JP4989363B2 - Planar light emitting device - Google Patents

Planar light emitting device Download PDF

Info

Publication number
JP4989363B2
JP4989363B2 JP2007216279A JP2007216279A JP4989363B2 JP 4989363 B2 JP4989363 B2 JP 4989363B2 JP 2007216279 A JP2007216279 A JP 2007216279A JP 2007216279 A JP2007216279 A JP 2007216279A JP 4989363 B2 JP4989363 B2 JP 4989363B2
Authority
JP
Japan
Prior art keywords
light
light emitting
guide member
emitting layer
emitting element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007216279A
Other languages
Japanese (ja)
Other versions
JP2009048943A (en
Inventor
忠史 村上
秀治 河地
達也 鈴木
喜之 三宅
正喜 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2007216279A priority Critical patent/JP4989363B2/en
Publication of JP2009048943A publication Critical patent/JP2009048943A/en
Application granted granted Critical
Publication of JP4989363B2 publication Critical patent/JP4989363B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Planar Illumination Modules (AREA)
  • Electroluminescent Light Sources (AREA)

Description

本発明は、液晶ディスプレイのバックライトなどに利用される面状発光装置に関するものである。   The present invention relates to a planar light emitting device used for a backlight of a liquid crystal display.

近年、発光素子として、有機エレクトロルミネッセンス(organicelectroluminescence、有機ELともいう)素子が注目を集めている。有機エレクトロルミネッセンス素子(以下、「有機EL素子」と略す)は、通電から発光までの時間が非常に短く、電流を変化させれば瞬時に輝度が変化する、つまり応答性に優れ、しかも応答性が温度によって殆ど変化しないという特性があり、しかも視野角が180度に近いという特性がある。   In recent years, organic electroluminescence (also referred to as organic EL) elements have attracted attention as light emitting elements. An organic electroluminescence element (hereinafter abbreviated as “organic EL element”) has a very short time from energization to light emission, and the luminance changes instantaneously when the current is changed. In other words, it has excellent responsiveness and responsiveness. Has a characteristic that it hardly changes with temperature, and a viewing angle is close to 180 degrees.

このような有機EL素子からなる発光素子1は、例えば、図3に示すように、透明基板(例えばガラス基板)よりなる支持基板10と、支持基板10の一表面側(図3における上面側)に形成されたITOなどからなる透明電極11と、透明電極11における支持基板10とは反対側に形成された有機材料からなる発光層12と、発光層12における透明電極11とは反対側に形成された金属製の反射電極13と、反射電極13における発光層12とは反対側に発光層12を覆う形に形成された封止層14とを備えている。この発光素子1は、透明電極11および反射電極13それぞれがボンディングワイヤWにより図示しない電源に接続され、透明電極11および反射電極13それぞれに所定の電位が与えられることで、発光層12が発光する。   For example, as shown in FIG. 3, the light-emitting element 1 including such an organic EL element includes a support substrate 10 made of a transparent substrate (for example, a glass substrate) and one surface side of the support substrate 10 (upper surface side in FIG. 3). The transparent electrode 11 made of ITO or the like formed on the light emitting layer 12, the light emitting layer 12 made of an organic material formed on the opposite side of the transparent electrode 11 from the support substrate 10, and the light emitting layer 12 formed on the opposite side of the transparent electrode 11 And a sealing layer 14 formed so as to cover the light emitting layer 12 on the side opposite to the light emitting layer 12 in the reflective electrode 13. In the light-emitting element 1, the transparent electrode 11 and the reflective electrode 13 are connected to a power source (not shown) by bonding wires W, and the light-emitting layer 12 emits light when a predetermined potential is applied to the transparent electrode 11 and the reflective electrode 13. .

発光層12が発光した際には、発光層12から透明電極11側に放射された光は、透明電極11を透過した後に、支持基板10に入射し、支持基板10を通り、支持基板10の他表面側(図3における下面側)から外方に出射される。一方、発光層12から反射電極13側に放射された光は、反射電極13により透明電極11側に反射され、同様に、支持基板10の上記他表面側から外方に出射される。つまり、この発光素子1では、支持基板10の上記他表面が発光面10aとなっている。   When the light emitting layer 12 emits light, the light emitted from the light emitting layer 12 to the transparent electrode 11 side passes through the transparent electrode 11, enters the support substrate 10, passes through the support substrate 10, and passes through the support substrate 10. The light is emitted outward from the other surface side (the lower surface side in FIG. 3). On the other hand, the light emitted from the light emitting layer 12 to the reflective electrode 13 side is reflected by the reflective electrode 13 to the transparent electrode 11 side, and similarly emitted from the other surface side of the support substrate 10 outward. That is, in the light emitting element 1, the other surface of the support substrate 10 is a light emitting surface 10a.

上述したような有機EL素子からなる発光素子1は、面発光に適しており、近年では、例えば、液晶ディスプレイ(液晶表示装置)のバックライトなどに用いられる面状発光装置Lに利用されている。面状発光装置Lは、図4に示すように、複数の発光素子1をそれぞれの発光面10aが同一平面上に位置する形に配列してなるものである。   The light-emitting element 1 composed of the organic EL element as described above is suitable for surface light emission, and in recent years, for example, it is used in a planar light-emitting device L used for a backlight of a liquid crystal display (liquid crystal display device). . As shown in FIG. 4, the planar light emitting device L includes a plurality of light emitting elements 1 arranged in such a manner that each light emitting surface 10 a is positioned on the same plane.

ところで、発光素子1は、発光層12に電流を流すための透明電極11および反射電極13を備え、透明電極11および反射電極13にボンディングワイヤWを接続する箇所を確保するために、発光層12は、支持基板10の上記一表面側に当該一表面の一部と厚み方向で重なる形に形成され、上記一表面の全面と厚み方向で重なる形には形成されていない。そのため、発光素子1の発光面10aにおいては、図3に示すように、発光層12と厚み方向で重なる部分と、重ならない部分とがある。そのため、発光素子1の発光面10aにおいて発光層12と厚み方向で重なる部分と、重ならない部分とでは、明るさが異なり、その結果、図4に示すように、発光層12が存在する領域A1と、発光層12が存在しない領域A2(隣り合う発光素子1の発光層12間の部位)とで輝度が異なってしまう。   By the way, the light-emitting element 1 includes a transparent electrode 11 and a reflective electrode 13 for allowing a current to flow through the light-emitting layer 12, and the light-emitting layer 12 is secured in order to secure a portion where the bonding wire W is connected to the transparent electrode 11 and the reflective electrode 13. Is formed on the one surface side of the support substrate 10 so as to overlap a part of the one surface in the thickness direction, and is not formed so as to overlap the entire surface of the one surface in the thickness direction. Therefore, in the light emitting surface 10a of the light emitting element 1, as shown in FIG. 3, there are a portion that overlaps the light emitting layer 12 in the thickness direction and a portion that does not overlap. Therefore, in the light emitting surface 10a of the light emitting element 1, the brightness differs between the portion that overlaps the light emitting layer 12 in the thickness direction and the portion that does not overlap, and as a result, the region A1 where the light emitting layer 12 exists as shown in FIG. And brightness will differ in area | region A2 (site | part between the light emitting layers 12 of the adjacent light emitting element 1) where the light emitting layer 12 does not exist.

そこで、面状発光装置Lには、例えば、乳白色の透光性材料よりなる光拡散板200が発光素子1の発光面10aに対向配置されており、これによって明暗の差が生じないようにして、面状発光装置Lの均斉度の向上を図っている(均斉度の向上のために光拡散板を用いる周知技術例としては、特許文献1が挙げられる)。
2006−208510号公報
Therefore, in the planar light emitting device L, for example, a light diffusing plate 200 made of milky white translucent material is disposed opposite to the light emitting surface 10a of the light emitting element 1, so that no difference in brightness occurs. Therefore, the uniformity of the planar light emitting device L is improved (as a well-known technical example using a light diffusion plate for improving the uniformity, Patent Document 1 is cited).
No. 2006-208510

ところで、近年では、液晶ディスプレイの薄型化が望まれており、これに伴って面状発光装置Lの薄型化も望まれている。ここで、面状発光装置Lを薄型化するにあたっては、光拡散板200と発光素子1の発光面10aとの距離を短くすることが考えられるが、光拡散板200が発光素子1の発光面10aに近付けば近付くほど、光拡散板200が十分に光を拡散できなくなって、均斉度が悪化してしまう。つまり、光拡散板200によって均斉度の向上を図るためには、光拡散板200と発光素子1の発光面10aとを離す必要があり、このことが面状発光装置Lの薄型化の妨げとなっていた。   By the way, in recent years, it is desired to reduce the thickness of the liquid crystal display, and accordingly, it is desired to reduce the thickness of the planar light emitting device L. Here, in reducing the thickness of the planar light emitting device L, it is conceivable to shorten the distance between the light diffusing plate 200 and the light emitting surface 10 a of the light emitting element 1, but the light diffusing plate 200 is used as the light emitting surface of the light emitting element 1. The closer to 10a, the more the light diffusing plate 200 becomes unable to diffuse the light, and the uniformity becomes worse. In other words, in order to improve the uniformity by the light diffusing plate 200, it is necessary to separate the light diffusing plate 200 from the light emitting surface 10a of the light emitting element 1, which hinders the thinning of the planar light emitting device L. It was.

本発明は上述の点に鑑みて為されたもので、その目的は、薄型化を図りながらも均斉度を向上できる面状発光装置を提供することにある。   The present invention has been made in view of the above points, and an object of the present invention is to provide a planar light emitting device capable of improving the uniformity while achieving a reduction in thickness.

上記の課題を解決するために、請求項1の発明では、複数の発光素子をそれぞれの発光面が同一平面上に位置する形に配列してなる面状発光装置であって、発光素子は、支持基板と、支持基板の一表面側に当該一表面の一部と厚み方向で重なる形に形成された有機材料からなる発光層とを備えた有機エレクトロルミネッセンス素子からなり、発光素子における発光面側には、隣り合う発光素子の発光層間に跨がる形で導光部材が配置され、導光部材は、隣り合う発光素子の発光層の端部それぞれと厚み方向で重なる形に配置された光入射面と、当該隣り合う発光素子の発光層間の部位との対向面とは反対側に設けられた光出射面と、光入射面より入射された光の一部を光出射面側に反射する光反射面と、光反射面で反射された光を散乱して光出射面より出射させる光散乱手段とを備え、上記導光部材は、発光素子の発光面から離間するほど狭幅となる台形状に形成され、斜面が上記反射面を構成し、上記光散乱手段は、光散乱処理が施された上記対向面からなることを特徴とする。 In order to solve the above-described problem, in the invention of claim 1, a planar light-emitting device in which a plurality of light-emitting elements are arranged in a shape in which each light-emitting surface is located on the same plane, A light emitting surface side of a light emitting element, comprising: a support substrate; and an organic electroluminescence device comprising a support substrate and a light emitting layer made of an organic material formed on one surface side of the support substrate so as to overlap a part of the surface in the thickness direction. The light guide member is disposed so as to straddle between the light emitting layers of the adjacent light emitting elements, and the light guide member is arranged so as to overlap each end portion of the light emitting layer of the adjacent light emitting element in the thickness direction. A light emitting surface provided on the opposite side of the incident surface and the surface facing the portion between the light emitting layers of the adjacent light emitting elements, and a part of the light incident from the light incident surface is reflected to the light emitting surface side. Light reflected from the light reflecting surface and the light reflected from the light reflecting surface E Bei a light scattering means for emitted from reflecting surface, the light guide member is formed in a trapezoidal shape which is more narrow away from the light emitting surface of the light emitting element, slope constitute the reflecting surface, the light-scattering The means is characterized by comprising the above-mentioned facing surface subjected to light scattering treatment .

請求項1の発明によれば、発光層の端部より放射された光は、導光部材の光入射面より導光部材内に入射し、その一部が反射面によって反射され、残りは反射面で反射されずにそのまま導光部材外に出射され、反射面で反射された光は光散乱手段で散乱された後に、光出射面より導光部材外に出射されるので、あたかも隣り合う発光素子の発光層間の部位より光が放射されているかのような視覚効果を与えることができるから、均斉度の向上が図れ、しかも従来の拡散板とは異なり発光面よりある程度離間させる必要がなく逆に発光面に近接配置するほうが好ましいので、薄型化を図ることができる。また、請求項1の発明によれば、簡単な加工で導光部材を形成することができるから、製造コストの低減が図れる。 According to the first aspect of the present invention, the light emitted from the end portion of the light emitting layer enters the light guide member from the light incident surface of the light guide member, a part of which is reflected by the reflective surface, and the rest is reflected. The light that is emitted from the light guide member as it is without being reflected by the surface and is reflected by the reflection surface is scattered by the light scattering means and then emitted from the light exit surface to the outside of the light guide member. The visual effect as if light is radiated from the part between the light emitting layers of the element can be given, so that the uniformity can be improved, and unlike the conventional diffuser plate, it is not necessary to be spaced apart from the light emitting surface to some extent. Further, since it is preferable to dispose the light emitting surface close to the light emitting surface, the thickness can be reduced . According to the invention of claim 1, since the light guide member can be formed by simple processing, the manufacturing cost can be reduced.

請求項2の発明では、請求項1の発明において、上記光散乱手段は、光散乱処理が施された上記光出射面および上記対向面の両方からなることを特徴とする。 In the invention of claim 2, in the invention of claim 1, the upper Symbol light scattering means is characterized in that the light emitting surface of the light scattering process is applied and consists of both the opposing faces.

請求項2の発明によれば、簡単な加工で導光部材を形成することができるから、製造コストの低減が図れる。   According to the invention of claim 2, since the light guide member can be formed by simple processing, the manufacturing cost can be reduced.

請求項3の発明では、請求項2の発明において、上記光散乱処理は、表面粗面化処理、光拡散性顔料を成分に含むインクにより所定の光拡散パターンを印刷する処理、光を拡散する複数の凹部を形成する微細加工処理、および微小突起を形成する処理のいずれかであることを特徴とする。   In the invention of claim 3, in the invention of claim 2, the light scattering treatment includes surface roughening treatment, treatment for printing a predetermined light diffusion pattern with ink containing a light diffusing pigment as a component, and diffusing light. It is any one of the fine processing which forms a some recessed part, and the process which forms a microprotrusion.

請求項3の発明によれば、簡単な処理で光散乱手段を導光部材に設けることができるから、製造コストの低減が図れる。   According to the invention of claim 3, since the light scattering means can be provided on the light guide member by a simple process, the manufacturing cost can be reduced.

請求項4の発明では、請求項1〜3のうちいずれか1項の発明において、上記光散乱手段は、隣り合う発光素子の発光層から離間するほど光を散乱することを特徴とする。   According to a fourth aspect of the present invention, in the invention according to any one of the first to third aspects, the light scattering means scatters light as the distance from the light emitting layer of the adjacent light emitting element increases.

請求項4の発明によれば、導光部材の光出射面において発光層から離間する部位ほど暗くなってしまうことを抑制でき、光出射面における均斉度の向上が図れ、さらなる均斉度の向上が図れる。   According to invention of Claim 4, it can suppress that it becomes darker as the site | part spaced apart from a light emitting layer in the light-projection surface of a light guide member, improvement of the uniformity in a light-projection surface can be aimed at, and the improvement of the further uniformity is improved. I can plan.

本発明は、薄型化を図りながらも均斉度を向上できるという効果を奏する。   The present invention has an effect of improving the uniformity while reducing the thickness.

(実施形態1)
本実施形態の面状発光装置Lは、例えば、液晶ディスプレイなどのバックライトとして用いられるものであって、図1に示すように、複数の発光素子1を備えている。
(Embodiment 1)
The planar light emitting device L of the present embodiment is used as a backlight of a liquid crystal display, for example, and includes a plurality of light emitting elements 1 as shown in FIG.

発光素子1は、有機EL素子からなり、支持基板10と、支持基板10の一表面側(図1における下面側)に形成された透明電極11と、透明電極11における支持基板10とは反対側に形成された発光層12と、発光層12における透明電極11とは反対側に形成された金属製の反射電極13と、支持基板10の上記一表面側に透明電極11および反射電極13の一部を露出するとともに発光層12を覆う形で取り付けられる封止部15とを備えている。   The light-emitting element 1 includes an organic EL element, and includes a support substrate 10, a transparent electrode 11 formed on one surface side of the support substrate 10 (a lower surface side in FIG. 1), and the opposite side of the transparent electrode 11 from the support substrate 10. A light emitting layer 12 formed on the opposite side of the light emitting layer 12 from the transparent electrode 11, and one of the transparent electrode 11 and the reflective electrode 13 on the one surface side of the support substrate 10. And a sealing portion 15 that is attached so as to cover the light emitting layer 12.

支持基板10は、発光層12を支持するための部材であり、例えば、発光層12が放射する光に対して透光性を有する材料により矩形板状に形成されている。このような支持基板10としては、例えばガラス基板などの透明基板を利用することができる。   The support substrate 10 is a member for supporting the light emitting layer 12, and is formed in a rectangular plate shape from a material having translucency with respect to light emitted from the light emitting layer 12, for example. As such a support substrate 10, for example, a transparent substrate such as a glass substrate can be used.

透明電極11は、発光層12が放射する光に対して透光性を有する材料からなる導電性の薄膜である。このような透明電極11の材料としては、ITO(Indium Tin Oxide)などの透明な導電性材料が用いられる。また、透明電極11の材料としては、光を通過させる材料であってもよいため、カーボンナノネットなどを利用することも考えられる。   The transparent electrode 11 is a conductive thin film made of a material that transmits light with respect to light emitted from the light emitting layer 12. As a material of such a transparent electrode 11, a transparent conductive material such as ITO (Indium Tin Oxide) is used. In addition, the material of the transparent electrode 11 may be a material that allows light to pass therethrough, and it is also conceivable to use a carbon nanonet or the like.

発光層12は、例えば、蛍光物質の有機材料または蛍光物質を含む有機材料からなり、必要に応じて、正孔注入層、正孔輸送層、電子輸送層および電子注入層などが備えられる。また、発光層12は、所望の色の光(例えば、白色光)が得られるように適宜設計される。   The light emitting layer 12 is made of, for example, an organic material of a fluorescent material or an organic material containing a fluorescent material, and includes a hole injection layer, a hole transport layer, an electron transport layer, an electron injection layer, and the like as necessary. Further, the light emitting layer 12 is appropriately designed so as to obtain light of a desired color (for example, white light).

反射電極13は、発光層12が放射する光を反射する材料からなる導電性の薄膜である。このような反射電極13の材料としては、例えば、アルミニウム(Al)や、アルミ・リチウム合金、マグネシウム・銀合金などを用いることができる。   The reflective electrode 13 is a conductive thin film made of a material that reflects light emitted from the light emitting layer 12. As the material of the reflective electrode 13, for example, aluminum (Al), aluminum / lithium alloy, magnesium / silver alloy, or the like can be used.

封止部15は、例えば絶縁性を有する材料(例えば、ガラスなど)により一面が開口した箱状に形成されており、上述したように、支持基板10の上記一表面側に、透明電極11および反射電極13の一部を露出するとともに、発光層12を覆う形に取り付けられている。この封止部15は、有機材料からなる発光層12が酸素や湿気の影響により徐々に劣化することを抑制するために、接着剤などにより支持基板10に気密に取り付けられている。ここで、封止部15より露出する透明電極11の部位および反射電極13の部位それぞれが給電用の端子部を形成している。   The sealing portion 15 is formed in a box shape having one surface opened by, for example, an insulating material (for example, glass). As described above, the transparent electrode 11 and the support electrode 10 are formed on the one surface side of the support substrate 10. A part of the reflective electrode 13 is exposed and attached to cover the light emitting layer 12. The sealing portion 15 is airtightly attached to the support substrate 10 with an adhesive or the like in order to prevent the light emitting layer 12 made of an organic material from gradually degrading due to the influence of oxygen or moisture. Here, the part of the transparent electrode 11 exposed from the sealing part 15 and the part of the reflective electrode 13 form a power supply terminal part.

このような発光素子1は、透明電極11および反射電極13の給電用の端子部それぞれをボンディングワイヤWにより図示しない電極パッドなどに接続して電源と電気的に接続し、透明電極11および反射電極13それぞれに所定の電位が与えられることで、発光層12から光が放射される。このとき、発光層12から透明電極11側に放射された光は、透明電極11を透過した後に、支持基板10に入射し、支持基板10内を通過し、支持基板10の他表面側(図1における上面側)から支持基板10外に出射される。一方、発光層12から反射電極13側に放射された光は、反射電極13により透明電極11側に反射された後に、支持基板10内を通過し、支持基板10の上記他表面側から支持基板10外に出射される。つまり、この発光素子1では、支持基板10の上記他表面が発光面10aとなっている。   In such a light emitting element 1, the transparent electrode 11 and the reflective electrode 13 are connected to a power source by connecting the power supply terminal portions to an electrode pad (not shown) by bonding wires W, and the transparent electrode 11 and the reflective electrode. Light is emitted from the light emitting layer 12 by applying a predetermined potential to each of the light emitting layers 13. At this time, the light emitted from the light emitting layer 12 to the transparent electrode 11 side passes through the transparent electrode 11, enters the support substrate 10, passes through the support substrate 10, and is on the other surface side of the support substrate 10 (see FIG. 1 is emitted to the outside of the support substrate 10. On the other hand, the light radiated from the light emitting layer 12 to the reflective electrode 13 side is reflected by the reflective electrode 13 to the transparent electrode 11 side, then passes through the support substrate 10, and from the other surface side of the support substrate 10 to the support substrate. 10 is emitted to the outside. That is, in the light emitting element 1, the other surface of the support substrate 10 is a light emitting surface 10a.

このような発光素子1は、平板状の支持板(図示せず)の一面に、発光面10aが同一平面上に位置する形に複数配列される。   A plurality of such light emitting elements 1 are arranged on one surface of a flat support plate (not shown) so that the light emitting surfaces 10a are located on the same plane.

ここで、発光素子1における発光面10a側(図1における上面側)には、図1に示すように、隣り合う発光素子1の発光層12間に跨がる形で導光部材2が配置されている。   Here, on the light emitting surface 10a side (upper surface side in FIG. 1) of the light emitting element 1, as shown in FIG. 1, the light guide member 2 is disposed so as to straddle between the light emitting layers 12 of the adjacent light emitting elements 1. Has been.

導光部材2は、例えば、発光層12が放射する光に対して透光性を有する材料(例えば、アクリル樹脂、ポリカーボネート樹脂、ポリプロピレン樹脂などの透明樹脂材料や、ガラスなど)により、発光素子1の発光面10aから離間するほど狭幅となる台形状(図示例では等脚台形状)に形成されている。   The light guide member 2 is made of, for example, a light-emitting element 1 made of a material that transmits light emitted from the light-emitting layer 12 (for example, a transparent resin material such as acrylic resin, polycarbonate resin, or polypropylene resin, or glass). It is formed in a trapezoidal shape (isosceles trapezoidal shape in the illustrated example) that becomes narrower as the distance from the light emitting surface 10a increases.

この導光部材2は、発光素子1の発光面10a側に、発光面10aとの対向する一面(図1における下底面)の幅方向(図1における左右方向)両側それぞれが、隣り合う発光素子1それぞれの発光層12の端部(縁部)と対向する形で配置され、上記一面において隣り合う発光素子1それぞれの発光層12の端部と対向する部位が、各発光素子1の発光層12が放射する光が入射される光入射面20として用いられる。また、導光部材2における隣り合う発光素子1の発光層12間の部位との対向面21とは反対側の面(図1における上底面)は、光出射面22として用いられる。   The light guide member 2 is adjacent to the light emitting surface 10a side of the light emitting element 1 on both sides in the width direction (left and right direction in FIG. 1) of one surface (the lower bottom surface in FIG. 1) facing the light emitting surface 10a. Each of the light emitting layers 12 is arranged so as to face the end (edge) of each light emitting layer 12, and the portion facing the end of each light emitting layer 12 of each adjacent light emitting element 1 on the one surface is a light emitting layer of each light emitting element 1. 12 is used as a light incident surface 20 on which light emitted by 12 is incident. Further, a surface (upper bottom surface in FIG. 1) opposite to the surface 21 facing the portion between the light emitting layers 12 of the adjacent light emitting elements 1 in the light guide member 2 is used as the light emitting surface 22.

また、導光部材2の斜面は、光入射面20より入射された光の一部を光出射面22より出射させるために反射するとともに、残りを反射することなく導光部材2外へ出射させる反射面23として用いられる。ここで、反射面23となる斜面は、発光層12が存在する領域A1と発光層12が存在しない領域A2とに亘る形に形成されている。また、反射面23となる斜面の角度は、光入射面20より導光部材2内に入射した光の全てを反射せず、一部を反射するような角度に設定される。   In addition, the inclined surface of the light guide member 2 reflects a part of the light incident from the light incident surface 20 so as to be emitted from the light emitting surface 22 and emits the rest without reflecting the light guide member 2. Used as the reflecting surface 23. Here, the inclined surface serving as the reflection surface 23 is formed in a shape extending over the region A1 where the light emitting layer 12 exists and the region A2 where the light emitting layer 12 does not exist. In addition, the angle of the inclined surface that becomes the reflection surface 23 is set to an angle that does not reflect all of the light incident on the light guide member 2 from the light incident surface 20 but reflects a part thereof.

そして、導光部材2の対向面21には、光散乱処理がなされている。ここで、光散乱処理は、光拡散性顔料を成分に含むインク(例えば白色インク)により対向面21に光拡散パターン24を印刷する処理であり、このような光散乱処理がなされた対向面21が、光反射面23で反射された光を散乱して光出射面22より出射させる光散乱手段を構成している。なお、本実施形態における光拡散パターン24は、対向面21のほぼ全面を白色インクで塗装するパターンである。   The opposing surface 21 of the light guide member 2 is subjected to light scattering processing. Here, the light scattering process is a process of printing the light diffusion pattern 24 on the opposing surface 21 with ink containing a light diffusing pigment as a component (for example, white ink), and the opposing surface 21 on which such a light scattering process has been performed. However, it constitutes a light scattering means that scatters the light reflected by the light reflecting surface 23 and emits it from the light emitting surface 22. In the present embodiment, the light diffusion pattern 24 is a pattern in which almost the entire opposing surface 21 is painted with white ink.

上述したように本実施形態の導光部材2は、隣り合う発光素子1の発光層12の端部それぞれと厚み方向で重なる形に配置された光入射面20と、当該隣り合う発光素子1の発光層12間の部位との対向面21とは反対側に設けられた光出射面22と、光入射面20より入射された光の一部を光出射面22側に反射する光反射面23と、光反射面23で反射された光を散乱して光出射面22より出射させる光散乱手段24とを備えている。   As described above, the light guide member 2 of the present embodiment includes the light incident surface 20 that is disposed in the thickness direction so as to overlap each end portion of the light emitting layer 12 of the adjacent light emitting element 1, and the adjacent light emitting element 1. A light emitting surface 22 provided on the side opposite to the surface 21 facing the portion between the light emitting layers 12 and a light reflecting surface 23 that reflects a part of the light incident from the light incident surface 20 to the light emitting surface 22 side. And a light scattering means 24 that scatters the light reflected by the light reflecting surface 23 and emits the light from the light emitting surface 22.

本実施形態の面状発光装置Lは、上述した発光素子1および導光部材2を備えている。そして、各発光素子1の透明電極11および反射電極13それぞれに所定の電位を与えて、発光層12を発光させた際には、発光層12より透明電極11側に放射された光は、透明電極11を透過した後に、支持基板10に入射し、支持基板10を通り、支持基板10の他表面側(図1における上面側)から外方に出射される。一方、発光層12から反射電極13側に放射された光は、反射電極13により透明電極11側に反射され、同様に、支持基板10の上記他表面側から外方に出射される。   The planar light emitting device L of the present embodiment includes the light emitting element 1 and the light guide member 2 described above. When a predetermined potential is applied to each of the transparent electrode 11 and the reflective electrode 13 of each light emitting element 1 to cause the light emitting layer 12 to emit light, the light emitted from the light emitting layer 12 to the transparent electrode 11 side is transparent. After passing through the electrode 11, the light enters the support substrate 10, passes through the support substrate 10, and is emitted outward from the other surface side (upper surface side in FIG. 1) of the support substrate 10. On the other hand, the light emitted from the light emitting layer 12 to the reflective electrode 13 side is reflected by the reflective electrode 13 to the transparent electrode 11 side, and similarly emitted from the other surface side of the support substrate 10 outward.

このとき、図1に示すように、発光層12の端部より放射された光B1,B2は、入射面20より導光部材2内に入射され、導光部材2内を通り、反射面23に進む。ここで、反射面23への入射角が臨界角(導光部材2がアクリル樹脂製であり、導光部材2が空気中に置かれている場合には、おおよそ42度)未満である光B2は、反射面23で反射されずに導光部材2外へ出射される。一方、反射面23への入射角が臨界角以上である光B1は、反射面23で全反射され、これによって、光B1は導光部材2内を対向面21に向かって進む。そして、光散乱手段を構成する対向面21において光B1は散乱され、散乱された光B1は、導光部材2内を光出射面22に向かって進み、光出射面22より導光部材2外に出射される。 At this time, as shown in FIG. 1, the light B1 and B2 emitted from the end portion of the light emitting layer 12 is incident on the light guide member 2 from the incident surface 20, passes through the light guide member 2, and is reflected on the reflective surface 23. Proceed to Here, the light B2 whose incident angle to the reflecting surface 23 is less than a critical angle (approximately 42 degrees when the light guide member 2 is made of acrylic resin and the light guide member 2 is placed in the air). Is not reflected by the reflecting surface 23 and is emitted outside the light guide member 2. On the other hand, the light B1 having an incident angle with respect to the reflecting surface 23 that is equal to or greater than the critical angle is totally reflected by the reflecting surface 23, whereby the light B1 travels in the light guide member 2 toward the facing surface 21. The light B1 in the opposing surface 21 of the light scattering means is scattered, light B1 scattered proceeds toward the inside of the light guide member 2 to the light emitting surface 22, the light exit surface 22 by Rishirubeko member 2 It is emitted outside.

そのため、発光素子1の発光面10aにおいて、図1に示すように、発光層12と厚み方向で重なる部分(発光層12が存在する領域A1)と、重ならない部分(発光層12が存在しない領域A2)とがあっても、導光部材2の光出射面22より光が放射されることによって、あたかも領域A2から光が放射されているように見せることができる。また、導光部材2における反射面23は、発光層12の端部より放射された光の全てを反射せずに一部を反射するから、領域A1において発光層12の端部に相当する部分が暗くなりすぎてしまうことがない。   Therefore, on the light emitting surface 10a of the light emitting element 1, as shown in FIG. 1, a portion that overlaps the light emitting layer 12 in the thickness direction (region A1 where the light emitting layer 12 exists) and a portion that does not overlap (region where the light emitting layer 12 does not exist). Even if there is A2), by emitting light from the light emitting surface 22 of the light guide member 2, it can appear as if light is emitted from the region A2. In addition, the reflecting surface 23 of the light guide member 2 reflects a part of the light emitted from the end of the light emitting layer 12 without reflecting all of the light, and therefore corresponds to the end of the light emitting layer 12 in the region A1. Does not get too dark.

したがって、以上述べた本実施形態の面状発光装置Lによれば、発光層12の端部より放射された光は、導光部材2の光入射面20より導光部材2内に入射し、その一部が反射面23によって反射され、残りは反射面23で反射されずにそのまま導光部材2外に出射され、反射面23で反射された光は光散乱手段で散乱された後に、光出射面22より導光部材2外に出射されるので、あたかも隣り合う発光素子1の発光層12間の部位より光が放射されて全体として連続に発光しているような視覚効果を与えることができるから、均斉度の向上が図れ、しかも、光の全反射を利用し、導光部材2内で光を発光面10aの沿面方向(図1における左右方向)に移動させるので、上記の光拡散板200とは異なり発光面10aよりある程度離間する必要がなく、逆に発光面10aに近接配置するほうが好ましいから、従来よりも薄型化が図れる。 Therefore, according to the planar light emitting device L of the present embodiment described above, the light emitted from the end of the light emitting layer 12 enters the light guide member 2 from the light incident surface 20 of the light guide member 2, A part of the light is reflected by the reflecting surface 23, the rest is not reflected by the reflecting surface 23, and is emitted as it is to the outside of the light guide member 2, and the light reflected by the reflecting surface 23 is scattered by the light scattering means, Since the light is emitted from the light emitting member 22 to the outside of the light guide member 2, it is possible to give a visual effect as if light is emitted from a portion between the light emitting layers 12 of the adjacent light emitting elements 1 and light is emitted continuously as a whole. Therefore, the degree of uniformity can be improved, and the total light reflection is utilized to move the light in the light guide member 2 in the creeping direction of the light emitting surface 10a (the horizontal direction in FIG. 1). Unlike the plate 200, it is separated to some extent from the light emitting surface 10a. It is not necessary, because it is preferable that arranged close to the light emitting surface 10a in the opposite, thereby be made thinner than the conventional.

さらに、本実施形態の面状発光装置Lによれば、導光部材2は、発光素子1の発光面10aから離間するほど狭幅となる台形状に形成され、斜面が反射面23を構成し、光散乱手段は、光散乱処理が施された対向面21からなるので、簡単な加工で導光部材2を形成することができるから、製造コストの低減が図れる。   Furthermore, according to the planar light emitting device L of the present embodiment, the light guide member 2 is formed in a trapezoidal shape that becomes narrower as the distance from the light emitting surface 10 a of the light emitting element 1 increases, and the inclined surface forms the reflecting surface 23. Since the light scattering means is composed of the opposing surface 21 that has been subjected to the light scattering treatment, the light guide member 2 can be formed by simple processing, so that the manufacturing cost can be reduced.

しかも、光散乱処理は、光拡散性顔料を成分に含むインクにより所定の光拡散パターン24を対向面21に印刷する処理(本実施形態では対向面21のほぼ全面を白色インクで塗装する処理)であるので、簡単な処理で光散乱手段を導光部材2に設けることができるから、製造コストの低減が図れる。   In addition, the light scattering process is a process of printing a predetermined light diffusion pattern 24 on the opposing surface 21 with an ink containing a light diffusing pigment as a component (in this embodiment, a process of painting almost the entire opposing surface 21 with a white ink). Therefore, since the light scattering means can be provided on the light guide member 2 by a simple process, the manufacturing cost can be reduced.

なお、このような光散乱処理は、上記の例に限られるものではなく、サンドブラストなどによる表面粗面化処理、光を拡散する複数の凹部を形成する微細加工処理、および微小突起を形成する処理のいずれかであってもよく、これらによっても、簡単な処理で光散乱手段を導光部材2に設けることができるから、製造コストの低減が図れる。さらに、これらとは異なる方法によって光散乱処理を行ってもよいし、複数の光散乱処理を組み合わせてもよい。また、本実施形態では、導光部材2の対向面21に光散乱処理を施すことで、対向面21を光散乱手段として利用しているが、光出射面22に光散乱処理を施すことで、光出射面22を光散乱手段として利用するようにしてもよく、対向面21および光出射面22の両方を光散乱手段として利用するようにしてもよい。また、以上述べた本実施形態の面状発光装置Lは、あくまで本発明の一実施形態であって、本発明をこの実施形態に限定する趣旨のものではなく、本発明の趣旨を逸脱しない程度の変形は可能である。これらの点は後述する実施形態2においても同様である。 Such light scattering treatment is not limited to the above example, and surface roughening treatment such as sandblasting, fine processing treatment for forming a plurality of concave portions for diffusing light, and treatment for forming fine protrusions. The light scattering means can be provided on the light guide member 2 with a simple process, so that the manufacturing cost can be reduced. Furthermore, the light scattering process may be performed by a method different from these, or a plurality of light scattering processes may be combined. Further, in the present embodiment, by applying the light scattering process the facing surface 21 of the light guide member 2, but using the opposing surfaces 21 as the light scatterer, light scattering process is subjected to light emitted reflecting surface 22 in may light emitted reflecting surface 22 so as to use as a light scattering means, both of the opposing surfaces 21 and light emitted reflecting surface 22 may be utilized as a light scattering means. Also, more surface light equipment L of the embodiment described, only a one embodiment of the present invention is not intended to limit the invention to this embodiment, without departing from the spirit of the present invention A degree of deformation is possible. These points are the same in the second embodiment described later.

(実施形態2)
本実施形態の面状発光装置Lは、図2に示すように、導光部材2の構成が実施形態1と異なっており、その他の構成は実施形態1と同様であるから、同様の構成については同一の符号を付して説明を省略する。
(Embodiment 2)
As shown in FIG. 2, the planar light-emitting device L of the present embodiment is different from the first embodiment in the configuration of the light guide member 2, and the other configurations are the same as those in the first embodiment. Are denoted by the same reference numerals and description thereof is omitted.

本実施形態における導光部材2は、単一部材ではなく、一対の片側導光部材2Aにより構成されている。   The light guide member 2 in this embodiment is not a single member but is composed of a pair of one-side light guide members 2A.

片側導光部材2Aは、例えば、発光層12が放射する光に対して透光性を有する材料(例えば、アクリル樹脂、ポリカーボネート樹脂、ポリプロピレン樹脂などの透明樹脂材料や、ガラスなど)により、発光素子1の発光面10aから離間するほど狭幅となる台形状に形成されている。また、片側導光部材2Aは、一方の側面(図2における左側の片側導光部材2Aにおいては右側面)25が、発光面10aと対向する一面(図2における下底面)との角度、および当該一面とは反対側の他面(図2における上底面)との角度が直角となっており、他方の側面(図2における左側の片側導光部材2Aにおいては左側面)は上記一面および上記他面に対して傾斜した斜面となっている。つまり、片側導光部材2Aは、実施形態1における導光部材2をその幅方向(図2における左右方向)において2分割した形の台形状に形成されている。   The one-side light guide member 2A is made of, for example, a light-emitting element made of a material that transmits light emitted from the light-emitting layer 12 (for example, a transparent resin material such as acrylic resin, polycarbonate resin, or polypropylene resin, or glass). It is formed in a trapezoidal shape that becomes narrower as it is separated from one light emitting surface 10a. Further, the one-side light guide member 2A has an angle with one side surface (the right side surface in the left-side one-side light guide member 2A in FIG. 2) 25 and one surface (the lower bottom surface in FIG. 2) facing the light emitting surface 10a, and The angle with the other surface (upper bottom surface in FIG. 2) opposite to the one surface is a right angle, and the other side surface (the left side surface in the left side light guide member 2A in FIG. 2) is the one surface and the above surface. The slope is inclined with respect to the other surface. That is, the one-side light guide member 2A is formed in a trapezoidal shape in which the light guide member 2 in the first embodiment is divided into two in the width direction (left-right direction in FIG. 2).

このような片側導光部材2Aは、発光素子1の発光面10a側に、上記一面における上記他方の側面側の部位が発光素子1の発光層12の端部と対向する形で配置される。そして、上記一面において発光層12の端部と対向する部位(つまり、上記一面における上記他方の側面側の部位)が、発光素子1の発光層12が放射する光が入射される光入射面20として用いられる。また、上記一面における光入射面20を除く部位は、片側導光部材2Aにおける隣り合う発光素子1の発光層12間の部位との対向面21となり、この対向面21とは反対側の上記他面は、光出射面22として用いられる。   Such a one-side light guide member 2 </ b> A is arranged on the light emitting surface 10 a side of the light emitting element 1 such that the portion on the other side of the one surface faces the end of the light emitting layer 12 of the light emitting element 1. A light incident surface 20 on which light emitted from the light emitting layer 12 of the light emitting element 1 is incident on a portion of the one surface facing the end of the light emitting layer 12 (that is, a portion on the other side surface of the one surface). Used as Moreover, the site | part except the light-incidence surface 20 in the said one surface turns into the opposing surface 21 with the site | part between the light emitting layers 12 of the adjacent light emitting element 1 in the one side light guide member 2A, The said other side on the opposite side to this opposing surface 21 The surface is used as the light exit surface 22.

また、片側導光部材2Aの上記斜面は、光入射面20より入射された光の一部を光出射面22より出射させるために反射するとともに、残りを反射することなく片側導光部材2A外へ出射させる反射面23として用いられる。ここで、反射面23となる斜面は、発光層12が存在する領域A1と発光層12が存在しない領域A2とに亘る形に形成されている。また、反射面23となる斜面の角度は、光入射面20より片側導光部材2A内に入射した光の全てを反射せず、一部を反射するような角度に設定される。   Further, the inclined surface of the one-side light guide member 2A reflects in order to emit a part of the light incident from the light incident surface 20 from the light exit surface 22, and outside the one-side light guide member 2A without reflecting the rest. It is used as a reflective surface 23 that emits light to the surface. Here, the inclined surface serving as the reflection surface 23 is formed in a shape extending over the region A1 where the light emitting layer 12 exists and the region A2 where the light emitting layer 12 does not exist. In addition, the angle of the inclined surface serving as the reflection surface 23 is set to an angle that does not reflect all of the light incident from the light incident surface 20 into the one-side light guide member 2A but reflects a part thereof.

そして、片側導光部材2Aの対向面21には、光散乱処理がなされている。この光散乱処理は、光拡散性顔料を成分に含むインク(例えば白色インク)により対向面21に、光拡散パターン24を印刷する処理であり、このような光散乱処理がなされた対向面21が、光反射面23で反射された光を散乱して光出射面22より出射させる光散乱手段を構成している。   And the light scattering process is made to the opposing surface 21 of 2 A of one side light guide members. This light scattering process is a process of printing the light diffusion pattern 24 on the opposing surface 21 with an ink (for example, white ink) containing a light diffusing pigment as a component, and the opposing surface 21 subjected to such a light scattering process is The light scattering means is configured to scatter the light reflected by the light reflecting surface 23 and emit the light from the light emitting surface 22.

本実施形態における光拡散パターン24は、実施形態1のように、対向面21のほぼ全面を白色インクで塗装してなるものではなく、例えば、発光素子1の発光層12から離間するほど対向面21に塗布される白色インクの面積が増加するものである。光拡散パターン24としては、図2に示す例のほかに、円形状のドットの密度が発光素子1の発光層12から離間するほど増加するようなものも採用できる。要は、光拡散パターン24は、隣り合う発光素子1の発光層12から離間するほど光をより散乱するようなものであればよい。なお、このよな光拡散パターン24は実施形態1にも採用できる。   The light diffusion pattern 24 in the present embodiment is not formed by coating almost the entire surface of the opposed surface 21 with white ink as in the first embodiment. For example, the opposed surface 21 is separated from the light emitting layer 12 of the light emitting element 1. The area of the white ink applied to 21 increases. As the light diffusion pattern 24, in addition to the example shown in FIG. 2, a pattern in which the density of circular dots increases as the distance from the light emitting layer 12 of the light emitting element 1 increases. In short, the light diffusion pattern 24 may be any pattern that scatters more light as it is separated from the light emitting layer 12 of the adjacent light emitting element 1. Such a light diffusion pattern 24 can also be adopted in the first embodiment.

以上述べた一対の片側導光部材2Aを一方の側面25同士を対向させた形に配置することによって、隣り合う発光素子1の発光層12の端部それぞれと厚み方向で重なる形に配置された光入射面20と、隣り合う発光素子1の発光層12間の部位との対向面21とは反対側に設けられた光出射面22と、光入射面20より入射された光の一部を光出射面22側に反射する光反射面23と、光反射面23で反射された光を散乱して光出射面22より出射させる光散乱手段24とを備えた導光部材2が構成される。   By arranging the pair of one-side light guide members 2A described above in such a manner that the side surfaces 25 face each other, the two light-guiding members 1A are arranged so as to overlap each end of the light emitting layer 12 of the adjacent light emitting element 1 in the thickness direction. A light emitting surface 22 provided on the side opposite to the facing surface 21 between the light incident surface 20 and a portion between the light emitting layers 12 of the adjacent light emitting elements 1, and a part of the light incident from the light incident surface 20 The light guide member 2 includes a light reflecting surface 23 that reflects to the light emitting surface 22 side, and a light scattering means 24 that scatters the light reflected by the light reflecting surface 23 and emits the light from the light emitting surface 22. .

そして、この導光部材2では、光散乱手段が隣り合う発光素子1の発光層12から離間するほど光を散乱するようになっているので、光出射面22における均斉度の向上が図れるから、隣り合う発光素子1間の部位における中央部が他の部位よりも暗くなってしまうこと(発光層12から離間するほど暗くなってしまうこと)を抑制できる。   And in this light guide member 2, since the light scattering means scatters light as the distance from the light emitting layer 12 of the adjacent light emitting element 1 increases, the uniformity on the light emitting surface 22 can be improved. It can suppress that the center part in the site | part between the adjacent light emitting elements 1 becomes darker than another site | part (it becomes dark, so that it leaves | separates from the light emitting layer 12).

したがって、本実施形態の面状発光装置Lによれば、実施形態1と同様の効果を奏する上に、さらなる均斉度の向上が図れる。なお、本実施形態における導光部材2は、必ずしも一対の片側導光部材2Aにより構成する必要はなく、実施形態1と同様に単一部材としてもよいが、導光部材2を一対の片側導光部材2Aにより構成することで、発光素子1を所定配列で並べなくても導光部材2を発光素子1に設けることができるから、面状発光装置Lの組み立て作業が容易になる。   Therefore, according to the planar light emitting device L of the present embodiment, the same effects as those of the first embodiment can be obtained, and further the uniformity can be improved. The light guide member 2 in the present embodiment is not necessarily constituted by a pair of one-side light guide members 2A, and may be a single member as in the first embodiment, but the light guide member 2 is a pair of one-side guides. By configuring with the light member 2A, the light guide member 2 can be provided on the light emitting element 1 without arranging the light emitting elements 1 in a predetermined arrangement, so that the assembly work of the planar light emitting device L is facilitated.

実施形態1の面状発光装置の概略断面図である。1 is a schematic cross-sectional view of a planar light emitting device according to Embodiment 1. FIG. 実施形態2の面状発光装置の概略断面図である。It is a schematic sectional drawing of the planar light-emitting device of Embodiment 2. 従来の発光素子の概略断面図である。It is a schematic sectional drawing of the conventional light emitting element. 従来の面状発光装置の概略断面図である。It is a schematic sectional drawing of the conventional planar light-emitting device.

符号の説明Explanation of symbols

1 発光素子
2 導光部材
10a 発光面
12 発光層
20 光入射面
21 対向面
22 光出射面
23 光反射面
L 面状発光装置
DESCRIPTION OF SYMBOLS 1 Light emitting element 2 Light guide member 10a Light emission surface 12 Light emission layer 20 Light incident surface 21 Opposite surface 22 Light output surface 23 Light reflection surface L Planar light-emitting device

Claims (4)

複数の発光素子をそれぞれの発光面が同一平面上に位置する形に配列してなる面状発光装置であって、
発光素子は、支持基板と、支持基板の一表面側に当該一表面の一部と厚み方向で重なる形に形成された有機材料からなる発光層とを備えた有機エレクトロルミネッセンス素子からなり、
発光素子における発光面側には、隣り合う発光素子の発光層間に跨がる形で導光部材が配置され、
導光部材は、隣り合う発光素子の発光層の端部それぞれと厚み方向で重なる形に配置された光入射面と、当該隣り合う発光素子の発光層間の部位との対向面とは反対側に設けられた光出射面と、光入射面より入射された光の一部を光出射面側に反射する光反射面と、光反射面で反射された光を散乱して光出射面より出射させる光散乱手段とを備え、上記導光部材は、発光素子の発光面から離間するほど狭幅となる台形状に形成され、斜面が上記光反射面を構成し、上記光散乱手段は、光散乱処理が施された上記対向面からなることを特徴とする面状発光装置。
A planar light emitting device in which a plurality of light emitting elements are arranged in such a manner that each light emitting surface is located on the same plane,
The light-emitting element comprises an organic electroluminescence element comprising a support substrate and a light-emitting layer made of an organic material formed in a shape overlapping with a part of the one surface on the one surface side of the support substrate,
On the light emitting surface side of the light emitting element, a light guide member is disposed in a form straddling between the light emitting layers of adjacent light emitting elements,
The light guide member is disposed on the opposite side of the light incident surface arranged in the thickness direction so as to overlap each end portion of the light emitting layer of the adjacent light emitting element and the surface facing the portion between the light emitting layers of the adjacent light emitting element. The provided light emitting surface, the light reflecting surface that reflects a part of the light incident from the light incident surface to the light emitting surface side, and the light reflected by the light reflecting surface is scattered and emitted from the light emitting surface. e Bei and light scattering means, the light guide member is formed in a trapezoidal shape which is more narrow away from the light emitting surface of the light emitting element, slope constitute the light reflecting surface, the light scattering means, light A planar light emitting device comprising the above-described facing surface subjected to a scattering treatment .
記光散乱手段は、光散乱処理が施された上記光出射面および上記対向面の両方からなることを特徴とする請求項1記載の面状発光装置。 Upper Symbol light scattering means, the planar light emitting device according to claim 1, characterized in that the light emitting surface of the light scattering process is applied and consists of both the opposing faces. 上記光散乱処理は、表面粗面化処理、光拡散性顔料を成分に含むインクにより所定の光拡散パターンを印刷する処理、光を拡散する複数の凹部を形成する微細加工処理、および微小突起を形成する処理のいずれかであることを特徴とする請求項2記載の面状発光装置。   The light scattering process includes a surface roughening process, a process of printing a predetermined light diffusion pattern with an ink containing a light diffusing pigment as a component, a fine processing process for forming a plurality of concave parts for diffusing light, and a fine protrusion. The planar light-emitting device according to claim 2, wherein the planar light-emitting device is one of forming processes. 上記光散乱手段は、隣り合う発光素子の発光層から離間するほど光を散乱することを特徴とする請求項1〜3のうちいずれか1項記載の面状発光装置。 It said light scattering means, the planar light emitting device according to any one of claims 1 to 3 you characterized by scattering light enough away from the light-emitting layer of a light-emitting element adjacent.
JP2007216279A 2007-08-22 2007-08-22 Planar light emitting device Expired - Fee Related JP4989363B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007216279A JP4989363B2 (en) 2007-08-22 2007-08-22 Planar light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007216279A JP4989363B2 (en) 2007-08-22 2007-08-22 Planar light emitting device

Publications (2)

Publication Number Publication Date
JP2009048943A JP2009048943A (en) 2009-03-05
JP4989363B2 true JP4989363B2 (en) 2012-08-01

Family

ID=40500965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007216279A Expired - Fee Related JP4989363B2 (en) 2007-08-22 2007-08-22 Planar light emitting device

Country Status (1)

Country Link
JP (1) JP4989363B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104822986A (en) * 2012-12-03 2015-08-05 皇家飞利浦有限公司 Light emitting arrangement using light guides

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5263792B2 (en) 2010-03-05 2013-08-14 株式会社Tbk Electromagnetic retarder
JP5482568B2 (en) * 2010-08-20 2014-05-07 東芝ライテック株式会社 Organic EL module and organic EL lighting device
JP5895779B2 (en) * 2012-09-10 2016-03-30 コニカミノルタ株式会社 Surface emitting unit
JPWO2015079912A1 (en) * 2013-11-29 2017-03-16 コニカミノルタ株式会社 Planar light emitting unit
WO2015083483A1 (en) * 2013-12-06 2015-06-11 コニカミノルタ株式会社 Surface light-emitting unit
US9869808B2 (en) 2014-04-21 2018-01-16 Konica Minolta, Inc. Planar light-emitting unit
JP6928438B2 (en) * 2016-11-02 2021-09-01 株式会社小糸製作所 Light emitting device

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6076886U (en) * 1983-10-31 1985-05-29 松下電工株式会社 lighting equipment
JPH0511609Y2 (en) * 1986-06-04 1993-03-23
JPH089681Y2 (en) * 1989-11-17 1996-03-21 第一精工株式会社 Surface light source
JPH1173808A (en) * 1997-08-28 1999-03-16 Tec Corp Luminaire
JP2002329403A (en) * 2001-04-27 2002-11-15 Advanced Display Inc Illumination device for display device and display device provided with the same
JP3855836B2 (en) * 2002-05-07 2006-12-13 株式会社ライトウェーブ Fluorescent light fixture
JP2004127884A (en) * 2002-10-04 2004-04-22 Hitachi Lighting Ltd Straight tube type fluorescent lamp implement for kitchen
JP2004234868A (en) * 2003-01-28 2004-08-19 Matsushita Electric Works Ltd Organic electroluminescent lighting element
US20070258015A1 (en) * 2004-06-30 2007-11-08 Koninklijke Philips Electronics, N.V. Passive diffuser frame system for ambient lighting using a video display unit as light source
GB2436610A (en) * 2006-03-29 2007-10-03 Paul Traynor Light redirection device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104822986A (en) * 2012-12-03 2015-08-05 皇家飞利浦有限公司 Light emitting arrangement using light guides
CN104822986B (en) * 2012-12-03 2018-12-14 飞利浦照明控股有限公司 Use the light emitting device of light guide

Also Published As

Publication number Publication date
JP2009048943A (en) 2009-03-05

Similar Documents

Publication Publication Date Title
JP4989363B2 (en) Planar light emitting device
US7441938B2 (en) Planar light source device
KR102044392B1 (en) Display panel and display device having the same
JP5142495B2 (en) Liquid crystal display
JP5409901B2 (en) Planar light source device and display device using the same
JP2007279474A (en) Liquid crystal display device
JP2008015288A (en) Liquid crystal display
JP2012212509A (en) Lighting system and display device
JP2009158462A (en) Light source apparatus and display apparatus
JP2010033818A (en) Surface light-emitting device having uniform light-emitting structure
TWI479207B (en) Light guide panel
US20120140513A1 (en) Light guide plate, light guide unit, lighting device, and display device
JP2010015853A (en) Lighting device, liquid-crystal display device, and electronic equipment
JP2012054040A (en) Organic electroluminescent light-emitting device
KR20070107483A (en) Backlight unit and liquid crystal display including the same
JP2018181630A (en) Back light
KR20130107750A (en) Illumination unit and display apparatus for using the same
JP4525527B2 (en) Surface light source and liquid crystal display device
JP5174685B2 (en) Planar light source device and display device using the same
JP2010097783A (en) Planar light source and liquid crystal display device
KR101798599B1 (en) Luminous flux control member and back light unit using the same
WO2015083484A1 (en) Planar light-emitting unit
JP5089768B2 (en) Light source device and display device including the light source device
KR102100297B1 (en) Liquid crystal display device
JP4324006B2 (en) Surface illumination element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100310

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20101102

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110912

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120403

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120427

R150 Certificate of patent or registration of utility model

Ref document number: 4989363

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees