JP4988420B2 - Lighting device - Google Patents

Lighting device Download PDF

Info

Publication number
JP4988420B2
JP4988420B2 JP2007114670A JP2007114670A JP4988420B2 JP 4988420 B2 JP4988420 B2 JP 4988420B2 JP 2007114670 A JP2007114670 A JP 2007114670A JP 2007114670 A JP2007114670 A JP 2007114670A JP 4988420 B2 JP4988420 B2 JP 4988420B2
Authority
JP
Japan
Prior art keywords
light
liquid crystal
dichroic dye
optical filter
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007114670A
Other languages
Japanese (ja)
Other versions
JP2008268762A (en
Inventor
和雄 吉田
晋治 野口
友樹 白川
英夫 藤掛
駿太郎 又賀
ティース ティーマン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu University NUC
Panasonic Corp
Japan Broadcasting Corp
Panasonic Holdings Corp
Original Assignee
Kyushu University NUC
Panasonic Corp
Japan Broadcasting Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu University NUC, Panasonic Corp, Japan Broadcasting Corp, Matsushita Electric Industrial Co Ltd filed Critical Kyushu University NUC
Priority to JP2007114670A priority Critical patent/JP4988420B2/en
Publication of JP2008268762A publication Critical patent/JP2008268762A/en
Application granted granted Critical
Publication of JP4988420B2 publication Critical patent/JP4988420B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Liquid Crystal (AREA)

Description

本発明は、光の色温度を調節することができる光学フィルタを備えた照明装置に関する。   The present invention relates to an illumination device including an optical filter capable of adjusting the color temperature of light.

光の色温度は、人の生体リズムや覚醒度に影響を与えることが知られており、例えば、低色温度の光には、リラクゼーションの効果があり、一方、高色温度の光には、覚醒度を上昇させる効果がある。近年では、この光の色温度が人の生体リズム等に与える効果に着目し、照明光の色温度を変化させることにより、個人の嗜好、環境又は時間等に応じた快適な照明環境を得られるようにした照明装置が提案されている。   The color temperature of light is known to affect the biological rhythm and arousal level of humans. For example, light with low color temperature has a relaxation effect, while light with high color temperature It has the effect of increasing the arousal level. In recent years, focusing on the effect of the color temperature of light on human biological rhythms and the like, it is possible to obtain a comfortable illumination environment according to personal preference, environment, time, etc. by changing the color temperature of illumination light. There has been proposed an illumination device as described above.

このような照明装置としては、光源から照射された光のうち、特定の波長の光を吸収して透過させないことにより、光の色温度を制御する光学フィルタを備えた照明装置が知られている(例えば、特許文献1参照)。この種の照明装置は、照明器具に備えられた光学フィルタが、吸収分光特性の異なる二色性色素を含む液晶セルを有しており、この液晶セルに電圧が印加されると、その電圧に応じて、液晶に含まれる二色性色素の分子配列が変化することで、光学フィルタを透過する光の色温度を制御する。   As such an illuminating device, an illuminating device including an optical filter that controls the color temperature of light by absorbing light of a specific wavelength out of light emitted from a light source and not transmitting the light is known. (For example, refer to Patent Document 1). In this type of lighting device, an optical filter provided in a lighting fixture has a liquid crystal cell containing dichroic dyes having different absorption spectral characteristics. When a voltage is applied to the liquid crystal cell, In response, the molecular arrangement of the dichroic dye contained in the liquid crystal changes to control the color temperature of the light transmitted through the optical filter.

また、光の色温度を調節することができる照明装置は、舞台等の演出照明として用いられることがある。このような照明装置では、光源に光出力の放電灯を用いることがあり、放電灯からの出射光に含まれる紫外線によって、二色性色素が経時的に変質することを防止するため、光源と光学フィルタとの間に紫外線吸収フィルタを備えた照明装置が知られている(例えば、特許文献2参照)。
特開2000−89188号公報 特開2004−61828号公報
Moreover, the illuminating device which can adjust the color temperature of light may be used as stage lighting, such as a stage. In such an illuminating device, a light output discharge lamp may be used as the light source, and in order to prevent the dichroic dye from changing with time due to ultraviolet light contained in the light emitted from the discharge lamp, An illumination device including an ultraviolet absorption filter between an optical filter is known (see, for example, Patent Document 2).
JP 2000-89188 A JP 2004-61828 A

しかしながら、代表的な二色性色素として知られるアゾ系又はアントラキノン系二色性色素は、耐光性が弱いため、光源からの照射光の曝露によって経時的な退色を生じ、二色性色素の固有の光吸収特性が失われてしまうことがある。そのため、特許文献1及び特許文献2に示されるように、これらの二色性色素を用いた照明装置では、長期的には照射光を所望の色温度に制御できないことがある。   However, azo or anthraquinone dichroic dyes, which are known as typical dichroic dyes, have low light resistance. May lose the light absorption characteristics. For this reason, as shown in Patent Document 1 and Patent Document 2, in the illumination device using these dichroic dyes, the irradiation light may not be controlled to a desired color temperature in the long term.

本発明は、上記課題を解決するものであり、二色性色素の経時的変質を抑制し、長期的に安定して照射光の色温度を調節することができる光学フィルタを備えた照明装置を提供することを目的とする。   The present invention solves the above-described problem, and provides an illuminating device including an optical filter that can suppress deterioration over time of a dichroic dye and can stably adjust the color temperature of irradiation light over a long period of time. The purpose is to provide.

上記課題を解決するために、請求項1の発明は、吸収分光特性の異なる二色性色素を含む液晶が透明電極付きの透明基板に挟設されて成る液晶セルを有する光学フィルタと、光源と、前記光学フィルタと光源との間に設けられる紫外線吸収フィルタと、を備えた照明装置であって、前記二色性色素は、蛍光性ベンゾチアジアゾール系色素から成り、前記液晶は、ヒンダードアミン系光安定剤を含有するものである。 In order to solve the above problems, the invention of claim 1 is directed to an optical filter having a liquid crystal cell in which liquid crystals containing dichroic dyes having different absorption spectral characteristics are sandwiched between transparent substrates with transparent electrodes, a light source, the a lighting apparatus having an ultraviolet-absorbing filter provided, the between the optical filter and the light source, the dichroic dye, Ri consists fluorescent benzothiadiazole dyes, the liquid crystal is a hindered amine light It contains a stabilizer .

請求項1の発明によれば、二色性色素として蛍光性ベンゾチアジアゾール系色素を用いたので、例えば、アゾ系又はアントラキノン系といった汎用の二色性色素を用いたときよりも、ランプ光の曝露による二色性色素の経時的な退色を有効に抑制することができる。また、蛍光ベンゾチアジアゾール系二色性色素とヒンダードアミン系光安定剤を組合せたとき、光源からの光の曝露による経時的な二色性色素の退色を更に抑制することができる。これにより、二色性色素の光吸収特性が長期的に維持され、照明装置は安定して照射光の色温度を制御することができる。 According to the first aspect of the present invention, since the fluorescent benzothiadiazole dye is used as the dichroic dye, the exposure to the lamp light is greater than when a general-purpose dichroic dye such as an azo dye or an anthraquinone dye is used. It is possible to effectively suppress the fading over time of the dichroic dye due to. Further, when a fluorescent benzothiadiazole dichroic dye and a hindered amine light stabilizer are combined, it is possible to further suppress the fading of the dichroic dye over time due to light exposure from a light source. Thereby, the light absorption characteristic of the dichroic dye is maintained for a long time, and the lighting device can control the color temperature of the irradiation light stably.

本発明の一実施形態に係る照明器具について、図1を参照して説明する。照明装置1は、光源2と、光源2の光出射方向に配置される光学フィルタ3と、光学フィルタ3の光入射面に配設される紫外線吸収フィルタ4と、を備える。また、照明装置1は、光源2からの出射光を光学フィルタ3の方向へ反射させるための反射部材5を適宜に備える。光源2、光学フィルタ3、紫外線吸収フィルタ4及び反射部材5は、光出射方向に開口部を有する筐体6に収容される。また、光源2は光源給電部7に、光学フィルタ3はフィルタ制御電源部8に接続される。   The lighting fixture which concerns on one Embodiment of this invention is demonstrated with reference to FIG. The illumination device 1 includes a light source 2, an optical filter 3 disposed in the light emission direction of the light source 2, and an ultraviolet absorption filter 4 disposed on the light incident surface of the optical filter 3. In addition, the illumination device 1 appropriately includes a reflecting member 5 for reflecting the emitted light from the light source 2 in the direction of the optical filter 3. The light source 2, the optical filter 3, the ultraviolet absorption filter 4, and the reflection member 5 are accommodated in a housing 6 having an opening in the light emission direction. The light source 2 is connected to the light source power supply unit 7, and the optical filter 3 is connected to the filter control power supply unit 8.

光源2から出射された光L1は、直接又は反射部材5で反射され、筐体6の開口部に備えられた紫外線吸収フィルタ4及び光学フィルタ3を透過して照明装置1外へ出射される。なお、紫外線吸収フィルタ4は、光学フィルタ3の光入射面だけでなく、光出射面側にも配設されていてもよい。これにより、他の照明装置等から光学フィルタ3を保護することができる。   The light L <b> 1 emitted from the light source 2 is reflected directly or by the reflecting member 5, passes through the ultraviolet absorption filter 4 and the optical filter 3 provided in the opening of the housing 6, and is emitted outside the illumination device 1. The ultraviolet absorbing filter 4 may be disposed not only on the light incident surface of the optical filter 3 but also on the light emitting surface side. Thereby, the optical filter 3 can be protected from other illumination devices and the like.

光源2は、汎用の光源であり、図1では蛍光灯を用いた例を示しているが、例えば、白熱灯、高輝度放電灯等であってもよく、好ましくは放射分光特性が平坦な光源が用いられる。   The light source 2 is a general-purpose light source, and FIG. 1 shows an example using a fluorescent lamp. However, the light source 2 may be an incandescent lamp, a high-intensity discharge lamp, or the like, and preferably has a flat emission spectral characteristic. Is used.

光学フィルタ3は、フィルタ制御電源部8からの給電に従って、光源2から入射した光L1のうち、特定の波長の光の透過を制御することにより、光学フィルタ3を透過した光L2の色温度を変化させる。なお、光学フィルタ3の具体的な構成については後述する。   The optical filter 3 controls the transmission of light of a specific wavelength out of the light L1 incident from the light source 2 in accordance with the power supply from the filter control power supply unit 8, thereby adjusting the color temperature of the light L2 transmitted through the optical filter 3. Change. A specific configuration of the optical filter 3 will be described later.

紫外線吸収フィルタ4は、紫外線吸収剤を含有する透光性樹脂から成る薄板であって、光源2から入射した光L1のうち、好ましくは波長略410nm以下の光(紫外線)を吸収することにより、光学フィルタ3を紫外線から保護する。紫外線吸収剤としては、例えば、2−ヒドロキシ−ベンゾフェノン、2−(2’−ヒドロキシフェニル)ベンゾトリアゾール又はこれらの誘導体のうち、少なくとも1種を含有したものが用いられる。本実施形態において、波長略360nm以下の光を略100%カットする汎用の紫外線吸収フィルタを用いてもよいが、波長略410nm以下の光をカットする紫外線吸収フィルタを用いるのが望ましい。   The ultraviolet absorption filter 4 is a thin plate made of a translucent resin containing an ultraviolet absorber, and preferably absorbs light (ultraviolet light) having a wavelength of about 410 nm or less from the light L1 incident from the light source 2. The optical filter 3 is protected from ultraviolet rays. As an ultraviolet absorber, what contains at least 1 sort (s) among 2-hydroxy-benzophenone, 2- (2'-hydroxyphenyl) benzotriazole, or these derivatives is used, for example. In this embodiment, a general-purpose ultraviolet absorption filter that cuts light with a wavelength of about 360 nm or less by about 100% may be used, but it is desirable to use an ultraviolet absorption filter that cuts light with a wavelength of about 410 nm or less.

波長略410nm以下の光をカットする紫外線吸収フィルタは、透光性樹脂材としてアクリル樹脂(三菱レイヨン製、商品名:VH001)を用い、この樹脂材に紫外線吸収剤としてチバスペシャルケミカルズ製TINUVIN326を2%添加して、押し出し成形、射出成形又はセルキャスト成形といった汎用の成形方法を用いて作製される。紫外線吸収剤には、上記の2−ヒドロキシ−ベンゾフェノン、2−(2’−ヒドロキシフェニル)ベンゾトリアゾール又はこれらの誘導体が用いられ、例えば、チバスペシャルケミカルズ製TINUVIN327、TINUVIN3278等を用いてもよい。   An ultraviolet absorption filter that cuts off light having a wavelength of about 410 nm or less uses acrylic resin (trade name: VH001, manufactured by Mitsubishi Rayon) as a translucent resin material, and 2 TINUVIN 326 manufactured by Ciba Special Chemicals is used as the ultraviolet absorber for this resin material. %, And a general-purpose molding method such as extrusion molding, injection molding or cell cast molding is used. As the ultraviolet absorber, the above-mentioned 2-hydroxy-benzophenone, 2- (2'-hydroxyphenyl) benzotriazole or a derivative thereof is used. For example, TINUVIN327, TINUVIN3278 manufactured by Ciba Special Chemicals may be used.

