前記固定部のメンテナンスを支援する手段について説明する。
<< Second Embodiment >>
Next, means for monitoring the contact resistance value of the shim coil terminal fixing portion and assisting the maintenance of the fixing portion so that the resistance value is always within a predetermined range will be described.

これは、前記シムコイルとこのシムコイル端子固定部の抵抗を含むシムコイル部のトータル抵抗値を各シムコイルに流れる電流とシムコイル端子の固定部を含むシムコイル部に印加される電圧とを検出し、これらの検出値からシムコイル端子の固定部の抵抗値を算出して、この抵抗値と所定の範囲の基準値とを比較してシムコイル端子の固定部が正常か異常かを判定し、この結果を、例えば前記図示省略の表示装置に表示して報知するもので、図7に具体的構成の一例を示す。   This detects the total resistance value of the shim coil including the shim coil and the resistance of the shim coil terminal fixing part, the current flowing through each shim coil and the voltage applied to the shim coil part including the fixing part of the shim coil terminal, and detecting these The resistance value of the fixed portion of the shim coil terminal is calculated from the value, and the resistance value is compared with a reference value within a predetermined range to determine whether the fixed portion of the shim coil terminal is normal or abnormal. An example of a specific configuration is shown in FIG.

以下、図7を用いて詳細に説明する。なお、この図において、シムコイルに流れる電流とシムコイル部に印加される電圧の検出は、全部のシムコイル部についても同様であるので、ここではZXシム補正用シムコイル部について説明する。   Hereinafter, this will be described in detail with reference to FIG. In this figure, since the detection of the current flowing through the shim coil and the voltage applied to the shim coil unit is the same for all shim coil units, the ZX shim correction shim coil unit will be described here.

図7において、シムコイル端子の固定部の抵抗値の監視は、シムコイルに流れる電流と該シムコイル部に印加される電圧とを検出する電流、電圧検出部60と、この検出部で検出した電流値と電圧値とからシムコイル部の抵抗値を算出する抵抗値算出部71(第1の抵抗検出手段)と、この算出部で算出した抵抗値と所定範囲の基準値72(第1の基準値)とを比較する比較部73(第1の比較手段)と、この比較部で比較した結果によりシムコイル端子の固定部の抵抗値が正常か異常かを判定する判定部74(第1の判定手段)とを備えて構成され、前記抵抗値算出部71と、基準値72と、比較部73と、判定部74とによりシムコイル端子固定部抵抗値判定装置70を構成する。   In FIG. 7, the resistance value of the fixed portion of the shim coil terminal is monitored by detecting the current flowing through the shim coil and the voltage applied to the shim coil unit, the voltage detection unit 60, and the current value detected by the detection unit. A resistance value calculation unit 71 (first resistance detection means) that calculates the resistance value of the shim coil unit from the voltage value, a resistance value calculated by the calculation unit, and a reference value 72 (first reference value) within a predetermined range, A comparison unit 73 (first comparison unit), and a determination unit 74 (first determination unit) that determines whether the resistance value of the fixed portion of the shim coil terminal is normal or abnormal based on the result of comparison by the comparison unit. The resistance value calculation unit 71, the reference value 72, the comparison unit 73, and the determination unit 74 constitute a shim coil terminal fixing unit resistance value determination device 70.

前記シムコイルの電流、電圧検出部60は、シムコイルに流れる電流を電流検出器61(電流検出手段)で検出してこれを電圧変換器62で変換した電圧値を抵抗算出部81gに入力し、シムコイル81aとその固定部の電圧を電圧検出器63で検出し、シムコイル81bとその固定部の電圧を電圧検出器64で検出してこれらを前記抵抗算出部81gに入力する(前記電圧検出器63と電圧検出器64とで第1の電圧検出手段を構成)。このようにして検出したシムコイルの電流値とシムコイル部に印加された電圧値を抵抗算出部81gに入力して、シムコイル81aとその固定部の電圧値を前記シムコイルの電流値で除算してシムコイル81a側の抵抗値を求め、同様に、シムコイル81bとその固定部の電圧値を前記シムコイルの電流値で除算してシムコイル81b側の抵抗値を求める(前記シムコイル81a側の除算器とシムコイル81b側の除算器とで第1の除算手段を構成)。   The current and voltage detector 60 of the shim coil detects the current flowing through the shim coil with a current detector 61 (current detecting means), and converts the voltage value converted by the voltage converter 62 into the resistance calculator 81g to input the shim coil The voltage detector 63 detects the voltage of 81a and its fixed part, the voltage of the shim coil 81b and its fixed part is detected by the voltage detector 64, and inputs these to the resistance calculation part 81g (the voltage detector 63 and The voltage detector 64 constitutes a first voltage detection means). The detected current value of the shim coil and the voltage value applied to the shim coil unit are input to the resistance calculating unit 81g, and the voltage value of the shim coil 81a and its fixed part is divided by the current value of the shim coil to generate the shim coil 81a. Similarly, the resistance value on the shim coil 81b side is obtained by dividing the voltage value of the shim coil 81b and its fixed part by the current value of the shim coil (the divider on the shim coil 81a side and the shim coil 81b side). The first divider is composed of the divider).

このようにして算出したシムコイル81a側およびシムコイル81b側のそれぞれのシムコイル部の抵抗値とこの抵抗値の許容範囲である所要範囲の基準値72とを比較部81hで比較し、この結果を判定部74に入力する。   The comparison unit 81h compares the calculated resistance values of the shim coil portions on the shim coil 81a side and the shim coil 81b side with the reference value 72 of the required range, which is an allowable range of the resistance values, and determines the result. Enter in 74.

上記と同様に、他のシムコイルについてもそれぞれのシムコイルの電流、電圧を検出し、これらの検出した電流と電圧とからシムコイル部の抵抗値を算出し(抵抗値算出部82g、83g、84g、85g)、これらの算出した抵抗値とこの抵抗値の許容範囲である所要範囲の基準値72とを比較して(比較部82h、83h、84h、85h)、この結果を判定部74に入力する。
前記判断部74は、全てのシムコイル部の比較結果から許容範囲である所要範囲の基準値以外の抵抗値を有するシムコイルを特定し、この特定したシムコイルを前記表示装置に表示して報知する等の報知手段(第1の報知手段)で操作者等に報知する。
Similarly to the above, for the other shim coils, the current and voltage of each shim coil are detected, and the resistance value of the shim coil part is calculated from the detected current and voltage (resistance value calculating parts 82g, 83g, 84g, 85g Then, the calculated resistance value is compared with a reference value 72 of a required range that is an allowable range of the resistance value (comparing units 82h, 83h, 84h, 85h), and the result is input to the determination unit 74.
The determination unit 74 identifies a shim coil having a resistance value other than the reference value of the required range that is an allowable range from the comparison results of all the shim coil units, displays the identified shim coil on the display device, and notifies The operator or the like is notified by the notification means (first notification means).

前記シムコイル端子固定部抵抗値判定装置70は、各部をハードウェアで構成しても良いし、マイクロコンピータを用いて、検出したシムコイル電流およびシムコイル電圧値をディジタル値に変換し(抵抗算出部に含む)、このディジタル信号により抵抗値を算出するための除算、比較部における基準値との比較およびこれらの比較結果の判定をソフトウェアで処理する手法でも良い。   In the shim coil terminal fixing portion resistance value determination device 70, each part may be configured by hardware, or the detected shim coil current and shim coil voltage value are converted into digital values using a micro computer (included in the resistance calculation unit). ), Division for calculating the resistance value by the digital signal, comparison with the reference value in the comparison unit, and determination of the comparison result may be performed by software.

