JP4988632B2 - Packet relay device and traffic monitoring system - Google Patents

Packet relay device and traffic monitoring system Download PDF

Info

Publication number
JP4988632B2
JP4988632B2 JP2008071422A JP2008071422A JP4988632B2 JP 4988632 B2 JP4988632 B2 JP 4988632B2 JP 2008071422 A JP2008071422 A JP 2008071422A JP 2008071422 A JP2008071422 A JP 2008071422A JP 4988632 B2 JP4988632 B2 JP 4988632B2
Authority
JP
Japan
Prior art keywords
packet
mirror
port
analyzer
packets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008071422A
Other languages
Japanese (ja)
Other versions
JP2009231890A (en
Inventor
有一 石川
健太郎 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alaxala Networks Corp
Original Assignee
Alaxala Networks Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alaxala Networks Corp filed Critical Alaxala Networks Corp
Priority to JP2008071422A priority Critical patent/JP4988632B2/en
Publication of JP2009231890A publication Critical patent/JP2009231890A/en
Application granted granted Critical
Publication of JP4988632B2 publication Critical patent/JP4988632B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Data Exchanges In Wide-Area Networks (AREA)

Description

本発明は、パケットヘッダから収集した統計情報またはパケットからコピーされたミラーパケットを、通信状態を解析するためのアナライザに送信するパケット中継装置およびトラフィックモニタシステムに関する。   The present invention relates to a packet relay apparatus and a traffic monitoring system for transmitting statistical information collected from a packet header or a mirror packet copied from a packet to an analyzer for analyzing a communication state.

インターネットでは、従来のベストエフォート型データ通信だけでなく、音声・動画や基幹業務のトランザクションデータなどの通信品質保証が必要なデータも通信されるようになった。また、ADSL(Asymmetric Digital Subscriber Line)、FTTH(Fiber To The Home)等によるアクセス回線のブロードバンド化に伴い、通信されるデータ量も増大している。そして、社会基盤としてのインターネットの重要性が高まるにつれ、インターネット上の通信サービスの品質低下・停止をもたらずDoS(Denial of Service)攻撃やP2P(peer to peer)トラフィックによるネットワークの帯域占有などが大きな社会問題となっている。   On the Internet, not only conventional best-effort data communication, but also data that requires communication quality assurance, such as voice / video and transaction data for core business, has come to be communicated. In addition, the amount of data to be communicated is increasing along with the broadband access lines such as ADSL (Asymmetric Digital Subscriber Line) and FTTH (Fiber To The Home). And as the importance of the Internet as a social infrastructure rises, DoS (Denial of Service) attacks and network bandwidth occupancy by peer-to-peer (P2P) traffic do not bring about a decline or stop of the quality of communication services on the Internet. It is a big social problem.

このような背景から、キャリア、ISP(Internet Service Provider)などの通信サービス事業者は、ネットワーク上での通信状態を把握するために、通信データ量やパケットのヘッダ情報をはじめとする統計情報の収集や、通信中のパケットからコピーされたミラーリングパケットを解析用のアナライザに送信するミラーリングなどのトラフィックモニタ機能を必要としている。   Against this background, communication service providers such as carriers and ISPs (Internet Service Providers) collect statistical data such as communication data volume and packet header information in order to understand the communication status on the network. In addition, a traffic monitoring function such as mirroring for transmitting a mirroring packet copied from a packet during communication to an analyzer for analysis is required.

ネットワーク上での通信状態を把握する目的としては、例えば、通信品質保証サービス提供時の品質保証状況の確認がある。また、限られたネットワーク資源でデータ量の増大に対応するため、ネットワーク資源を有効に活用するトラフィック・エンジニアリングに反映するトラフィック情報の収集がある。また、DoS攻撃の検出・分析、P2Pトラフィックによるネットワークの帯域占有の検出・分析がある。さらに、顧客の需要を予測してネットワーク資源を計画的に準備しておき、帯域や通信サービスへのユーザ要求に対して迅速にネットワーク資源を提供するプロビジョニングや、課金などがある。   The purpose of grasping the communication status on the network is, for example, confirmation of the quality assurance status when the communication quality assurance service is provided. In addition, in order to cope with an increase in the amount of data with limited network resources, there is a collection of traffic information reflected in traffic engineering that effectively utilizes network resources. There are also detection / analysis of DoS attacks and detection / analysis of network bandwidth occupancy by P2P traffic. Further, there are provisioning for charging network resources in response to user requests for bandwidth and communication services, billing, and the like, in which network resources are systematically prepared by predicting customer demand.

これらを実現するため、キャリア、ISPで用いられるルータ・スイッチ等のパケット中継装置には、非特許文献1に記載されたsFlow、非特許文献2に記載されたNetFlow等の統計機能や、非特許文献3に記載されたパケットを複製して解析するためのポートミラーリング機能が備わっている。   To realize these, packet relay devices such as routers and switches used in carriers and ISPs include statistical functions such as sFlow described in Non-Patent Document 1, NetFlow described in Non-Patent Document 2, and the like. A port mirroring function for copying and analyzing the packet described in Document 3 is provided.

いずれのトラフィックモニタ機能を用いる場合でも、パケット中継装置の回線の一つには通信状態を解析するためのアナライザが接続される。パケット中継装置では、パケットヘッダから収集した統計情報をデータとして含む統計パケットまたはパケットから複製したミラーパケットを、トラフィック解析用のアナライザに送信して、トラフィックの解析や監視を行う。   Regardless of which traffic monitoring function is used, an analyzer for analyzing the communication state is connected to one of the lines of the packet relay apparatus. In the packet relay apparatus, a statistical packet including statistical information collected from the packet header as data or a mirror packet copied from the packet is transmitted to an analyzer for traffic analysis to analyze and monitor traffic.

sFlowの場合には、パケット中継装置において、入力パケットの一部をパケット中継装置の運用管理者が設定したサンプリングレートでサンプリングし、サンプリング対象とされたパケットのヘッダ情報とインタフェース毎の統計情報を収集し、このヘッダ情報と統計情報とをデータとして備えるsFlow統計パケットを生成し、生成されたsFlow統計パケットをアナライザへ送信する。   In the case of sFlow, the packet relay device samples a part of the input packet at a sampling rate set by the operation manager of the packet relay device, and collects header information of the packet to be sampled and statistical information for each interface. Then, an sFlow statistical packet including the header information and the statistical information as data is generated, and the generated sFlow statistical packet is transmitted to the analyzer.

NetFlowの場合には、パケット中継装置において、入力パケットの送信元端末や宛先端末、アプリケーション、品質レベルなどにより分類されるフロー毎のパケットのヘッダ情報とフロー毎の統計情報を収集し、このヘッダ情報と統計情報とをデータとして備えるNetFlow統計パケットを生成し、生成されたNetFlow統計パケットをアナライザへ送信する。   In the case of NetFlow, the packet relay apparatus collects packet header information for each flow and statistical information for each flow classified according to the source terminal, destination terminal, application, quality level, etc. of the input packet. And a NetFlow statistical packet including data and statistical information as data, and the generated NetFlow statistical packet is transmitted to the analyzer.

以下、ミラーパケットの複製元パケットまたはsFlow、NetFlowの統計収集対象パケットが流れる監視対象となる回線または論理的なインタフェースをモニタポートと呼ぶ。sFlow統計パケットまたはNetFlow統計パケットを送信する出力回線をアナライザポートと呼ぶ。また、ミラーパケットを送信する出力回線をミラーポートと呼ぶ。   Hereinafter, the monitoring target line or logical interface through which the mirror packet replication source packet or sFlow and NetFlow statistics collection target packets flow is referred to as a monitor port. An output line that transmits an sFlow statistical packet or a NetFlow statistical packet is called an analyzer port. An output line that transmits a mirror packet is called a mirror port.

非特許文献4は、日本のインターネットトラフィックが指数関数的に延びていることを示している。非特許文献5のアブストラクトには、DoS攻撃には、大きく分けてlogic攻撃とflooding攻撃があることが、解説されている。非特許文献6には、負荷分散技術であるマルチパスによるロードバランスを記載している。非特許文献7は、帯域監視アルゴリズムとしてのリーキーバケット(漏れのあるバケツ)アルゴリズムが記載されている。   Non-Patent Document 4 shows that Japanese Internet traffic is growing exponentially. The abstract of Non-Patent Document 5 explains that DoS attacks can be broadly classified into logic attacks and flooding attacks. Non-Patent Document 6 describes load balancing by multipath, which is a load balancing technique. Non-Patent Document 7 describes a leaky bucket (leak bucket) algorithm as a bandwidth monitoring algorithm.

特許文献1は、サンプルパケットをコレクタ装置(本明細書におけるアナライザ)に転送する通信統計処理装置が記載されている。特許文献2も、サンプルしたパケットを分析装置(本明細書におけるアナライザ)に転送するパケット通信装置を開示している。特許文献3には、CAM(Content Addressable Memory)と呼ばれる、データを入力すると入力データに一致するエントリの含まれるアドレスを出力する高速な検索専用のデバイスを用いたフロー検出装置の開示がある。   Patent Document 1 describes a communication statistical processing device that transfers a sample packet to a collector device (analyzer in the present specification). Patent Document 2 also discloses a packet communication device that transfers a sampled packet to an analyzer (analyzer in the present specification). Patent Document 3 discloses a flow detection apparatus called a CAM (Content Addressable Memory) that uses a high-speed search-only device that outputs an address including an entry that matches input data when data is input.

まず、従来のパケット中継装置でミラーリングする場合のシステム構成を図1および図2を参照して説明する。ここで、図1および図2はミラーリングシステムのハードウェアブロック図である。図1において、パケット中継装置(S0)101は、入力回線102からパケットP0、P1、P2、P3を受信し、出力回線103からこのパケットP0、P1、P2、P3を送信する。   First, a system configuration in the case of mirroring by a conventional packet relay device will be described with reference to FIG. 1 and FIG. Here, FIG. 1 and FIG. 2 are hardware block diagrams of the mirroring system. In FIG. 1, a packet relay device (S0) 101 receives packets P0, P1, P2, and P3 from an input line 102, and transmits these packets P0, P1, P2, and P3 from an output line 103.

入力回線102から受信したパケットをミラーリングする場合、ミラーリングシステムは、入力回線102をモニタポートとして設定し、ミラーポート110を接続する。ミラーリングシステムは、ミラーポート110にはミラーパケットを解析するためのアナライザ(A0)120を接続する。パケット中継装置(S0)101は、モニタポート102から受信したパケットP0、P1、P2、P3をコピーしたミラーパケットC0、C1、C2、C3を生成し、このミラーパケットC0、C1、C2、C3をミラーポート110から送信する。ミラーポート110から送信されたミラーパケットC0、C1、C2、C3は、ミラーポート110に接続されたアナライザ120に入力される。アナライザ120は、パケットのヘッダ情報や帯域情報が解析される。   When mirroring a packet received from the input line 102, the mirroring system sets the input line 102 as a monitor port and connects the mirror port 110. In the mirroring system, an analyzer (A0) 120 for analyzing mirror packets is connected to the mirror port 110. The packet relay device (S0) 101 generates mirror packets C0, C1, C2, and C3 obtained by copying the packets P0, P1, P2, and P3 received from the monitor port 102. The mirror packets C0, C1, C2, and C3 are generated. Transmit from the mirror port 110. The mirror packets C0, C1, C2, and C3 transmitted from the mirror port 110 are input to the analyzer 120 connected to the mirror port 110. The analyzer 120 analyzes packet header information and bandwidth information.

図2を参照して、従来のパケット中継装置で、ミラーポートを複数に拡張する場合のシステム構成を説明する。図2において、パケット中継装置(S0)101は、図1のミラーポート110に加え、ミラーポート111、ミラーポート112、ミラーポート113を接続する。ミラーリングシステムは、ミラーポート110にはミラーパケットを解析するためのアナライザ(A0)120を接続し、ミラーポート111にはアナライザ(A1)121を接続し、ミラーポート112にはアナライザ(A2)122を接続し、ミラーポート113にはアナライザ(A3)123を接続する。   With reference to FIG. 2, a system configuration in a case where the conventional packet relay apparatus expands the mirror port to a plurality will be described. In FIG. 2, a packet relay device (S0) 101 connects a mirror port 111, a mirror port 112, and a mirror port 113 in addition to the mirror port 110 of FIG. In the mirroring system, an analyzer (A0) 120 for analyzing mirror packets is connected to the mirror port 110, an analyzer (A1) 121 is connected to the mirror port 111, and an analyzer (A2) 122 is connected to the mirror port 112. The analyzer (A3) 123 is connected to the mirror port 113.

パケット中継装置(S0)101は、ミラーポートのポート数分のミラーパケットを生成し、ミラーポート110からミラーパケットC0、C1、C2、C3を送信し、ミラーポート111からもミラーパケットC0、C1、C2、C3を送信し、ミラーポート112からもミラーパケットC0、C1、C2、C3を送信し、ミラーポート113からもミラーパケットC0、C1、C2、C3を送信する。   The packet relay device (S0) 101 generates mirror packets for the number of mirror ports, transmits mirror packets C0, C1, C2, and C3 from the mirror port 110, and also receives mirror packets C0, C1, and C3 from the mirror port 111. C2 and C3 are transmitted, mirror packets C0, C1, C2, and C3 are transmitted from the mirror port 112, and mirror packets C0, C1, C2, and C3 are also transmitted from the mirror port 113.

ミラーポート110から送信されたミラーパケットC0、C1、C2、C3は、ミラーポート110に接続されたアナライザ120に入力され、アナライザ120でパケットのヘッダ情報や帯域情報が解析される。同様に、ミラーポート111から送信されたミラーパケットC0、C1、C2、C3は、ミラーポート111に接続されたアナライザ121に入力される。ミラーポート112から送信されたミラーパケットC0、C1、C2、C3は、ミラーポート112に接続されたアナライザ122に入力される。ミラーポート113から送信されたミラーパケットC0、C1、C2、C3は、ミラーポート113に接続されたアナライザ123に入力される。アナライザ121〜123は、パケットのヘッダ情報や帯域情報が解析される。   The mirror packets C0, C1, C2, and C3 transmitted from the mirror port 110 are input to the analyzer 120 connected to the mirror port 110, and the analyzer 120 analyzes packet header information and band information. Similarly, the mirror packets C0, C1, C2, and C3 transmitted from the mirror port 111 are input to the analyzer 121 connected to the mirror port 111. The mirror packets C0, C1, C2, and C3 transmitted from the mirror port 112 are input to the analyzer 122 connected to the mirror port 112. The mirror packets C0, C1, C2, and C3 transmitted from the mirror port 113 are input to the analyzer 123 connected to the mirror port 113. The analyzers 121 to 123 analyze packet header information and bandwidth information.

次に、従来のパケット中継装置で統計情報を収集する場合のシステム構成を図3を参照して説明する。ここで、図3は統計情報収集システムのハードウェアブロック図である。図3において、従来のパケット中継装置(S0)1701は、入力回線1702からパケットP0、P1、P2、P3を受信し、出力回線1703からこのパケットP0、P1、P2、P3を送信する。入力回線1702から受信したパケットの統計情報を解析するため、統計情報収集システムは、アナライザポート1710に統計情報の集計・編集・表示をするためのアナライザ(A0)120が接続されている。パケット中継装置(S0)101では、モニタポート1702から受信したパケットP0、P1、P2、P3のヘッダ情報と統計情報を含む統計パケットS0、S1、S2、S3を生成し、この統計パケットS0、S1、S2、S3をアナライザポート1710から送信する。アナライザポート1710から送信された統計パケットS0、S1、S2、S3は、アナライザポート1710に接続されたアナライザ1720に入力し、アナライザ1720でパケットのヘッダ情報と統計情報が解析される。   Next, a system configuration in the case where statistical information is collected by a conventional packet relay device will be described with reference to FIG. FIG. 3 is a hardware block diagram of the statistical information collection system. In FIG. 3, a conventional packet relay apparatus (S0) 1701 receives packets P0, P1, P2, and P3 from an input line 1702, and transmits these packets P0, P1, P2, and P3 from an output line 1703. In order to analyze the statistical information of the packet received from the input line 1702, the statistical information collection system is connected to the analyzer port 1710 with an analyzer (A0) 120 for totaling, editing, and displaying statistical information. The packet relay apparatus (S0) 101 generates statistical packets S0, S1, S2, and S3 including header information and statistical information of the packets P0, P1, P2, and P3 received from the monitor port 1702, and the statistical packets S0, S1 , S2 and S3 are transmitted from the analyzer port 1710. The statistical packets S0, S1, S2, and S3 transmitted from the analyzer port 1710 are input to the analyzer 1720 connected to the analyzer port 1710, and the header information and statistical information of the packet are analyzed by the analyzer 1720.

ただし、アナライザの解析性能には限界があり、図3ではS0のみが解析可能で、後続のS1、S2、S3は解析対象から採りこぼされてしまう(×印)。この場合、パケット中継装置(S0)1701が備えるサンプリング機能を用いることで、入力回線1702から受信した全パケットP0、P1、P2、P3のうち一部のパケットをサンプルとした統計パケットのみをアナライザポート1710から送信することができる。図3の場合であれば、P0をサンプルとする統計パケットS0のみをアナライザポート1710から送信することにより、アナライザ1720に対する統計パケットの負荷をアナライザ1720の性能限界以内に抑え、統計パケットの採りこぼしを防ぐことができる。しかし、入力回線1702から受信した全パケットP0、P1、P2、P3のうち一部のパケットの統計情報しか収集できないので、統計の精度は低下してしまう。   However, there is a limit to the analysis performance of the analyzer. In FIG. 3, only S0 can be analyzed, and subsequent S1, S2, and S3 are missed from the analysis target (x mark). In this case, by using the sampling function provided in the packet relay device (S0) 1701, only the statistical packet using a part of all the packets P0, P1, P2, and P3 received from the input line 1702 as a sample is analyzed port. 1710 can be transmitted. In the case of FIG. 3, by transmitting only the statistical packet S0 using P0 as a sample from the analyzer port 1710, the statistical packet load on the analyzer 1720 is suppressed within the performance limit of the analyzer 1720, and the statistical packet is dropped. Can be prevented. However, since only the statistical information of some of the packets P0, P1, P2, and P3 received from the input line 1702 can be collected, the accuracy of statistics decreases.

また、特定の送信元IPアドレス、宛先IPアドレス、L4プロトコル、送信元ポート、宛先ポートをもつパケットから構成されるフローのみを統計情報の収集対象とすることで、アナライザに対する統計パケットの負荷を抑えることもできる。図3の場合、P0、P1、P2、P3が互いに異なるフローに属するパケットであるものとしよう。ここで、統計情報収集システムは、P0が属するフローのみを統計情報の採集対象としても、アナライザ1720に対する統計パケットの負荷をアナライザ1720の性能限界以内に抑え、統計パケットの採りこぼしを防ぐことができる。しかし、入力回線1702から受信した全フローに属するパケットP0、P1、P2、P3のうち一部のフローに属するパケットの統計情報しか収集できないので、フロー全体の統計情報を得ることはできず、統計情報の採集対象外のフローが異常な挙動を示しても、これを検出して解析することはできない。   In addition, the statistical packet load on the analyzer is suppressed by collecting only the flow composed of packets having a specific source IP address, destination IP address, L4 protocol, source port, and destination port. You can also. In the case of FIG. 3, let P0, P1, P2, and P3 be packets belonging to different flows. Here, even if only the flow to which P0 belongs is selected as a statistical information collection target, the statistical information collection system can suppress the statistical packet load on the analyzer 1720 within the performance limit of the analyzer 1720 and prevent the statistical packet from being dropped. . However, since only the statistical information of packets belonging to some of the packets P0, P1, P2, and P3 belonging to all flows received from the input line 1702 can be collected, the statistical information of the entire flow cannot be obtained. Even if the flow outside the information collection target shows an abnormal behavior, it cannot be detected and analyzed.

ビットレートの帯域監視アルゴリズムを図4を参照して説明する。ここで、図4はビットレートの帯域監視アルゴリズムを説明するフローチャートである。また、帯域監視アルゴリズムとして、リーキーバケットアルゴリズムを説明する。   The bit rate bandwidth monitoring algorithm will be described with reference to FIG. FIG. 4 is a flowchart for explaining a bit rate band monitoring algorithm. A leaky bucket algorithm will be described as a bandwidth monitoring algorithm.

リーキーバケットアルゴリズムは、ある深さを持った孔の空いた漏れバケツのモデルで、バケツに水が入っている間は監視帯域(孔の大きさ)で水は漏れ続け、パケット入力時にはこのパケットのバイト長分の水が注ぎ込まれる。パケットの到着揺らぎを許容するためにバケツに深さを持ち、バケツが溢れないうちは入力パケットは順守、溢れると違反と判定される。詳細には、図4のフローチャートに従う。   The leaky bucket algorithm is a model of a leaky bucket with a hole with a certain depth. While the bucket is filled with water, water continues to leak in the monitoring band (hole size). The length of water is poured. The bucket has a depth to allow the arrival fluctuation of the packet, and the input packet is observed as long as the bucket does not overflow. In detail, the flowchart of FIG. 4 is followed.

図4において、フローは、パケット中継装置にパケットが入力されることにより、開始される。ここで、TNOW:現時刻、TLST:前回のパケット入力時刻、R:監視帯域(ビットレート/パケットレート)、CNT:バケツ水量、THR:バケツ閾値、LEN:パケットのフレーム長である。パケット中継装置は、前回パケット入力時刻からの経過時間ΔTを計算する(S1401)。パケット中継装置は、ΔTの間にバケツからもれた水量(ΔDEC=ΔT×R)を計算する(S1402)。パケット中継装置は、現在バケツに水が残っているか判定する(S1403)。YESのとき、パケット中継装置は、現在のバケツ水量(NOWCNT)を計算し(S1404)、NOWCNTが、バケツ閾値を超過しているか判定する(S1406)。   In FIG. 4, the flow starts when a packet is input to the packet relay apparatus. Here, TNOW: current time, TLST: previous packet input time, R: monitoring bandwidth (bit rate / packet rate), CNT: bucket water amount, THR: bucket threshold, LEN: frame length of packet. The packet relay apparatus calculates an elapsed time ΔT from the previous packet input time (S1401). The packet relay apparatus calculates the amount of water (ΔDEC = ΔT × R) leaked from the bucket during ΔT (S1402). The packet relay apparatus determines whether water remains in the bucket at present (S1403). If YES, the packet relay apparatus calculates the current bucket water amount (NOWCNT) (S1404), and determines whether NOWCNT exceeds the bucket threshold (S1406).

ステップ1403でNOのとき、パケット中継装置は、NOWCNT=0として(S1405)、ステップ1406に遷移する。ステップ1406でYESのとき、帯域順守なので、パケット中継装置は、入力パケットのフレーム長相当の水をバケツに追加して(S1408)、バケツ内水量を更新する(S1411)。ステップ1406でNOのとき、帯域違反なので、パケット中継装置は、入力パケットを廃棄して、追加後を意味するCNT2にNOWCNTをセットして(S1410)、ステップ1411に遷移する。ステップ1411でバケツ内水量を更新したあと、パケット中継装置は、TLSTを更新して(S1412)、終了する。   If NO in step 1403, the packet relay apparatus sets NOWCNT = 0 (S1405), and proceeds to step 1406. If YES in step 1406, the packet relay device is in compliance with the bandwidth, so the packet relay device adds water corresponding to the frame length of the input packet to the bucket (S1408), and updates the amount of water in the bucket (S1411). If NO in step 1406, the packet relay device discards the input packet, sets NOWCNT in CNT2 meaning after addition (S1410), and transitions to step 1411. After updating the amount of water in the bucket in step 1411, the packet relay device updates TLST (S1412) and ends.

特開2006−005402号公報JP 2006-005402 A 特開2007−184799号公報JP 2007-184799 A 特開2003−304278号公報JP 2003-304278 A RFC3176 “InMon Corporation's sFlow: A Method for Monitoring Traffic in Switched and Routed Networks"RFC3176 “InMon Corporation's sFlow: A Method for Monitoring Traffic in Switched and Routed Networks” RFC3954 “Cisco Systems NetFlow Services Export Version 9"RFC3954 “Cisco Systems NetFlow Services Export Version 9” AX7800S、AX5400Sソフトウェアマニュアル解説書Vol.2 12.ポートミラーリング、[online]、アラクサラネットワークス、[平成20年3月4日検索]、インターネット<URL:http://www.alaxala.com/jp/support/manual/AX7800S/HTML/10_6/APGUIDE2/0179.HTM>AX7800S, AX5400S Software Manual Description Vol. 2 12. Port mirroring, [online], ALAXALA Networks, [March 4, 2008 search], Internet <URL: http://www.alaxala.com/jp/support/manual/AX7800S/HTML/10_6/APGUIDE2/ 0179.HTM> 総務省、”我が国のインターネットにおけるトラヒック総量の把握”、[online]、平成19年8月22日、総務省総合通信基盤局電子通信事業部データ通信課、[平成20年3月4日検索]、インターネット<URL:http://www.soumu.go.jp/s-news/2007/pdf/070822_2_bt1.pdf>Ministry of Internal Affairs and Communications, "Understanding the total amount of traffic on the Internet in Japan", [online], August 22, 2007, Data Communication Section, Electronic Communication Division, Communications Bureau, Ministry of Internal Affairs and Communications, [March 4, 2008 search] , Internet <URL: http://www.soumu.go.jp/s-news/2007/pdf/070822_2_bt1.pdf> Ryo Kaizaki, et al. "Detection of Denial of Service attacks using AGURI", ICT2002, June 2002.Ryo Kaizaki, et al. "Detection of Denial of Service attacks using AGURI", ICT2002, June 2002. AX7800Rソフトウェアマニュアル解説書Vol.1 7.7ロードバランス、[online]、アラクサラネットワークス、[平成20年3月4日検索]、インターネット<URL:http://www.alaxala.com/jp/support/manual/AX7800R/HTML/10_6/APGUIDE/0093.HTM>AX7800R Software Manual Manual Vol. 1 7.7 Load balance, [online], ALAXALA Networks, [March 4, 2008 search], Internet <URL: http://www.alaxala.com/jp/support/manual/AX7800R/HTML/ 10_6 / APGUIDE / 0093.HTM> The ATM Forum Technical Committee Traffic Management Specification Version 4.1 Normative Annex B: Traffic Contract Related Algorithms and ProceduresThe ATM Forum Technical Committee Traffic Management Specification Version 4.1 Normative Annex B: Traffic Contract Related Algorithms and Procedures

インターネットトラフィックの関数的な増加により、パケット中継装置が収容しなければならないトラフィック量は増大しつつあり、パケット中継装置の収容回線は今後とも高速化すると見込まれる。このトラフィック量の増加率に関しては、半年〜1年で2倍程度というギルダーの法則が経験則として知られているのに対し、アナライザの性能はトラフィック量の増加はCPU性能の向上に依存するため、ムーアの法則という経験則に従うとすれば1年半程度で倍という程度である。実際、ネットワークのバックボーンでは10Gbps、40Gbpsの高速回線が用いられ、さらに100Gbpsの高速回線も実用化の検討が進められているのに対し、アナライザの性能は1Gbps程度に留まっている。このように、アナライザの性能向上は回線の高速化に追いつかないと見込まれ、この性能差は今後ますます拡大すると考えられる。すると、従来のトラフィックモニタ機能では、以下のような課題が生じることとなる。   Due to a functional increase in Internet traffic, the amount of traffic that must be accommodated by the packet relay apparatus is increasing, and the accommodated lines of the packet relay apparatus are expected to increase in the future. With regard to the rate of increase in traffic volume, Gilder's law is known as an empirical rule, which is about twice in a half year to a year, whereas the increase in traffic volume depends on the improvement in CPU performance. According to Moore's Law, the rule of thumb is about a year and a half. Actually, high-speed lines of 10 Gbps and 40 Gbps are used in the backbone of the network, and practical use of a high-speed line of 100 Gbps is being studied. On the other hand, the performance of the analyzer is limited to about 1 Gbps. Thus, the improvement in analyzer performance is not expected to catch up with the increase in line speed, and this difference in performance is expected to increase further in the future. Then, the following problems arise in the conventional traffic monitoring function.

sFlowの場合には、サンプリングレートをアナライザの性能に合わせて設定することで、解析対象となるトラフィック量がアナライザの解析能力を超えてしまうことを回避している。しかし、ネットワークのトラフィック量の増加に対しアナライザの性能向上が追いつかない場合、解析対象となるトラフィック量がアナライザの解析能力を超えてしまうことを回避するにはサンプリングレートを低く変更せざるを得ない。従って、ネットワークのトラフィック量に対して解析対象とできるトラフィック量の比率が低下するので、解析の統計精度が低下してしまう課題がある。   In the case of sFlow, by setting the sampling rate in accordance with the performance of the analyzer, it is avoided that the traffic volume to be analyzed exceeds the analysis capability of the analyzer. However, if the performance of the analyzer cannot keep up with the increase in the traffic volume of the network, the sampling rate must be reduced to avoid the traffic volume being analyzed exceeding the analysis capacity of the analyzer. . Therefore, since the ratio of the traffic volume that can be analyzed with respect to the traffic volume of the network decreases, there is a problem that the statistical accuracy of the analysis decreases.

NetFlowの場合には、フロー毎の統計情報を収集しアナライザへ送信するが、収集できるフロー数には装置毎に制限があるほか、アナライザの性能でフロー数が制限される場合もある。従って、ネットワークのトラフィック量が増大してフロー数が増加すると、ネットワークを流れるフロー数に対して解析対象とできるフロー数の比率が低下してしまう課題がある。例えば、フロー毎の通信品質を確認するには、フロー毎のパケットの全数調査が必要となるのでsFlowよりもNetFlowが適しているが、全フローのうちで通信品質を確認できるフロー数がアナライザの性能によって制限されてしまうという課題がある。   In the case of NetFlow, statistical information for each flow is collected and transmitted to the analyzer, but the number of flows that can be collected is limited for each apparatus, and the number of flows may be limited by the performance of the analyzer. Therefore, when the amount of traffic in the network increases and the number of flows increases, there is a problem that the ratio of the number of flows that can be analyzed to the number of flows that flow through the network decreases. For example, in order to check the communication quality for each flow, it is necessary to investigate the total number of packets for each flow, so NetFlow is more suitable than sFlow. There is a problem that it is limited by performance.

ポートミラーリングの場合には、モニタポートが高速回線である場合、アナライザの解析能力を超える分のミラーパケットは解析することができないという課題がある。   In the case of port mirroring, when the monitor port is a high-speed line, there is a problem that mirror packets exceeding the analysis capability of the analyzer cannot be analyzed.

例えば、ポートミラーリングでDoS攻撃の解析を行う場合で説明する。DoS攻撃には、大きく分けてlogic攻撃とflooding攻撃がある。logic攻撃とは、システムのセキュリティホールを利用してサーバが提供する通信サービスの品質低下、停止を引き起こす攻撃の総称であり、これまでに知られている例として、Land(送信元と宛先のIPアドレスが同一であるSYNパケットによる攻撃)、Tiny Fragment(TCPヘッダをフラグメントさせ、第一フラグメントパケットがTCPフラグを含まないようにすることでフィルタを通過させてしまう攻撃)などが知られている。flooding攻撃とは、攻撃者がサーバに大量のパケットを送付することによって正当なクライアントがサーバに接続しにくい状態としたり、サーバの計算資源を占有することによって通信サービスを提供不能としたりする攻撃の総称である。例としては、SYN flooding(SYNパケットを大量に送付することで、攻撃対象サーバのメモリ資源を枯渇させる攻撃)、Smurf(送信元IPアドレスを攻撃対象サーバに詐称し、宛先IPアドレスをブロードキャストとしたping(ICMP echo request)パケットを送信することで、攻撃対象サーバに大量のICMP echo replyが送りつけられる攻撃)などが知られている。   For example, a case where a DoS attack is analyzed by port mirroring will be described. The DoS attack is roughly classified into a logic attack and a flooding attack. A logic attack is a general term for attacks that cause degradation and stoppage of the quality of communication services provided by a server using system security holes. As an example known so far, Land (source and destination IP addresses) Attacks by SYN packets having the same address), Tiny Fragment (attack that causes a TCP header to be fragmented and the first fragment packet does not include a TCP flag, and passes through a filter) are known. A flooding attack is an attack in which an attacker sends a large number of packets to the server, making it difficult for a legitimate client to connect to the server, or occupying the server's computational resources to make it impossible to provide communication services. It is a generic name. Examples include SYN flooding (an attack that exhausts the memory resources of the attack target server by sending a large number of SYN packets), Smurf (the source IP address is spoofed to the attack target server, and the destination IP address is broadcast) An attack that sends a large amount of ICMP echo replies to an attack target server by sending a ping (ICMP echo request) packet is known.

flooding攻撃の場合、大量の攻撃パケットが流れるので、攻撃パケットからコピーされたミラーパケットの一部がアナライザの解析能力不足によって解析できなかったとしても、全体の傾向を把握して解析することは可能である。しかしlogic攻撃の場合、攻撃パケットは1個でも攻撃として成立するので、当該パケットのミラーパケットがアナライザの解析能力不足によって解析できなければ、logic攻撃の解析は困難となる。   In the case of a flooding attack, a large number of attack packets flow, so even if some of the mirror packets copied from the attack packet cannot be analyzed due to insufficient analysis capabilities of the analyzer, it is possible to understand and analyze the overall trend. It is. However, in the case of a logic attack, even one attack packet is established as an attack. Therefore, if a mirror packet of the packet cannot be analyzed due to insufficient analysis capability of the analyzer, it is difficult to analyze the logic attack.

同様に、P2Pによる流出ファイルやウイルスの拡散を調査する場合、流出ファイルやウイルスを含むパケットの一部がアナライザの解析能力不足によって解析できなかったとしても、流出ファイルやウイルスが拡散していく様子を統計的に把握することは可能である。しかし、最初にファイルを流出させたパケットやウイルスを仕掛けたパケットのような流出・拡散元パケットを特定して解析するには、パケットのミラーパケットが解析対象から漏れないことが必要である。アナライザの解析能力不足によって当該パケットのミラーパケットが解析対象から漏れてしまうと、流出・拡散元パケットを特定して解析することは困難となる。   Similarly, when investigating the spread of leaked files and viruses due to P2P, even if some of the packets containing the leaked files and viruses cannot be analyzed due to insufficient analysis capabilities of the analyzer, the leaked files and viruses will spread It is possible to grasp statistically. However, in order to identify and analyze an outflow / diffusion source packet such as a packet from which a file was initially leaked or a virus-triggered packet, it is necessary that the mirror packet of the packet does not leak from the analysis target. If the mirror packet of the packet leaks from the analysis target due to insufficient analysis capability of the analyzer, it is difficult to identify and analyze the outflow / diffusion source packet.

本発明は、上述の課題の少なくとも一部を解決するためになされたものであり、以下の形態または適用例として実現することができる。   SUMMARY An advantage of some aspects of the invention is to solve at least a part of the problems described above, and the invention can be implemented as the following forms or application examples.

[適用例1]
適用例1のパケット中継装置は、複数の入力回線と出力回線に接続され、各入力回線から受信したパケットをヘッダ情報によって特定されるいずれかの出力回線から送信するパケット中継装置において、入力回線、出力回線、または受信パケットのヘッダ情報によって識別される入力フローもしくは送信パケットのヘッダ情報によって識別される出力フロー毎に、受信パケットまたは送信パケットからコピーされたミラーパケットを送信する複数のミラーポートから構成されるミラーポートグループを指定するミラーポートグループ指定部と、ミラーパケット毎に前記ミラーポートグループ指定部で指定された複数のミラーポートのうちいずれか一つのミラーポートを選択するミラーポート選択部を備え、ミラーポート選択部で選択されたミラーポートからミラーパケットを送信する。
[Application Example 1]
The packet relay apparatus of Application Example 1 is connected to a plurality of input lines and output lines, and transmits a packet received from each input line from any output line specified by the header information. Consists of multiple mirror ports that transmit mirror packets copied from received packets or transmitted packets for each output line or output flow identified by header information of transmitted packets or output packets identified by header information of received packets A mirror port group designating unit for designating a mirror port group to be set, and a mirror port selecting unit for selecting one of the plurality of mirror ports designated by the mirror port group designating unit for each mirror packet Selected by the mirror port selector. To send a mirror packet from Poto.

適用例1のパケット中継装置を用いると、モニタポートが高速回線となった場合でも、複数のミラーポートにアナライザを接続してミラーパケットの負荷を分散することで、アナライザ単体の解析能力を超える分のミラーパケットは解析することができないというポートミラーの課題を解決できる。   When the packet relay device of Application Example 1 is used, even if the monitor port becomes a high-speed line, the analyzer can be connected to multiple mirror ports to distribute the load of mirror packets, thereby exceeding the analysis capability of the analyzer alone. It is possible to solve the problem of the port mirror that the mirror packet cannot be analyzed.

[適用例2]
適用例2のパケット中継装置は、複数の入力回線と出力回線に接続され、各入力回線から受信したパケットをヘッダ情報によって特定されるいずれかの出力回線から送信するパケット中継装置において、入力回線、出力回線、論理的な入力インタフェース、論理的な出力インタフェースまたは受信パケットのヘッダ情報の一部または全部の値によって識別される入力フローまたは送信パケットのヘッダ情報の一部または全部の値によって識別される出力フロー毎に、受信パケットまたは送信パケットのヘッダ情報および/または統計情報をデータとして備える統計パケットを生成して、統計パケットを送信する複数のアナライザポートから構成されるアナライザポートグループを指定するアナライザポートグループ指定部と、統計パケット毎に前記アナライザポートグループ指定部で指定された複数のアナライザポートのうちいずれか一つのアナライザポートを選択するアナライザポート選択部を備え、アナライザポート選択部で選択されたアナライザポートから統計パケットを送信する。
[Application Example 2]
The packet relay device of Application Example 2 is connected to a plurality of input lines and output lines, and transmits a packet received from each input line from any output line specified by the header information. Identified by some or all values of input flow or transmitted packet header information identified by some or all values of the output line, logical input interface, logical output interface or received packet header information For each output flow, an analyzer port that generates a statistical packet including header information and / or statistical information of a received packet or transmitted packet as data, and specifies an analyzer port group composed of a plurality of analyzer ports that transmit the statistical packet Group specification part and each statistical packet Wherein comprising an analyzer port selecting unit for selecting any one of the analyzer port of the analyzer port groups plurality of analyzers port specified by the specifying unit, for transmitting the statistical packet from the analyzer port selected in the analyzer port selection unit.

適用例2のパケット中継装置を用いると、モニタポートが高速回線となった場合でも、複数のアナライザポートにアナライザを接続して統計パケットの負荷を分散することで、アナライザ単体の解析能力を超える分の統計パケットは解析することができないというsFlowとNetFlowの課題を解決できる。   If the packet relay device of Application Example 2 is used, even if the monitor port becomes a high-speed line, connecting the analyzer to multiple analyzer ports and distributing the statistical packet load will exceed the analysis capability of the analyzer alone Can solve the problem of sFlow and NetFlow that cannot be analyzed.

sFlowの場合には、先述の通り、解析対象となるトラフィック量がアナライザの解析能力を超えてしまうことを回避するにはサンプリングレートを低く変更せざるを得ず、ネットワークのトラフィック量に対して解析対象とできるトラフィック量の比率が低下する。この結果、解析の統計精度が低下してしまう課題がある。ここで、適用例2のパケット中継装置を用いると、統計パケットの負荷が複数のアナライザに分散されるので、サンプリングレートを低く変更せずともアナライザポートとアナライザ台数を増やせば、アナライザ単体の解析能力を超過してしまうことを回避できる。従って、解析の統計精度が低下してしまう課題を解決できる。   In the case of sFlow, as described above, in order to avoid that the traffic volume to be analyzed exceeds the analysis capability of the analyzer, the sampling rate must be changed to a low level, and analysis is performed on the network traffic volume. The ratio of traffic volume that can be targeted decreases. As a result, there is a problem that the statistical accuracy of the analysis is lowered. Here, if the packet relay device of application example 2 is used, the statistical packet load is distributed to a plurality of analyzers. Therefore, if the number of analyzer ports and the number of analyzers are increased without changing the sampling rate, the analysis capability of the analyzer alone Can be avoided. Therefore, it is possible to solve the problem that the statistical accuracy of the analysis is lowered.

NetFlowの場合には、先述の通り、アナライザの性能でフロー数が制限される場合には、ネットワークのトラフィック量が増大してフロー数が増加すると、ネットワークを流れるフロー数に対して解析対象とできるフロー数の比率が低下してしまう課題がある。ここで、適用例2のパケット中継装置を用いると、フロー毎の統計パケットの負荷を複数のアナライザで分散して統計の収集・解析ができるので、アナライザポートとアナライザ台数を増やせば、解析対象とするフロー数の比率を低下させずに済む。   In the case of NetFlow, as described above, when the number of flows is limited by the performance of the analyzer, when the traffic amount of the network increases and the number of flows increases, the number of flows flowing through the network can be analyzed. There is a problem that the ratio of the number of flows decreases. Here, if the packet relay device of application example 2 is used, the statistics packet load for each flow can be distributed by a plurality of analyzers to collect and analyze statistics. Therefore, if the number of analyzer ports and analyzers is increased, It is not necessary to reduce the ratio of the number of flows to be performed.

特許文献1では、サンプルパケットを「コレクタ装置」(本実施例における「アナライザ」相当)に転送する点が本発明と同様であるが、本発明の適用例1の特徴である「ミラーパケット毎に前記ミラーポートグループ指定部で指定された複数のミラーポートのうちいずれか一つのミラーポートを選択するミラーポート選択部」に相当する処理部に関する記載は無く、特許文献1の対象外となっている点が本発明と相違している。同様に、本発明の適用例2の特徴である「統計パケット毎に前記アナライザポートグループ指定部で指定された複数のアナライザポートのうちいずれか一つのアナライザポートを選択するアナライザポート選択部」に相当する処理部に関する記載は無く、特許文献1の対象外となっている点が本発明と相違している。   Patent Document 1 is similar to the present invention in that the sample packet is transferred to a “collector device” (corresponding to “analyzer” in the present embodiment), but “for each mirror packet” which is a feature of Application Example 1 of the present invention. There is no description regarding a processing unit corresponding to a “mirror port selection unit that selects any one mirror port among a plurality of mirror ports specified by the mirror port group specification unit”, and is outside the scope of Patent Document 1. The point is different from the present invention. Similarly, it corresponds to “analyzer port selection unit for selecting one of a plurality of analyzer ports designated by the analyzer port group designation unit for each statistical packet”, which is a feature of Application Example 2 of the present invention. There is no description regarding the processing unit to be performed, and the point that is not covered by Patent Document 1 is different from the present invention.

次に、特許文献1の請求項1の条件「パケットフローを識別するためのフロー識別条件を定義した複数のフローエントリからなるフローテーブル」「フロー識別条件と対応して、統計対象とすべきパケットを限定するための統計制御情報を定義した少なくとも1つの統計制御エントリを含む統計制御テーブルを有し、」と本発明の請求項5の条件「受信パケットのヘッダ情報の一部または全部の値、または送信パケットのヘッダ情報の一部または全部の値を入力値、ミラーポートを識別する値を出力値とする関数に基づいた演算によりミラーポートを選択する」または請求項10の条件「受信パケットのヘッダ情報の一部または全部の値、または送信パケットのヘッダ情報の一部または全部の値を入力値、アナライザポートを識別する値を出力値とする関数に基づいた演算によりアナライザポートを選択する」との相違について説明する。なお、特許文献1のフロー識別条件とは、本発明の「受信パケットまたは送信パケットのヘッダ情報の一部または全部の値」として指定する条件と同様の概念と考えられる。   Next, the condition of claim 1 of Patent Document 1 “a flow table comprising a plurality of flow entries defining flow identification conditions for identifying packet flows” “packets to be statistically associated with the flow identification conditions” A statistical control table including at least one statistical control entry that defines statistical control information for limiting, ”the condition“ part or all of header information of a received packet ”according to claim 5 of the present invention, Alternatively, a mirror port is selected by an operation based on a function having a part or all of header information of a transmission packet as an input value and a value identifying a mirror port as an output value. Enter part or all of the header information or part or all of the header information of the transmitted packet. By calculation based on the function that the value describing the differences between selecting an analyzer port. " Note that the flow identification condition of Patent Document 1 is considered to be the same concept as the condition specified as “a part or all of the header information of a received packet or a transmitted packet” of the present invention.

特許文献1と本発明の構成上の相違として、特許文献1では、「フロー識別条件」から「統計対象とすべきパケットを限定」するのに対し、本発明の請求項5または請求項10の条件では「フロー識別条件」から「ミラーポート」または「アナライザポート」を選択する点が異なっている。また効果の相違としては、特許文献1では統計対象とすべきパケットを限定するが、本発明ではモニタポートの負荷が高くなった場合でもモニタポートから受信または送信した全てのパケットのミラーリングが可能である、またはモニタポートから受信または送信した全てのパケットの統計を収集できる点が異なっている。本発明において「フロー識別条件」から「ミラーポート」または「アナライザポート」を選択する際の具体的な構成例は、実施例4と実施例8で説明する。   As a difference in configuration between Patent Document 1 and the present invention, Patent Document 1 restricts the packets to be statistically defined from “flow identification conditions”, while in claim 5 or claim 10 of the present invention. The condition is that “mirror port” or “analyzer port” is selected from “flow identification condition”. In addition, as a difference in effect, in Patent Document 1, the packets to be statistically limited are limited. However, in the present invention, even when the load on the monitor port increases, all packets received or transmitted from the monitor port can be mirrored. The difference is that statistics of all packets received or transmitted from a monitor port can be collected. A specific configuration example when selecting “mirror port” or “analyzer port” from “flow identification conditions” in the present invention will be described in the fourth and eighth embodiments.

また、特許文献1の第10図のように、フロー識別条件を定義した複数のフローエントリからなるフローテーブルによってフローを設定する方式では、フロー数が増加するとフローテーブルの容量がネックとなって収集できるフロー数に制限が生じてしまう。これに対し、本発明の請求項5または請求項10のようにフロー識別条件となるヘッダ情報の値を関数に入力してミラーポートまたはアナライザポートを演算する方式の場合、関数を表現する一つの組み合わせ論理を所持すればよい。従って、追加のフローテーブルを必要としないので、収集できるフロー数が追加されたフローテーブルによって制限されないという効果をもつ点が異なる。   In addition, as shown in FIG. 10 of Patent Document 1, in the method of setting a flow by a flow table including a plurality of flow entries in which flow identification conditions are defined, the flow table capacity becomes a bottleneck when the number of flows increases. Limits on the number of flows that can be made. On the other hand, in the case of the method of calculating the mirror port or the analyzer port by inputting the value of the header information as the flow identification condition into the function as in claim 5 or claim 10 of the present invention, You only need to have combinatorial logic. Therefore, since an additional flow table is not required, there is an effect that the number of flows that can be collected is not limited by the added flow table.

次に、特許文献2との相違について、説明する。特許文献2でも、サンプルしたパケットを分析装置(アナライザ相当)に転送する点は本発明と同様であるが、本発明の適用例1の特徴である「ミラーパケット毎に前記ミラーポートグループ指定部で指定された複数のミラーポートのうちいずれか一つのミラーポートを選択するミラーポート選択部」に相当する処理部に関する記載は無く、特許文献2の対象外となっている点が本発明と相違している。同様に、適用例2の特徴である「統計パケット毎に前記アナライザポートグループ指定部で指定された複数のアナライザポートのうちいずれか一つのアナライザポートを選択するアナライザポート選択部」に相当する処理部に関する記載は無く、特許文献2の対象外となっている点が本発明と相違している。   Next, differences from Patent Document 2 will be described. Also in Patent Document 2, the point that the sampled packet is transferred to the analyzer (equivalent to the analyzer) is the same as that of the present invention. However, the feature of the application example 1 of the present invention is “the mirror port group designating unit for each mirror packet. There is no description regarding the processing unit corresponding to the “mirror port selection unit that selects any one mirror port among a plurality of designated mirror ports”, and it is different from the present invention in that it is outside the scope of Patent Document 2. ing. Similarly, a processing unit corresponding to “analyzer port selection unit that selects any one analyzer port among a plurality of analyzer ports designated by the analyzer port group designation unit for each statistical packet”, which is a feature of application example 2. There is no description about this, and it is different from the present invention in that it is outside the scope of Patent Document 2.

次に、特許文献2の請求項1の条件「ストリーム開始パケット内の情報に従ってパケットコピーを行う条件を生成する手段と、前記サンプリング対象ストリームの条件に適合するパケットをコピーして前記複数のネットワークインタフェースのいずれかから出力する」と本発明の請求項5の条件「受信パケットまたは送信パケットのヘッダ情報の一部または全部の値を入力値、ミラーポートを識別する値を出力値とする関数に基づいた演算によりミラーポートを選択する」または請求項10の条件「受信パケットまたは送信パケットのヘッダ情報の一部または全部の値を入力値、アナライザポートを識別する値を出力値とする関数に基づいた演算によりアナライザポートを選択する」との相違について説明する。特許文献2では、「パケット内の情報」が「フロー識別条件」に相当すると考えられる。   Next, the condition of claim 1 of Patent Document 2 “a means for generating a condition for performing packet copy according to information in the stream start packet, and a plurality of network interfaces by copying packets that match the conditions of the sampling target stream” Output from any one of the above "and the condition" a part or all of the header information of the received packet or the transmitted packet is an input value, and a value that identifies a mirror port is an output value. The mirror port is selected by the above-mentioned calculation "or the condition of claim 10" based on a function having a part or all of the header information of the received packet or the transmitted packet as an input value and a value identifying an analyzer port as an output value The difference from “select analyzer port by calculation” will be described. In Patent Document 2, it is considered that “information in a packet” corresponds to “flow identification condition”.

特許文献2と本発明の構成上の相違として、特許文献2では、「フロー識別条件」をサンプリング対象ストリームの条件とサンプリング確率を指定するための手段とするのに対し、本発明の請求項5または請求項10の条件では「ミラーポート」または「アナライザポート」を選択する手段とする点が異なっている。また効果の相違として、特許文献2では統計収集のためにサンプリングを実施することが前提となっており、モニタポートの負荷が高くなった場合には統計パケットの負荷がアナライザの性能を超過しないように、サンプリング対象ストリームの条件をさらに厳しく制限するか、またはサンプリング確率を低くする必要がある。そのため、モニタポートの負荷が高くなると、統計を収集できるパケットの割合は減少してしまう。これに対し、本発明ではサンプリングを前提としておらず、モニタポートの負荷が高くなった場合には複数のアナライザを複数のアナライザポートに接続して分散的に統計収集することにより、モニタポートから受信または送信した全てのパケットの統計を収集できる点が異なっている。   As a structural difference between Patent Document 2 and the present invention, Patent Document 2 uses “flow identification condition” as a means for designating a sampling target stream condition and a sampling probability, while claim 5 of the present invention. Alternatively, the condition of claim 10 is different in that “mirror port” or “analyzer port” is selected. Further, as a difference in effect, in Patent Document 2, it is assumed that sampling is performed for collecting statistics. When the load on the monitor port increases, the load on the statistical packet does not exceed the performance of the analyzer. In addition, it is necessary to more strictly limit the conditions of the sampling target stream or lower the sampling probability. Therefore, when the load on the monitor port increases, the ratio of packets that can collect statistics decreases. On the other hand, in the present invention, sampling is not premised, and when the load on the monitor port increases, a plurality of analyzers are connected to a plurality of analyzer ports to collect statistics in a distributed manner, thereby receiving from the monitor port. Another difference is that statistics of all transmitted packets can be collected.

本発明によれば、ネットワーク上での通信状態を確実に把握するパケット中継装置およびトラフィックモニタシステムを提供できる。   According to the present invention, it is possible to provide a packet relay device and a traffic monitoring system that can reliably grasp a communication state on a network.

以下、本発明の実施の形態について、実施例を用い図面を参照しながら説明する。なお、実質同一部位には同じ参照番号を振り、説明は繰り返さない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings using examples. The same reference numerals are assigned to substantially the same parts, and the description will not be repeated.

実施例1について、図5ないし図12を参照して、説明する。ここで、図5はミラーリングシステム(トラフィックモニタシステム)のハードウェアブロック図である。図6はパケット中継装置のブロック図である。図7はパケット受信回路から送信されるヘッダ情報を説明する図である。図8はミラー判定部の機能ブロック図である。図9はミラーポートテーブルの構成を説明する図である。図10はミラーリング判定結果の構成を説明する図である。図11はミラーポート選択部の機能ブロック図である。図12はカウンタテーブルの構成を説明する図である。 図5において、パケット中継装置(S1)301は、図2のようにミラーポートのポート数分のミラーパケットを生成するのではなく、ミラーパケットは1パケットずつ生成する。また、パケット中継装置(S1)301は、図2のように全てのミラーパケットC0、C1、C2、C3を全てのミラーポート110〜113から送信するのではなく、ミラーパケット毎に送信するミラーポートを一つ選択する。パケット中継装置(S1)301は、ミラーパケットC0をミラーポート110から送信し、ミラーポート110に接続されたアナライザ120に入力し、アナライザ120でパケットのヘッダ情報や帯域情報が解析される。同様に、ミラーパケットC1は、ミラーポート111から送信され、ミラーポート111に接続されたアナライザ121に入力し、アナライザ121でパケットのヘッダ情報や帯域情報が解析される。ミラーパケットC2は、ミラーポート112から送信され、ミラーポート112に接続されたアナライザ122に入力し、アナライザ122でパケットのヘッダ情報や帯域情報が解析される。ミラーパケットC3は、ミラーポート113から送信され、ミラーポート113に接続されたアナライザ123に入力し、アナライザ123でパケットのヘッダ情報や帯域情報が解析される。   Example 1 will be described with reference to FIGS. Here, FIG. 5 is a hardware block diagram of the mirroring system (traffic monitor system). FIG. 6 is a block diagram of the packet relay apparatus. FIG. 7 is a diagram for explaining header information transmitted from the packet receiving circuit. FIG. 8 is a functional block diagram of the mirror determination unit. FIG. 9 is a diagram illustrating the configuration of the mirror port table. FIG. 10 is a diagram illustrating the configuration of the mirroring determination result. FIG. 11 is a functional block diagram of the mirror port selection unit. FIG. 12 is a diagram for explaining the configuration of the counter table. In FIG. 5, the packet relay apparatus (S1) 301 does not generate mirror packets for the number of mirror ports as shown in FIG. 2, but generates mirror packets one by one. Further, the packet relay apparatus (S1) 301 does not transmit all the mirror packets C0, C1, C2, and C3 from all the mirror ports 110 to 113 as shown in FIG. Select one. The packet relay device (S1) 301 transmits the mirror packet C0 from the mirror port 110 and inputs it to the analyzer 120 connected to the mirror port 110, and the analyzer 120 analyzes the header information and bandwidth information of the packet. Similarly, the mirror packet C1 is transmitted from the mirror port 111 and input to the analyzer 121 connected to the mirror port 111, and the header information and bandwidth information of the packet are analyzed by the analyzer 121. The mirror packet C2 is transmitted from the mirror port 112 and input to the analyzer 122 connected to the mirror port 112, and the analyzer 122 analyzes packet header information and band information. The mirror packet C3 is transmitted from the mirror port 113 and input to the analyzer 123 connected to the mirror port 113, and the analyzer 123 analyzes packet header information and band information.

このようにミラーパケットを複数のアナライザに分散するように送信することで、全てのミラーパケットをミラーリング対象としたまま、アナライザへの負荷を下げることができる。   By transmitting the mirror packets so as to be distributed to a plurality of analyzers in this way, it is possible to reduce the load on the analyzer while keeping all the mirror packets as mirroring targets.

なお、負荷分散の従来技術としてマルチパスによるロードバランス(非特許文献6)が知られている。マルチパスと本実施例は、以下の相違点がある。まず、マルチパスは通常の通信パケットの負荷分散を対象とするのに対し、本実施例は、ミラーパケットの負荷分散を対象とする点が異なる。次に、マルチパスでは通信パケットを負荷分散するので、同一フロー、即ち同一のIPアドレス、ポート番号をもつパケットの間で順序逆転が生じないようにする必要がある。従って、同一フローは同一の出力回線から送信しなければならないという制限が生じる。これに対し本実施例では、ミラーパケットの負荷分散を対象とするのでこの順序逆転を防止するための制限は不要となり、同一フローであっても異なるミラーポートから送信することも可能である点が異なる。ただしこの場合、フロー毎にミラーパケットを解析するには、複数のアナライザに分散的に蓄積された同一フローのミラーパケットの情報を、後で集約してから解析する必要がある。   Note that multi-path load balancing (Non-Patent Document 6) is known as a prior art of load distribution. Multipath and this embodiment have the following differences. First, the multipath is intended for load distribution of normal communication packets, but this embodiment is different in that load distribution of mirror packets is targeted. Next, in multipath, since communication packets are load-balanced, it is necessary to prevent sequence reversal between packets having the same flow, that is, the same IP address and port number. Accordingly, there is a restriction that the same flow must be transmitted from the same output line. On the other hand, in this embodiment, since the load distribution of mirror packets is targeted, there is no need to restrict this order reversal, and even the same flow can be transmitted from different mirror ports. Different. However, in this case, in order to analyze the mirror packet for each flow, it is necessary to analyze the mirror packet information of the same flow accumulated in a plurality of analyzers after being aggregated later.

次に、パケット中継装置301の構成を図6を参照して、説明する。なお、パケット中継装置301の構成は、パケットをルーティング転送するルータまたはパケットをスイッチング転送するスイッチに適用できる。   Next, the configuration of the packet relay apparatus 301 will be described with reference to FIG. The configuration of the packet relay device 301 can be applied to a router that routes and forwards packets or a switch that forwards and forwards packets.

図6において、パケット中継装置301は、パケットが入力する入力回線102と、パケットの受信処理を行うパケット受信回路410と、パケットに関する受信側での判定処理を行うパケット検索部420と、パケットを出力回線番号に基づきスイッチングするパケット中継処理手段430と、パケットに関する送信側での判定処理を行うパケット検索部440と、スイッチングされたパケットが蓄積される送信バッファ450からパケットを読み出してパケットの送信処理を行うパケット送信回路460と、パケットを出力する出力回線103と、ミラーパケットを出力するミラーポート110とを備える。パケット受信回路410では、入力回線番号601とパケットのフレーム長LEN602を判定し、パケット受信回路410から送信されるヘッダ情報600(図7を参照して後述する)に付加する。   In FIG. 6, a packet relay apparatus 301 outputs an input line 102 into which a packet is input, a packet receiving circuit 410 that performs packet reception processing, a packet search unit 420 that performs determination processing on the reception side regarding the packet, and a packet. Packet relay processing means 430 that performs switching based on the line number, packet search unit 440 that performs determination processing on the transmission side regarding the packet, and packet transmission processing by reading the packet from the transmission buffer 450 in which the switched packet is accumulated A packet transmission circuit 460 for performing the processing, an output line 103 for outputting a packet, and a mirror port 110 for outputting a mirror packet are provided. The packet receiving circuit 410 determines the input line number 601 and the frame length LEN 602 of the packet, and adds them to the header information 600 (described later with reference to FIG. 7) transmitted from the packet receiving circuit 410.

パケット検索部420は、出力回線番号を判定するための経路検索部422と、ミラーリングに関わる判定を行うミラー判定部421とを備える。パケット検索部420で経路検索とミラー判定を行うため、パケット検索部420には、パケット受信回路410からヘッダ情報と入力回線情報が送信される。なお、出力回線毎にミラーリングを行う際は、送信側のパケット検索部440に備わるミラー判定部(図示の簡便のため省略)にてミラーリングに関わる判定を行うこともできる。   The packet search unit 420 includes a route search unit 422 for determining an output line number and a mirror determination unit 421 that performs determination related to mirroring. In order for the packet search unit 420 to perform route search and mirror determination, header information and input line information are transmitted from the packet receiving circuit 410 to the packet search unit 420. When mirroring is performed for each output line, the mirror determination unit (not shown for simplicity in the figure) included in the packet search unit 440 on the transmission side can also perform determination related to mirroring.

経路検索部422で得られた出力回線番号と、ミラー判定部421で得られたミラーリング指示、ミラーポート番号のミラーリング判定結果は、パケット検索部420における検索結果情報としてパケット受信回路410に送信される。パケット受信回路410に送信された検索結果情報は、パケット本体の情報と合わせてパケット中継処理手段430を経由してパケット送信回路460に送信される。パケット送信回路460において、コピー元のパケット本体は出力回線103に接続された送信バッファ450−1に蓄積され、出力回線103から送信される。   The output line number obtained by the route search unit 422, the mirroring instruction obtained by the mirror determination unit 421, and the mirroring determination result of the mirror port number are transmitted to the packet receiving circuit 410 as search result information in the packet search unit 420. . The search result information transmitted to the packet reception circuit 410 is transmitted to the packet transmission circuit 460 via the packet relay processing unit 430 together with the information of the packet body. In the packet transmission circuit 460, the copy source packet body is stored in the transmission buffer 450-1 connected to the output line 103 and transmitted from the output line 103.

ミラーリング判定結果としてミラーリング指示がされたパケットに対しては、パケット送信回路460においてパケットのコピーが生成される。生成されたパケットのコピーは、ミラーパケットとしてミラーポート110に接続された送信バッファ450−2に蓄積され、ミラーポート110から送信される。   For a packet for which a mirroring instruction is given as a result of the mirroring determination, a packet copy is generated in the packet transmission circuit 460. A copy of the generated packet is accumulated as a mirror packet in the transmission buffer 450-2 connected to the mirror port 110 and transmitted from the mirror port 110.

パケット検索部420に対するユーザ設定を可能とするため、パケット中継装置301には管理端末480が接続されており、管理端末480からの設定情報は一時的にレジスタ470に蓄積される。レジスタ470から読み出された情報に従って、後で示される各種のテーブル制御部がテーブル設定を行う。   A management terminal 480 is connected to the packet relay apparatus 301 in order to enable user settings for the packet search unit 420, and setting information from the management terminal 480 is temporarily stored in the register 470. In accordance with the information read from the register 470, various table control units shown later perform table setting.

図7を参照して、パケット受信回路から送信されるヘッダ情報を説明する。図7において、ヘッダ情報600は、入力回線番号601と、LEN602と、L2(layer 2)ヘッダ610と、L3(layer 3)ヘッダ620と、L4(layer 4)ヘッダ630とから構成される。さらに、L2ヘッダ610は、宛先MACアドレス611と、送信元MACアドレス612と、イーサタイプ613と、VLANタグ614とから構成される。L3ヘッダ620は、ここではIPv4について説明し、IPバァージョン621と、TOS(Type of Service)622と、L4プロトコル623と、送信元IPアドレス624と、宛先IPアドレス625とから構成される。L4ヘッダ630は、送信元ポート631と、宛先ポート632とから構成される。   With reference to FIG. 7, the header information transmitted from the packet receiving circuit will be described. In FIG. 7, the header information 600 includes an input line number 601, an LEN 602, an L2 (layer 2) header 610, an L3 (layer 3) header 620, and an L4 (layer 4) header 630. Further, the L2 header 610 includes a destination MAC address 611, a transmission source MAC address 612, an ether type 613, and a VLAN tag 614. The L3 header 620 is described here for IPv4, and includes an IP version 621, a TOS (Type of Service) 622, an L4 protocol 623, a source IP address 624, and a destination IP address 625. The L4 header 630 includes a transmission source port 631 and a destination port 632.

ヘッダ情報600は、パケット中継装置301が受信したパケットヘッダ情報と、パケットヘッダには含まれない情報とから構成される。前者は、L2ヘッダ部610と、L3ヘッダ部(IPv4時)620と、L4ヘッダ部630である。後者は、パケット受信回路410で判定された入力回線番号601と、パケットのフレーム長LEN602である。   The header information 600 includes packet header information received by the packet relay apparatus 301 and information not included in the packet header. The former is an L2 header part 610, an L3 header part (when IPv4) 620, and an L4 header part 630. The latter is the input line number 601 determined by the packet receiving circuit 410 and the packet frame length LEN 602.

次に、パケット中継装置が備えるミラー判定部の構成について、図8を参照して、説明する。図8において、ミラー判定部421は、ヘッダ情報抽出部504と、モニタポート番号抽出部500と、ミラーポートテーブル制御部501と、ミラーポートテーブル502と、ミラーポート選択部503とから構成される。ヘッダ情報抽出部504は、パケット受信回路410から送信されたヘッダ情報のうち、ミラーリングの判定に必要となるヘッダ情報を抽出する。ヘッダ情報抽出部504は、抽出したヘッダ情報をモニタポート抽出部500とミラーポート選択部503に送信する。   Next, the configuration of the mirror determination unit provided in the packet relay device will be described with reference to FIG. In FIG. 8, the mirror determination unit 421 includes a header information extraction unit 504, a monitor port number extraction unit 500, a mirror port table control unit 501, a mirror port table 502, and a mirror port selection unit 503. The header information extraction unit 504 extracts header information necessary for mirroring determination from the header information transmitted from the packet reception circuit 410. The header information extraction unit 504 transmits the extracted header information to the monitor port extraction unit 500 and the mirror port selection unit 503.

さらにモニタポート番号抽出部500は、ヘッダ情報から、入力回線番号601を抽出し、ミラーポートテーブル制御部501に送信する。ミラーポートテーブル制御部501は、レジスタ470から読み出された情報に従ってミラーポートテーブル502への設定を行う。ミラーポートテーブル制御部501は、入力回線番号601に基づいてミラーポートテーブル502を読み出すリードアドレスを生成し、ミラーポートテーブル502を読み出す。   Further, the monitor port number extraction unit 500 extracts the input line number 601 from the header information and transmits it to the mirror port table control unit 501. The mirror port table control unit 501 sets the mirror port table 502 according to the information read from the register 470. The mirror port table control unit 501 generates a read address for reading the mirror port table 502 based on the input line number 601 and reads the mirror port table 502.

ここで、図8の説明を中断して、ミラーポートテーブルを説明する。図9において、ミラーポート502は、モニタポート毎に定義された複数のミラーポートエントリ502−i(i=0、1…n)によって構成される。ミラーポートエントリ502−iには、モニタポート毎のミラーリングの要否を示すミラーリングEN(enable)と、モニタポート毎のミラーポートグループに属する複数のミラーポート番号が設定されている。例えば、モニタポート0に対し定義されたミラーポートエントリ502−0では、モニタポート0でのミラーリングの要否を示すミラーリングEN0と、ミラーポート0−0、ミラーポート0−1、ミラーポート0−2、ミラーポート0−3という4つのミラーポートが定義されている。   Here, the description of FIG. 8 is interrupted and the mirror port table will be described. In FIG. 9, the mirror port 502 is composed of a plurality of mirror port entries 502-i (i = 0, 1,... N) defined for each monitor port. In the mirror port entry 502-i, a mirroring EN (enable) indicating necessity of mirroring for each monitor port and a plurality of mirror port numbers belonging to the mirror port group for each monitor port are set. For example, in the mirror port entry 502-0 defined for the monitor port 0, the mirroring EN0 indicating the necessity of mirroring at the monitor port 0, the mirror port 0-0, the mirror port 0-1, and the mirror port 0-2. , Four mirror ports are defined as mirror ports 0-3.

図8に戻って、ミラーポートテーブル制御部501は、ミラーポートテーブル502から読み出したミラーポートエントリ502−iの情報をミラーポート選択部503へ送信する。ミラーポート選択部503は、テーブル制御部501から送信されたミラーポートエントリ502−iに設定されているミラーリングENがミラーリングを指示している場合には、複数のミラーポートから、ミラーパケットを送信する一つのミラーポートを動的に選択する。ミラーポートの選択方法については、追って説明する。ミラーポート選択部503は、ミラーポートを選択すると、ミラーリングENによるミラーリング指示をミラーリング判定結果に反映する。   Returning to FIG. 8, the mirror port table control unit 501 transmits the information of the mirror port entry 502-i read from the mirror port table 502 to the mirror port selection unit 503. When the mirroring EN set in the mirror port entry 502-i transmitted from the table control unit 501 indicates mirroring, the mirror port selection unit 503 transmits mirror packets from a plurality of mirror ports. Select one mirror port dynamically. A method for selecting a mirror port will be described later. When the mirror port selection unit 503 selects a mirror port, the mirroring instruction by the mirroring EN is reflected in the mirroring determination result.

再び、図8の説明を中断して、ミラーリング判定結果を説明する。図10において、ミラーリング判定結果700は、ミラーリング指示フラグ701と、ミラーポート番号702とから構成される。ミラーリング指示フラグ701は、’1’のときにミラーリングを指示、’0’のときにミラーリングを指示しない。ミラーポート番号702は、ミラーリング指示フラグ701が、’1’のとき、ミラーポート番号を記載し、ミラーリング指示フラグ701が’0’のとき、無効である。   Again, the description of FIG. 8 is interrupted, and the mirroring determination result will be described. In FIG. 10, the mirroring determination result 700 includes a mirroring instruction flag 701 and a mirror port number 702. The mirroring instruction flag 701 indicates mirroring when “1”, and does not indicate mirroring when “0”. The mirror port number 702 describes the mirror port number when the mirroring instruction flag 701 is “1”, and is invalid when the mirroring instruction flag 701 is “0”.

図8に戻って、ミラーポート選択部503は、選択された一つのミラーポート番号をミラーリング判定結果700のミラーポート番号702としてパケット受信回路410に送信する。テーブル制御部501から送信されたミラーポートエントリ502−iに設定されているミラーリングENがミラーリングを指示していない場合には、ミラーリング判定結果700のミラーリング指示フラグを’0’としてパケット受信回路410に送信する。   Returning to FIG. 8, the mirror port selection unit 503 transmits the selected mirror port number to the packet reception circuit 410 as the mirror port number 702 of the mirroring determination result 700. When the mirroring EN set in the mirror port entry 502-i transmitted from the table control unit 501 does not instruct mirroring, the mirroring instruction flag of the mirroring determination result 700 is set to “0” to the packet receiving circuit 410. Send.

ミラーポート選択部の構成を、図11を参照して説明する。図11において、実施例1では、ミラーポートの選択をパケットの到着順序に基づいたラウンドロビンのアルゴリズムに基づいて判定する。ミラーポート選択部503は、ミラーポート選択回路901と、カウンタテーブル制御部902と、カンタテーブル903で構成される。ミラー判定部421に、パケットが到着すると、まずモニタポート番号抽出部500で抽出された入力回線番号601と、ミラーポートテーブル制御501で得られたミラーポートエントリ502−iの情報がミラーポート選択回路901に送信される。ミラーポート選択回路901は、このうち入力回線番号601をカウンタテーブル制御部902に送信する。カウンタテーブル制御部902は、レジスタ470から読み出された情報に従ってカウンタテーブル903への設定を行う。   The configuration of the mirror port selection unit will be described with reference to FIG. In FIG. 11, in the first embodiment, mirror port selection is determined based on a round robin algorithm based on the arrival order of packets. The mirror port selection unit 503 includes a mirror port selection circuit 901, a counter table control unit 902, and a counter table 903. When a packet arrives at the mirror determination unit 421, first, the input port number 601 extracted by the monitor port number extraction unit 500 and the information of the mirror port entry 502-i obtained by the mirror port table control 501 are the mirror port selection circuit. 901 is transmitted. Of these, the mirror port selection circuit 901 transmits the input line number 601 to the counter table control unit 902. The counter table control unit 902 sets the counter table 903 according to the information read from the register 470.

ミラーポートエントリ502−iのミラーリングENがミラーリングを指示していない場合には、ミラーリング判定結果700のミラーリング指示フラグ701を’0’としてパケット受信回路410に送信する。このとき、ミラーポート番号702は無効となる。ミラーポートエントリ502−iのミラーリングENがミラーリングを指示している場合には、カウンタテーブル制御部902では、入力回線番号601に基づいてカウンタテーブル903を読み出すリードアドレスを生成し、カウンタテーブル903を読み出す。   When the mirroring EN of the mirror port entry 502-i does not instruct mirroring, the mirroring instruction flag 701 of the mirroring determination result 700 is transmitted to the packet receiving circuit 410 as “0”. At this time, the mirror port number 702 becomes invalid. When the mirroring EN of the mirror port entry 502-i indicates mirroring, the counter table control unit 902 generates a read address for reading the counter table 903 based on the input line number 601 and reads the counter table 903. .

ここで、カウンタテーブルを図12を参照して、説明する。図12において、カンタテーブル903は、モニタポート毎のカウンタ903−i(i=0〜n)によって構成されている。カウンタの値は、ミラーポートエントリ502−iに定義された同一ミラーポートグループに属する複数のミラーポートの各々を一意に表現できる情報量をもつ必要がある。具体的には、ミラーポートエントリ502−iではミラーポートi−0、ミラーポートi−1、ミラーポートi−2、ミラーポートi−3という4つのミラーポートが定義されているので、カウンタはミラーポートi−0に対応する’0’、ミラーポートi−1に対応する’1’、ミラーポートi−2に対応する’2’、ミラーポートi−3に対応する’3’をとる必要がある。そのため、カウンタは最低でも2ビットの情報量をもつ必要がある。   Here, the counter table will be described with reference to FIG. In FIG. 12, the counter table 903 includes counters 903-i (i = 0 to n) for each monitor port. The counter value needs to have an information amount that can uniquely represent each of a plurality of mirror ports belonging to the same mirror port group defined in the mirror port entry 502-i. Specifically, since the mirror port entry 502-i defines four mirror ports, mirror port i-0, mirror port i-1, mirror port i-2, and mirror port i-3, the counter is mirrored. It is necessary to take "0" corresponding to port i-0, "1" corresponding to mirror port i-1, "2" corresponding to mirror port i-2, and "3" corresponding to mirror port i-3. is there. Therefore, the counter needs to have an information amount of at least 2 bits.

図11に戻って、カウンタテーブル制御部902は、読み出されたカウンタ903−iをミラーポート選択回路901へ送信すると共に、読み出されたカウンタ903−iの値に1加算して、加算後のカウンタ903−iの値をカウンタテーブル903に書き込む。なお、読み出されたカウンタ903−iの値が最大値の’3’である場合には、’0’をカウンタ903−iの値としてカウンタテーブル903に書き込む。ミラーポート選択回路901は、カウンタテーブル制御部902から送信されたカウンタ903−iの値に応じたミラーポートを選択して、選択されたミラーポート番号をミラーリング判定結果700のミラーポート番号702とし、ミラーリング指示フラグを’1’としてパケット受信回路410に送信する。   Returning to FIG. 11, the counter table control unit 902 transmits the read counter 903-i to the mirror port selection circuit 901, and adds 1 to the value of the read counter 903-i, and after the addition The value of the counter 903-i is written into the counter table 903. When the read value of the counter 903-i is “3” which is the maximum value, “0” is written in the counter table 903 as the value of the counter 903-i. The mirror port selection circuit 901 selects a mirror port corresponding to the value of the counter 903-i transmitted from the counter table control unit 902, and sets the selected mirror port number as the mirror port number 702 of the mirroring determination result 700. The mirroring instruction flag is set to “1” and transmitted to the packet receiving circuit 410.

本実施例に拠れば、ミラーパケットを複数のアナライザに分散するように送信することで、全てのミラーパケットをミラーリング対象としたまま、アナライザへの負荷を下げることができる。   According to this embodiment, by transmitting the mirror packet so as to be distributed to a plurality of analyzers, it is possible to reduce the load on the analyzer while keeping all the mirror packets as mirroring targets.

実施例2を図13ないし図15を参照して説明する。ここで、図13はミラーポート選択部の機能ブロック図である。図14は帯域監視部の機能ブロック図である。図15は帯域監視テーブルを説明する図である。   A second embodiment will be described with reference to FIGS. FIG. 13 is a functional block diagram of the mirror port selection unit. FIG. 14 is a functional block diagram of the bandwidth monitoring unit. FIG. 15 is a diagram for explaining a bandwidth monitoring table.

実施例2のパケット中継装置のブロック図は図6に示す通りであり、実施例1と同様である。図13を参照して、実施例2でミラーポート選択部の構成を説明する。図13において、実施例2では、同一ミラーポートグループに属する複数のミラーポート毎に送信されたミラ−パケットのビットレートを監視して、ミラーポート毎に送信されたミラ−パケットのビットレートがミラーポート毎に予め定められた最大ビットレートに達しないミラーポートを選択する。ここで、最大ビットレートは、アナライザの最大性能以下とする。   The block diagram of the packet relay apparatus of the second embodiment is as shown in FIG. 6 and is the same as that of the first embodiment. With reference to FIG. 13, the configuration of the mirror port selection unit in the second embodiment will be described. In FIG. 13, in the second embodiment, the bit rate of the mirror packet transmitted for each of the plurality of mirror ports belonging to the same mirror port group is monitored, and the bit rate of the mirror packet transmitted for each mirror port is mirrored. A mirror port that does not reach the predetermined maximum bit rate for each port is selected. Here, the maximum bit rate is less than the maximum performance of the analyzer.

図13において、ミラーポート選択部503Aは、ミラーポート選択回路901と、帯域監視部1101とから、構成される。図8のミラー判定部421に、パケットが到着すると、まずモニタポート番号抽出部500で抽出された入力回線番号601と、ミラーポートテーブル制御501で得られたミラーポートエントリ502−iの情報がミラーポート選択回路901に送信される。   In FIG. 13, the mirror port selection unit 503A includes a mirror port selection circuit 901 and a bandwidth monitoring unit 1101. When a packet arrives at the mirror judgment unit 421 in FIG. 8, first, the input line number 601 extracted by the monitor port number extraction unit 500 and the information of the mirror port entry 502-i obtained by the mirror port table control 501 are mirrored. It is transmitted to the port selection circuit 901.

ミラーポート選択回路901は、ミラーポートエントリ502−iのミラーリングENがミラーリングを指示していないとき、ミラーリング判定結果700のミラーリング指示フラグを’0’としてパケット受信回路410に送信する。このとき、ミラーポート番号702は無効となる。   When the mirroring EN of the mirror port entry 502-i does not instruct mirroring, the mirror port selection circuit 901 transmits the mirroring instruction flag of the mirroring determination result 700 as “0” to the packet reception circuit 410. At this time, the mirror port number 702 becomes invalid.

ミラーポート選択回路901は、ミラーポートエントリ502−iのミラーリングENがミラーリングを指示しているとき、ミラーポートエントリ502−iに定義された同一ミラーポートグループに属する複数のミラーポートを構成するミラーポートi−0、ミラーポートi−1、ミラーポートi−2、ミラーポートi−3という4つのミラーポート番号を帯域監視部1101に送信する。帯域監視部1101は、ミラーポートi−0、ミラーポートi−1、ミラーポートi−2、ミラーポートi−3各々において送信されたミラ−パケットのビットレートを監視して、ミラーポート毎に送信されたミラ−パケットのビットレートがミラーポート毎に予め定められた最大ビットレートに達しないミラーポートを選択する。   When the mirroring EN of the mirror port entry 502-i indicates mirroring, the mirror port selection circuit 901 is a mirror port configuring a plurality of mirror ports belonging to the same mirror port group defined in the mirror port entry 502-i. Four mirror port numbers i-0, mirror port i-1, mirror port i-2, and mirror port i-3 are transmitted to the bandwidth monitoring unit 1101. The bandwidth monitoring unit 1101 monitors the bit rate of the mirror packet transmitted in each of the mirror port i-0, the mirror port i-1, the mirror port i-2, and the mirror port i-3, and transmits it for each mirror port. A mirror port is selected in which the bit rate of the mirror packet thus set does not reach a predetermined maximum bit rate for each mirror port.

ミラーポート毎に送信されたミラ−パケットのビットレートがミラーポート毎に予め定められた最大ビットレートに達しないミラーポートが複数ある場合には、そのうち最も小さなミラーポート番号をもつミラーポートを選択するものとする。他にも、ミラーポート毎に送信されたミラ−パケットのビットレートが最も小さいミラーポートを選択することもできる。   When there are a plurality of mirror ports in which the bit rate of the mirror packet transmitted for each mirror port does not reach the predetermined maximum bit rate for each mirror port, the mirror port having the smallest mirror port number is selected. Shall. In addition, a mirror port with the smallest bit rate of the mirror packet transmitted for each mirror port can be selected.

図4の帯域監視アルゴリズムを実装した帯域監視部の構成について、図14を参照して説明する。図14において、帯域監視部1101は、現在水量判定部1210と、監視結果判定部1220と、帯域監視テーブル1202と、帯域監視テーブル制御部1201とから構成される。現在水量判定部1210は、さらにCNT保持部1211と、TLST保持部1212と、R保持部1213と、タイマー1214と、現在水量演算回路1215とから構成される。また、監視結果判定部1220は、THR保持部1221と、LEN保持部1222と、NOWCNT保持部1223と、監視結果判定回路1224と、CNT2保持部1225と、TLST保持部1226とから構成される。   The configuration of the bandwidth monitoring unit that implements the bandwidth monitoring algorithm of FIG. 4 will be described with reference to FIG. In FIG. 14, the bandwidth monitoring unit 1101 includes a current water amount determination unit 1210, a monitoring result determination unit 1220, a bandwidth monitoring table 1202, and a bandwidth monitoring table control unit 1201. The current water amount determination unit 1210 further includes a CNT holding unit 1211, a TLST holding unit 1212, an R holding unit 1213, a timer 1214, and a current water amount calculation circuit 1215. The monitoring result determination unit 1220 includes a THR holding unit 1221, an LEN holding unit 1222, a NOWCNT holding unit 1223, a monitoring result determination circuit 1224, a CNT2 holding unit 1225, and a TLST holding unit 1226.

帯域監視テーブル制御部1201は、帯域監視テーブル1202を制御する。ここで、図15を参照して、帯域監視テーブルを説明する。図15において、帯域監視テーブル1202は、ミラーポート毎の最大ビットレートRj(j=0〜m)と、バケツ閾値THRjと、バケツ水量CNTjと、前回のパケット入力時刻TLSTjとが設定された複数の帯域監視エントリ1202−j(j=0〜m)から構成される。   The bandwidth monitoring table control unit 1201 controls the bandwidth monitoring table 1202. Here, the bandwidth monitoring table will be described with reference to FIG. In FIG. 15, the bandwidth monitoring table 1202 includes a plurality of maximum bit rates Rj (j = 0 to m), bucket threshold values THRj, bucket water amount CNTj, and previous packet input time TLSTj set for each mirror port. The bandwidth monitoring entry 1202-j (j = 0 to m) is configured.

なお、モニタポートから受信する全てのパケットをミラーリング対象とする場合には、ミラーポート毎の最大ビットレートR0〜Rmの和はモニタポートの回線帯域以上とする。   When all packets received from the monitor port are to be mirrored, the sum of the maximum bit rates R0 to Rm for each mirror port is equal to or greater than the line bandwidth of the monitor port.

図14に戻って、パケットが到着すると、帯域監視テーブル制御部1201では、ミラーポート選択回路901から送信されたミラーポートi−0に基づいて帯域監視テーブル1202を読み出すリードアドレスを生成し、帯域監視テーブル1202を読み出す。同様に、ミラーポートi−1、ミラーポートi−2、ミラーポートi−3に対しても、これらのポート番号に基づいて帯域監視テーブル1202を読み出すリードアドレスを生成し、帯域監視テーブル1202を読み出す。以下、ミラーポートi−0に対する帯域監視の処理を例に説明するが、ミラーポートi−1、ミラーポートi−2、ミラーポートi−3に対しても同様の処理を実施する。4つのミラーポートに対する監視帯域結果に基づいてミラーポートを選択する処理は、4つのポートに対する帯域監視がなされた後にミラーポート選択回路901において実施される。帯域監視テーブル制御部1201では、レジスタ470から読み出された情報に従って帯域監視テーブル1202への設定を行うことができる。   Returning to FIG. 14, when a packet arrives, the bandwidth monitoring table control unit 1201 generates a read address for reading the bandwidth monitoring table 1202 based on the mirror port i-0 transmitted from the mirror port selection circuit 901, and performs bandwidth monitoring. Read table 1202. Similarly, for mirror port i-1, mirror port i-2, and mirror port i-3, a read address for reading the bandwidth monitoring table 1202 is generated based on these port numbers, and the bandwidth monitoring table 1202 is read. . Hereinafter, the bandwidth monitoring process for the mirror port i-0 will be described as an example, but the same process is performed for the mirror port i-1, the mirror port i-2, and the mirror port i-3. The process of selecting the mirror port based on the monitoring band result for the four mirror ports is performed in the mirror port selection circuit 901 after the band monitoring for the four ports is performed. The bandwidth monitoring table control unit 1201 can set the bandwidth monitoring table 1202 according to the information read from the register 470.

帯域監視テーブル1202から読み出された帯域監視エントリ1202−jのRjは現在水量判定部1210のR保持部1213に、TLSTjはTLST保持部1212に、CNTjはCNT保持部1211に蓄積される。これらの値と、現在時刻を示すタイマー1214の値に基づいて、図4のフローチャートにおける1401〜1405の演算、判定がなされ、その結果得られたNOWCNTが監視結果判定部1220のNOWCNT保持部1223に蓄積される。次に、ミラー判定部421のヘッダ情報抽出部504から送信されるLEN602をLEN保持部1222に蓄積し、帯域監視テーブル1202から読み出された帯域監視エントリ1202−jのTHRjをTHR保持部1221に蓄積し、これらの値から図4のフローチャートにおける1406の帯域監視結果の判定が、監視結果判定回路1224においてなされる。帯域監視結果が帯域順守であったミラーポート番号はミラーポート選択回路901に送信される。   Rj of the bandwidth monitoring entry 1202-j read from the bandwidth monitoring table 1202 is accumulated in the R holding unit 1213 of the current water amount determination unit 1210, TLSTj is accumulated in the TLST holding unit 1212, and CNTj is accumulated in the CNT holding unit 1211. Based on these values and the value of the timer 1214 indicating the current time, calculations and determinations 1401 to 1405 in the flowchart of FIG. 4 are performed, and the obtained NOWCNT is stored in the NOWCNT holding unit 1223 of the monitoring result determination unit 1220. Accumulated. Next, the LEN 602 transmitted from the header information extraction unit 504 of the mirror determination unit 421 is accumulated in the LEN holding unit 1222, and the THRj of the bandwidth monitoring entry 1202-j read from the bandwidth monitoring table 1202 is stored in the THR holding unit 1221. Based on these values, the monitoring result determination circuit 1224 determines the bandwidth monitoring result 1406 in the flowchart of FIG. The mirror port number whose band monitoring result is band compliance is transmitted to the mirror port selection circuit 901.

帯域監視結果が帯域順守であったミラーポート番号が一つであった場合には、当該ミラーポート番号をミラーリング判定結果700のミラーポート番号702としてパケット受信回路410に送信する。帯域監視結果が帯域順守であったミラーポート番号が複数ある場合には、そのうち最小のミラーポート番号をミラーリング判定結果700のミラーポート番号702としてパケット受信回路410に送信する。ミラーリング判定結果700のミラーポート番号702に指定したミラーポート番号をミラーポート選択回路901から帯域監視部1101に送信し、当該ミラーポートの帯域監視エントリに対し図4のフローチャートにおける1408〜1412の演算を監視結果判定回路1224にて実施し、演算後のCNT2をCNT2保持部1225に、演算後のTLSTをTLST保持部1226に蓄積する。CNT2保持部1225に蓄積されたCNT2とTLST保持部1226に蓄積されたTLSTは、帯域監視テーブル制御部1201に送信され、各々帯域監視テーブル1202の帯域監視エントリ1202−jのCNT、TLSTのフィールド値として更新される。   If there is only one mirror port number whose band monitoring result is band compliance, the mirror port number is transmitted to the packet receiving circuit 410 as the mirror port number 702 of the mirroring determination result 700. If there are a plurality of mirror port numbers whose band monitoring results are band compliance, the smallest mirror port number is transmitted to the packet receiving circuit 410 as the mirror port number 702 of the mirroring determination result 700. The mirror port number specified in the mirror port number 702 of the mirroring determination result 700 is transmitted from the mirror port selection circuit 901 to the bandwidth monitoring unit 1101, and the operations 1408 to 1412 in the flowchart of FIG. The monitoring result determination circuit 1224 stores the calculated CNT2 in the CNT2 holding unit 1225 and the calculated TLST in the TLST holding unit 1226. The CNT2 stored in the CNT2 holding unit 1225 and the TLST stored in the TLST holding unit 1226 are transmitted to the bandwidth monitoring table control unit 1201, and the field values of the CNT and TLST in the bandwidth monitoring entry 1202-j of the bandwidth monitoring table 1202, respectively. As updated.

実施例3では、同一ミラーポートグループに属する複数のミラーポート毎に送信されたミラ−パケットのパケットレートを監視して、ミラーポート毎に送信されたミラ−パケットのパケットレートがミラーポート毎に予め定められた最大パケットレートに達しないミラーポートを選択する。   In the third embodiment, the packet rate of the mirror packet transmitted for each of the plurality of mirror ports belonging to the same mirror port group is monitored, and the packet rate of the mirror packet transmitted for each mirror port is previously determined for each mirror port. Select a mirror port that does not reach the defined maximum packet rate.

実施例3のパケット中継装置の構成は、図6に示す通りであり、実施例1と同様である。また、ミラーポート選択部の構成も、実施例2の図13と同様である。
実施例3において、実施例2と異なる点は、次の通りである。(1)最大パケットレートは、アナライザの最大性能以下とする。(2)帯域監視部1101は、ミラーポートi−0、ミラーポートi−1、ミラーポートi−2、ミラーポートi−3各々において送信されたミラ−パケットのパケットレートを監視して、ミラーポート毎に送信されたミラ−パケットのパケットレートがミラーポート毎に予め定められた最大パケットレートに達しないミラーポートを選択する。
The configuration of the packet relay apparatus of the third embodiment is as shown in FIG. 6 and is the same as that of the first embodiment. The configuration of the mirror port selection unit is the same as that of FIG. 13 of the second embodiment.
The third embodiment is different from the second embodiment as follows. (1) The maximum packet rate is less than the maximum performance of the analyzer. (2) The bandwidth monitoring unit 1101 monitors the packet rate of the mirror packet transmitted in each of the mirror port i-0, the mirror port i-1, the mirror port i-2, and the mirror port i-3, and the mirror port A mirror port in which the packet rate of the mirror packet transmitted every time does not reach the maximum packet rate predetermined for each mirror port is selected.

パケットレートの帯域監視アルゴリズムのフローチャートは、実施例2においてパケットのフレーム長によらず固定的にLEN=1とするケースに相当する。
図4の帯域監視アルゴリズムを実装した帯域監視部1101の構成も、実施例2の図14と同様である。但し、帯域監視部1101は、ミラーポート毎の最大パケットレートRj(j=0〜m)とバケツ閾値THRjが設定された図15に示す複数の帯域監視エントリ1202−j(j=0〜m)から構成される帯域監視テーブル1202を備える。なお、モニタポートから受信する全てのパケットをミラーリング対象とする場合には、ミラーポート毎の最大パケットレートR0〜Rmの和はモニタポートの回線帯域以上とする。また、図14において、ミラー判定部421のヘッダ情報抽出部504から送信されるLEN602は無視し、LEN=1という固定値をLEN保持部1222に蓄積する。
The flowchart of the packet rate bandwidth monitoring algorithm corresponds to a case where LEN = 1 is fixed regardless of the frame length of the packet in the second embodiment.
The configuration of the bandwidth monitoring unit 1101 that implements the bandwidth monitoring algorithm of FIG. 4 is the same as that of FIG. 14 of the second embodiment. However, the bandwidth monitoring unit 1101 has a plurality of bandwidth monitoring entries 1202-j (j = 0 to m) shown in FIG. 15 in which the maximum packet rate Rj (j = 0 to m) and the bucket threshold value THRj for each mirror port are set. Is provided with a bandwidth monitoring table 1202. When all packets received from the monitor port are to be mirrored, the sum of the maximum packet rates R0 to Rm for each mirror port is equal to or greater than the line bandwidth of the monitor port. In FIG. 14, the LEN 602 transmitted from the header information extraction unit 504 of the mirror determination unit 421 is ignored, and a fixed value of LEN = 1 is stored in the LEN holding unit 1222.

実施例4では、ミラーポート選択部において、受信パケットまたは送信パケットのヘッダ情報の一部または全部の値を入力値、ミラーポートを識別する値を出力値とするHASH関数に基づいた演算によりミラーポートを選択する。これにより、同一フローに属するミラーパケットが複数のミラーポートに分散することがなくなり、フロー毎に一意のミラーポートに送信することが可能となる。実施例4によれば、同一フローに属するミラーパケットが複数のミラーポートに分散することがなくなり、フロー毎に一意のミラーポートに送信することができる。   In the fourth embodiment, in the mirror port selection unit, the mirror port is calculated by a calculation based on the HASH function in which the value of part or all of the header information of the received packet or the transmitted packet is an input value and the value for identifying the mirror port is an output value Select. Thereby, mirror packets belonging to the same flow are not distributed to a plurality of mirror ports, and can be transmitted to a unique mirror port for each flow. According to the fourth embodiment, mirror packets belonging to the same flow are not distributed to a plurality of mirror ports, and can be transmitted to a unique mirror port for each flow.

実施例4のパケット中継装置の構成は、図6に示す通りであり、実施例1と同様である。また、ミラーポート選択部の構成を図16を参照して説明する。ここで、図16はミラーポート選択部の機能ブロック図である。図16において、ミラーポート選択部503Bのミラーポート選択回路901は、同一ミラーポートグループに属する複数のミラーポートを構成するミラーポートi−0、ミラーポートi−1、ミラーポートi−2、ミラーポートi−3の情報をミラーポートテーブル制御部501から受信する。また、ミラーポート選択回路901は、フローを識別するのに必要となるヘッダ情報を、ヘッダ情報抽出部504から受信する。ここでは、フローを識別する条件となるヘッダ情報は、宛先MACアドレス611、送信元MACアドレス612、送信元IPアドレス624、宛先IPアドレス625、送信元ポート631、宛先ポート632とする。これらのヘッダ情報について、ミラーポート選択回路901は、HASH関数演算部1501に送信する。   The configuration of the packet relay apparatus of the fourth embodiment is as shown in FIG. 6 and is the same as that of the first embodiment. The configuration of the mirror port selection unit will be described with reference to FIG. FIG. 16 is a functional block diagram of the mirror port selection unit. In FIG. 16, the mirror port selection circuit 901 of the mirror port selection unit 503B includes a mirror port i-0, a mirror port i-1, a mirror port i-2, and a mirror port that constitute a plurality of mirror ports belonging to the same mirror port group. The i-3 information is received from the mirror port table control unit 501. Further, the mirror port selection circuit 901 receives header information necessary for identifying a flow from the header information extraction unit 504. Here, the header information as a condition for identifying the flow is a destination MAC address 611, a source MAC address 612, a source IP address 624, a destination IP address 625, a source port 631, and a destination port 632. The mirror port selection circuit 901 transmits the header information to the HASH function calculation unit 1501.

HASH関数演算部の構成について図17を参照して説明する。ここで、図17はHASH関数演算部の機能ブロック図である。図17において、HASH関数演算部1501は、宛先MACアドレス保持部1602と、送信元MACアドレス保持部1603と、送信元IPアドレス保持部1604と、宛先IPアドレス保持部1605と、送信元ポート保持部1606と、宛先ポート保持部1607と、HASH関数演算部1601とから構成される。   The configuration of the HASH function calculation unit will be described with reference to FIG. Here, FIG. 17 is a functional block diagram of the HASH function calculation unit. In FIG. 17, the HASH function calculation unit 1501 includes a destination MAC address holding unit 1602, a source MAC address holding unit 1603, a source IP address holding unit 1604, a destination IP address holding unit 1605, and a source port holding unit. 1606, a destination port holding unit 1607, and a HASH function calculation unit 1601.

HASH関数演算部1501は、ミラーポート選択回路901からHASH関数演算部1501に送信されたヘッダ情報のうち、宛先MACアドレス611を宛先MACアドレス保持部1602に保持する。HASH関数演算部1501は、送信元MACアドレス612を送信元MACアドレス保持部1603に保持する。HASH関数演算部1501は、送信元IPアドレス624を送信元IPアドレス保持部1604に保持する。HASH関数演算部1501は、宛先IPアドレス625を宛先IPアドレス保持部1605に保持する。HASH関数演算部1501は、送信元ポート631を送信元ポート保持部1606に保持する。HASH関数演算部1501は、宛先ポート632を宛先ポート保持部1607に保持する。   The HASH function calculation unit 1501 holds the destination MAC address 611 in the destination MAC address holding unit 1602 among the header information transmitted from the mirror port selection circuit 901 to the HASH function calculation unit 1501. The HASH function calculation unit 1501 holds the source MAC address 612 in the source MAC address holding unit 1603. The HASH function calculation unit 1501 holds the source IP address 624 in the source IP address holding unit 1604. The HASH function calculation unit 1501 holds the destination IP address 625 in the destination IP address holding unit 1605. The HASH function calculation unit 1501 holds the source port 631 in the source port holding unit 1606. The HASH function calculation unit 1501 holds the destination port 632 in the destination port holding unit 1607.

各保持部1602〜1607に一時保持されたヘッダ情報は、HASH関数演算回路1601においてHASH演算にかけられHASH値が出力される。HASH関数演算部1501は、このHASH値に基づいて、ミラーポート選択回路901においてミラーパケットを送信する一つのミラーポートが選択する。HASH値は、ミラーポートエントリ502−iに定義された同一ミラーポートグループに属する複数のミラーポートの各々を一意に表現できる情報量をもつ必要がある。すなわち、ミラーポートエントリ502−iではミラーポートi−0、ミラーポートi−1、ミラーポートi−2、ミラーポートi−3という4つのミラーポートが定義されているので、HASH値はミラーポートi−0に対応する’0’、ミラーポートi−1に対応する’1’、ミラーポートi−2に対応する’2’、ミラーポートi−3に対応する’3’をとる必要がある。そのため、HASH値は最低でも2ビットの情報量をもつ必要がある。   The header information temporarily held in the holding units 1602 to 1607 is subjected to the HASH calculation in the HASH function calculation circuit 1601 to output the HASH value. The HASH function calculation unit 1501 selects one mirror port that transmits a mirror packet in the mirror port selection circuit 901 based on the HASH value. The HASH value needs to have an information amount that can uniquely represent each of a plurality of mirror ports belonging to the same mirror port group defined in the mirror port entry 502-i. That is, since the mirror port entry 502-i defines four mirror ports, mirror port i-0, mirror port i-1, mirror port i-2, and mirror port i-3, the HASH value is the mirror port i. It is necessary to take “0” corresponding to −0, “1” corresponding to the mirror port i−1, “2” corresponding to the mirror port i-2, and “3” corresponding to the mirror port i-3. Therefore, the HASH value needs to have an information amount of 2 bits at a minimum.

HASH関数演算回路1601におけるHASH演算は、次のようなビット操作によって得られる。各保持部1602〜1607に一時保持されたヘッダ情報をそれぞれ8ビットの情報に分割し、ヘッダ情報毎に分割後の8ビットを全て加算する。加算後のビット値を、次は異なるヘッダ情報同士で加算し、下位2ビットを抽出することで、HASH値が得られる。得られたHASH値は、ミラーポート選択回路901へ送信され、このHASH値に基づいてミラーパケットを送信する一つのミラーポートが選択される。   The HASH calculation in the HASH function calculation circuit 1601 is obtained by the following bit operation. The header information temporarily held in the holding units 1602 to 1607 is divided into 8-bit information, and all the divided 8 bits are added for each header information. The HASH value is obtained by adding the bit values after the addition to the next different header information and extracting the lower 2 bits. The obtained HASH value is transmitted to the mirror port selection circuit 901, and one mirror port for transmitting a mirror packet is selected based on this HASH value.

次に、パケット中継装置で統計情報を収集するシステム(トラフィックモニタシステム)について、実施例5を用い図18ないし図25を参照して説明する。ここで、図18は統計情報収集システムのハードウェアブロック図である。図19はパケット中継装置の機能ブロック図である。図20は統計パケット判定結果を説明する図である。図21はフロー統計収集部の機能ブロック図である。図22はCAMを説明する図である。図23はフロー統計テーブルを説明する図である。図24はアナライザポートレジスタを説明する図である。図25はアナライザポート選択部の機能ブロック図である。   Next, a system (traffic monitor system) that collects statistical information by the packet relay device will be described with reference to FIGS. Here, FIG. 18 is a hardware block diagram of the statistical information collection system. FIG. 19 is a functional block diagram of the packet relay apparatus. FIG. 20 is a diagram for explaining a statistical packet determination result. FIG. 21 is a functional block diagram of the flow statistics collection unit. FIG. 22 is a diagram for explaining the CAM. FIG. 23 is a diagram for explaining the flow statistics table. FIG. 24 is a diagram for explaining the analyzer port register. FIG. 25 is a functional block diagram of the analyzer port selector.

図18において、統計情報収集システムは、パケット中継装置(S1)1801と、パケット中継装置(S1)1801に接続された4台のアナライザ1720〜1723とから構成される。パケット中継装置(S1)1801は、統計パケットC0をアナライザポート1710から送信し、アナライザポート1710に接続されたアナライザ1720に入力される。アナライザ1720は、パケットのヘッダ情報や統計情報を解析する。統計パケットC1は、アナライザポート1711から送信され、アナライザポート1711に接続されたアナライザ1721に入力される。アナライザ1721は、パケットのヘッダ情報や統計情報が解析する。統計パケットC2は、アナライザポート1712から送信され、アナライザポート1712に接続されたアナライザ1722に入力される。アナライザ1722は、パケットのヘッダ情報や統計情報を解析する。統計パケットC3は、アナライザポート1713から送信され、アナライザポート1713に接続されたアナライザ1723に入力される。アナライザ1723は、パケットのヘッダ情報やヘッダ情報を解析する。   18, the statistical information collection system includes a packet relay device (S1) 1801 and four analyzers 1720 to 1723 connected to the packet relay device (S1) 1801. The packet relay device (S1) 1801 transmits the statistical packet C0 from the analyzer port 1710 and inputs it to the analyzer 1720 connected to the analyzer port 1710. The analyzer 1720 analyzes packet header information and statistical information. The statistical packet C1 is transmitted from the analyzer port 1711 and input to the analyzer 1721 connected to the analyzer port 1711. The analyzer 1721 analyzes packet header information and statistical information. The statistical packet C2 is transmitted from the analyzer port 1712 and input to the analyzer 1722 connected to the analyzer port 1712. The analyzer 1722 analyzes packet header information and statistical information. The statistical packet C3 is transmitted from the analyzer port 1713 and input to the analyzer 1723 connected to the analyzer port 1713. The analyzer 1723 analyzes packet header information and header information.

このように統計パケットを複数のアナライザに分散するように送信すると、単体のアナライザに対する統計パケットの負荷はアナライザの解析性能の限界以内に抑えたまま、入力回線1702から受信した全フローに属する全パケットP0、P1、P2、P3を統計情報の収集対象とすることができる。逆に、入力回線から受信した全パケット数に対するフローサンプルの対象とするパケット数の比率であるサンプリングレートを低下させず、統計の精度は維持したまま、より高速な入力回線をモニタポートとすることができる。あるいは、より多数のフローを収容する高速な入力回線をモニタポートとして、より多数のフローの統計情報を複数のアナライザで分散的に収集することができる。なお、実施例5とマルチパスとの差は、実施例1で説明したとおりである。   When the statistical packets are transmitted so as to be distributed to a plurality of analyzers in this way, all packets belonging to all flows received from the input line 1702 while the statistical packet load on the single analyzer is kept within the limit of the analysis performance of the analyzer. P0, P1, P2, and P3 can be collection targets of statistical information. On the other hand, the sampling rate, which is the ratio of the number of packets subject to flow sampling to the total number of packets received from the input line, is not reduced, and the higher-speed input line is used as the monitor port while maintaining statistical accuracy. Can do. Alternatively, a high-speed input line accommodating a larger number of flows can be used as a monitor port, and statistical information of a larger number of flows can be collected in a distributed manner by a plurality of analyzers. The difference between the fifth embodiment and the multipath is as described in the first embodiment.

次に、パケット中継装置の構成について、図19を参照して説明する。なお、図19のパケット中継装置の構成は、パケットをルーティング転送するルータまたはパケットをスイッチング転送するスイッチに適用できる。   Next, the configuration of the packet relay device will be described with reference to FIG. The configuration of the packet relay apparatus in FIG. 19 can be applied to a router that routes and forwards packets or a switch that switches and forwards packets.

図19において、パケット中継装置1801は、パケットが入力する入力回線1702と、パケットの受信処理を行うパケット受信回路410と、パケットに関する受信側での判定処理を行うパケット検索部1910と、パケットを出力回線番号に基づきスイッチングするパケット中継処理手段430と、パケットに関する送信側での判定処理を行うパケット検索部1920と、スイッチングされたパケットが蓄積される送信バッファ450からパケットを読み出してパケットの送信処理を行うパケット送信回路460と、パケットを出力する出力回線1703と、統計パケットを出力するアナライザポート1710とを備える。パケット受信回路410では、入力回線番号601とパケットのフレーム長LEN602を判定し、図7に示すパケット受信回路410から送信されるヘッダ情報600に付加する。パケット検索部1910は、出力回線番号を判定するための経路検索部422と、フロー統計を収集するフロー統計収集部1911と、管理端末480を接続されたレジスタ470とを備える。パケット検索部1910で経路検索とフロー統計の収集を行うため、パケット検索部1910は、経路検索部422とフロー統計収集部1911とを備え、パケット受信回路410からヘッダ情報と入力回線情報を受信する。なお、出力回線毎にフロー情報を収集する際は、送信側のパケット検索部1920に備わるフロー統計収集部にてフロー統計に関わる判定を行うこともできる。   In FIG. 19, a packet relay device 1801 outputs an input line 1702 to which a packet is input, a packet reception circuit 410 that performs packet reception processing, a packet search unit 1910 that performs determination processing on the reception side regarding the packet, and a packet. Packet relay processing means 430 that switches based on the line number, packet search unit 1920 that performs determination processing on the transmission side regarding the packet, and packet transmission processing by reading the packet from the transmission buffer 450 in which the switched packet is accumulated A packet transmission circuit 460 for performing the processing, an output line 1703 for outputting a packet, and an analyzer port 1710 for outputting a statistical packet are provided. The packet receiving circuit 410 determines the input line number 601 and the packet frame length LEN 602 and adds them to the header information 600 transmitted from the packet receiving circuit 410 shown in FIG. The packet search unit 1910 includes a route search unit 422 for determining an output line number, a flow statistics collection unit 1911 that collects flow statistics, and a register 470 to which a management terminal 480 is connected. In order for the packet search unit 1910 to perform route search and flow statistics collection, the packet search unit 1910 includes a route search unit 422 and a flow statistics collection unit 1911 and receives header information and input line information from the packet receiving circuit 410. . When collecting the flow information for each output line, the flow statistics collecting unit provided in the packet search unit 1920 on the transmission side can also make a determination related to the flow statistics.

図20において、統計パケット判定結果2400は、統計パケット生成指示フラグ2401とアナライザポート番号2402とから構成される。
図19に戻って、パケット検索部1910は、経路検索部422で得られた出力回線番号と、フロー統計収集部1911で得られた統計パケット生成指示フラグ2401と、統計パケットを送信するアナライザポート番号2402から構成される統計パケット判定結果2400を、検索結果情報としてパケット受信回路410に送信する。パケット受信回路410に送信された検索結果情報は、パケット本体の情報と合わせてパケット中継処理手段430を経由してパケット送信回路460に送信される。
In FIG. 20, the statistical packet determination result 2400 includes a statistical packet generation instruction flag 2401 and an analyzer port number 2402.
Returning to FIG. 19, the packet search unit 1910 outputs the output line number obtained by the route search unit 422, the statistical packet generation instruction flag 2401 obtained by the flow statistics collection unit 1911, and the analyzer port number that transmits the statistical packet. A statistical packet determination result 2400 composed of 2402 is transmitted to the packet receiving circuit 410 as search result information. The search result information transmitted to the packet reception circuit 410 is transmitted to the packet transmission circuit 460 via the packet relay processing unit 430 together with the information of the packet body.

パケット送信回路460において、パケット本体は出力回線1703に接続された送信バッファ450−1に蓄積され、出力回線1703から送信される。統計パケット生成の指示がされたパケットに対しては、パケット送信回路460においてヘッダ情報と統計情報とを含む統計パケットが生成される。生成された統計パケットは、アナライザポート1710に接続された送信バッファ450−2に蓄積され、アナライザポート1710から送信される。   In the packet transmission circuit 460, the packet body is stored in the transmission buffer 450-1 connected to the output line 1703 and transmitted from the output line 1703. For the packet instructed to generate the statistical packet, the packet transmission circuit 460 generates a statistical packet including header information and statistical information. The generated statistical packet is accumulated in a transmission buffer 450-2 connected to the analyzer port 1710 and transmitted from the analyzer port 1710.

パケット検索部1810に対するユーザ設定を可能とするため、パケット中継装置1801には管理端末480が接続されており、管理端末480からの設定情報は一時的にレジスタ470に保持される。レジスタ470から読み出された情報に従って、後で示される各種のテーブル制御部がテーブル設定を行う。   A management terminal 480 is connected to the packet relay apparatus 1801 in order to enable user settings for the packet search unit 1810, and setting information from the management terminal 480 is temporarily held in the register 470. In accordance with the information read from the register 470, various table control units shown later perform table setting.

次に、パケット中継装置が備えるフロー統計収集部の構成について、図21を参照して説明する。図21において、フロー統計収集部1911は、ヘッダ情報抽出部2001と、CAM制御部2002と、フロー統計演算部2004と、フロー統計テーブル制御部2005と、アナライザポートレジスタ2008と、アナライザポートレジスタ制御部2007と、アナライザポート選択部2009から構成される。また、CAM制御部2002には、CAM2003が接続される。さらに、フロー統計テーブル制御部2005は、フロー統計テーブル2006を参照し、更新する。   Next, the configuration of the flow statistics collection unit provided in the packet relay device will be described with reference to FIG. In FIG. 21, a flow statistics collection unit 1911 includes a header information extraction unit 2001, a CAM control unit 2002, a flow statistics calculation unit 2004, a flow statistics table control unit 2005, an analyzer port register 2008, and an analyzer port register control unit. 2007 and an analyzer port selection unit 2009. In addition, a CAM 2003 is connected to the CAM control unit 2002. Furthermore, the flow statistics table control unit 2005 refers to the flow statistics table 2006 and updates it.

ヘッダ情報抽出部2001は、パケット受信回路410から送信されたヘッダ情報のうち、フロー統計の種集に必要となる情報を抽出する。パケット受信回路410から送信されるヘッダ情報600は、実施例1と同様である。ここでは、フロー統計を収集する際にフローを識別する条件を送信元IPアドレス、宛先IPアドレス、L4プロトコル、送信元ポート番号、宛先ポート番号とする。ヘッダ情報抽出部2001は、これらのフロー識別に必要となるヘッダ情報を抽出して、CAM制御部2002へ送信する。CAMは、データを入力すると入力データに一致するエントリの含まれるアドレスを出力する。   The header information extraction unit 2001 extracts information necessary for the collection of flow statistics from the header information transmitted from the packet reception circuit 410. The header information 600 transmitted from the packet receiving circuit 410 is the same as that in the first embodiment. Here, conditions for identifying a flow when collecting flow statistics are a transmission source IP address, a destination IP address, an L4 protocol, a transmission source port number, and a destination port number. The header information extraction unit 2001 extracts header information necessary for the flow identification and transmits the header information to the CAM control unit 2002. When data is input, the CAM outputs an address including an entry that matches the input data.

図22において、CAM2003は、送信元IPアドレスの値と、宛先IPアドレスの値と、L4プロトコルの値と、送信元ポートの値と、宛先ポートの値の組で指定される、フローを識別する条件となる複数のフローエントリ2003−i(i=0〜n)で構成されている。   In FIG. 22, the CAM 2003 identifies a flow specified by a set of a source IP address value, a destination IP address value, an L4 protocol value, a source port value, and a destination port value. It consists of a plurality of flow entries 2003-i (i = 0 to n) as conditions.

図21に戻って、CAM制御部2002は、レジスタ470から読み出された情報に従ってCAM2003への設定を行う。CAM制御部2002がフロー識別に必要となるヘッダ情報をCAM2003へ送信すると、CAM2003は、このヘッダ情報に一致するフローエントリ2003−iを判定し、このフローエントリ2003−iのアドレスをCAM制御部2002へ送信する。なお、ヘッダ情報に一致するフローエントリが存在しない場合は、フロー統計の収集は行われず、アナライザポートからアナライザへの統計パケットの送信もなされない。   Returning to FIG. 21, the CAM control unit 2002 sets the CAM 2003 according to the information read from the register 470. When the CAM control unit 2002 transmits header information necessary for flow identification to the CAM 2003, the CAM 2003 determines a flow entry 2003-i that matches the header information, and sets the address of the flow entry 2003-i to the CAM control unit 2002. Send to. If there is no flow entry that matches the header information, no flow statistics are collected, and no statistical packet is transmitted from the analyzer port to the analyzer.

ヘッダ情報に一致するフローエントリ2003−iのアドレスを受信したCAM制御部2002は、このアドレスをフロー統計テーブル制御部2005へ送信する。フロー統計テーブル制御部2005は、レジスタ470から読み出された情報に従ってフロー統計テーブル2006への設定を行う。アドレスを受信したフロー統計テーブル制御部2005は、このアドレスに基づいてフロー統計テーブル2006を読み出す。   The CAM control unit 2002 that has received the address of the flow entry 2003-i that matches the header information transmits this address to the flow statistics table control unit 2005. The flow statistics table control unit 2005 sets the flow statistics table 2006 according to the information read from the register 470. The flow statistics table control unit 2005 that has received the address reads the flow statistics table 2006 based on this address.

図23において、フロー統計テーブル2006は、フローエントリ2003−iに対応したフロー統計エントリ2006−iから構成されており、フロー統計エントリ2006−iはフロー毎の受信したパケット数と受信したByte数(送信側のパケット検索部1820のフロー統計エントリにおいては、フロー毎の送信したパケット数と送信したByte数)の統計情報を保持している。   23, the flow statistics table 2006 includes flow statistics entries 2006-i corresponding to the flow entries 2003-i. The flow statistics entry 2006-i includes the number of received packets and the number of received bytes (for each flow). The flow statistics entry of the packet search unit 1820 on the transmission side holds statistical information on the number of packets transmitted and the number of transmitted bytes) for each flow.

図21に戻って、フロー統計テーブル2006から読み出されたパケット数とByte数の統計情報を、フロー統計テーブル制御部2005は、フロー統計演算部2004へ送信する。   Returning to FIG. 21, the flow statistics table control unit 2005 transmits the statistical information of the number of packets and the number of bytes read from the flow statistics table 2006 to the flow statistics calculation unit 2004.

フロー統計演算部2004は、受信した統計情報について、パケット数に1を加算し、Byte数に当該パケットのフレーム長であるLEN602を加算する。フロー統計演算部2004は、演算後のパケット数とByte数の統計情報をフロー統計テーブル制御部2005へ送信する。   The flow statistics calculation unit 2004 adds 1 to the number of packets in the received statistical information, and adds LEN 602 that is the frame length of the packet to the number of bytes. The flow statistics calculation unit 2004 transmits the calculated packet number and the statistical information of the number of bytes to the flow statistics table control unit 2005.

フロー統計テーブル制御部2005は、受信した演算後のパケット数とByte数の統計情報を、フローエントリ2003−iのアドレスに基づいてフロー統計テーブル2006へ書き込む。   The flow statistics table control unit 2005 writes the received statistical information on the number of packets and the number of bytes into the flow statistics table 2006 based on the address of the flow entry 2003-i.

次に、アナライザポートレジスタ制御部2007は、アナライザポートレジスタ2008を読み出す。アナライザポートレジスタ制御部2007では、レジスタ470から読み出された情報に従ってアナライザポートレジスタ2008への設定を行う。   Next, the analyzer port register control unit 2007 reads the analyzer port register 2008. The analyzer port register control unit 2007 sets the analyzer port register 2008 according to the information read from the register 470.

図24において、アナライザポートレジスタ2008は、同一のアナライザポートグループに含まれる複数のアナライザポート0、アナライザポート1、アナライザポート2、アナライザポート3のポート番号が設定されている。   In FIG. 24, the analyzer port register 2008 is set with port numbers of a plurality of analyzer ports 0, analyzer ports 1, analyzer ports 2, and analyzer ports 3 included in the same analyzer port group.

図21に戻って、アナライザポートレジスタ制御部2007は、アナライザポートグループのアナライザポート0、アナライザポート1、アナライザポート2、アナライザポート3の情報をアナライザポート選択部2009へ送信する。アナライザポート選択部2009では、アナライザポートグループのうち一つのアナライザポートを選択して、選択されたアナライザポートを統計パケット判定結果2400のアナライザポート番号2402として、統計パケット判定結果2400をパケット受信回路410へ送信する。   Returning to FIG. 21, the analyzer port register control unit 2007 transmits information on the analyzer port 0, analyzer port 1, analyzer port 2, and analyzer port 3 of the analyzer port group to the analyzer port selection unit 2009. The analyzer port selection unit 2009 selects one analyzer port from the analyzer port group, sets the selected analyzer port as the analyzer port number 2402 of the statistical packet determination result 2400, and transmits the statistical packet determination result 2400 to the packet reception circuit 410. Send.

アナライザポート選択部の構成についえ、図25を参照して説明する。図25において、アナライザポート選択部2009は、アナライザポート選択回路2501と、カウンタ制御部2502と、カウンタ2503とから構成される。ここで、アナライザポート選択部2009は、アナライザポートの選択をパケットの到着順序に基づいたラウンドロビンのアルゴリズムに基づいて判定する。   The configuration of the analyzer port selection unit will be described with reference to FIG. In FIG. 25, the analyzer port selection unit 2009 includes an analyzer port selection circuit 2501, a counter control unit 2502, and a counter 2503. Here, the analyzer port selection unit 2009 determines analyzer port selection based on a round-robin algorithm based on the arrival order of packets.

アナライザポートレジスタ制御部2007は、アナライザポートグループのアナライザポート0、アナライザポート1、アナライザポート2、アナライザポート3の情報をアナライザポート選択部2009へ送信する。アナライザポート選択回路2501は、アナライザポートグループの情報を受信すると、パケット到着を示す信号をカウンタ制御部2502へ送信する。   The analyzer port register control unit 2007 transmits information on the analyzer port 0, the analyzer port 1, the analyzer port 2, and the analyzer port 3 of the analyzer port group to the analyzer port selection unit 2009. When the analyzer port selection circuit 2501 receives the analyzer port group information, the analyzer port selection circuit 2501 transmits a signal indicating packet arrival to the counter control unit 2502.

カウンタ制御部2502は、レジスタ470から読み出された情報に従ってカウンタ2503への設定を行う。カウンタ制御部2502がパケット到着の信号を受信すると、カウンタテーブル制御部2502は、カウンタ2503を読み出す。カウンタ2503の値は、アナライザポートレジスタ2008に定義されたアナライザポートグループに属する複数のアナライザポートの各々を一意に表現できる情報量をもつ必要がある。図24に示されたアナライザポートレジスタ2008ではアナライザポート0、アナライザポート1、アナライザポート2、アナライザポート3という4つのアナライポートが定義されているので、カウンタはアナライザポート0に対応する’0’、アナライポート1に対応する’1’、アナライザポート2に対応する’2’、アナライザポート3に対応する’3’をとる必要がある。そのため、カウンタは最低でも2ビットの情報量をもつ必要がある。   The counter control unit 2502 sets the counter 2503 in accordance with the information read from the register 470. When the counter control unit 2502 receives a packet arrival signal, the counter table control unit 2502 reads the counter 2503. The value of the counter 2503 needs to have an information amount that can uniquely represent each of a plurality of analyzer ports belonging to the analyzer port group defined in the analyzer port register 2008. In the analyzer port register 2008 shown in FIG. 24, four analyzer ports, analyzer port 0, analyzer port 1, analyzer port 2, and analyzer port 3, are defined, so that the counter is “0” corresponding to analyzer port 0. It is necessary to take “1” corresponding to the analyzer port 1, “2” corresponding to the analyzer port 2, and “3” corresponding to the analyzer port 3. Therefore, the counter needs to have an information amount of at least 2 bits.

カウンタテーブル制御部2502は、読み出されたカウンタ2503の値をアナライザポート選択回路2501へ送信すると共に、読み出されたカウンタ2503の値に1加算して、加算後の値をカウンタ2503に書き込む。なお、読み出されたカウンタ2503の値が最大値の’3’である場合には、’0’をカウンタ2503の値として書き込む。   The counter table control unit 2502 transmits the value of the read counter 2503 to the analyzer port selection circuit 2501, adds 1 to the value of the read counter 2503, and writes the value after the addition to the counter 2503. If the read value of the counter 2503 is the maximum value “3”, “0” is written as the value of the counter 2503.

アナライザポート選択回路2501は、カウンタテーブル制御部2502から送信されたカウンタ2503の値に応じたアナライザポートを選択して、選択されたアナライザポート番号を統計パケット判定結果2400のアナライザポート番号2402とし、統計パケット生成指示フラグ2401を’1’としてパケット受信回路410に送信する。   The analyzer port selection circuit 2501 selects an analyzer port corresponding to the value of the counter 2503 transmitted from the counter table control unit 2502, and sets the selected analyzer port number as the analyzer port number 2402 of the statistical packet determination result 2400. The packet generation instruction flag 2401 is transmitted to the packet receiving circuit 410 as “1”.

本実施例に拠れば、統計パケットを複数のアナライザに分散するように送信することで、アナライザへの負荷を下げることができる。   According to this embodiment, the statistical packet is transmitted so as to be distributed to a plurality of analyzers, thereby reducing the load on the analyzer.

実施例6について、図26ないし図28を参照して説明する。ここで、図26はアナライザポート選択部の機能ブロック図である。図27は帯域監視部2601の機能ブロック図である。図28は帯域監視テーブルを説明する図である。   Example 6 will be described with reference to FIGS. 26 to 28. FIG. FIG. 26 is a functional block diagram of the analyzer port selection unit. FIG. 27 is a functional block diagram of the bandwidth monitoring unit 2601. FIG. 28 is a diagram for explaining a bandwidth monitoring table.

実施例6のパケット中継装置の構成は、図19に示す通りであり、実施例5と同様である。実施例6でアナライザポート選択部の構成に付いて、図26を参照して説明する。図26において、アナライザポート選択部2009Aは、アナライザポート選択回路2501と、帯域監視部2601とから構成される。   The configuration of the packet relay apparatus of the sixth embodiment is as shown in FIG. 19 and is the same as that of the fifth embodiment. The configuration of the analyzer port selection unit in the sixth embodiment will be described with reference to FIG. In FIG. 26, the analyzer port selection unit 2009A includes an analyzer port selection circuit 2501 and a band monitoring unit 2601.

実施例6では、同一アナライザポートグループに属する複数のアナライザポート毎に送信された統計パケットのビットレートを監視して、アナライザポート毎に送信された統計パケットのビットレートがアナライザポート毎に予め定められた最大ビットレートに達しないアナライザポートを選択する。最大ビットレートは、アナライザの最大性能以下とする。   In the sixth embodiment, the bit rate of the statistical packet transmitted for each of a plurality of analyzer ports belonging to the same analyzer port group is monitored, and the bit rate of the statistical packet transmitted for each analyzer port is predetermined for each analyzer port. Select an analyzer port that does not reach the maximum bit rate. The maximum bit rate should be less than the maximum performance of the analyzer.

アナライザポートレジスタ制御部2007はアナライザポートグループのアナライザポート0、アナライザポート1、アナライザポート2、アナライザポート3の情報をアナライザポート選択部2009Aへ送信する。アナライザポート選択部2009Aは、アナライザポートグループの情報を受信すると、受信したアナライザポートグループに属する複数のアナライザポートを構成するアナライザポート0、アナライザポート1、アナライザポート2、アナライザポート3という4つのアナライザポート番号を帯域監視部2601に送信する。   The analyzer port register control unit 2007 transmits information of the analyzer port 0, analyzer port 1, analyzer port 2, and analyzer port 3 of the analyzer port group to the analyzer port selection unit 2009A. When the analyzer port selection unit 2009A receives the analyzer port group information, the analyzer port selection unit 2009A receives four analyzer ports, analyzer port 0, analyzer port 1, analyzer port 2, and analyzer port 3, which constitute a plurality of analyzer ports belonging to the received analyzer port group. The number is transmitted to the bandwidth monitoring unit 2601.

帯域監視部2601は、アナライザポート0、アナライザポート1、アナライザポート2、アナライザポート3各々において送信された統計パケットのビットレートを監視して、アナライザポート毎に送信された統計パケットのビットレートがアナライザポート毎に予め定められた最大ビットレートに達しないアナライザポートを選択する。アナライザポート毎に送信された統計パケットのビットレートがアナライザポート毎に予め定められた最大ビットレートに達しないアナライザポートが複数ある場合には、そのうち最も小さなアナライザポート番号をもつアナライザポートを選択するものとする。   The bandwidth monitoring unit 2601 monitors the bit rate of the statistical packet transmitted in each of the analyzer port 0, the analyzer port 1, the analyzer port 2, and the analyzer port 3, and the bit rate of the statistical packet transmitted for each analyzer port is the analyzer. An analyzer port that does not reach a predetermined maximum bit rate for each port is selected. When there are multiple analyzer ports where the bit rate of the statistical packet transmitted for each analyzer port does not reach the maximum bit rate predetermined for each analyzer port, the analyzer port with the smallest analyzer port number is selected. And

ビットレートの帯域監視アルゴリズムのフローチャートは図4と同様である。
図4の帯域監視アルゴリズムを実装した帯域監視部の構成について、図27に示す。また、図27に記載された帯域監視テーブルの構成について、図28に示す。なお、図27と図14との対比、および図28と図15との対比から明らかなように、図27は図14と参照番号が異なるのみの違いなので、説明は省略する。また、図28も図15と参照番号が異なるのみの違いなので、説明は省略する。
The flowchart of the bit rate bandwidth monitoring algorithm is the same as in FIG.
FIG. 27 shows the configuration of the bandwidth monitoring unit that implements the bandwidth monitoring algorithm of FIG. FIG. 28 shows the configuration of the bandwidth monitoring table described in FIG. As is clear from the comparison between FIG. 27 and FIG. 14 and the comparison between FIG. 28 and FIG. 15, FIG. 27 differs from FIG. Also, FIG. 28 is different from FIG.

実施例7では、同一アナライザポートグループに属する複数のアナライザポート毎に送信された統計パケットのパケットレートを監視して、アナライザポート毎に送信された統計パケットのパケットレートがアナライザポート毎に予め定められた最大パケットレートに達しないアナライザポートを選択する。   In the seventh embodiment, the packet rate of the statistical packet transmitted for each of the plurality of analyzer ports belonging to the same analyzer port group is monitored, and the packet rate of the statistical packet transmitted for each analyzer port is predetermined for each analyzer port. Select an analyzer port that does not reach the maximum packet rate.

実施例7のパケット中継装置の構成は、図19に示す通りであり、実施例5と同様である。実施例7でアナライザポート選択部の構成は、実施例6の図26と同様である。
実施例7において、実施例6と異なる点は、次の通りである。(1)最大パケットレートは、アナライザの最大性能以下とする。(2)帯域監視部2601は、アナライザポート0、アナライザポート1、アナライザポート2、アナライザポート3各々において送信された統計パケットのパケットレートを監視して、アナライザポート毎に送信された統計パケットのパケットレートがアナライザポート毎に予め定められた最大パケットレートに達しないアナライザポートを選択する。
The configuration of the packet relay apparatus of the seventh embodiment is as shown in FIG. 19 and is the same as that of the fifth embodiment. In the seventh embodiment, the configuration of the analyzer port selection unit is the same as that of FIG.
The difference between the seventh embodiment and the sixth embodiment is as follows. (1) The maximum packet rate is less than the maximum performance of the analyzer. (2) The bandwidth monitoring unit 2601 monitors the packet rate of the statistical packet transmitted at each of the analyzer port 0, the analyzer port 1, the analyzer port 2, and the analyzer port 3, and the packet of the statistical packet transmitted for each analyzer port. Select an analyzer port whose rate does not reach the predetermined maximum packet rate for each analyzer port.

パケットレートの帯域監視アルゴリズムのフローチャートは、図4においてパケットのフレーム長によらず固定的にLEN=1とするケースに相当する。
図4の帯域監視アルゴリズムを実装した帯域監視部2601の構成も、実施例6の図27と同様である。ただし、帯域監視部2601は、アナライザポート毎の最大パケットレートRj(j=0〜m)とバケツ閾値THRjが設定された図28に示す複数の帯域監視エントリ2702−j(j=0〜m)から構成される帯域監視テーブル2702が備える。なお、モニタポートから受信する全てのパケットを統計パケット生成対象とする場合には、アナライザポート毎の最大パケットレートR0〜Rmの和はモニタポートの回線帯域以上とする。また、図27において、フロー統計収集部1911のヘッダ情報抽出部2001から送信されるLEN602は無視し、LEN=1という固定値をLEN保持部2722に蓄積する。
The flow chart of the packet rate bandwidth monitoring algorithm corresponds to the case where LEN = 1 is fixed in FIG. 4 regardless of the frame length of the packet.
The configuration of the bandwidth monitoring unit 2601 that implements the bandwidth monitoring algorithm of FIG. 4 is the same as that of FIG. However, the bandwidth monitoring unit 2601 has a plurality of bandwidth monitoring entries 2702-j (j = 0 to m) shown in FIG. 28 in which the maximum packet rate Rj (j = 0 to m) and the bucket threshold THRj for each analyzer port are set. The bandwidth monitoring table 2702 is provided. When all packets received from the monitor port are targeted for statistical packet generation, the sum of the maximum packet rates R0 to Rm for each analyzer port is equal to or greater than the line bandwidth of the monitor port. In FIG. 27, the LEN 602 transmitted from the header information extraction unit 2001 of the flow statistics collection unit 1911 is ignored, and a fixed value of LEN = 1 is accumulated in the LEN holding unit 2722.

実施例8について、図29および図30を参照して、説明する。ここで、図29はアナライザポート選択部の機能ブロック図である。図30はHASH関数演算部の機能ブロック図である。また、実施例8のパケット中継装置の構成は、図19および図21に示す通りであり、実施例5と同様である。   Example 8 will be described with reference to FIGS. 29 and 30. FIG. Here, FIG. 29 is a functional block diagram of the analyzer port selector. FIG. 30 is a functional block diagram of the HASH function calculation unit. The configuration of the packet relay apparatus according to the eighth embodiment is as shown in FIGS. 19 and 21 and is the same as that of the fifth embodiment.

実施例8では、アナライザポート選択部において、受信パケットまたは送信パケットのヘッダ情報の一部または全部の値を入力値、アナライザポートを識別する値を出力値とするHASH関数に基づいた演算によりアナライザポートを選択する。これにより、同一フローに属する統計パケットが複数のアナライザポートに分散することがなくなり、フロー毎に一意のアナライザポートに送信する。実施例8によれば、同一フローに属する統計パケットが複数のアナライザポートに分散することがなくなり、フロー毎に一意のアナライザポートに送信するので、後で集約してから解析する必要はなくなる。   In the eighth embodiment, the analyzer port selection unit performs an analysis based on the HASH function using a part or all of the header information of the received packet or the transmission packet as an input value and a value for identifying the analyzer port as an output value. Select. As a result, statistical packets belonging to the same flow are not distributed to a plurality of analyzer ports, and are transmitted to a unique analyzer port for each flow. According to the eighth embodiment, statistical packets belonging to the same flow are not distributed to a plurality of analyzer ports, and are transmitted to a unique analyzer port for each flow. Therefore, it is not necessary to analyze after aggregation.

アナライザポート選択部の構成について、図29を参照して説明する。図29において、アナライザポート選択部2009Bは、アナライザポート選択回路2501とHASH関数演算部2901とから構成される。アナライザポート選択回路2501には、同一アナライザポートグループに属する複数のアナライザポートを構成するアナライザポート0、アナライザポート1、アナライザポート2、アナライザポート3の情報がアナライザポートレジスタ制御部2007から送信される。また、アナライザポート選択回路2501には、フローを識別するのに必要となるヘッダ情報について、ヘッダ情報抽出部2001から送信される。ここでは、フローを識別する条件となるヘッダ情報は、宛先MACアドレス611、送信元MACアドレス612、送信元IPアドレス624、宛先IPアドレス625、送信元ポート631、宛先ポート632とする。これらのヘッダ情報600について、アナライザポート選択回路2501は、HASH関数演算部2901に送信する。   The configuration of the analyzer port selector will be described with reference to FIG. In FIG. 29, the analyzer port selection unit 2009B includes an analyzer port selection circuit 2501 and a HASH function calculation unit 2901. Information on the analyzer port 0, analyzer port 1, analyzer port 2, and analyzer port 3 constituting a plurality of analyzer ports belonging to the same analyzer port group is transmitted from the analyzer port register control unit 2007 to the analyzer port selection circuit 2501. Also, the header information extraction unit 2001 transmits the header information necessary for identifying the flow to the analyzer port selection circuit 2501. Here, the header information as a condition for identifying the flow is a destination MAC address 611, a source MAC address 612, a source IP address 624, a destination IP address 625, a source port 631, and a destination port 632. The analyzer port selection circuit 2501 transmits the header information 600 to the HASH function calculation unit 2901.

HASH関数演算部の構成を図30に示す。図30の構成は、参照番号を除いて、図17と同一なので、説明は省略する。HASH関数演算部3001は、得られたHASH値をアナライザポート選択回路2501へ送信する。アナライザポート選択回路2501は、このHASH値に基づいて統計パケットを送信する一つのアナライザポートを選択する。   The configuration of the HASH function calculation unit is shown in FIG. The configuration of FIG. 30 is the same as that of FIG. The HASH function calculation unit 3001 transmits the obtained HASH value to the analyzer port selection circuit 2501. The analyzer port selection circuit 2501 selects one analyzer port that transmits a statistical packet based on the HASH value.

以上、本発明の種々の実施例について説明したが、本発明はこれらの実施例に限定されず、その趣旨を逸脱しない範囲で種々の構成をとることができる。   As mentioned above, although the various Example of this invention was described, this invention is not limited to these Examples, A various structure can be taken in the range which does not deviate from the meaning.

ミラーリングシステムのハードウェアブロック図である。It is a hardware block diagram of a mirroring system. ミラーリングシステムのハードウェアブロック図である。It is a hardware block diagram of a mirroring system. 統計情報収集システムのハードウェアブロック図である。It is a hardware block diagram of a statistical information collection system. ビットレートの帯域監視アルゴリズムを説明するフローチャートである。It is a flowchart explaining the bandwidth monitoring algorithm of a bit rate. ミラーリングシステムのハードウェアブロック図である。It is a hardware block diagram of a mirroring system. パケット中継装置のブロック図である。It is a block diagram of a packet relay apparatus. パケット受信回路から送信されるヘッダ情報を説明する図である。It is a figure explaining the header information transmitted from a packet receiving circuit. ミラー判定部の機能ブロック図である。It is a functional block diagram of a mirror determination part. ミラーポートテーブルの構成を説明する図である。It is a figure explaining the structure of a mirror port table. ミラーリング判定結果の構成を説明する図である。It is a figure explaining the structure of a mirroring determination result. ミラーポート選択部の機能ブロック図である。It is a functional block diagram of a mirror port selection part. カウンタテーブルの構成を説明する図である。It is a figure explaining the structure of a counter table. ミラーポート選択部の機能ブロック図である。It is a functional block diagram of a mirror port selection part. 帯域監視部の機能ブロック図である。It is a functional block diagram of a bandwidth monitoring unit. 帯域監視テーブルを説明する図である。It is a figure explaining a bandwidth monitoring table. ミラーポート選択部の機能ブロック図である。It is a functional block diagram of a mirror port selection part. HASH関数演算部の機能ブロック図である。It is a functional block diagram of a HASH function calculating part. 本発明を備えるパケット中継装置で統計情報を収集する場合のシステム構成System configuration for collecting statistical information in a packet relay device comprising the present invention パケット中継装置の機能ブロック図である。It is a functional block diagram of a packet relay apparatus. 統計パケット判定結果を説明する図である。It is a figure explaining a statistical packet determination result. フロー統計収集部の機能ブロック図である。It is a functional block diagram of a flow statistics collection part. CAMを説明する図である。It is a figure explaining CAM. フロー統計テーブルを説明する図である。It is a figure explaining a flow statistics table. アナライザポートレジスタを説明する図である。It is a figure explaining an analyzer port register. アナライザポート選択部の機能ブロック図である。It is a functional block diagram of an analyzer port selection part. アナライザポート選択部の機能ブロック図である。It is a functional block diagram of an analyzer port selection part. 帯域監視部2601の機能ブロック図である。6 is a functional block diagram of a bandwidth monitoring unit 2601. FIG. 帯域監視テーブルを説明する図である。It is a figure explaining a bandwidth monitoring table. アナライザポート選択部の機能ブロック図である。It is a functional block diagram of an analyzer port selection part. HASH関数演算部の機能ブロック図である。It is a functional block diagram of a HASH function calculating part.

符号の説明Explanation of symbols

101…パケット中継装置(S0)、102…入力回線、103…出力回線、110…ミラーポート、111…のミラーポート、112…ミラーポート、113…ミラーポート、120…アナライザ(A0)、121…アナライザ(A1)、122…アナライザ(A2)、123…アナライザ(A3)、301…パケット中継装置(S1)、410…パケット受信回路、420…パケット検索部、421…ミラー判定部、422…経路検索部、430…パケット中継処理手段、440…パケット検索部、450…送信バッファ、460…パケット送信回路、470…レジスタ、480…管理端末、500…モニタポート番号抽出部、501…ミラーポートテーブル制御部、502…ミラーポートテーブル、502−i…ミラーポートエントリ、503…ミラーポート選択部、504…ヘッダ情報抽出部、600…ヘッダ情報、601…入力回線番号、602…パケットのフレーム長、610…L2ヘッダ部、611…宛先MACアドレス、612…送信元MACアドレス、613…イーサタイプ、614…VLANタグ、620…L3ヘッダ部(IPv4時)、621…IPバージョン、622…TOS(Type of Service)、623…L4プロトコル、624…送信元IPアドレス、625…宛先IPアドレス、630…L4ヘッダ部、631…送信元ポート番号、632…宛先ポート番号、700…ミラーリング判定結果、701…ミラーリング指示フラグ、702…ミラーポート番号、901…ミラーポート選択回路、902…カウンタテーブル制御部、903…カウンタテーブル、903−i…モニタポート毎のカウンタ、1101…帯域監視部、1201…帯域監視テーブル制御部、1202…帯域監視テーブル、1202−j…帯域監視エントリ、1210…現在水量判定部、1211…CNT保持部、1212…TLST保持部、1213…R保持部、1214…タイマー、1215…現在水量演算回路、1220…監視結果判定部、1221…THR保持部、1222…LEN保持部、1223…NOWCNT蓄手段、1224…監視結果判定回路、1225…CNT2保持部、1226…TLST保持部、1501…HASH関数演算部、1601…HASH関数演算回路、1602…宛先MACアドレス保持部、1603…送信元MACアドレス保持部、1604…送信元IPアドレス保持部、1605…宛先IPアドレス保持部、1606…送信元ポート保持部、1607…宛先ポート保持部、1701…パケット中継装置(S0)、1702…入力回線、1703…出力回線、1710…アナライザポート、1711…アナライザポート、1712…アナライザポート、1713…アナライザポート、1720…アナライザ(A0)、1721…アナライザ(A1)、1722…アナライザ(A2)、1723…アナライザ(A3)、1801…パケット中継装置(S1)、1910…パケット検索部、1911…フロー統計収集部、1920…パケット検索部、2001…ヘッダ情報抽出部、2002…CAM制御部、2003…CAM、2003−i…フローエントリ、2004…フロー統計演算部、2005…フロー統計テーブル制御部、2006…フロー統計テーブル、2006−i…フロー統計エントリ、2007…アナライザポートレジスタ制御部、2008…アナライザポートレジスタ 、2009…アナライザポート選択部、2400…統計パケット判定結果、2401…統計パケット生成指示フラグ、2402…アナライザポート番号、2501…アナライザポート選択回路、2502…カウンタ制御部、2503…カウンタ、2601…帯域監視部、2701…帯域監視テーブル制御部、2702…帯域監視テーブル、2702−j…帯域監視エントリ、2710…現在水量判定部、2711…CNT保持部、2712…TLST保持部、2713…R保持部、2714…タイマー、2715…現在水量演算回路、2720…監視結果判定部、2721…THR保持部、2722…LEN保持部、2723…NOWCNT蓄手段、2724…監視結果判定回路、2725…CNT2保持部、2726…TLST保持部、2901…HASH関数演算部、3001…HASH関数演算回路、3002…宛先MACアドレス保持部、3003…送信元MACアドレス保持部、3004…送信元IPアドレス保持部、3005…宛先IPアドレス保持部、3006…送信元ポート保持部、3007…宛先ポート保持部。   DESCRIPTION OF SYMBOLS 101 ... Packet relay apparatus (S0), 102 ... Input line, 103 ... Output line, 110 ... Mirror port, 111 ... Mirror port, 112 ... Mirror port, 113 ... Mirror port, 120 ... Analyzer (A0), 121 ... Analyzer (A1), 122 ... Analyzer (A2), 123 ... Analyzer (A3), 301 ... Packet relay device (S1), 410 ... Packet receiving circuit, 420 ... Packet search unit, 421 ... Mirror determination unit, 422 ... Path search unit 430 ... Packet relay processing means, 440 ... Packet search unit, 450 ... Transmission buffer, 460 ... Packet transmission circuit, 470 ... Register, 480 ... Management terminal, 500 ... Monitor port number extraction unit, 501 ... Mirror port table control unit, 502 ... Mirror port table, 502-i ... Mirror port entry 503: Mirror port selection unit, 504: Header information extraction unit, 600 ... Header information, 601 ... Input line number, 602 ... Frame length of packet, 610 ... L2 header unit, 611 ... Destination MAC address, 612 ... Source MAC address 613 ... Ether type, 614 ... VLAN tag, 620 ... L3 header (IPv4), 621 ... IP version, 622 ... TOS (Type of Service), 623 ... L4 protocol, 624 ... Source IP address, 625 ... Destination IP address, 630 ... L4 header, 631 ... source port number, 632 ... destination port number, 700 ... mirroring determination result, 701 ... mirroring instruction flag, 702 ... mirror port number, 901 ... mirror port selection circuit, 902 ... counter Table control unit, 903... Counter table 903-i ... Counter for each monitor port, 1101 ... Band monitoring unit, 1201 ... Band monitoring table control unit, 1202 ... Band monitoring table, 1202-j ... Band monitoring entry, 1210 ... Current water amount determination unit, 1211 ... CNT holding unit , 1212 ... TLST holding unit, 1213 ... R holding unit, 1214 ... timer, 1215 ... current water amount calculation circuit, 1220 ... monitoring result determination unit, 1221 ... THR holding unit, 1222 ... LEN holding unit, 1223 ... NOWCNT storage means, 1224 ... monitoring result determination circuit, 1225 ... CNT2 holding unit, 1226 ... TLST holding unit, 1501 ... HASH function computing unit, 1601 ... HASH function computing circuit, 1602 ... destination MAC address holding unit, 1603 ... source MAC address holding unit, 1604 ... Source IP address holding unit, 1605 Destination IP address holding unit, 1606 ... Transmission source port holding unit, 1607 ... Destination port holding unit, 1701 ... Packet relay device (S0), 1702 ... Input line, 1703 ... Output line, 1710 ... Analyzer port, 1711 ... Analyzer port, 1712 ... Analyzer port, 1713 ... Analyzer port, 1720 ... Analyzer (A0), 1721 ... Analyzer (A1), 1722 ... Analyzer (A2), 1723 ... Analyzer (A3), 1801 ... Packet relay device (S1), 1910 ... Packet Search unit, 1911 ... Flow statistics collection unit, 1920 ... Packet search unit, 2001 ... Header information extraction unit, 2002 ... CAM control unit, 2003 ... CAM, 2003-i ... Flow entry, 2004 ... Flow statistics calculation unit, 2005 ... Flow Statistical table control unit 2006 ... Flow statistics table, 2006-i ... Flow statistics entry, 2007 ... Analyzer port register control unit, 2008 ... Analyzer port register, 2009 ... Analyzer port selection unit, 2400 ... Statistic packet determination result, 2401 ... Static packet generation instruction flag, 2402: Analyzer port number, 2501 ... Analyzer port selection circuit, 2502 ... Counter control unit, 2503 ... Counter, 2601 ... Bandwidth monitoring unit, 2701 ... Bandwidth monitoring table control unit, 2702 ... Bandwidth monitoring table, 2702-j ... Bandwidth monitoring entry 2710 ... Current water amount determination unit, 2711 ... CNT holding unit, 2712 ... TLST holding unit, 2713 ... R holding unit, 2714 ... Timer, 2715 ... Current water amount calculation circuit, 2720 ... Monitoring result determination unit, 2721 ... THR holding Holding unit, 2722... LEN holding unit, 2723... NOWCNT storage means, 2724... Monitoring result judgment circuit, 2725... CNT2 holding unit, 2726... TLST holding unit, 2901 .. HASH function calculating unit, 3001. Destination MAC address holding unit, 3003 ... Transmission source MAC address holding unit, 3004 ... Transmission source IP address holding unit, 3005 ... Destination IP address holding unit, 3006 ... Transmission source port holding unit, 3007 ... Destination port holding unit.

Claims (8)

複数の入力回線と複数の出力回線とに接続され、前記入力回線の一つから受信したパケットをヘッダ情報によって特定される前記出力回線の一つから送信するパケット中継装置において、
入力フローまたは出力フロー毎に、受信パケットまたは送信パケットからコピーされたミラーパケットを送信する複数のミラーポートから構成されるミラーポートグループを指定するミラーポートグループ指定部と、
前記ミラーパケット毎に、前記ミラーポートグループ指定部で指定された複数のミラーポートのうちいずれか一つのミラーポートを選択するミラーポート選択部とを備え、
前記ミラーポート選択部は、受信パケットまたは送信パケットの到着順序に基づくラウンドロビンのアルゴリズムによって、ミラーポートを選択し、
前記ミラーポート選択部で選択されたミラーポートから前記ミラーパケットを送信することを特徴とするパケット中継装置。
In a packet relay device that is connected to a plurality of input lines and a plurality of output lines, and that transmits a packet received from one of the input lines from one of the output lines specified by header information,
A mirror port group designating unit for designating a mirror port group composed of a plurality of mirror ports for transmitting mirror packets copied from received packets or transmitted packets for each input flow or output flow;
A mirror port selection unit that selects any one of the plurality of mirror ports designated by the mirror port group designation unit for each mirror packet,
The mirror port selection unit selects a mirror port by a round robin algorithm based on the arrival order of received packets or transmitted packets ,
The packet relay device, wherein the mirror packet is transmitted from a mirror port selected by the mirror port selection unit.
複数の入力回線と複数の出力回線とに接続され、前記入力回線の一つから受信したパケットをヘッダ情報によって特定される前記出力回線の一つから送信するパケット中継装置において、
入力フローまたは出力フロー毎に、受信パケットまたは送信パケットからコピーされたミラーパケットを送信する複数のミラーポートから構成されるミラーポートグループを指定するミラーポートグループ指定部と、
前記ミラーパケット毎に、前記ミラーポートグループ指定部で指定された複数のミラーポートのうちいずれか一つのミラーポートを選択するミラーポート選択部とを備え、
前記ミラーポート選択部は、前記ミラーポートグループを構成する複数のミラーポート毎に送信されたミラ−パケットのビットレートを監視し、前記ビットレートが予め定められたビットレートに達しないミラーポートを選択し、
前記ミラーポート選択部で選択されたミラーポートから前記ミラーパケットを送信することを特徴とするパケット中継装置。
In a packet relay device that is connected to a plurality of input lines and a plurality of output lines, and that transmits a packet received from one of the input lines from one of the output lines specified by header information,
A mirror port group designating unit for designating a mirror port group composed of a plurality of mirror ports for transmitting mirror packets copied from received packets or transmitted packets for each input flow or output flow;
A mirror port selection unit that selects any one of the plurality of mirror ports designated by the mirror port group designation unit for each mirror packet,
The mirror port selection unit monitors a bit rate of a mirror packet transmitted for each of a plurality of mirror ports constituting the mirror port group, and selects a mirror port whose bit rate does not reach a predetermined bit rate. And
The packet relay device, wherein the mirror packet is transmitted from a mirror port selected by the mirror port selection unit.
複数の入力回線と複数の出力回線とに接続され、前記入力回線の一つから受信したパケットをヘッダ情報によって特定される前記出力回線の一つから送信するパケット中継装置において、
入力フローまたは出力フロー毎に、受信パケットまたは送信パケットからコピーされたミラーパケットを送信する複数のミラーポートから構成されるミラーポートグループを指定するミラーポートグループ指定部と、
前記ミラーパケット毎に、前記ミラーポートグループ指定部で指定された複数のミラーポートのうちいずれか一つのミラーポートを選択するミラーポート選択部とを備え、
前記ミラーポート選択部は、前記ミラーポートグループを構成する複数のミラーポート毎に送信されたミラ−パケットのパケットレートを監視し、前記パケットレートが予め定められたパケットレートに達しないミラーポートを選択し、
前記ミラーポート選択部で選択されたミラーポートから前記ミラーパケットを送信することを特徴とするパケット中継装置。
In a packet relay device that is connected to a plurality of input lines and a plurality of output lines, and that transmits a packet received from one of the input lines from one of the output lines specified by header information,
A mirror port group designating unit for designating a mirror port group composed of a plurality of mirror ports for transmitting mirror packets copied from received packets or transmitted packets for each input flow or output flow;
A mirror port selection unit that selects any one of the plurality of mirror ports designated by the mirror port group designation unit for each mirror packet,
The mirror port selection unit monitors a packet rate of a mirror packet transmitted for each of a plurality of mirror ports constituting the mirror port group, and selects a mirror port whose packet rate does not reach a predetermined packet rate. And
The packet relay device, wherein the mirror packet is transmitted from a mirror port selected by the mirror port selection unit.
複数の入力回線と複数の出力回線とに接続され、前記入力回線の一つから受信したパケットをヘッダ情報によって特定される前記出力回線の一つから送信するパケット中継装置において、
入力フローまたは出力フロー毎に、受信パケットまたは送信パケットのヘッダ情報および/または統計情報をデータとして備える統計パケットを送信する複数のアナライザポートから構成されるアナライザポートグループを指定するアナライザポートグループ指定部と、
前記統計パケット毎に前記アナライザポートグループ指定部で指定された複数のアナライザポートのうちいずれか一つのアナライザポートを選択するアナライザポート選択部とを備え、
前記アナライザポート選択部は、受信パケットまたは送信パケットの到着順序に基づくラウンドロビンのアルゴリズムによって、アナライザポートを選択し、
前記アナライザポート選択部で選択されたアナライザポートから前記統計パケットを送信することを特徴とするパケット中継装置。
In a packet relay device that is connected to a plurality of input lines and a plurality of output lines, and that transmits a packet received from one of the input lines from one of the output lines specified by header information,
An analyzer port group designating unit for designating an analyzer port group composed of a plurality of analyzer ports that transmit statistical packets having header information and / or statistical information of received packets or transmitted packets as data for each input flow or output flow; ,
An analyzer port selection unit that selects one of the plurality of analyzer ports designated by the analyzer port group designation unit for each statistical packet;
The analyzer port selection unit selects an analyzer port by a round-robin algorithm based on the arrival order of received packets or transmitted packets ,
A packet relay apparatus, wherein the statistical packet is transmitted from an analyzer port selected by the analyzer port selector.
複数の入力回線と複数の出力回線とに接続され、前記入力回線の一つから受信したパケットをヘッダ情報によって特定される前記出力回線の一つから送信するパケット中継装置において、
入力フローまたは出力フロー毎に、受信パケットまたは送信パケットのヘッダ情報および/または統計情報をデータとして備える統計パケットを送信する複数のアナライザポートから構成されるアナライザポートグループを指定するアナライザポートグループ指定部と、
前記統計パケット毎に前記アナライザポートグループ指定部で指定された複数のアナライザポートのうちいずれか一つのアナライザポートを選択するアナライザポート選択部とを備え、
前記アナライザポート選択部は、前記アナライザポートグループを構成する複数のアナライザポート毎に送信された統計パケットのビットレートを監視し、前記ビットレートが予め定められたビットレートに達しないアナライザポートを選択し、
前記アナライザポート選択部で選択されたアナライザポートから前記統計パケットを送信することを特徴とするパケット中継装置。
In a packet relay device that is connected to a plurality of input lines and a plurality of output lines, and that transmits a packet received from one of the input lines from one of the output lines specified by header information,
An analyzer port group designating unit for designating an analyzer port group composed of a plurality of analyzer ports that transmit statistical packets having header information and / or statistical information of received packets or transmitted packets as data for each input flow or output flow; ,
An analyzer port selection unit that selects one of the plurality of analyzer ports designated by the analyzer port group designation unit for each statistical packet;
The analyzer port selection unit monitors a bit rate of a statistical packet transmitted for each of a plurality of analyzer ports constituting the analyzer port group, and selects an analyzer port whose bit rate does not reach a predetermined bit rate. ,
A packet relay apparatus, wherein the statistical packet is transmitted from an analyzer port selected by the analyzer port selector.
複数の入力回線と複数の出力回線とに接続され、前記入力回線の一つから受信したパケットをヘッダ情報によって特定される前記出力回線の一つから送信するパケット中継装置において、
入力フローまたは出力フロー毎に、受信パケットまたは送信パケットのヘッダ情報および/または統計情報をデータとして備える統計パケットを送信する複数のアナライザポートから構成されるアナライザポートグループを指定するアナライザポートグループ指定部と、
前記統計パケット毎に前記アナライザポートグループ指定部で指定された複数のアナライザポートのうちいずれか一つのアナライザポートを選択するアナライザポート選択部とを備え、
前記アナライザポート選択部は、前記アナライザポートグループを構成する複数のアナライザポート毎に送信された統計パケットのパケットレートを監視し、前記統計パケットのパケットレートが予め定められたパケットレートに達しないアナライザポートを選択し、
前記アナライザポート選択部で選択されたアナライザポートから前記統計パケットを送信することを特徴とするパケット中継装置。
In a packet relay device that is connected to a plurality of input lines and a plurality of output lines, and that transmits a packet received from one of the input lines from one of the output lines specified by header information,
An analyzer port group designating unit for designating an analyzer port group composed of a plurality of analyzer ports that transmit statistical packets having header information and / or statistical information of received packets or transmitted packets as data for each input flow or output flow; ,
An analyzer port selection unit that selects one of the plurality of analyzer ports designated by the analyzer port group designation unit for each statistical packet;
The analyzer port selection unit monitors a packet rate of a statistical packet transmitted for each of a plurality of analyzer ports constituting the analyzer port group, and an analyzer port in which the packet rate of the statistical packet does not reach a predetermined packet rate select,
A packet relay apparatus, wherein the statistical packet is transmitted from an analyzer port selected by the analyzer port selector.
請求項1ないし請求項3のいずれか一つに記載のパケット中継装置の前記ミラーポートグループに属する複数のミラーポートに、ミラーパケットを解析するアナライザを接続することを特徴とするトラフィックモニタシステム。 4. A traffic monitoring system, wherein an analyzer for analyzing a mirror packet is connected to a plurality of mirror ports belonging to the mirror port group of the packet relay device according to any one of claims 1 to 3 . 請求項4ないし請求項6のいずれか一つに記載のパケット中継装置の前記アナライザポートグループに属する複数のアナライザポートに、統計パケットを解析するアナライザを接続することを特徴とするトラフィックモニタシステム。 7. A traffic monitoring system, wherein an analyzer for analyzing a statistical packet is connected to a plurality of analyzer ports belonging to the analyzer port group of the packet relay device according to claim 4 .
JP2008071422A 2008-03-19 2008-03-19 Packet relay device and traffic monitoring system Active JP4988632B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008071422A JP4988632B2 (en) 2008-03-19 2008-03-19 Packet relay device and traffic monitoring system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008071422A JP4988632B2 (en) 2008-03-19 2008-03-19 Packet relay device and traffic monitoring system

Publications (2)

Publication Number Publication Date
JP2009231890A JP2009231890A (en) 2009-10-08
JP4988632B2 true JP4988632B2 (en) 2012-08-01

Family

ID=41246862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008071422A Active JP4988632B2 (en) 2008-03-19 2008-03-19 Packet relay device and traffic monitoring system

Country Status (1)

Country Link
JP (1) JP4988632B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4659850B2 (en) 2008-04-10 2011-03-30 富士通株式会社 Network monitoring program, network monitoring method, and network monitoring apparatus
JP5283638B2 (en) * 2010-01-08 2013-09-04 アラクサラネットワークス株式会社 Packet relay device
KR101408032B1 (en) * 2011-08-24 2014-07-04 주식회사 케이티 Distribution System for analysing massive traffic in real time and method thereof
JP6060051B2 (en) 2013-08-08 2017-01-11 アラクサラネットワークス株式会社 Packet relay apparatus and packet relay method
KR101564643B1 (en) 2013-10-17 2015-11-09 한국전자통신연구원 Network apparatus and selective information monitoring method using the same
WO2015189971A1 (en) * 2014-06-13 2015-12-17 株式会社アルチザネットワークス Packet capture apparatus, packet capture method, and packet reconstruction method
JP6599819B2 (en) * 2016-06-02 2019-10-30 アラクサラネットワークス株式会社 Packet relay device
JP7287852B2 (en) * 2019-07-05 2023-06-06 アラクサラネットワークス株式会社 Monitoring system, collector, analyzer, monitoring method, and monitoring program
US20230198880A1 (en) 2020-04-30 2023-06-22 New H3C Technologies Co., Ltd. Analysis of data stream
WO2023238354A1 (en) * 2022-06-09 2023-12-14 日本電信電話株式会社 Traffic monitoring device, traffic monitoring method, and traffic monitoring program

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000013439A (en) * 1998-06-22 2000-01-14 Fujitsu Ltd Multilink type routing method and multilink type router
JP2003525000A (en) * 2000-02-22 2003-08-19 トップ レイヤー ネットワークス,インク. Data flow mirror processing system and method in network switch
JP4512196B2 (en) * 2005-10-20 2010-07-28 アラクサラネットワークス株式会社 Abnormal traffic detection method and packet relay apparatus

Also Published As

Publication number Publication date
JP2009231890A (en) 2009-10-08

Similar Documents

Publication Publication Date Title
JP4988632B2 (en) Packet relay device and traffic monitoring system
Giotis et al. Leveraging SDN for efficient anomaly detection and mitigation on legacy networks
US9813339B2 (en) Filtering and route lookup in a switching device
US8130767B2 (en) Method and apparatus for aggregating network traffic flows
US8175096B2 (en) Device for protection against illegal communications and network system thereof
JP4759389B2 (en) Packet communication device
US7636305B1 (en) Method and apparatus for monitoring network traffic
CN108063765B (en) SDN system suitable for solving network security
EP1742416B1 (en) Method, computer readable medium and system for analyzing and management of application traffic on networks
US7986629B1 (en) Filtering and route lookup in a switching device
US9722926B2 (en) Method and system of large flow control in communication networks
Christy Software to support massively parallel computing on the MasPar MP-1
US7957396B1 (en) Targeted flow sampling
US7898966B1 (en) Discard interface for diffusing network attacks
US20120207024A1 (en) Network traffic analysis using a flow table
JP5870009B2 (en) Network system, network relay method and apparatus
EP1348285B1 (en) Progressive and distributed regulation of selected network traffic destined for a network node
JP2005277804A (en) Information relaying apparatus
Huang et al. Countering denial-of-service attacks using congestion triggered packet sampling and filtering
JP2017216664A (en) Packet relay device
US8964763B2 (en) Inter-router communication method and module
US8792366B2 (en) Network packet latency measurement
JP5178573B2 (en) Communication system and communication method
JP4871775B2 (en) Statistical information collection device
JP2009296158A (en) Communication data statistical apparatus and communication data statistical method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100510

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110919

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120403

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120426

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4988632

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250