反射部材5は、汎用の光学部材であって、例えば、椀型に形成された樹脂構造体に、光反射率の高いアルミニウム等を蒸着させたものが用いられる。また、反射部材5は、筐体6の内表面が所望の光学特性が発揮されるような形状に形成され、また、アルミニウム蒸着等の表面処理を施すことにより構成したものであってもよい。   The reflecting member 5 is a general-purpose optical member, and for example, a resin structure formed in a bowl shape is vapor-deposited with high light reflectance aluminum or the like. Further, the reflecting member 5 may be configured such that the inner surface of the housing 6 is formed in a shape that exhibits desired optical characteristics and is subjected to a surface treatment such as aluminum vapor deposition.

筐体6は、一方が開口し、他方が閉口した略筒形の構造材である。この筐体6は、光源2から放射される熱により、内部が高温に晒される場合もあるので、耐熱性及び耐久性に優れた金属材又は樹脂材等により形成される。   The housing 6 is a substantially cylindrical structural material having one opened and the other closed. Since the inside of the housing 6 may be exposed to a high temperature due to heat radiated from the light source 2, the housing 6 is formed of a metal material or a resin material having excellent heat resistance and durability.

光源給電部7は、商用電源ACからの供電を受けて、光源2の種類等に応じて所定の電圧に変換して光源2へ電流を供給する。また、例えば、光源2が蛍光灯等であるときは、図1に示されるようなインバータ回路71といった適宜の回路が備えられる。   The light source power supply unit 7 receives power supplied from the commercial power source AC, converts it into a predetermined voltage according to the type of the light source 2, and supplies current to the light source 2. For example, when the light source 2 is a fluorescent lamp or the like, an appropriate circuit such as an inverter circuit 71 as shown in FIG. 1 is provided.

フィルタ制御電源部8は、ユーザの操作等によって出力された調色信号を受信して、この調色信号に対応した適宜の電圧を制御して光学フィルタ3へ出力できる電源が用いられ、調色信号を検出すると共に、検出した信号に応じた適宜の電圧を制御する検出回路及び制御回路81等を備える。   The filter control power supply unit 8 uses a power supply that can receive a toning signal output by a user operation, etc., control an appropriate voltage corresponding to the toning signal, and output it to the optical filter 3. A detection circuit and a control circuit 81 that detect a signal and control an appropriate voltage according to the detected signal are provided.

次に、光学フィルタ3の具体的な構成について、図2を参照して説明する。なお、図2では、光源2及び光源給電部7の記載を省略している。光学フィルタ3は、吸収分光特性の異なる二色性色素31を含む液晶材32が透明電極33付きの透明基板34に挟設されて成る液晶セル35を有する。また、透明基板34は封止材36によって固定される。透明電極33は、フィルタ制御電源部8に接続され、交流又は直流の駆動電圧が印加される。なお、上述の図1及び図2は、液晶セル35を1つ備えた光学フィルタ3を示しているが、この液晶セル35は複数枚備えられることもある。   Next, a specific configuration of the optical filter 3 will be described with reference to FIG. In addition, in FIG. 2, description of the light source 2 and the light source electric power feeding part 7 is abbreviate | omitted. The optical filter 3 has a liquid crystal cell 35 in which a liquid crystal material 32 containing dichroic dyes 31 having different absorption spectral characteristics is sandwiched between transparent substrates 34 with transparent electrodes 33. The transparent substrate 34 is fixed by a sealing material 36. The transparent electrode 33 is connected to the filter control power supply unit 8 and is applied with an AC or DC drive voltage. Although FIG. 1 and FIG. 2 described above show the optical filter 3 having one liquid crystal cell 35, a plurality of liquid crystal cells 35 may be provided.

二色性色素31は、固有の分子構造に起因する吸光ピークを持っていて、長波長域から短波長域にかけて吸収分光特性が連続的に増加するものや、短波長域から長波長域にかけて吸収分光特性が連続的に増加するものがある。なお、吸収分光特性とは、各々の物質が有する波長ごとの光の吸収特性を言う。一般的な二色性色素としては、アゾ系色素、アントラキノン系色素等が挙げられるが、本実施形態では、光源2から出射された光L1に長期間曝露されることを想定して、退色性が少ない蛍光性ベンゾチアジアゾール系二色性色素が用いられる。なお、蛍光性ベンゾチアジアゾール系二色性色素の合成手順及び合成経路については後述する。   The dichroic dye 31 has an absorption peak due to a unique molecular structure, and absorption spectral characteristics continuously increase from a long wavelength range to a short wavelength range, or absorption from a short wavelength range to a long wavelength range. Some spectral characteristics continuously increase. The absorption spectral characteristic refers to the light absorption characteristic for each wavelength of each substance. Common dichroic dyes include azo dyes, anthraquinone dyes, and the like. In this embodiment, assuming that they are exposed to the light L1 emitted from the light source 2 for a long period of time, the color fading is assumed. Fluorescent benzothiadiazole-based dichroic dyes are used with a small amount. The synthesis procedure and synthesis route of the fluorescent benzothiadiazole-based dichroic dye will be described later.

液晶材32は、汎用のサーモトロピック液晶が用いられ、本実施形態においては、ネマティック液晶、コレステリック液晶、スメクティック液晶のいずれを用いてもよいが、高速応答が得られるネマティック液晶が好ましい。なお、スメクティック液晶の一種である強誘電性液晶を用いてもよい。透明電極33は、液晶材32に対し、その配向を調節する任意の電圧を印加するものであり、例えば、インジウム錫系酸化物が用いられる。透明基板34には、汎用のガラス基板が用いられる。   A general-purpose thermotropic liquid crystal is used as the liquid crystal material 32. In the present embodiment, any of a nematic liquid crystal, a cholesteric liquid crystal, and a smectic liquid crystal may be used, but a nematic liquid crystal capable of obtaining a high-speed response is preferable. Note that a ferroelectric liquid crystal which is a kind of smectic liquid crystal may be used. The transparent electrode 33 applies an arbitrary voltage for adjusting its orientation to the liquid crystal material 32, and for example, an indium tin-based oxide is used. A general-purpose glass substrate is used for the transparent substrate 34.

また、液晶材32には、光を吸収した物質から励起エネルギーを受け取り、光を吸収した物質の劣化を抑制する光安定剤37が添加される。本実施形態で用いられる光安定剤37は、ヒンダードアミン系光安定剤であり、例えば、チバスペシャリティーケミカルズ製CHIMASSORB 2020 FDLが望ましい。   The liquid crystal material 32 is added with a light stabilizer 37 that receives excitation energy from the light-absorbing substance and suppresses deterioration of the light-absorbing substance. The light stabilizer 37 used in the present embodiment is a hindered amine light stabilizer, for example, CHIMASSORB 2020 FDL manufactured by Ciba Specialty Chemicals.