なお、上記図7では、シムコイルの抵抗と該シムコイル端子を固定する固定部の接触抵抗との和を抵抗値として用いたが、本発明はこれに限定するものではなく、固定部の接触抵抗とこの接触抵抗の基準値(第2の基準値)とを比較する構成でも良い。
この場合の固定部の接触抵抗(第2の抵抗検出手段)は、シムコイルの抵抗値は予め分かっているので、前記シムコイルとシムコイル固定部の電圧の測定値から算出したシムコイルの抵抗値とシムコイルの固定部の接触抵抗値との和の値から前記既知のシムコイル抵抗値を減算して求めて良いし、あるいはシムコイル固定部の電圧を直接検出し、この検出値とシムコイルに流れる電流値とから算出する方法でも良い(第2の比較手段、第2判定手段、第2の報知手段、第2の電圧検出手段、第2の除算手段)。
In FIG. 7, the sum of the resistance of the shim coil and the contact resistance of the fixed part that fixes the shim coil terminal is used as the resistance value, but the present invention is not limited to this, and the contact resistance of the fixed part and A configuration in which the reference value (second reference value) of the contact resistance is compared may be used.
In this case, since the resistance value of the shim coil is known in advance, the resistance value of the shim coil and the resistance value of the shim coil calculated from the measured values of the voltage of the shim coil and the shim coil fixing unit are known. The known shim coil resistance value may be subtracted from the sum of the contact resistance value of the fixed part or the voltage of the shim coil fixed part is directly detected and calculated from the detected value and the current value flowing through the shim coil. (Second comparison means, second determination means, second notification means, second voltage detection means, second division means) may be used.

上記の第2の実施形態によれば、前記複数のシムコイル端子固定部の抵抗値が前記静磁場強度がほぼ一定となる所定の範囲内にあるかどうかを判定して、この結果を報知するようにしたので、この報知された情報により前記シムコイル端子の固定部を適切にメンテナンスすることができ、これによって高画質の安定した画像を取得することができる。   According to the second embodiment described above, it is determined whether or not the resistance values of the plurality of shim coil terminal fixing portions are within a predetermined range in which the static magnetic field strength is substantially constant, and the result is notified. Therefore, it is possible to appropriately maintain the fixed portion of the shim coil terminal based on the notified information, thereby obtaining a stable image with high image quality.

本発明に係る磁気共鳴イメージング装置の全体斜視図。1 is an overall perspective view of a magnetic resonance imaging apparatus according to the present invention. ガントリの断面図。A sectional view of a gantry. ガントリ断面の下側部分の断面を拡大した本発明の要部であるシムコイルと他の要素との配置関係を示す図。The figure which shows the arrangement | positioning relationship between the shim coil which is the principal part of this invention which expanded the cross section of the lower part of a gantry cross section, and another element. シムコイルに静磁場の不均一を補正する電流を供給する回路構成図。The circuit block diagram which supplies the electric current which corrects the nonuniformity of a static magnetic field to a shim coil. 本発明の第1の実施形態を示すシムコイル実装部の構造図。FIG. 3 is a structural diagram of a shim coil mounting portion showing the first embodiment of the present invention. 傾斜磁場コイルのローレンツ力によってシムコイル実装部の変形前後の様子を示す模式図。The schematic diagram which shows the mode before and behind a deformation | transformation of a shim coil mounting part with the Lorentz force of a gradient magnetic field coil. シムコイル端子固定部の抵抗値を監視する装置の構成図。The block diagram of the apparatus which monitors the resistance value of a shim coil terminal fixing | fixed part.

符号の説明Explanation of symbols

1 ガントリ、2 外部ユニット、3 中継ケーブル、4 静磁場発生装置、5 受信RFコイル、6 静磁場発生磁石、7 傾斜磁場コイル、8、81a、82a、83a、84a、85a シムコイル、8c フィルム状基材、8d 薄い金属導体、8e リード線、8f 圧着端子、8g リベット、8h 補強板、8i スリット、9 照射RFコイル、10 カバー、40 静磁場補正用シム電源、50 シム補正電流供給回路、51 シムコイルユニット、60 電流・電圧検出部、61 電流検出器、62、63 電圧検出器、70 シムコイル端子固定部抵抗値判定部、71 抵抗算出部、72 基準値、73 比較部、74 判定部   1 Gantry, 2 External unit, 3 Relay cable, 4 Static magnetic field generator, 5 Receiving RF coil, 6 Static magnetic field generator magnet, 7 Gradient magnetic field coil, 8, 81a, 82a, 83a, 84a, 85a Shim coil, 8c Film base Material, 8d thin metal conductor, 8e lead wire, 8f crimp terminal, 8g rivet, 8h reinforcing plate, 8i slit, 9 irradiation RF coil, 10 cover, 40 shim power source for static magnetic field correction, 50 shim correction current supply circuit, 51 shim coil Unit, 60 Current / Voltage detector, 61 Current detector, 62, 63 Voltage detector, 70 Shim coil terminal fixing part Resistance value determination part, 71 Resistance calculation part, 72 Reference value, 73 Comparison part, 74 Determination part

