JP4989414B2 - Antenna coil for NMR probe and manufacturing method thereof, low magnetic superconducting wire for NMR probe antenna coil, and NMR system - Google Patents

Antenna coil for NMR probe and manufacturing method thereof, low magnetic superconducting wire for NMR probe antenna coil, and NMR system Download PDF

Info

Publication number
JP4989414B2
JP4989414B2 JP2007274101A JP2007274101A JP4989414B2 JP 4989414 B2 JP4989414 B2 JP 4989414B2 JP 2007274101 A JP2007274101 A JP 2007274101A JP 2007274101 A JP2007274101 A JP 2007274101A JP 4989414 B2 JP4989414 B2 JP 4989414B2
Authority
JP
Japan
Prior art keywords
antenna coil
nmr
probe
wire
magnetism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007274101A
Other languages
Japanese (ja)
Other versions
JP2009103517A (en
Inventor
雅也 高橋
和英 田中
一宗 児玉
祐三 福田
道哉 岡田
浩之 山本
明善 松本
仁 北口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
National Institute for Materials Science
Original Assignee
Hitachi Ltd
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, National Institute for Materials Science filed Critical Hitachi Ltd
Priority to JP2007274101A priority Critical patent/JP4989414B2/en
Publication of JP2009103517A publication Critical patent/JP2009103517A/en
Application granted granted Critical
Publication of JP4989414B2 publication Critical patent/JP4989414B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Description

本発明は核磁気共鳴(NMR)装置において、均一磁場中に設置された試料に対して、所定の共鳴周波数で高周波信号を送信し、自由誘導減衰(FID)信号を受信するために適用するNMRプローブのアンテナコイルとその製造方法に係る。また、NMRプローブのアンテナコイルを構成する線材とNMRシステムに関する。   The present invention is an NMR applied in a nuclear magnetic resonance (NMR) apparatus for transmitting a high frequency signal at a predetermined resonance frequency and receiving a free induction decay (FID) signal with respect to a sample placed in a uniform magnetic field. The present invention relates to an antenna coil of a probe and a manufacturing method thereof. Moreover, it is related with the wire which comprises the antenna coil of a NMR probe, and a NMR system.

NMR用プローブは、高周波信号の送信、FID信号の受信用のアンテナコイルと、コイルボビン及び電気回路などから構成されている。アンテナコイルは同調用のコンデンサと組合せることで、同調回路を形成し、高周波パルスの照射により試料中の共鳴子が発するFID信号を受信している。   The NMR probe includes an antenna coil for transmitting a high frequency signal and receiving an FID signal, a coil bobbin, an electric circuit, and the like. The antenna coil is combined with a tuning capacitor to form a tuning circuit, and receives an FID signal generated by a resonator in the sample when irradiated with a high frequency pulse.

高周波パルスに対応して発生するFID信号を受信するNMRプローブには、高い感度が求められる。これは、たんぱく質のように測定試料の量が少ない場合、FID信号の強度が特に弱くなるため、感度が低いことで、測定に多大な時間を要するためである。   High sensitivity is required for an NMR probe that receives an FID signal generated in response to a high-frequency pulse. This is because when the amount of the measurement sample is small, such as protein, the strength of the FID signal is particularly weak, so that the measurement is time consuming due to the low sensitivity.

この感度を向上させるためには、同調回路のQ値を高めることが有効である。Q値とは、共振回路におけるピークの鋭さを表す値であり、下記の式1で求められる。   In order to improve this sensitivity, it is effective to increase the Q value of the tuning circuit. The Q value is a value representing the sharpness of the peak in the resonance circuit, and is obtained by the following formula 1.

Figure 0004989414
一方、NMRプローブは優れた分解能も必要であり、この分解能を向上させるためには、アンテナコイルを形成している物質固有の磁化率を低減し、静磁場の歪みを極限まで小さくすることが有効である。
Figure 0004989414
On the other hand, the NMR probe also needs excellent resolution, and in order to improve this resolution, it is effective to reduce the magnetic susceptibility inherent in the material forming the antenna coil and to minimize the distortion of the static magnetic field. It is.

磁場歪の低減とQ値の向上を図るために、常磁性の金属箔と反磁性の金属箔を交互に貼り合わせて、相互の磁性を相殺させることが知られている(例えば、特許文献1参照)。   In order to reduce the magnetic field distortion and improve the Q value, it is known that paramagnetic metal foils and diamagnetic metal foils are alternately bonded to cancel each other's magnetism (for example, Patent Document 1). reference).

特開2003−11268号公報(要約)JP2003-11268A (summary)

特許文献1には、常磁性の金属箔と反磁性の金属箔を交互に貼り合わせて、少なくとも4層以上積層させて金属積層体とすること、さらに所定の厚みを持った低抵抗の金属箔を前記金属積層体の最外層に配置して、磁化率の微調整をすることが記載されている。   Patent Document 1 discloses that a paramagnetic metal foil and a diamagnetic metal foil are alternately bonded to form a metal laminate by laminating at least four layers, and a low resistance metal foil having a predetermined thickness. Is arranged in the outermost layer of the metal laminate to finely adjust the magnetic susceptibility.

この従来技術のように、常磁性の金属箔と反磁性の金属箔を交互に貼り合わせて、相互の磁性を相殺させることにより、低磁化率の構造体を得ることができる。   As in this prior art, a paramagnetic metal foil and a diamagnetic metal foil are alternately laminated to cancel each other's magnetism, thereby obtaining a low magnetic susceptibility structure.

しかしながら、厚さ方向が薄い材料となり、材料断面の面抵抗(R)が小さくなるため、Q値の向上が望めない。従来技術の金属積層体において、Q値を向上させるには、アンテナコイル全体を大きくすること、多段アンテナ構造にすること等が必要になり、結果として、プローブ先端部の大型化を招く。   However, since the material becomes thin in the thickness direction and the surface resistance (R) of the material cross section becomes small, an improvement in the Q value cannot be expected. In the metal laminate of the prior art, in order to improve the Q value, it is necessary to enlarge the entire antenna coil, to make a multistage antenna structure, and as a result, the probe tip is increased in size.

本発明の目的は、低磁化率で、しかも高いQ値を兼備した材料で形成されたNMRプローブ用アンテナコイル及びその材料を提供することにある。   An object of the present invention is to provide an NMR coil antenna coil formed of a material having a low magnetic susceptibility and a high Q value and the material thereof.

本発明は、磁性の異なる複数の材料を磁性が相殺し合うように組合せた母材部分と、前記母材部分の外周部に設けられた酸化物超電導体層とからなり、前記母材部分が一体化されており、コイル断面形状が丸形状、平角形状、六角形状または四角形状よりなり、ソレノイドコイル状に巻回されることを特徴とするNMRプローブ用アンテナコイルにある。   The present invention comprises a base material portion in which a plurality of materials having different magnetic properties are combined so that magnetism cancels each other, and an oxide superconductor layer provided on an outer peripheral portion of the base material portion. The antenna coil for NMR probe is integrated, and has a coil cross-sectional shape of a round shape, a rectangular shape, a hexagonal shape, or a quadrangular shape, and is wound into a solenoid coil shape.

本発明は、磁性の異なる複数の材料を磁性が相殺し合うように組合せ、伸線加工によってクラッド化して断面形状が丸形状、平角形状、六角形状または四角形状の線材にし、ソレノイドコイル状に巻線したのち、外周面を酸化物超電導体により被覆することを特徴とするNMRプローブ用アンテナコイルの製造方法にある。   In the present invention, a plurality of materials having different magnetism are combined so that magnetism cancels each other, and is clad by wire drawing to form a wire having a round, rectangular, hexagonal, or quadrangular cross section, and wound in a solenoid coil shape. In the method of manufacturing an antenna coil for NMR probe, the outer peripheral surface is covered with an oxide superconductor after the wire is drawn.

本発明は、磁性の異なる複数の材料を磁性が相殺し合うように組合せた母材部分と、前記母材部分の外周部に設けられた酸化物超電導体層とからなり、前記母材部分が一体化されており、断面形状が丸形状、平角形状、六角形状または四角形状よりなることを特徴とするNMRプローブアンテナコイル用低磁性超電導線材にある。   The present invention comprises a base material portion in which a plurality of materials having different magnetic properties are combined so that magnetism cancels each other, and an oxide superconductor layer provided on an outer peripheral portion of the base material portion. The low magnetic superconducting wire for an NMR probe antenna coil is integrated and has a cross-sectional shape of a round shape, a rectangular shape, a hexagonal shape, or a quadrangular shape.

酸化物超電導体層は、その厚みを10μm以上とすることが望ましく、特に10μm以上、1mm以下の範囲とすることが望ましい。酸化物超電導体層は、多くの場合、ディップコート法により、酸化物超電導体の溶液を母材部分の表面に塗布し、焼成することによって形成される。ディップ後の熱処理で酸化物超電導体膜が自己破壊するのを防止するために、厚みの上限値は1mmとすることが好ましい。   The thickness of the oxide superconductor layer is preferably 10 μm or more, and particularly preferably in the range of 10 μm or more and 1 mm or less. In many cases, the oxide superconductor layer is formed by applying a solution of an oxide superconductor to the surface of the base material portion by a dip coating method and baking it. In order to prevent the oxide superconductor film from self-destructing by heat treatment after dipping, the upper limit value of the thickness is preferably 1 mm.

アンテナを形成する材料は1本の線材であり、接続箇所を有しないようにすることが望ましい。母材部分の一体化はクラッド加工によって行うことが望ましく、特に押出加工や引抜加工などの伸線加工によって行うことが望ましい。   The material forming the antenna is a single wire, and it is desirable not to have a connection point. The integration of the base material portion is preferably performed by cladding, and particularly by wire drawing such as extrusion or drawing.

また、母材部分は常磁性材料と反磁性材料によって構成し、かつ常磁性材料にはPt、Ru、Rh、Pdまたはそれらの合金から選ばれた少なくとも1種を用い、反磁性材料にはAu、Agまたはそれらの合金から選ばれた少なくとも1種を用いることが望ましい。   The base material portion is composed of a paramagnetic material and a diamagnetic material, and at least one selected from Pt, Ru, Rh, Pd or an alloy thereof is used as the paramagnetic material, and Au is used as the diamagnetic material. It is desirable to use at least one selected from Ag, alloys thereof.

また、酸化物超電導体には、Bi系の酸化物超電導体を用いることが望ましい。   In addition, it is desirable to use a Bi-based oxide superconductor as the oxide superconductor.

母材部分と酸化物超電導体層との間には、必要に応じて、母材部分の磁化率を相殺する磁化を有する膜を設けることができる。例えば、伸線加工によってクラッド化した状態で母材部分の配合比にずれが生じた場合には、母材部分の外周部に母材部分の磁化率を相殺する磁化を有する膜を成膜して、磁化率を微調整することが望ましい。   A film having a magnetization that cancels out the magnetic susceptibility of the base material portion can be provided between the base material portion and the oxide superconductor layer as necessary. For example, if there is a deviation in the mixing ratio of the base material part in the clad state after wire drawing, a film having a magnetization that cancels the magnetic susceptibility of the base material part is formed on the outer periphery of the base material part. Therefore, it is desirable to finely adjust the magnetic susceptibility.

伸線加工によってクラッド化した状態で母材部分が常磁性の場合には、母材部分の外周部にCuやAgなどの反磁性材料膜を成膜することが望ましい。反対に、伸線加工によってクラッド化した状態で母材部分が反磁性の場合には、母材部分の外周部にPtやVなどの常磁性材料膜を成膜することが好ましい。   When the base material portion is paramagnetic in a state of being clad by wire drawing, it is desirable to form a diamagnetic material film such as Cu or Ag on the outer periphery of the base material portion. On the other hand, when the base material portion is diamagnetic while being clad by wire drawing, it is preferable to form a paramagnetic material film such as Pt or V on the outer periphery of the base material portion.

本発明は、前記した構成のアンテナコイルを有するNMR用プローブを用いて、NMR信号を検出するNMRシステムにある。   The present invention resides in an NMR system for detecting an NMR signal using an NMR probe having an antenna coil having the above-described configuration.

本発明により、高いQ値と低磁性を兼備するアンテナコイル線材が得られ、高感度及び高分解能を兼備したNMRプローブを提供することができた。   According to the present invention, an antenna coil wire having both high Q value and low magnetism was obtained, and an NMR probe having both high sensitivity and high resolution could be provided.

低磁化率で、さらに高いQ値を兼備した材料で形成されたアンテナコイル及びその材料を提供するためには、常磁性材料と反磁性材料を組合せ、かつ互いの磁化率をキャンセルさせることで磁化率を低減することと、以下の(a)〜(d)に記載のQ値向上項目を同時に満たすことが必要となる。   In order to provide an antenna coil formed of a material having a low magnetic susceptibility and a higher Q value and its material, it is possible to combine a paramagnetic material and a diamagnetic material and cancel each other's magnetic susceptibility. It is necessary to reduce the rate and simultaneously satisfy the Q value improvement items described in the following (a) to (d).

(a)抵抗値の低い材料を丸線形状にし、断面積を大きくすることで、抵抗を小さくする。   (A) The resistance is reduced by making the material having a low resistance value a round line shape and increasing the cross-sectional area.

(b)アンテナコイル設置場所を低温化させることで、抵抗を小さくする。   (B) The resistance is reduced by lowering the antenna coil installation location.

(c)超電導材料を適用し、抵抗値を極限まで小さくする。   (C) Applying a superconducting material and reducing the resistance value to the limit.

(d)接続部を設けない連続的なソレノイド形状とする。   (D) A continuous solenoid shape without a connecting portion is used.

本発明は、このような考えに基づいて為されたものである。   The present invention has been made based on such an idea.

以下、本発明の実施例を示すが、これに先立ち、比較材料として、特許文献1に記載の手法でアンテナコイルを作製し、磁化率及びQ値(300MHzで共振)を測定した。その結果、磁化率は1.5×10−7(体積磁化率)、Q値は300であった。以下の実施例では、この比較例で作製したアンテナコイルのデータと比較することで、材料の評価を実施した。 Hereinafter, although the Example of this invention is shown, prior to this, the antenna coil was produced by the method of patent document 1 as a comparative material, and magnetic susceptibility and Q value (resonance at 300 MHz) were measured. As a result, the magnetic susceptibility was 1.5 × 10 −7 (volume magnetic susceptibility), and the Q value was 300. In the following examples, the material was evaluated by comparing with the data of the antenna coil produced in this comparative example.

図1に低磁性超電導線材の母材として適用したAgとPtの複合丸形線材の断面構造を示す。この試作では母材部分1に常磁性材料3としてPt、反磁性材料2としてAgを適用した。アンテナコイル用材料の形状を丸線化することで、抵抗が低減でき、Q値が向上する。また、アンテナコイルは図6に示したようにボビン10に巻線した構造になるため、アンテナコイル全体の強度が向上し、頑丈なNMRプローブを構成することができる。さらに1本の線材でアンテナコイルを形成することにより接続部が存在しなくなるため、接続部の抵抗発生を回避することができる。   FIG. 1 shows a cross-sectional structure of a composite round wire of Ag and Pt applied as a base material of a low magnetic superconducting wire. In this trial production, Pt as the paramagnetic material 3 and Ag as the diamagnetic material 2 were applied to the base material portion 1. By rounding the shape of the antenna coil material, the resistance can be reduced and the Q value can be improved. Further, since the antenna coil has a structure wound around the bobbin 10 as shown in FIG. 6, the strength of the whole antenna coil is improved, and a sturdy NMR probe can be configured. Furthermore, since the connection portion does not exist by forming the antenna coil with one wire, it is possible to avoid the generation of resistance at the connection portion.

以下に、アンテナコイルの製造プロセスを示す。   The manufacturing process of the antenna coil is shown below.

線材作製に必要な部材として、最外層用Ag管、中間層用Ptシート、および最内層用Ag棒を準備した。   As members necessary for wire preparation, an outermost layer Ag tube, an intermediate layer Pt sheet, and an innermost layer Ag rod were prepared.

これらを順番に組込んだ後、伸線加工によってクラッド化、さらにφ1.0mmまで線引き加工し、AgとPtの複合線(以下、Ag・Pt複合線と記載する)を作製した。このときのAg管及びAg棒の寸法・肉厚、Ptシートの寸法・肉厚は、予め使用する材料を、アンテナコイルの使用環境と同条件で磁化率測定し、磁性が限りなくゼロに近づく配合比となるように決定した。この場合、Ptシートではなく、管でもかまわない。   These were assembled in order, and then clad by wire drawing and further drawn to φ1.0 mm to produce a composite wire of Ag and Pt (hereinafter referred to as an Ag / Pt composite wire). At this time, the dimensions and thickness of the Ag tube and Ag rod, and the dimension and thickness of the Pt sheet were measured by measuring the magnetic susceptibility of the materials used in advance under the same conditions as the usage environment of the antenna coil. The mixing ratio was determined. In this case, a tube may be used instead of the Pt sheet.

次に、作製したAg・Pt複合線の磁化率を測定した。この結果、体積磁化率で−9.0×10−8となり、ほぼ配合比どおりの微小な体積磁化率となることがわかった。 Next, the magnetic susceptibility of the produced Ag · Pt composite wire was measured. As a result, it was found that the volume magnetic susceptibility was −9.0 × 10 −8 , and the volume magnetic susceptibility was almost the same as the mixing ratio.

次に作製したAg・Pt複合線をボビン10にソレノイドコイル状に巻線して、コイル形状にした。そして、この外周部に酸化物超電導体層4を形成した。酸化物超電導体層4は、ディップコート法により、Bi2212の溶液を塗布し、焼成することにより行い、Bi2212超電導膜を形成した。この際、885℃×30minの加熱保持時間とし、酸素雰囲気中で熱処理した。このようにして作製した低磁性超電導線材5の断面構造を図2に示す。   Next, the produced Ag / Pt composite wire was wound around the bobbin 10 in a solenoid coil shape to form a coil shape. And the oxide superconductor layer 4 was formed in this outer peripheral part. The oxide superconductor layer 4 was formed by applying a Bi2212 solution by a dip coating method and baking it to form a Bi2212 superconducting film. At this time, the heating and holding time was 885 ° C. × 30 min, and heat treatment was performed in an oxygen atmosphere. FIG. 2 shows a cross-sectional structure of the low magnetic superconducting wire 5 manufactured in this way.

次に、作製したソレノイドコイルのQ値を4.2K中で測定した。この結果、Q=12000となり、従来構造のQ値を大幅に上回る結果となった。また、超電導層を形成したAg・Pt複合線の磁化率を測定した。フィールドクール法を適用して測定した結果、体積磁化率で−6.0×10−8となり、微小な体積磁化率となることがわかった。 Next, the Q value of the produced solenoid coil was measured in 4.2K. As a result, Q = 12000, which is a result that greatly exceeds the Q value of the conventional structure. Further, the magnetic susceptibility of the Ag / Pt composite wire on which the superconducting layer was formed was measured. As a result of applying the field cool method, it was found that the volume magnetic susceptibility was −6.0 × 10 −8 , which was a minute volume magnetic susceptibility.

以上の結果から、高いQ値と低磁性を兼備する超電導アンテナコイル及びその線材を形成することができた。   From the above results, it was possible to form a superconducting antenna coil having both a high Q value and low magnetism and its wire.

なお、下記の方法でも同様の効果が得られる。   The same effect can be obtained by the following method.

常磁性材料としては、Pt、Ru、Rh、Pdまたはその合金が、反磁性材料としては、Au、Agまたはその合金が有効である。なぜならば、これらは、酸素雰囲気で熱処理するため酸化しにくい材料であること、磁化の温度依存性が小さいこと、低抵抗材料であること、靭性が比較的高いこと、などを兼備しているからである。これらの中でも、今回試作したAgとPtの組合せが最も好ましい。   Pt, Ru, Rh, Pd or an alloy thereof is effective as the paramagnetic material, and Au, Ag or an alloy thereof is effective as the diamagnetic material. This is because these are materials that are difficult to oxidize because they are heat-treated in an oxygen atmosphere, that the temperature dependence of magnetization is small, that they are low resistance materials, and that the toughness is relatively high. It is. Among these, the combination of Ag and Pt that has been prototyped is most preferable.

母材の構成材料は、合金でも適用可能であるが、組成のばらつきなどで、磁化率や抵抗が変化する場合があり、またキュリー常磁性を示した場合には、低磁場と高磁場での磁化の変化率が異なるため、低磁場の実験結果を用いた高磁場側の設計が困難になる。そのため、合金よりは純金属を適用することが望ましい。   The material of the base material can be an alloy, but the magnetic susceptibility and resistance may change due to variations in composition, etc., and if it shows Curie paramagnetism, it can be used in low and high magnetic fields. Since the rate of change of magnetization is different, it becomes difficult to design on the high magnetic field side using experimental results of a low magnetic field. Therefore, it is desirable to apply a pure metal rather than an alloy.

また、組合せが可能な母材の材料は、酸化物超電導層の生成熱処理を経由するので、融点が900℃以上の材料であることが好ましい。   In addition, the base material that can be combined is preferably a material having a melting point of 900 ° C. or higher because it undergoes heat treatment for generating the oxide superconducting layer.

線材断面構造としては、図3〜図5に示すように、中央部に高強度のAg合金が存在する構造、5重構造、Ptが面内に分散したPt多芯化構造等が適用可能であり、本実施例の場合と同様の効果が得ることができる。またAgやPtの配置を逆にした構造でも同様の効果が得られる。図3は、最内層をAgと、その外側をPtとして、交互にAgとPtを配置して5重構造の低磁性超電導線材6としたものである。図4は、Ag棒の面内にPtが分散した低磁性超電導線材7を示している。図5は、中央部に高強度のAg合金8が存在し、その外側にAgが存在し、以下、PtとAgが交互に存在する低磁性超電導線材9を示している。   As the wire cross-sectional structure, as shown in FIGS. 3 to 5, a structure in which a high-strength Ag alloy exists in the center part, a five-layer structure, a Pt multi-core structure in which Pt is dispersed in the plane, and the like are applicable. There can be obtained the same effect as in the present embodiment. A similar effect can be obtained with a structure in which the arrangement of Ag and Pt is reversed. FIG. 3 shows a five-layer low magnetic superconducting wire 6 in which Ag and Pt are alternately arranged with the innermost layer being Ag and the outer side being Pt. FIG. 4 shows a low magnetic superconducting wire 7 in which Pt is dispersed in the plane of the Ag bar. FIG. 5 shows a low-magnetic superconducting wire 9 in which a high-strength Ag alloy 8 is present in the center, Ag is present outside thereof, and Pt and Ag are present alternately below.

伸線加工は、ドローベンチ加工、押出し加工、その他の伸線加工、静水圧プレス加工、圧延加工などでも同様の効果が得られる。   The same effect can be obtained by wire drawing, such as draw bench processing, extrusion processing, other wire drawing processing, isostatic pressing, and rolling.

この試作では最終加工径をφ1.0mmとしたが、アンテナコイルのインダクタンスや寸法の仕様により任意に決定できる。実際の運転上は、φ0.1mm〜φ3.0mmが望ましい。   In this prototype, the final processing diameter is set to φ1.0 mm, but can be arbitrarily determined depending on the specifications of the inductance and dimensions of the antenna coil. In actual operation, φ0.1 mm to φ3.0 mm is desirable.

今回の線材作製では、体積磁化率が−9.0×10−8となったが、伸線時の影響で、配合比にずれが生じた場合には、母材の最外層に所定の膜を成膜して、微調整することで、低磁性化することが可能である。 In this wire production, the volume magnetic susceptibility was −9.0 × 10 −8 , but when there was a shift in the compounding ratio due to the effect of wire drawing, a predetermined film was formed on the outermost layer of the base material. By forming a film and finely adjusting it, it is possible to reduce the magnetism.

加工上がりの線材が常磁性の場合には、CuやAgの反磁性材料膜を成膜する。加工上がりの線材が反磁性の場合には、PtやVなどの常磁性材料膜を成膜する。なお、この際、成膜後の通電特性に影響しないレベルの膜厚、材料が望ましい。また成膜する方法は、乾式、湿式など製法は問わないが、膜厚調整がしやすい手法で行うことが望ましい。   When the processed wire is paramagnetic, a Cu or Ag diamagnetic material film is formed. When the processed wire is diamagnetic, a paramagnetic material film such as Pt or V is formed. In this case, a film thickness and a material that do not affect the energization characteristics after film formation are desirable. The film forming method may be any method such as a dry process or a wet process, but it is desirable that the film be formed by a method that facilitates film thickness adjustment.

磁化率の微調整方法として、母材の外周部をエッチングして、所定の磁化率にすることも可能である。この方法では、表面の凹凸が大きくなるため、ディップコート法などでは有効である。   As a fine adjustment method of the magnetic susceptibility, it is also possible to etch the outer peripheral portion of the base material to obtain a predetermined magnetic susceptibility. This method is effective in the dip coating method or the like because the surface unevenness is increased.

線材形状は、丸線または平角形状としたが、六角形状や四角形状でも同様の効果が得られる。   The wire shape is a round wire or a rectangular shape, but the same effect can be obtained by a hexagonal shape or a rectangular shape.

本発明で作製した低磁性超電導線材の母材部分の断面図である。It is sectional drawing of the base material part of the low magnetic superconducting wire produced by this invention. 本発明で作製した低磁性超電導線材の断面図である。It is sectional drawing of the low magnetic superconducting wire produced by this invention. 低磁性超電導線材における母材部分の別の例を示す断面図である。It is sectional drawing which shows another example of the base material part in a low magnetic superconducting wire. 低磁性超電導線材における母材部分の更に別の例を示す断面図である。It is sectional drawing which shows another example of the base material part in a low magnetic superconducting wire. 低磁性超電導線材における母材部分の他の例を示す断面図である。It is sectional drawing which shows the other example of the base material part in a low magnetic superconducting wire. 本発明の実施例によるアンテナコイルの斜視図である。1 is a perspective view of an antenna coil according to an embodiment of the present invention.

符号の説明Explanation of symbols

1…母材部分、2…反磁性材料、3…常磁性材料、4…酸化物超電導体層、5…低磁性超電導線材、6…低磁性超電導線材、7…低磁性超電導線材、8…Ag合金、9…低磁性超電導線材、10…ボビン。   DESCRIPTION OF SYMBOLS 1 ... Base material part, 2 ... Diamagnetic material, 3 ... Paramagnetic material, 4 ... Oxide superconductor layer, 5 ... Low magnetic superconducting wire, 6 ... Low magnetic superconducting wire, 7 ... Low magnetic superconducting wire, 8 ... Ag Alloy, 9 ... low magnetic superconducting wire, 10 ... bobbin.

Claims (14)

ソレノイドコイル状に巻回されたNMRプローブ用アンテナコイルであって、前記NMRプローブ用アンテナコイルは、管状、シート状、又は棒状の何れかの形状を有する常磁性材料及び反磁性材料を、磁性が相殺し合うように組合せて伸線加工を施すことによってクラッド化し、丸形状、平角形状、六角形状または四角形状の何れかのコイル断面形状に成形された母材部分と、前記母材部分の外周部に設けられた酸化物超電導体層とからなり、前記常磁性材料がPtであり、前記反磁性材料がAgであり、前記酸化物超電導体層がBi系酸化物超電導体層であることを特徴とするNMRプローブ用アンテナコイル。 An NMR probe antenna coil wound in the form of a solenoid coil, wherein the NMR probe antenna coil is made of a paramagnetic material and a diamagnetic material having a tubular shape, a sheet shape, or a rod shape. A base metal part that is clad by performing wire drawing in combination so as to cancel each other, and formed into a circular, flat, hexagonal, or quadrangular coil cross-sectional shape , and an outer periphery of the base metal part The paramagnetic material is Pt, the diamagnetic material is Ag, and the oxide superconductor layer is a Bi-based oxide superconductor layer. A feature antenna coil for NMR probe. 前記酸化物超電導体層が10μm以上の厚みを有していることを特徴とする請求項1に記載のNMRプローブ用アンテナコイル。   The NMR probe antenna coil according to claim 1, wherein the oxide superconductor layer has a thickness of 10 µm or more. アンテナを形成する材料が1本の線材であり、接続箇所を有しないことを特徴とする請求項1に記載のNMRプローブ用アンテナコイル。   The antenna coil for an NMR probe according to claim 1, wherein a material for forming the antenna is a single wire and does not have a connection portion. 前記磁性の異なる複数の材料を伸線加工によってクラッド化した状態で常磁性の場合に、その外周部にAg膜を成膜し、磁性を相殺することを特徴とする請求項1に記載のNMRプローブ用アンテナコイル。2. The NMR according to claim 1, wherein when a plurality of materials having different magnetic properties are paramagnetic in a state of being clad by wire drawing, an Ag film is formed on the outer peripheral portion thereof to cancel the magnetism. Antenna coil for probe. 前記磁性の異なる複数の材料を伸線加工によってクラッド化した状態で反磁性の場合に、その外周部にPt膜を成膜し、磁性を相殺することを特徴とする請求項1に記載のNMRプローブ用アンテナコイル。2. The NMR according to claim 1, wherein in the case of diamagnetism in a state in which the plurality of materials having different magnetism are clad by wire drawing, a Pt film is formed on the outer peripheral portion thereof to cancel the magnetism. Antenna coil for probe. 管状、シート状、又は棒状の何れかの形状を有するAg及びPtを、磁性が相殺し合うように組合せ、伸線加工によってクラッド化して断面形状が丸形状、平角形状、六角形状または四角形状の何れかの線材にし、ソレノイドコイル状に巻線したのち、Bi系酸化物超電導体の溶液を前記線材の表面に塗布し、焼成することによって、
前記線材の外周面をBi系酸化物超電導体により被覆することを特徴とするNMRプローブ用アンテナコイルの製造方法。
Ag and Pt having a tubular shape, sheet shape, or rod shape are combined so that the magnetism cancels out, and is clad by wire drawing to have a round, flat, hexagonal, or quadrangular cross section . After winding any wire, into a solenoid coil shape, by applying a Bi-based oxide superconductor solution to the surface of the wire and firing,
A method for manufacturing an antenna coil for an NMR probe, wherein the outer peripheral surface of the wire is covered with a Bi-based oxide superconductor.
前記磁性の異なる複数の材料を伸線加工によってクラッド化した状態で常磁性の場合に、その外周部にAg膜を成膜し、磁性を相殺することを特徴とする請求項に記載のNMRプローブ用アンテナコイルの製造方法。 The NMR according to claim 6 , wherein when a plurality of materials having different magnetic properties are paramagnetic in a state of being clad by wire drawing, an Ag film is formed on an outer peripheral portion thereof to cancel the magnetism. A method of manufacturing an antenna coil for a probe. 前記磁性の異なる複数の材料を伸線加工によってクラッド化した状態で反磁性の場合に、その外周部にPt膜を成膜し、磁性を相殺することを特徴とする請求項に記載のNMRプローブ用アンテナコイルの製造方法。 7. The NMR according to claim 6 , wherein when a plurality of materials having different magnetic properties are diamagnetic in a state of being clad by wire drawing, a Pt film is formed on the outer peripheral portion to cancel the magnetism. A method of manufacturing an antenna coil for a probe. 前記伸線加工として、押出加工または引抜加工を行うことを特徴とする請求項に記載のNMRプローブ用アンテナコイルの製造方法。 The method of manufacturing an antenna coil for an NMR probe according to claim 6 , wherein an extrusion process or a drawing process is performed as the wire drawing process. NMRプローブアンテナコイル用低磁性超電導線材であって、管状、シート状、又は棒状の何れかの形状を有する常磁性材料及び反磁性材料を、磁性が相殺し合うように組合せ、伸線加工を施すことによってクラッド化し、丸形状、平角形状、六角形状または四角形状の何れかのコイル断面形状に成形された母材部分と、前記母材部分の外周部に設けられた酸化物超電導体層とからなり、前記常磁性材料がPtであり、前記反磁性材料がAgであり、前記酸化物超電導体層がBi系酸化物超電導体層であることを特徴とするNMRプローブアンテナコイル用低磁性超電導線材。 A low-magnetic superconducting wire for an NMR probe antenna coil, which is formed by combining a paramagnetic material and a diamagnetic material having a tubular shape, a sheet shape, or a rod shape so that the magnetism cancels each other And a base material portion formed into a circular, flat, hexagonal, or quadrangular coil cross-sectional shape , and an oxide superconductor layer provided on the outer periphery of the base material portion. The paramagnetic material is Pt, the diamagnetic material is Ag, and the oxide superconductor layer is a Bi-based oxide superconductor layer. . 前記酸化物超電導体層が10μm以上の厚みを有していることを特徴とする請求項10に記載のNMRプローブアンテナコイル用低磁性超電導線材。 The low magnetic superconducting wire for an NMR probe antenna coil according to claim 10 , wherein the oxide superconductor layer has a thickness of 10 μm or more. 前記磁性の異なる複数の材料を伸線加工によってクラッド化した状態で常磁性の場合に、その外周部にAg膜を成膜し、磁性を相殺することを特徴とする請求項10に記載のNMRプローブアンテナコイル用低磁性超電導線材 11. The NMR according to claim 10, wherein in the case of paramagnetism in a state in which the plurality of materials having different magnetism are clad by wire drawing, an Ag film is formed on the outer peripheral portion to cancel the magnetism. Low magnetic superconducting wire for probe antenna coil . 前記磁性の異なる複数の材料を伸線加工によってクラッド化した状態で反磁性の場合に、その外周部にPt膜を成膜し、磁性を相殺することを特徴とする請求項10に記載のNMRプローブアンテナコイル用低磁性超電導線材。11. The NMR according to claim 10, wherein in the case of diamagnetism in a state where the plurality of materials having different magnetism are clad by wire drawing, a Pt film is formed on the outer peripheral portion thereof to cancel the magnetism. Low magnetic superconducting wire for probe antenna coil. 請求項1〜の何れかに記載のアンテナコイルを有するNMR用プローブを用いて、NMR信号を検出するNMRシステム。 NMR system using a NMR probe, for detecting an NMR signal having an antenna coil according to any one of claims 1-5.
JP2007274101A 2007-10-22 2007-10-22 Antenna coil for NMR probe and manufacturing method thereof, low magnetic superconducting wire for NMR probe antenna coil, and NMR system Expired - Fee Related JP4989414B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007274101A JP4989414B2 (en) 2007-10-22 2007-10-22 Antenna coil for NMR probe and manufacturing method thereof, low magnetic superconducting wire for NMR probe antenna coil, and NMR system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007274101A JP4989414B2 (en) 2007-10-22 2007-10-22 Antenna coil for NMR probe and manufacturing method thereof, low magnetic superconducting wire for NMR probe antenna coil, and NMR system

Publications (2)

Publication Number Publication Date
JP2009103517A JP2009103517A (en) 2009-05-14
JP4989414B2 true JP4989414B2 (en) 2012-08-01

Family

ID=40705330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007274101A Expired - Fee Related JP4989414B2 (en) 2007-10-22 2007-10-22 Antenna coil for NMR probe and manufacturing method thereof, low magnetic superconducting wire for NMR probe antenna coil, and NMR system

Country Status (1)

Country Link
JP (1) JP4989414B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201120924A (en) * 2009-07-23 2011-06-16 Basf Se Method of using a diamagnetic materials for focusing magnetic field lines
DE102020204379B3 (en) * 2020-04-03 2021-05-20 Bruker Switzerland Ag Magnetically compensated NMR rotor and method of design and manufacture

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3833926B2 (en) * 2001-11-05 2006-10-18 日本電子株式会社 Linear member and method of manufacturing linear member
JP2003255032A (en) * 2002-02-28 2003-09-10 Hitachi Ltd Probe for nuclear magnetic resonance apparatus
JP4122833B2 (en) * 2002-05-07 2008-07-23 株式会社日立製作所 Probe for NMR apparatus using magnesium diboride
JP4249770B2 (en) * 2006-09-08 2009-04-08 株式会社日立製作所 Antenna coil for NMR probe and NMR system
JP4427075B2 (en) * 2007-08-21 2010-03-03 株式会社日立製作所 Superconducting wire, method for manufacturing the same, antenna coil for probe of nuclear magnetic resonance apparatus, and nuclear magnetic resonance apparatus system using the same

Also Published As

Publication number Publication date
JP2009103517A (en) 2009-05-14

Similar Documents

Publication Publication Date Title
KR101460037B1 (en) Coil type electronic component
JP4249770B2 (en) Antenna coil for NMR probe and NMR system
KR101389027B1 (en) Coil-type electronic component and process for producing same
Huang et al. Reducing ac losses of Bi (2223) multifilamentary tapes by oxide barriers
KR101923570B1 (en) Flexible soft magnetic core, antenna with flexible soft magnetic core and method for producing a flexible soft magnetic core
JP4427075B2 (en) Superconducting wire, method for manufacturing the same, antenna coil for probe of nuclear magnetic resonance apparatus, and nuclear magnetic resonance apparatus system using the same
CN1258774C (en) Bulk amorphous metal magnetic component
KR102183923B1 (en) Self
JP4185548B1 (en) Nb3Sn superconducting wire and precursor therefor
JP4989414B2 (en) Antenna coil for NMR probe and manufacturing method thereof, low magnetic superconducting wire for NMR probe antenna coil, and NMR system
JP5081002B2 (en) Antenna coil for NMR, low magnetic superconducting wire used therefor, method for manufacturing the same, method for adjusting magnetic susceptibility, and NMR system
US20150083959A1 (en) Magnetic material and device
JP2010097902A (en) PRECURSOR FOR MANUFACTURING Nb3Sn SUPERCONDUCTIVE WIRE, AND Nb3Sn SUPERCONDUCTIVE WIRE
Banno et al. Development of Ag-barrier RHQT Nb 3 Al wires
JP2016063068A (en) Magnetic material and device
US11837380B2 (en) Superconducting wire rod, superconducting coil, magnetic generator, and method for producing superconducting wire rod
KR20210068552A (en) compacted magnetic core
JP2009059652A (en) BRONZE PROCESS Nb3Sn SUPERCONDUCTING WIRE ROD AND ITS PRECURSOR
JP3290828B2 (en) Thin film inductance element and method of manufacturing the same
JP7414837B2 (en) Core for high frequency acceleration cavity and high frequency acceleration cavity using the core
JP2003045247A (en) Superconductive cable
JP4208979B2 (en) High-frequency soft magnetic alloy and planar magnetic element, antenna and wave absorber using the same
JP2009253543A (en) Multi-layer antenna
JP2022094518A (en) FeSiAl ALLOY THIN FILM AND METHOD FOR PRODUCING FeSiAl ALLOY THIN FILM, AND MAGNETIC SENSOR AND METHOD FOR MANUFACTURING MAGNETIC SENSOR
JPS5857887B2 (en) Compound superconducting coil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120403

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120427

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

LAPS Cancellation because of no payment of annual fees
R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350