本実施形態の光学フィルタ3で用いられる蛍光性ベンゾチアジアゾール系二色性色素としては、例えば、4,7-Di(2-thienyl)-2,1,3-benzothiadiazoleや4,7-Bis(5-phenylthiophen-2-yl)-2,1,3-benzothiadiazoleが用いられる。以下に、ベンゾチアジアゾール系二色性色素4,7-Di(2-thienyl)-2,1,3-benzothiadiazole及び4,7-Bis(5-phenylthiophen-2-yl)-2,1,3-benzothiadiazoleの合成手順及びその経路について、図3を参照して説明する。先ず、4,7-Di(2-thienyl)-2,1,3-benzothiadiazole(目的物(I))を合成する。続いて、4,7-Di(2-thienyl)-2,1,3-benzothiadiazoleを4,7-Di(5-bromothiophen-2-y)-2,1,3-benzothiadiazoleに変換した後、4,7-Bis(5-phenylthiophen-2-yl)-2,1,3-benzothiadiazole(目的物(II))へ誘導する。以下、その詳細を示す。   Examples of the fluorescent benzothiadiazole dichroic dye used in the optical filter 3 of the present embodiment include 4,7-Di (2-thienyl) -2,1,3-benzothiadiazole and 4,7-Bis (5 -phenylthiophen-2-yl) -2,1,3-benzothiadiazole is used. The following are benzothiadiazole dichroic dyes 4,7-Di (2-thienyl) -2,1,3-benzothiadiazole and 4,7-Bis (5-phenylthiophen-2-yl) -2,1,3- The synthesis procedure of benzothiadiazole and its route will be described with reference to FIG. First, 4,7-Di (2-thienyl) -2,1,3-benzothiadiazole (target product (I)) is synthesized. Subsequently, after 4,7-Di (2-thienyl) -2,1,3-benzothiadiazole was converted to 4,7-Di (5-bromothiophen-2-y) -2,1,3-benzothiadiazole, 4 , 7-Bis (5-phenylthiophen-2-yl) -2,1,3-benzothiadiazole (target product (II)). The details are shown below.

<4,7-Di(2-thienyl)-2,1,3-benzothiadiazole(目的物(I))の合成>
アルゴン雰囲気下60°Cで、4,7-ジブロモ-2,1,3-ベンゾチアジアゾール(2.95g)、テトラキストリフェニルホスフィンパラジウム(1.00g)、ベンゼン(100mL)の混合液に、2-チオフェンボロン酸(4.05g)のエタノール溶液(25mL)と2M炭酸ナトリウム水溶液(50mL)を加えた後、この混合物を85°Cで15時間加熱した。反応液を減圧下に濃縮してベンゼンを除去し、ジクロロメタンで抽出した。抽出液を水洗、硫酸マグネシウムで乾燥、減圧下に溶媒を留去して得た固体をヘキサンから再結晶し、赤色針状結晶の目的物4,7-Di(2-thienyl)-2,1,3-benzothiadiazole(目的物(I))を得た。
<Synthesis of 4,7-Di (2-thienyl) -2,1,3-benzothiadiazole (target product (I))>
2-thiophene boron in a mixture of 4,7-dibromo-2,1,3-benzothiadiazole (2.95 g), tetrakistriphenylphosphine palladium (1.00 g), and benzene (100 mL) at 60 ° C under an argon atmosphere After adding an acid (4.05 g) solution in ethanol (25 mL) and 2M aqueous sodium carbonate (50 mL), the mixture was heated at 85 ° C. for 15 h. The reaction solution was concentrated under reduced pressure to remove benzene and extracted with dichloromethane. The extract was washed with water, dried over magnesium sulfate, and the solid obtained by distilling off the solvent under reduced pressure was recrystallized from hexane to give the desired product 4,7-Di (2-thienyl) -2,1 as red needle crystals. , 3-benzothiadiazole (target product (I)) was obtained.

<4,7-Bis(5-phenylthiophen-2-yl)-2,1,3-benzothiadiazole(目的物(II))の合成>
アルゴン雰囲気下室温で、上述の方法で合成された4,7-Di(2-thienyl)-2,1,3-benzothiadiazole(100mg)、NBS(125mg)のクロロフォルム溶液(100mL)を、48時間攪拌した。沈殿物をろ取して、水、メタノール、クロロフォルムで洗滌し、赤色粉末の目的物4,7-Di(5-bromothiophen-2-y)-2,1,3-benzothiadiazoleを得た。続いて、アルゴン雰囲気下60°Cで、上記の4,7-Di(5-bromothiophen-2-y)-2,1,3-benzothiadiazole(229mg)、テトラキストリフェニルホスフィンパラジウム(12mg)、ベンゼン(16mL) の混合液に、4-フェニルボロン酸(183mg)のエタノール溶液(4mL)と2M炭酸ナトリウム水溶液(8mL)を加えた後、この混合物を、85°Cで12時間加熱した。反応液を水(100mL)に注ぎ、クロロフォルムで抽出した。抽出液を硫酸マグネシウムで乾燥、減圧下に溶媒を留去して得た固体をカラムクロマト(シリカゲル(Wako Ggel C−300)、ヘキサン/クロロフォルム=1/1(v/v)で分離して、赤色粉末の目的物4,7-Bis(5-phenylthiophen-2-yl)-2,1,3-benzothiadiazole(目的物(II))を得た。
<Synthesis of 4,7-Bis (5-phenylthiophen-2-yl) -2,1,3-benzothiadiazole (target product (II))>
Stir the chloroform solution (100 mL) of 4,7-Di (2-thienyl) -2,1,3-benzothiadiazole (100 mg) and NBS (125 mg) synthesized by the above method at room temperature under argon atmosphere for 48 hours. did. The precipitate was collected by filtration and washed with water, methanol, and chloroform to give the desired product 4,7-Di (5-bromothiophen-2-y) -2,1,3-benzothiadiazole as a red powder. Subsequently, at 60 ° C. under an argon atmosphere, the above 4,7-Di (5-bromothiophen-2-y) -2,1,3-benzothiadiazole (229 mg), tetrakistriphenylphosphine palladium (12 mg), benzene ( 16 mL) was added a solution of 4-phenylboronic acid (183 mg) in ethanol (4 mL) and 2M aqueous sodium carbonate (8 mL), and the mixture was heated at 85 ° C. for 12 hours. The reaction mixture was poured into water (100 mL) and extracted with chloroform. The extract was dried over magnesium sulfate, and the solid obtained by evaporating the solvent under reduced pressure was separated by column chromatography (silica gel (Wako Ggel C-300), hexane / chloroform = 1/1 (v / v), The desired product 4,7-Bis (5-phenylthiophen-2-yl) -2,1,3-benzothiadiazole (target product (II)) was obtained as a red powder.