Claims (9)

被検体が配置される計測空間内に静磁場を与える静磁場発生手段と、
前記静磁場の不均一を補正するためのフィルム状基材に形成したパターンに金属導体を配線して成る複数のシムコイルと、
前記静磁場領域内に傾斜磁場を発生する傾斜磁場発生手段と、
前記被検体に核磁気共鳴を起させるための高周波磁場を発生する高周波磁場発生手段と、
前記被検体からの核磁気共鳴信号を受信する受信手段と、該受信手段で受信した核磁気共鳴信号を用いて画像再構成演算を行う信号処理手段と、
前記核磁気共鳴信号を計測するパルスシーケンスを制御するパルスシーケンス制御手段とを備えた磁気共鳴イメージング装置であって、
前記複数のシムコイルの端子を固定する固定部に前記フィルム状基材のフィルムよりも機械的強度が強い補強部材による補強手段を備えたことを特徴とする磁気共鳴イメージング装置。
A static magnetic field generating means for applying a static magnetic field in a measurement space in which the subject is arranged;
A plurality of shim coils formed by wiring metal conductors in a pattern formed on a film-like substrate for correcting the non-uniformity of the static magnetic field;
A gradient magnetic field generating means for generating a gradient magnetic field in the static magnetic field region;
High-frequency magnetic field generating means for generating a high-frequency magnetic field for causing nuclear magnetic resonance in the subject;
Receiving means for receiving a nuclear magnetic resonance signal from the subject; signal processing means for performing image reconstruction calculation using the nuclear magnetic resonance signal received by the receiving means;
A magnetic resonance imaging apparatus comprising a pulse sequence control means for controlling a pulse sequence for measuring the nuclear magnetic resonance signal,
A magnetic resonance imaging apparatus comprising: a reinforcing member that has a mechanical strength stronger than that of the film of the film base material at a fixing portion that fixes the terminals of the plurality of shim coils.
前記補強手段の補強部材をガラス繊維含有樹脂材で構成したことを特徴とする請求事項1に記載の磁気共鳴イメージング装置。   2. The magnetic resonance imaging apparatus according to claim 1, wherein the reinforcing member of the reinforcing means is made of a glass fiber-containing resin material. 前記補強部材を接着硬化後に前記フィルム状基材のフィルムよりも機械的強度が強い接着材で前記固定部を接着して固定することを特徴とする請求事項1または2に記載の磁気共鳴イメージング装置。   3. The magnetic resonance imaging apparatus according to claim 1, wherein the fixing member is bonded and fixed with an adhesive having a mechanical strength higher than that of the film of the film-like substrate after the reinforcing member is bonded and cured. . 前記複数のシムコイルの端子から電信信号を導き出すリード線まで前記接着材で接着することを特徴とする請求事項3に記載の磁気共鳴イメージング装置。   The magnetic resonance imaging apparatus according to claim 3, wherein the adhesive material is used to bond lead wires from which the telegraph signals are derived from terminals of the plurality of shim coils. 前記補強部材の周囲に前記補強部材と前記フィルム基材との接触面の機械的強度を大きくするスリットを設けたことを特徴とする請求項1、2、3または4のいずれかに記載の磁気共鳴イメージング装置。   The magnetic according to any one of claims 1, 2, 3 and 4, wherein a slit for increasing the mechanical strength of the contact surface between the reinforcing member and the film base is provided around the reinforcing member. Resonance imaging device. 前記複数のシムコイル端子固定部の抵抗を含むシムコイルの抵抗を検出する第1の抵抗検出手段と、この手段で検出した抵抗値と予め設定された第1の基準値とを比較する第1の比較手段と、この手段での比較結果に基づいて前記シムコイル端子の固定部の抵抗値が正常か異常かを判定する第1の判定手段と、この判定手段で判定した結果を報知する第1の報知手段とをさらに備えたことを特徴とする請求項1乃至5のうちの1項に記載の磁気共鳴イメージング装置。   A first resistance detecting means for detecting the resistance of the shim coil including the resistances of the plurality of shim coil terminal fixing portions, and a first comparison for comparing the resistance value detected by this means with a preset first reference value And a first determination means for determining whether the resistance value of the fixed portion of the shim coil terminal is normal or abnormal based on the comparison result of the means, and a first notification for notifying a result determined by the determination means The magnetic resonance imaging apparatus according to claim 1, further comprising: means. 前記複数のシムコイル端子固定部の抵抗を検出する第2の抵抗検出手段と、この手段で検出した抵抗値と予め設定された第2の基準値とを比較する第2の比較手段と、この手段での比較結果に基づいて前記シムコイル端子の固定部の抵抗値が正常か異常かを判定する第2判定手段と、この判定手段で判定した結果を報知する第2の報知手段とをさらに備えたことを特徴とする請求項1乃至5のうちの1項に記載の磁気共鳴イメージング装置。   A second resistance detecting means for detecting the resistance of the plurality of shim coil terminal fixing portions; a second comparing means for comparing a resistance value detected by the means with a preset second reference value; and And a second determination means for determining whether the resistance value of the fixed portion of the shim coil terminal is normal or abnormal, and a second notification means for notifying a result determined by the determination means. The magnetic resonance imaging apparatus according to claim 1, wherein the magnetic resonance imaging apparatus is a magnetic resonance imaging apparatus. 前記第1の抵抗検出手段は、前記シムコイルに流れる電流を検出する電流検出手段と、 前記シムコイルと該シムコイル端子の固定部に印加される電圧を検出する第1の電圧検出手段と、この電圧検出手段で検出した電圧値を前記電流検出手段で検出した電流値で除算する第1の除算手段とを備えたことを特徴とする請求項6に記載の磁気共鳴イメージング装置。   The first resistance detection means includes a current detection means for detecting a current flowing through the shim coil, a first voltage detection means for detecting a voltage applied to the fixed portion of the shim coil and the shim coil terminal, and the voltage detection. 7. The magnetic resonance imaging apparatus according to claim 6, further comprising a first dividing unit that divides the voltage value detected by the unit by the current value detected by the current detecting unit. 前記第2の抵抗検出手段は、前記シムコイルに流れる電流を検出する電流検出手段と、前記シムコイル端子の固定部に印加される電圧を検出する第2の電圧検出手段と、この電圧検出手段で検出した電圧値を前記電流検出手段で検出した電流値で除算する第2の除算手段とを備えたことを特徴とする請求項7に記載の磁気共鳴イメージング装置。   The second resistance detection means includes a current detection means for detecting a current flowing through the shim coil, a second voltage detection means for detecting a voltage applied to a fixed portion of the shim coil terminal, and a detection by the voltage detection means. The magnetic resonance imaging apparatus according to claim 7, further comprising: a second dividing unit that divides the measured voltage value by the current value detected by the current detecting unit.
JP2006272416A 2006-10-04 2006-10-04 Magnetic resonance imaging system Active JP4991235B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006272416A JP4991235B2 (en) 2006-10-04 2006-10-04 Magnetic resonance imaging system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006272416A JP4991235B2 (en) 2006-10-04 2006-10-04 Magnetic resonance imaging system

Publications (2)

Publication Number Publication Date
JP2008086613A JP2008086613A (en) 2008-04-17
JP4991235B2 true JP4991235B2 (en) 2012-08-01

Family

ID=39371388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006272416A Active JP4991235B2 (en) 2006-10-04 2006-10-04 Magnetic resonance imaging system

Country Status (1)

Country Link
JP (1) JP4991235B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8735723B2 (en) * 2010-11-15 2014-05-27 General Electric Company Apparatus and method for providing electric cables within a magnetic resonance imaging system
JP6429312B2 (en) * 2014-08-06 2018-11-28 株式会社日立製作所 Magnetic field adjustment device, magnet device, and magnetic field adjustment method

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5932116A (en) * 1982-08-16 1984-02-21 Hitachi Ltd Detection of abnormality of coil
JPS60189905A (en) * 1984-03-09 1985-09-27 Mitsubishi Electric Corp High uniformity magnetic-field generator
JPH0255040A (en) * 1988-08-22 1990-02-23 Toshiba Corp Automatic shim coil
JPH0497740A (en) * 1990-08-15 1992-03-30 Siemens Asahi Medeitetsuku Kk Magnetic field generator
JP3309604B2 (en) * 1994-11-14 2002-07-29 日本精工株式会社 Torque sensor
JPH10332606A (en) * 1997-05-30 1998-12-18 Ikuo Arai Radio-wave concentration measuring apparatus
JPH11309125A (en) * 1998-04-27 1999-11-09 Olympus Optical Co Ltd Magnetic resonance observation device
JP3808818B2 (en) * 2002-09-13 2006-08-16 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー Static magnetic field correction coil device, static magnetic field forming device, and magnetic resonance imaging device
JP4641727B2 (en) * 2004-01-23 2011-03-02 株式会社日立メディコ Magnetic resonance imaging system
JP4479509B2 (en) * 2005-01-17 2010-06-09 エプソンイメージングデバイス株式会社 Flexible wiring board connection device

Also Published As

Publication number Publication date
JP2008086613A (en) 2008-04-17

Similar Documents

Publication Publication Date Title
US6407548B1 (en) Method for the operation of a magnetic resonance tomography apparatus, magnetic resonance tomography apparatus for the implementation of the method and method for designing a magnetic resonance tomography apparatus
JP5243437B2 (en) Open type MRI system and open type superconducting MRI system
JP3781166B2 (en) Magnetic resonance imaging apparatus and static magnetic field uniformity maintaining method
US10890637B2 (en) Magnetic resonance gradient coil for generating a magnetic field gradient and a magnetic field of a higher order
JP2015500725A (en) Use of gradient coils to correct higher order BO field inhomogeneities in MR imaging
JP6037424B2 (en) Magnetic resonance imaging system
KR101751404B1 (en) Magnetic field monitoring probe, magnetic resonance imaging apparatus comprising the same and control method for the same
JP4991235B2 (en) Magnetic resonance imaging system
JP6308794B2 (en) MR apparatus having a pulsed compensation gradient magnetic field
US10866294B2 (en) Magnetic resonance imaging apparatus, multi-slice imaging method, and shimming value calculation apparatus
JP2006518242A (en) Compensation of magnetic field disturbance due to vibration of MRI system
JP7231694B2 (en) Subsequent MRI configuration dependent eddy current compensation
US20210286034A1 (en) Magnetic resonance imaging device
US20220099764A1 (en) Magnetic resonance imaging apparatus, subject positioning device, and subject positioning method
JP6574443B2 (en) Low cost magnetic resonance safe probe for temperature measurement
JP2017192582A (en) Magnetic resonance imaging apparatus
US11143726B2 (en) Cable for operating a gradient coil of a magnetic resonance apparatus
JP2020171693A (en) Medical information processing device and medical information processing method
CN112798994A (en) Local shimming device and method for compensating inhomogeneity of main magnetic field
JP3887082B2 (en) Magnetic resonance imaging system
KR20130111445A (en) Control of a magnetic resonance system
JP4250479B2 (en) Magnetic resonance imaging system
GB2565400A (en) System and method for using coils in magnetic resonance imaging
JPH10262947A (en) Magnetic resonance examination system
JP4648686B2 (en) Surgery receiving coil and magnetic resonance imaging apparatus using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091002

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120423

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120507

R150 Certificate of patent or registration of utility model

Ref document number: 4991235

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250