次に、上記のように構成された本実施形態における光学フィルタ3の動作を説明する。液晶セル35の透明電極33に電圧が印加されていないとき、細長い分子構造の液晶材32及び二色性色素31は、透明基板34に対して平行に配向(ホモジニアス配向)していて、二色性色素31の長軸方向に振動する偏光を強く吸収(ハイルマイヤー型ゲストホスト動作)する。従って、例えば、短波長成分に対する吸収分光特性を有する二色性色素31含む液晶セル35は、透過した光の色温度を増加させ、一方、長波長成分に対する吸収分光特性を有する二色性色素31含む液晶セル35は、透過した光の色温度を減少させる。   Next, the operation of the optical filter 3 configured as described above in the present embodiment will be described. When no voltage is applied to the transparent electrode 33 of the liquid crystal cell 35, the liquid crystal material 32 and the dichroic dye 31 having an elongated molecular structure are aligned in parallel (homogeneous alignment) with respect to the transparent substrate 34. Strongly absorbs polarized light oscillating in the long axis direction of the functional dye 31 (Heilmeier guest-host operation). Therefore, for example, the liquid crystal cell 35 including the dichroic dye 31 having the absorption spectral characteristic for the short wavelength component increases the color temperature of the transmitted light, while the dichroic dye 31 having the absorption spectral characteristic for the long wavelength component. The included liquid crystal cell 35 reduces the color temperature of the transmitted light.

一方、液晶セル35の透明電極33に十分な電圧が印加されると、細長い分子構造の液晶材32及び二色性色素31は電界方向に再配向して、透明基板34に対して垂直に立ち上がる。そのため、二色性色素31による短波長成分及び長波長成分の吸収が減少して、液晶セル35の透過分光特性は平坦になり、液晶セル35を透過した光の色温度は変化しない。   On the other hand, when a sufficient voltage is applied to the transparent electrode 33 of the liquid crystal cell 35, the liquid crystal material 32 having a long and narrow molecular structure and the dichroic dye 31 are reoriented in the electric field direction and rise perpendicularly to the transparent substrate 34. . Therefore, the absorption of the short wavelength component and the long wavelength component by the dichroic dye 31 is reduced, the transmission spectral characteristic of the liquid crystal cell 35 becomes flat, and the color temperature of the light transmitted through the liquid crystal cell 35 does not change.

このように、吸収分光特性の異なる二色性色素31含む液晶セル35に印加する電圧を適宜に制御することで、液晶セル35の透過分光特性が連続的に変化する。従って、光学フィルタ3は、印加する電圧を変化させることで、その透過分光特性をアナログ的に制御することができ、光源2から入射した光L1のうち、特定の波長の光を吸収して出射し、色温度を制御した照明光L2を出射することができる。また、この光学フィルタ3を備えたことにより、本実施形態の照明装置1は、光の色温度を広範囲かつ連続的に制御された照明光を出射することが可能となる。   Thus, by appropriately controlling the voltage applied to the liquid crystal cell 35 including the dichroic dyes 31 having different absorption spectral characteristics, the transmission spectral characteristics of the liquid crystal cell 35 continuously change. Therefore, the optical filter 3 can control the transmission spectral characteristic in an analog manner by changing the voltage to be applied, and absorbs and emits light of a specific wavelength out of the light L1 incident from the light source 2. In addition, the illumination light L2 having a controlled color temperature can be emitted. Moreover, by providing this optical filter 3, the illuminating device 1 of this embodiment can emit the illumination light in which the color temperature of light is controlled in a wide range and continuously.

また、本実施形態の照明装置1は、二色性色素31として、退色性が少ない蛍光性ベンゾチアジアゾール系二色性色素を用いたことにより、光源2からの照射される紫外線による二色性色素31の経時的な変質を有効に抑制し、ひいては光学フィルタ3の耐光性を向上させて、長期的に安定して光源2から出射する光の色温度を調節することができる。   Moreover, the illuminating device 1 of the present embodiment uses a dichroic dye 31 that is a fluorescent benzothiadiazole-based dichroic dye with less fading as the dichroic dye 31, so that the dichroic dye by ultraviolet rays irradiated from the light source 2 It is possible to effectively suppress the temporal deterioration of 31 and thus improve the light resistance of the optical filter 3 and to adjust the color temperature of the light emitted from the light source 2 stably over a long period of time.

以下に、紫外線吸収フィルタ4の光透過特性と二色性色素31の経時的変質の測定結果について、本実施形態の照明装置1における実施例1乃至3、及び比較例1乃至4について説明する。   Hereinafter, Examples 1 to 3 and Comparative Examples 1 to 4 in the illumination device 1 of the present embodiment will be described with respect to the measurement results of the light transmission characteristics of the ultraviolet absorption filter 4 and the temporal change of the dichroic dye 31.

<実施例1>
液晶材32として、チッソ社製、商品名:JC−1069RBを、二色性色素31として蛍光性二色性色素4,7-Di(2-thienyl)-2,1,3-benzothiadiazoleを用い、液晶材32に二色性色素31を0.5重量%溶解させ、基板間隔7μmのガラス製の液晶セル35(イーエイチシー社製)に注入した後、封止材36として紫外線硬化封止材(イーエイチシー社製、商品名:UV−RESIN LC610)を用いて密封した。また、図4に示されるように、光学フィルタ3の光入射面及び光出射面に、波長略410nm以下の光を略100%透過させない紫外線吸収フィルタ4を設置した。紫外線吸収フィルタ4には、紫外線吸収剤としてチバスペシャルケミカルズ製TINUVIN326を2%添加したアクリル樹脂(三菱レイヨン製、商品名:VH001)を用いた。なお、ここで用いた紫外線吸収フィルタ4の光透過特性を図5に示す。
<Example 1>
As a liquid crystal material 32, a product name: JC-1069RB manufactured by Chisso Corporation is used, and a fluorescent dichroic dye 4,7-Di (2-thienyl) -2,1,3-benzothiadiazole is used as the dichroic dye 31. After 0.5 wt% of the dichroic dye 31 is dissolved in the liquid crystal material 32 and injected into a glass liquid crystal cell 35 (manufactured by HC Corporation) having a substrate interval of 7 μm, an ultraviolet curable sealing material is used as the sealing material 36. (The product made by HC Corporation, brand name: UV-RESIN LC610) was sealed. Further, as shown in FIG. 4, an ultraviolet absorption filter 4 that does not transmit substantially 100% of light having a wavelength of about 410 nm or less is disposed on the light incident surface and the light emitting surface of the optical filter 3. As the ultraviolet absorbing filter 4, an acrylic resin (trade name: VH001, manufactured by Mitsubishi Rayon) to which 2% of TINUVIN 326 manufactured by Ciba Special Chemicals was added as an ultraviolet absorber was used. The light transmission characteristics of the ultraviolet absorption filter 4 used here are shown in FIG.

<実施例2>
二色性色素31として蛍光性二色性色素4,7-Bis(5-phenylthiopen-2-yl)-2,1,3-benzothiadiazoleを用いた点を除き、実施例1と同様にして作製された。
<Example 2>
The dichroic dye 31 was prepared in the same manner as in Example 1 except that the fluorescent dichroic dye 4,7-Bis (5-phenylthiopen-2-yl) -2,1,3-benzothiadiazole was used. It was.

<実施例3>
ヒンダードアミン系光安定剤(シバスペシャリティーケミカルズ社製、商品名:CHIMASSORB 2020 FDL)を液晶材32に対して0.5重量%溶融させたことを除き、実施例1と同様にして作製された。
<Example 3>
The hindered amine light stabilizer (manufactured by Sivas Specialty Chemicals, trade name: CHIMASSORB 2020 FDL) was produced in the same manner as in Example 1 except that 0.5% by weight was melted with respect to the liquid crystal material 32.

<比較例1>
二色性色素として(林原生物化学研究所製、商品名:G−205)を用いたこと、及び波長略410nm以下の光を略100%透過させない紫外線吸収フィルタ4を備えていないことを除き、実施例1と同様にして作製された。
<Comparative Example 1>
Except for using a dichroic dye (trade name: G-205, manufactured by Hayashibara Biochemical Laboratories) and not having an ultraviolet absorption filter 4 that does not transmit light having a wavelength of about 410 nm or less, about 100%. It was produced in the same manner as in Example 1.

<比較例2>
二色性色素として、林原生物化学研究所製、商品名G−205を用いたこと、及び波長略410nm以下の光を略100%透過させない紫外線吸収フィルタ4に替えて、波長略360nm以下の光を略100%透過させないアクリル樹脂製の紫外線吸収フィルタ4を備えたことを除き、上記の比較例1と同様にして作製された。なお、紫外線吸収フィルタ4にはチバスペシャルケミカルズ製TINUVIN324を0.005%添加したアクリル樹脂(三菱レイヨン製、商品名:VH001)を用いた。ここで用いた紫外線吸収フィルタ4の光透過特性を図6に示す。
<Comparative example 2>
Light having a wavelength of about 360 nm or less was used instead of the dichroic dye manufactured by Hayashibara Biochemical Laboratories, trade name G-205, and the ultraviolet absorption filter 4 that does not transmit substantially 100% of light having a wavelength of about 410 nm or less. Was produced in the same manner as Comparative Example 1 except that an ultraviolet absorption filter 4 made of an acrylic resin that did not transmit substantially 100% of the resin was provided. The ultraviolet absorption filter 4 was made of acrylic resin (trade name: VH001, manufactured by Mitsubishi Rayon Co., Ltd.) with 0.005% of TINUVIN324 manufactured by Ciba Special Chemicals. The light transmission characteristics of the ultraviolet absorption filter 4 used here are shown in FIG.

<比較例3>
二色性色素として、林原生物化学研究所製、商品名G−205を用いたことを除いて、実施例1と同様にして作製した。
<Comparative Example 3>
It was produced in the same manner as in Example 1 except that Hayashibara Biochemical Laboratories product name G-205 was used as the dichroic dye.

<比較例4>
ヒンダードアミン系光安定剤(チバスペシャリティーケミカルズ社製、商品名CHIMASSORB 2020 FDL)を液晶材32に対して0.5重量%溶融させたことを除いて、比較例3と同様にして作製された。
<Comparative example 4>
A hindered amine light stabilizer (manufactured by Ciba Specialty Chemicals, trade name CHIMASSORB 2020 FDL) was prepared in the same manner as in Comparative Example 3 except that 0.5% by weight was melted with respect to the liquid crystal material 32.

<耐光試験A>
二色性色素の透過スペクトルを、自記分光光度計(日立製作所製、商品名U−4000)を用いて略300〜800nmの波長範囲で測定し、電圧無印加で着色状態の初期状態の透過率を求めた。その後、400W水銀灯(松下電器産業製、商品名H400)を設置した60℃熱風循環恒温槽中に、水銀灯から200mmの距離に電圧無印加(着色状態)の液晶セルを設置後、水銀灯を点灯しランプ光を照射した。4週間経過後、300〜800nmの波長範囲の透過スペクトルを測定した。上記の実施例及び比較例のうち、比較例1及び実施例1,2における耐光試験A前後の透過スペクトルを夫々図7、図8(a)(b)に示す。また、二色性色素の吸収ピーク波長480nmにおいて、初期状態の透過率に対する試験後の透過率の増加値を求め、透過率の増加が1%未満である場合を◎、透過率の増加が1%以上5%未満である場合を○、透過率の増加が5%以上10%未満である場合を△、透過率の増加が10%を超えた場合を×として退色性能の判定を行い、その判定結果を下記の表1に示す。
<Light resistance test A>
The transmission spectrum of the dichroic dye is measured in a wavelength range of approximately 300 to 800 nm using a self-recording spectrophotometer (trade name U-4000, manufactured by Hitachi, Ltd.), and the transmittance in the initial state of the colored state is applied with no voltage applied. Asked. After that, after installing a non-voltage-applied (colored) liquid crystal cell at a distance of 200 mm from the mercury lamp in a 60 ° C hot-air circulating thermostat equipped with a 400 W mercury lamp (made by Matsushita Electric Industrial Co., Ltd., product name H400), the mercury lamp is turned on. Lamp light was irradiated. After 4 weeks, a transmission spectrum in the wavelength range of 300 to 800 nm was measured. Of the above-mentioned Examples and Comparative Examples, the transmission spectra before and after the light resistance test A in Comparative Example 1 and Examples 1 and 2 are shown in FIGS. 7, 8A, and 8B, respectively. In addition, at the absorption peak wavelength of 480 nm of the dichroic dye, an increase value of the transmittance after the test with respect to the transmittance in the initial state is obtained, and when the increase in the transmittance is less than 1%, ◎, % Is less than 5%, △ is when the increase in transmittance is 5% or more and less than 10%, and x is when the increase in transmittance is more than 10%. The determination results are shown in Table 1 below.

Figure 0004988420
Figure 0004988420

実施例1と比較例1,2に耐光試験Aを施した結果から明らかなように、本実施形態によれば、紫外線吸収フィルタが波長略410nm以下の光を略100%透過させないものであるので、紫外線吸収フィルタを用いないとき、又は汎用の紫外線吸収フィルタを用いたときに比べて、二色性色素31の経時的変質を有効に抑制することができる。また、紫外線吸収剤として、汎用の物質を使用しているので、照明装置全体の生産コストを低減することができる。また、二色性色素31に蛍光ベンゾチアジアゾール系を用いることで経時的な二色性色素の退色が大幅に抑制される。   As is apparent from the results of the light resistance test A performed on Example 1 and Comparative Examples 1 and 2, according to this embodiment, the ultraviolet absorption filter does not transmit substantially 100% of light having a wavelength of about 410 nm or less. The time-dependent alteration of the dichroic dye 31 can be effectively suppressed when not using the ultraviolet absorption filter or when using a general-purpose ultraviolet absorption filter. Moreover, since a general-purpose substance is used as the ultraviolet absorber, the production cost of the entire lighting device can be reduced. In addition, by using a fluorescent benzothiadiazole system for the dichroic dye 31, fading of the dichroic dye over time is significantly suppressed.

<耐光試験B>
二色性色素の透過スペクトルを、自記分光光度計(日立製作所製、商品名U−4000)を用いて300〜800nmの波長範囲で測定し、電圧無印加で着色状態の初期状態の透過率を求めた。その後、ダイプラウインテス製メタルウエザー耐光試験槽内で24時間耐光試験を実施した。(光源;メタルハライドランプ、ランプ放射強度80μw/cm、熱風循環恒温槽中、槽内温度;90℃、ランプ〜試料間距離;200mm)。24時間経過後、300〜800nmの波長範囲の透過スペクトルを測定した。上記の実施例及び比較例のうち、実施例1,2における耐光試験B前後の透過スペクトルを夫々図9(a)(b)に示す。また、二色性色素の吸収ピーク波長480nmにおいて初期状態の反射率に対する試験後の反射率の増加を求め、透過率の増加が1%未満の場合を◎、透過率の増加が1%以上5%未満である場合を○、透過率の増加が5%以上10%未満である場合を△、透過率の増加が10%を超えた場合を×として退色性能の判定を行い、その判定結果を下記の表2に示す。
<Light resistance test B>
The transmission spectrum of the dichroic dye is measured in a wavelength range of 300 to 800 nm using a self-recording spectrophotometer (manufactured by Hitachi, trade name U-4000), and the transmittance in the initial state of the colored state is measured with no voltage applied. Asked. Thereafter, a light resistance test was carried out for 24 hours in a metal weather light resistance test tank manufactured by Daipla Intes. (Light source: metal halide lamp, lamp radiation intensity of 80 μw / cm 2 , in a hot-air circulating thermostat, internal temperature: 90 ° C., distance between lamp and sample: 200 mm). After 24 hours, a transmission spectrum in the wavelength range of 300 to 800 nm was measured. Of the above-mentioned Examples and Comparative Examples, the transmission spectra before and after the light resistance test B in Examples 1 and 2 are shown in FIGS. Further, the increase in the reflectance after the test with respect to the reflectance in the initial state at the absorption peak wavelength of 480 nm of the dichroic dye was determined, and when the increase in transmittance was less than 1%, the increase in transmittance was 1% or more 5 When the ratio is less than%, the fading performance is determined as ◯, when the increase in transmittance is 5% or more and less than 10%, and when the increase in transmittance exceeds 10%, the fading performance is determined. It is shown in Table 2 below.

Figure 0004988420
Figure 0004988420

実施例1と実施例2に耐光試験Bを施した試験結果から明らかなように、蛍光ベンゾチアジアゾール系二色性色素を用いたとき、汎用のアゾ系色素にヒンダードアミン系光安定剤を添加したよりも優れた耐光性能を示している。蛍光ベンゾチアジアゾール系二色性色素とヒンダードアミン系光安定剤を組合せたとき、光源2からの光の曝露による経時的な二色性色素の退色を更に抑制することができる。   As is clear from the test results of the light resistance test B in Example 1 and Example 2, when a fluorescent benzothiadiazole dichroic dye was used, a hindered amine light stabilizer was added to a general-purpose azo dye. Also shows excellent light resistance. When the fluorescent benzothiadiazole dichroic dye and the hindered amine light stabilizer are combined, the fading of the dichroic dye over time due to light exposure from the light source 2 can be further suppressed.

上述のように構成された本実施形態の照明装置1において、二色性色素31として用いられる蛍光性ベンゾチアジアゾール系色素は、吸収エネルギーを熱ではなく、蛍光発光により解放するため、色素分子に与えるダメージが少なくなると考えられ、アゾ系又はアントラキノン系といった汎用の二色性色素を用いたときよりも、光源からの光の曝露による経時的な二色性色素の退色を有効に抑制することができるものと考えられる。   In the illumination device 1 of the present embodiment configured as described above, the fluorescent benzothiadiazole dye used as the dichroic dye 31 is given to the dye molecules because the absorbed energy is released not by heat but by fluorescence. It is considered that the damage is reduced, and it is possible to effectively suppress the fading of the dichroic dye over time due to light exposure from the light source, compared to the case of using a general-purpose dichroic dye such as an azo type or an anthraquinone type. It is considered a thing.

なお、本発明は、上記実施形態の構成に限られることなく種々の変形が可能である。また、上述のようにして合成された蛍光性ベンゾチアジアゾール系色素を二色性色素として用いた光学フィルタ3は、光源から出射される光の色温度を制御しうるように構成された種々の電気機器に適応しうる。   The present invention is not limited to the configuration of the above embodiment, and various modifications can be made. Moreover, the optical filter 3 using the fluorescent benzothiadiazole dye synthesized as described above as a dichroic dye has various electric configurations configured to control the color temperature of light emitted from the light source. Adaptable to equipment.

本発明の一実施形態に係る照明装置の構成を示す部分断面図。The fragmentary sectional view which shows the structure of the illuminating device which concerns on one Embodiment of this invention. 同照明装置の光学フィルタの断面構成図。The cross-sectional block diagram of the optical filter of the illumination device. 蛍光性二色性色素の合成経路を示す図。The figure which shows the synthetic pathway of a fluorescent dichroic dye. 紫外線吸収フィルタを備えた同照明装置の光学フィルタの断面構成図。The cross-sectional block diagram of the optical filter of the illumination device provided with the ultraviolet absorption filter. 波長略410nm以下の光を略100%カットする紫外線吸収フィルタの分光透過特性を示す図。The figure which shows the spectral transmission characteristic of the ultraviolet absorption filter which cuts about 100% of light with a wavelength of about 410 nm or less. 波長略360nm以下の光を略100%カットする紫外線吸収フィルタの分光透過特性を示す図。The figure which shows the spectral transmission characteristic of the ultraviolet absorption filter which cuts about 100% of light with a wavelength of about 360 nm or less. 比較例1の耐光試験Aの前後における色素吸収ピーク波長位置での透過率の変位を示す図。The figure which shows the displacement of the transmittance | permeability in the pigment | dye absorption peak wavelength position before and after the light resistance test A of the comparative example 1. FIG. (a)は実施例1の、(b)は実施例2の、耐光試験Aの前後における色素吸収ピーク波長位置での透過率の変位を示す図。(A) is the figure of Example 1, (b) is a figure which shows the displacement of the transmittance | permeability in the dye absorption peak wavelength position before and behind the light resistance test A of Example 2. FIG. (a)は実施例1の、(b)は実施例2の、耐光試験Bの前後における色素吸収ピーク波長位置での透過率の変位を示す図。(A) is the figure of Example 1, (b) is a figure which shows the displacement of the transmittance | permeability in the dye absorption peak wavelength position before and behind the light resistance test B of Example 2. FIG.

符号の説明Explanation of symbols

1 照明装置
2 光源
3 光学フィルタ
31 二色性色素
32 液晶材
33 透明電極
34 透明基板
35 液晶セル
4 紫外線吸収フィルタ
DESCRIPTION OF SYMBOLS 1 Illuminating device 2 Light source 3 Optical filter 31 Dichroic dye 32 Liquid crystal material 33 Transparent electrode 34 Transparent substrate 35 Liquid crystal cell 4 Ultraviolet absorption filter

Claims (1)

吸収分光特性の異なる二色性色素を含む液晶が透明電極付きの透明基板に挟設されて成る液晶セルを有する光学フィルタと、光源と、前記光学フィルタと光源との間に設けられる紫外線吸収フィルタと、を備えた照明装置であって、
前記二色性色素は、蛍光性ベンゾチアジアゾール系色素から成り、
前記液晶は、ヒンダードアミン系光安定剤を含有することを特徴とする照明装置。
An optical filter having a liquid crystal cell in which liquid crystals containing dichroic dyes having different absorption spectral characteristics are sandwiched between transparent substrates with transparent electrodes, a light source, and an ultraviolet absorption filter provided between the optical filter and the light source And a lighting device comprising:
The dichroic dye, Ri consists fluorescent benzothiadiazole dyes,
The illuminating device , wherein the liquid crystal contains a hindered amine light stabilizer .
JP2007114670A 2007-04-24 2007-04-24 Lighting device Expired - Fee Related JP4988420B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007114670A JP4988420B2 (en) 2007-04-24 2007-04-24 Lighting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007114670A JP4988420B2 (en) 2007-04-24 2007-04-24 Lighting device

Publications (2)

Publication Number Publication Date
JP2008268762A JP2008268762A (en) 2008-11-06
JP4988420B2 true JP4988420B2 (en) 2012-08-01

Family

ID=40048315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007114670A Expired - Fee Related JP4988420B2 (en) 2007-04-24 2007-04-24 Lighting device

Country Status (1)

Country Link
JP (1) JP4988420B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101643755B1 (en) 2008-10-17 2016-07-29 유미코어 니폰 쇼쿠바이 가부시키가이샤 Exhaust gas purifying catalyst and method for purifying exhaust gas using the catalyst
CN112285980A (en) 2013-03-05 2021-01-29 默克专利股份有限公司 Device for adjusting optical energy penetration
JP6463542B1 (en) * 2018-07-25 2019-02-06 株式会社栗原工業 Interference fringe inspection apparatus, interference fringe inspection method, and inspection method using interference fringes
CN110330491B (en) * 2019-07-17 2020-12-22 西安交通大学 High-efficiency aggregation-state luminescent material and preparation method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1031208A (en) * 1996-07-15 1998-02-03 Mitsubishi Chem Corp Liquid crystal element
JP2001033829A (en) * 1999-07-22 2001-02-09 Hosiden Corp Liquid crystal display element having guest-host liquid crystal layer
JP3991732B2 (en) * 2001-04-06 2007-10-17 ソニー株式会社 Imaging device
JP2003104976A (en) * 2001-07-24 2003-04-09 Mitsubishi Chemicals Corp Benzothiadiazole derivative, liquid crystal composition, wavelength-converting element, electroluminescent element, electric charge transportation material and photoelectric transfer element
JP4771670B2 (en) * 2004-06-28 2011-09-14 富士フイルム株式会社 4-amino-2,1,3-benzothiadiazole compounds
JP2006045398A (en) * 2004-08-06 2006-02-16 Toyo Ink Mfg Co Ltd Material for use in organic electroluminescent device, and organic electroluminescent device using the material
JP2008249994A (en) * 2007-03-30 2008-10-16 Sumitomo Chemical Co Ltd Optical member

Also Published As

Publication number Publication date
JP2008268762A (en) 2008-11-06

Similar Documents

Publication Publication Date Title
KR102234246B1 (en) Device for controlling the passage of energy, containing a dichroic dye compound
De Nisi et al. Red-emitting AIEgen for luminescent solar concentrators
Yang et al. An organic white light-emitting fluorophore
KR102254011B1 (en) Device for regulating the passage of light
JP4988420B2 (en) Lighting device
TWI619971B (en) Device for regulating the passage of energy
US11493785B2 (en) Phototherapeutic near IR fluorescent light filters
EP3183318B1 (en) Highly efficient molecules showing resonant energy transfer
US7790068B2 (en) Photochromic compounds based on ring opening and closing of a {1,3}oxazine compound
Wang et al. Purely Organic Fluorescence Afterglow: Visible‐Light‐Excitation, Inherent Mechanism, Tunable Color, and Practical Applications with Very Low Cost
KR102490565B1 (en) Device for controlling the passage of energy
Kamino et al. Xanthene-based functional dyes: Towards new molecules operating in the near-infrared region
KR102430093B1 (en) Device for controlling the passage of energy
Chen et al. Modulation of a fluorescent switch based on a controllable photochromic diarylethene shutter
JP7399120B2 (en) Extruded PET film containing photostable dyes for color conversion
Fahmy et al. Spectroscopic Study of Solvent Polarity on the Optical and Photo-physical Properties of Novel 9, 10-bis (coumarinyl) anthracene
Belikov et al. The first example of “turn-off” red fluorescence photoswitching for the representatives of nitrile-rich negative photochromes
JP2007294215A (en) Illuminating device
Benniston et al. Opening a spiropyran ring by way of an exciplex intermediate
JP4897145B2 (en) Optical functional materials
US20180024383A1 (en) Photo-biomodulation by endogenous auto-fluorescent compounds
RU2033572C1 (en) Compound for production of liquid infrared light filter - heat-transfer agent
Pościk et al. A fast-switching optical filter using the photochromic properties of spirobenzopyranoindoline solutions
JP5299717B2 (en) Optical functional materials
JP2002047282A (en) Coumarin derivative

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120110

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120327

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120426

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees