JP4986662B2 - Dryer - Google Patents

Dryer Download PDF

Info

Publication number
JP4986662B2
JP4986662B2 JP2007066548A JP2007066548A JP4986662B2 JP 4986662 B2 JP4986662 B2 JP 4986662B2 JP 2007066548 A JP2007066548 A JP 2007066548A JP 2007066548 A JP2007066548 A JP 2007066548A JP 4986662 B2 JP4986662 B2 JP 4986662B2
Authority
JP
Japan
Prior art keywords
air
storage chamber
evaporator
temperature
radiator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007066548A
Other languages
Japanese (ja)
Other versions
JP2008220814A (en
Inventor
修 桑原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2007066548A priority Critical patent/JP4986662B2/en
Publication of JP2008220814A publication Critical patent/JP2008220814A/en
Application granted granted Critical
Publication of JP4986662B2 publication Critical patent/JP4986662B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Drying Of Solid Materials (AREA)
  • Detail Structures Of Washing Machines And Dryers (AREA)

Description

本発明は、衣類等の被乾燥物を収容する収容室内において被乾燥物の乾燥運転を実行する乾燥機に関するものである。   The present invention relates to a dryer for performing a drying operation of an object to be dried in a storage room for storing the object to be dried such as clothes.

従来、この種の乾燥機は、本体内に回転自在に取り付けられた回転ドラム内に衣類等の被乾燥物を収容する収容室が構成され、当該収容室には乾燥用の空気を送風するための循環空気経路が接続されている。そして、ファン(送風手段)により循環空気経路内に設けられた放熱器にて加熱された空気を収容室に送風して、当該収容室内に収容された被被乾燥を暖めて湿気を蒸発させ、被乾燥物を乾燥させる。被乾燥物から蒸発した湿気(水分)は蒸発器にて凝結させて除湿し、再び放熱器にて加熱し、収容室に送風するサイクルを繰り返すものであった。そして、このようなサイクルを繰り返すことで、収容室内に収容された被乾燥物が徐々に乾燥されるものであった(例えば、特許文献1参照)。
特開2006−75316号公報
Conventionally, in this type of dryer, a storage chamber for storing an object to be dried such as clothing is configured in a rotating drum that is rotatably mounted in the main body, and air for drying is blown into the storage chamber. The circulating air path is connected. Then, air heated by a radiator provided in the circulation air path by a fan (air blowing means) is blown to the storage chamber to warm the drying target stored in the storage chamber to evaporate the moisture, Dry the material to be dried. The moisture (moisture) evaporated from the material to be dried was condensed by the evaporator, dehumidified, heated again by the radiator, and repeatedly sent to the housing chamber. And by repeating such a cycle, the to-be-dried object accommodated in the storage chamber was dried gradually (for example, refer patent document 1).
JP 2006-75316 A

ところで、このような乾燥機では、乾燥運転の開始直後は、被乾燥物に多量の水分が含まれているため、放熱器にて加熱された高温の空気を収容室に吐出させて、被乾燥物と接触させることで、被乾燥物と空気とが充分に熱交換して、被乾燥物からの水分の蒸発と、空気の温度低下が生じる。その結果、収容室を出て空気循環経路に戻る空気の相対湿度は80%程と飽和状態、或いは、それに近い状態となるため、蒸発器における除湿効率も良好であるが、被乾燥物の乾燥が進行するに伴い、被乾燥物と高温空気とが接触しても当該被乾燥物からの水分蒸発が起こり難くなる。その結果、空気循環経路に戻る空気は湿度を充分に含まない比較的乾いた空気となり、乾燥運転終盤には、その相対湿度が20%程まで低下することもあった。   By the way, in such a dryer, immediately after the start of the drying operation, the material to be dried contains a large amount of moisture. Therefore, high-temperature air heated by a radiator is discharged into the storage chamber to be dried. By contacting with the object, the object to be dried and the air are sufficiently heat exchanged to cause evaporation of moisture from the object to be dried and a decrease in the temperature of the air. As a result, the relative humidity of the air leaving the storage chamber and returning to the air circulation path is saturated or nearly 80%, so that the dehumidification efficiency in the evaporator is good, but the drying of the material to be dried As the process proceeds, moisture evaporation from the object to be dried hardly occurs even when the object to be dried and high-temperature air come into contact with each other. As a result, the air returning to the air circulation path becomes relatively dry air that does not contain sufficient humidity, and at the end of the drying operation, the relative humidity may be reduced to about 20%.

このような状況では、収容室から出る空気は、放熱器と熱交換して収容室に吐出された時の状態と殆ど変わらず、収容室に吐出される空気と比較して、温度低下が少なく、絶対湿度の増加も少ないものであった。即ち、この場合、収容室から出る空気は、未だ被乾燥物から水分を蒸発させる能力を充分に保持する空気となる。   In such a situation, the air exiting the storage chamber is almost the same as when it is discharged into the storage chamber after exchanging heat with the radiator, and the temperature drop is less than that of the air discharged into the storage chamber. Also, the increase in absolute humidity was small. That is, in this case, the air that exits the storage chamber is still air that sufficiently retains the ability to evaporate moisture from the object to be dried.

また、この湿度の低い空気は露点温度も低下するため、蒸発器にてかなり冷やさなければ、空気中の水分を凝縮除去することができない。従って、空気の冷却と再加熱に必要な熱量に対して、空気から除去できる水分量は少なく、乾燥機の乾燥効率の悪化を招いていた。   In addition, since the dew point temperature of this low humidity air also decreases, moisture in the air cannot be condensed and removed unless it is considerably cooled by an evaporator. Accordingly, the amount of water that can be removed from the air is less than the amount of heat required for cooling and reheating the air, leading to deterioration in the drying efficiency of the dryer.

本発明は、係る従来の技術的課題を解決するために成されたものであり、乾燥機の乾燥効率を改善することを目的とする。   The present invention has been made to solve the conventional technical problems, and an object thereof is to improve the drying efficiency of a dryer.

本発明の乾燥機は、被乾燥物を収容する収容室を備え、この収容室内において被乾燥物の乾燥運転を実行するものであって、少なくとも圧縮機、放熱器、減圧装置及び蒸発器が順次環状に配管接続されてなる冷媒回路と、送風手段により放熱器と熱交換した空気を収容室内に送り、この収容室内を経た空気を蒸発器に送った後、再び放熱器に戻す空気循環を構成するための空気循環経路と、空気循環経路を、蒸発器が設置された経路と、循環空気が蒸発器を通過せずに放熱器に至るバイパス経路とに仕切る仕切壁と仕切壁の空気上流側、若しくは、空気下流側に設けられ、蒸発器を通過する空気量とバイパス経路を通過する空気量との比率を調整する流路調整手段と、この流路調整手段を制御する制御手段とを備えたことを特徴とする。 A dryer according to the present invention includes a storage chamber for storing a material to be dried, and performs a drying operation for the material to be dried in the storage chamber. At least a compressor, a radiator, a decompression device, and an evaporator are sequentially provided. A refrigerant circuit that is connected to a pipe in an annular shape, and air circulation that sends air exchanged with a radiator by a blower into the storage chamber, sends the air that has passed through the storage chamber to the evaporator, and then returns to the radiator again. An air circulation path, a partition wall that divides the air circulation path into a path where the evaporator is installed , and a bypass path where the circulating air does not pass through the evaporator and reaches the radiator, and upstream of the partition wall A flow path adjusting means that is provided on the side or downstream of the air and that adjusts the ratio of the amount of air that passes through the evaporator and the amount of air that passes through the bypass path, and a control means that controls the flow path adjusting means. It is characterized by having.

請求項2の発明の乾燥機は、上記発明において制御手段は、収容室に入る循環空気の温度を検出する入口温度検出手段及び該収容室から出た循環空気の温度を検出する出口温度検出手段を備え、乾燥運転の進行によって変化する両温度検出手段の出力に基づき、流路調整手段を制御することを特徴とする。   The dryer of the invention of claim 2 is characterized in that, in the above invention, the control means is an inlet temperature detecting means for detecting the temperature of the circulating air entering the storage chamber and an outlet temperature detecting means for detecting the temperature of the circulating air exiting the storage chamber. And the flow path adjusting means is controlled based on the outputs of the two temperature detecting means that change with the progress of the drying operation.

請求項3の発明の乾燥機は、請求項1に記載の発明において制御手段は時限手段を備え、この時限手段によりカウントされる乾燥運転の進行に応じて流路調整手段を制御することを特徴とする。   According to a third aspect of the present invention, there is provided a dryer according to the first aspect, wherein the control means includes a time limit means, and controls the flow path adjusting means according to the progress of the drying operation counted by the time limit means. And

請求項4の発明の乾燥機は、請求項2又は請求項3に記載の発明において制御手段は、温度検出手段の出力に基づき、又は、時限手段によりカウントされる乾燥運転の進行に応じて送風手段の風量を制御することを特徴とする。   According to a fourth aspect of the present invention, there is provided a dryer according to the second or third aspect of the present invention, wherein the control means sends air based on the output of the temperature detection means or according to the progress of the drying operation counted by the time limit means. The air volume of the means is controlled.

本発明によれば、被乾燥物を収容する収容室を備え、この収容室内において被乾燥物の乾燥運転を実行する乾燥機において、少なくとも圧縮機、放熱器、減圧装置及び蒸発器が順次環状に配管接続されてなる冷媒回路と、送風手段により放熱器と熱交換した空気を収容室内に送り、この収容室内を経た空気を蒸発器に送った後、再び放熱器に戻す空気循環を構成するための空気循環経路と、空気循環経路を、蒸発器が設置された経路と、循環空気が蒸発器を通過せずに放熱器に至るバイパス経路とに仕切る仕切壁と仕切壁の空気上流側、若しくは、空気下流側に設けられ、蒸発器を通過する空気量とバイパス経路を通過する空気量との比率を調整する流路調整手段と、この流路調整手段を制御する制御手段とを備えたので、例えば、請求項2の発明の如く収容室に入る循環空気の温度を検出する入口温度検出手段及び該収容室から出た循環空気の温度を検出する出口温度検出手段を備え、乾燥運転の進行によって変化する両温度検出手段の出力に基づき、流路調整手段を制御するものとすれば、収容室内を経た空気の絶対湿度を増加させることができる。 According to the present invention, in a dryer having a storage chamber for storing a material to be dried, and performing a drying operation of the material to be dried in the storage chamber, at least a compressor, a radiator, a pressure reducing device, and an evaporator are sequentially annular. In order to configure a refrigerant circuit connected to the piping, and air circulation in which heat exchanged with the radiator by the blower means is sent into the storage chamber, the air passing through the storage chamber is sent to the evaporator, and then returned to the radiator again An air circulation path, a partition wall that divides the air circulation path into a path in which an evaporator is installed , and a bypass path in which the circulating air does not pass through the evaporator and reaches the radiator, on the air upstream side of the partition wall, Alternatively, it is provided on the downstream side of the air, and includes a flow path adjusting means for adjusting a ratio of an air amount passing through the evaporator and an air amount passing through the bypass path, and a control means for controlling the flow path adjusting means. So, for example, claims As described in the invention, there are provided both an inlet temperature detecting means for detecting the temperature of the circulating air entering the housing chamber and an outlet temperature detecting means for detecting the temperature of the circulating air coming out of the housing chamber, and both temperature detections varying with the progress of the drying operation. If the flow path adjusting means is controlled based on the output of the means, the absolute humidity of the air passing through the accommodation chamber can be increased.

これにより、空気の露点温度が上昇し、蒸発器にて水分を凝縮除去するために必要な熱量を減らすことができるので、乾燥機の乾燥効率を改善することができるようになる。特に、空気循環経路内を仕切壁にて蒸発器が設置された経路とバイパス経路とに仕切り、流路調整手段をこの仕切壁の空気上流側、若しくは、空気下流側に設ける構成としたことで、構造の著しい簡素化を図ることが可能となる。 As a result, the dew point temperature of the air rises, and the amount of heat necessary to condense and remove moisture in the evaporator can be reduced, so that the drying efficiency of the dryer can be improved. In particular, the air circulation path is partitioned by a partition wall into a path where the evaporator is installed and a bypass path, and the flow path adjusting means is provided on the air upstream side or the air downstream side of the partition wall. The structure can be significantly simplified.

また、請求項1に記載の発明において、請求項3の発明の如く制御手段は時限手段を備え、この時限手段によりカウントされる乾燥運転の進行に応じて流路調整手段を制御するものとすれば、収容室内を経た空気の絶対湿度を増加させることができる。これにより、空気の露点温度が上昇し、蒸発器にて水分を凝縮除去するために必要な熱量を減らすことができる。従って、乾燥機の乾燥効率を改善することができるようになる。   Further, in the first aspect of the present invention, as in the third aspect of the present invention, the control means includes a time limit means, and controls the flow path adjusting means in accordance with the progress of the drying operation counted by the time limit means. Thus, the absolute humidity of the air that has passed through the accommodation chamber can be increased. Thereby, the dew point temperature of air rises and the amount of heat required for condensing and removing moisture in the evaporator can be reduced. Therefore, the drying efficiency of the dryer can be improved.

特に、請求項2又は請求項3に記載の発明において、請求項4の発明の如く制御手段は、温度検出手段の出力に基づき、又は、時限手段によりカウントされる乾燥運転の進行に応じて送風手段の風量を制御するものとすれば、乾燥時間を短縮することができる。   In particular, in the invention described in claim 2 or claim 3, as in the invention of claim 4, the control means sends air based on the progress of the drying operation based on the output of the temperature detection means or counted by the time limit means. If the air volume of the means is controlled, the drying time can be shortened.

以下、図面に基づき本発明の実施の形態を詳述する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は本発明を適用した乾燥機の一実施例として、洗濯運転と洗濯運転終了後の乾燥運転を実行する洗濯乾燥機Wの概略構成図、図2は洗濯乾燥機Wの空気循環経路50を模式図をそれぞれ示している。本実施例の洗濯乾燥機Wは、衣類等の被洗濯物(この被洗濯物が乾燥運転における被乾燥物となる)を洗濯、乾燥するために使用するもので、外郭を形成する本体1の側面上方には被洗濯物を出し入れするための取出口6を開閉するための開閉扉3が取り付けられており、開閉扉3の側方、或いは上方の本体1には各種の操作スイッチや表示部が配設された図示しない操作パネルが設けられている。   FIG. 1 is a schematic configuration diagram of a washing / drying machine W that executes a washing operation and a drying operation after the completion of the washing operation as an embodiment of a dryer to which the present invention is applied, and FIG. 2 is an air circulation path 50 of the washing / drying machine W. The schematic diagram is shown respectively. The washing / drying machine W of the present embodiment is used for washing and drying a laundry such as clothes (this laundry becomes a drying object in a drying operation). An opening / closing door 3 for opening / closing an outlet 6 for taking in and out the laundry is attached to the upper side of the side, and various operation switches and display units are provided on the side of the opening / closing door 3 or on the main body 1 above. An operation panel (not shown) is provided.

前記本体1内には、貯水可能な円筒状樹脂製の外層ドラム2が設けられ、この外層ドラム2は円筒の軸を斜め方向として配設されている。そして、この外層ドラム2の内側には、洗濯槽と脱水槽を兼ねる略円筒状のステンレス製内層ドラム5が設けられている。この内層ドラム5の内部は被洗濯物を収容する収容室10とされ、これも円筒の軸を斜め方向として配設されると共に、この軸が本体1の側壁(図1の右側)に装着された駆動モータMの軸8に連結され、当該軸8を中心とし、外層ドラム2内で回転可能に保持されている。   A cylindrical resin-made outer layer drum 2 capable of storing water is provided in the main body 1, and the outer layer drum 2 is disposed with a cylindrical axis as an oblique direction. Inside the outer layer drum 2, a substantially cylindrical stainless steel inner layer drum 5 serving as a washing tub and a dewatering tub is provided. The interior of the inner drum 5 is a storage chamber 10 for storing the laundry, which is also arranged with a cylindrical shaft as an oblique direction, and this shaft is mounted on the side wall (right side in FIG. 1) of the main body 1. The shaft is connected to the shaft 8 of the drive motor M, and is rotatably held in the outer layer drum 2 around the shaft 8.

更に、内層ドラム5の一端面5A(図1の左上方の面)には、前記取出口6が形成されており、内層ドラム5は、フエルト11及び支持部材9を介してこの取出口6に回転自在に支持されている。この取出口6の下方に位置する支持部材9には後述する空気循環経路50の吹出口54が形成されている。また、内層ドラム5の円筒の側面5S周囲及び軸方向における他端面5B(図1の右下方の面)には空気及び水が流通可能な複数の透孔7・・が形成されている。この透孔7・・は、洗濯運転においては水が流出すると共に、乾燥運転においては乾燥用の空気(循環空気)が流通するための孔となる。   Further, the outlet 6 is formed on one end surface 5A (the upper left surface in FIG. 1) of the inner layer drum 5. The inner layer drum 5 is connected to the outlet 6 via the felt 11 and the support member 9. It is supported rotatably. An air outlet 54 of an air circulation path 50 to be described later is formed in the support member 9 located below the outlet 6. Further, a plurality of through holes 7... Through which air and water can circulate are formed around the cylindrical side surface 5S of the inner layer drum 5 and the other end surface 5B in the axial direction (the lower right surface in FIG. 1). The through holes 7 are holes through which water flows out in the washing operation and air for drying (circulation air) flows in the drying operation.

前述した駆動モータMは、洗濯運転及び当該洗濯運転終了後の乾燥運転において、外層ドラム2及び内層ドラム5の軸と同一の斜め方向の軸8を中心として内層ドラム5を回転させるためのモータである。この駆動モータMは、前記軸8の一端に取り付けられ、後述するコントローラCにより、洗濯運転の脱水工程時には、高速にて内層ドラム5を回転させると共に、乾燥運転時においては洗濯運転時に比して低速にて内層ドラム5を回転させるよう制御されている。   The drive motor M described above is a motor for rotating the inner layer drum 5 around the shaft 8 in the same oblique direction as the shafts of the outer layer drum 2 and the inner layer drum 5 in the washing operation and the drying operation after the end of the washing operation. is there. The drive motor M is attached to one end of the shaft 8 and rotates the inner drum 5 at a high speed during the dehydration process of the washing operation by a controller C described later, and compared with the washing operation during the drying operation. The inner drum 5 is controlled to rotate at a low speed.

一方、前記本体1の外層ドラム2上方には、外層ドラム2内に給水するための図示しない給水通路が設けられており、この給水通路の一端は給水バルブを介して水道水などの給水源に接続されている。給水バルブは前記コントローラCにて開閉が制御される。また、給水通路の他端は、前記外層ドラム2に接続されて外層ドラム2内の内層ドラム5の上方にて開口しており、コントローラCにて前記給水バルブが開放されると、給水源から水(水道水)が外層ドラム2内に供給されると共に、この水が内層ドラム5の側面5S周囲の透孔7・・を介して収容室10にも供給されるように構成されている。   On the other hand, a water supply passage (not shown) for supplying water into the outer drum 2 is provided above the outer drum 2 of the main body 1, and one end of the water supply passage is connected to a water supply source such as tap water via a water supply valve. It is connected. Opening and closing of the water supply valve is controlled by the controller C. Further, the other end of the water supply passage is connected to the outer layer drum 2 and is opened above the inner layer drum 5 in the outer layer drum 2. When the water supply valve is opened by the controller C, the water supply source Water (tap water) is supplied into the outer layer drum 2, and this water is also supplied to the storage chamber 10 through the through holes 7 around the side surface 5S of the inner layer drum 5.

また、前記本体1の下部には、外層ドラム2内(収容室10も含む)の水を排出するための排水手段としての図示しない排水通路が設けられており、この排水通路の一端は、洗濯乾燥機Wの外部に導出され、排水溝等に開口している。そして、排水通路の他端はコントローラCにて開閉が制御される排水バルブを介して内層ドラム5の他端面5Bより外層ドラム2の他端2B側となる外層ドラム2の最低部と連通している。また、外層ドラム2の他端2B上方には前記空気循環経路50の吸込口52が形成されている。   In addition, a drainage passage (not shown) is provided at the lower portion of the main body 1 as drainage means for draining water in the outer drum 2 (including the storage chamber 10). It is led out to the outside of the dryer W and opens to a drainage groove or the like. The other end of the drainage passage communicates with the lowest part of the outer layer drum 2 on the other end 2B side of the outer layer drum 2 from the other end surface 5B of the inner layer drum 5 through a drain valve whose opening and closing is controlled by the controller C. Yes. A suction port 52 of the air circulation path 50 is formed above the other end 2B of the outer drum 2.

他方、本体1内の外層ドラム2の前側から下側及び後側に渡って機械室60が構成され、この機械室60内に前述した空気循環経路50が構成されている。この空気循環経路50は、外層ドラム2の他端2B上方に形成された前記吸込口52にて一端が開口すると共に、当該一端から外層ドラム2の下側を通過し、他端は前記支持部材9の取出口6下方に形成された吹出口54にて開口している。この空気循環経路50内には後述する冷媒回路20の放熱器22、蒸発器24が設けられている。放熱器22は、本実施例の加熱手段であり、空気循環経路50内の前記吹出口54側に設置されている。蒸発器24は空気循環経路50内の吸込口52側に配置されている。   On the other hand, a machine chamber 60 is configured from the front side to the lower side and the rear side of the outer drum 2 in the main body 1, and the air circulation path 50 described above is configured in the machine chamber 60. One end of the air circulation path 50 opens at the suction port 52 formed above the other end 2 </ b> B of the outer layer drum 2, and passes from the one end to the lower side of the outer layer drum 2. The other end is the support member 9 is opened at the outlet 54 formed below the outlet 6. In the air circulation path 50, a radiator 22 and an evaporator 24 of the refrigerant circuit 20 described later are provided. The radiator 22 is a heating unit of the present embodiment, and is installed on the air outlet 54 side in the air circulation path 50. The evaporator 24 is disposed on the suction port 52 side in the air circulation path 50.

また、空気循環経路50内には、ファン55が設けられている。このファン55は、乾燥運転において放熱器22で加熱された空気を空気循環経路50の吹出口54から内層ドラム5内の収容室10に送り、収容室10を経た空気を蒸発器24に送った後、再び、放熱器22に戻すことにより、空気循環経路50内の空気循環を行うための送風手段である。本実施例では、ファン55は空気循環経路50内の蒸発器24の空気上流側となる吸込口52側に配設されている。   A fan 55 is provided in the air circulation path 50. The fan 55 sends air heated by the radiator 22 in the drying operation from the outlet 54 of the air circulation path 50 to the accommodation chamber 10 in the inner drum 5, and sends air that has passed through the accommodation chamber 10 to the evaporator 24. After that, the air blowing means is used to circulate the air in the air circulation path 50 by returning to the radiator 22 again. In the present embodiment, the fan 55 is disposed on the suction port 52 side that is the air upstream side of the evaporator 24 in the air circulation path 50.

即ち、洗濯乾燥機Wは、乾燥運転において収容室10内の空気をファン55により空気循環経路50内に循環させることにより、被洗濯物を蒸発させて、湿気を含む空気を吸込口52から空気循環経路50内に吸い込んで、蒸発器24に送風し、蒸発器24にて冷媒と熱交換して空気中の水分を凝結除去した後、放熱器22に送風する。そして、放熱器22に送風された循環空気を当該放熱器22にて冷媒と熱交換して加熱した後、吹出口54から内層ドラム5内の収容室10に吐出し、収容室10内を循環して、被洗濯物を乾燥させた後、吸込口52から空気循環経路50内に再び吸い込む構成とされている。   That is, the laundry dryer W circulates the air in the storage chamber 10 in the air circulation path 50 by the fan 55 in the drying operation, thereby evaporating the laundry and air containing moisture from the suction port 52. The air is sucked into the circulation path 50, blown to the evaporator 24, heat exchanged with the refrigerant in the evaporator 24 to condense and remove moisture in the air, and then blown to the radiator 22. Then, the circulating air blown to the radiator 22 is heated by exchanging heat with the refrigerant in the radiator 22 and then discharged from the outlet 54 to the accommodation chamber 10 in the inner drum 5 to circulate in the accommodation chamber 10. Then, after the laundry is dried, the air is sucked again from the suction port 52 into the air circulation path 50.

次に、図1において、20は前述した冷媒回路(冷凍サイクル)であり、当該冷媒回路20は圧縮機21、放熱器22、減圧装置としての膨張弁23及び蒸発器24等を順次環状に配管接続して構成されている。また、冷媒回路20内には、冷媒として二酸化炭素(CO2)が所定量封入されている。ここで、本実施例で使用する圧縮機21は多段(2段)圧縮式のロータリコンプレッサであり、図示しない密閉容器内に電動要素と、この電動要素にて駆動される第1の回転圧縮要素(1段目)及び第2の回転圧縮要素(2段目)が設けられている。 Next, in FIG. 1, reference numeral 20 denotes the refrigerant circuit (refrigeration cycle) described above. The refrigerant circuit 20 sequentially pipes a compressor 21, a radiator 22, an expansion valve 23 as a pressure reducing device, an evaporator 24, and the like in an annular manner. Connected and configured. The refrigerant circuit 20 is filled with a predetermined amount of carbon dioxide (CO 2 ) as a refrigerant. Here, the compressor 21 used in the present embodiment is a multi-stage (two-stage) compression rotary compressor, and an electric element in a hermetic container (not shown) and a first rotary compression element driven by the electric element. (First stage) and a second rotary compression element (second stage) are provided.

そして、冷媒導入管25から圧縮機21の第1の回転圧縮要素に低圧冷媒が導入され、冷媒吐出管26から第2の回転圧縮要素で圧縮された高温高圧の冷媒が圧縮機21外に吐出される構成とされている。尚、本発明で使用可能な圧縮機21は実施例の多段圧縮式ロータリコンプレッサに限定されるものでなく、スクロール型、レシプロ型のコンプレッサなど、その他種々の圧縮機も適用可能である。また、冷媒回路20内に封入する冷媒も二酸化炭素に限らず、該存の他の冷媒を用いるものとしても差し支えない。   Then, low-pressure refrigerant is introduced from the refrigerant introduction pipe 25 to the first rotary compression element of the compressor 21, and high-temperature high-pressure refrigerant compressed by the second rotary compression element is discharged from the refrigerant discharge pipe 26 to the outside of the compressor 21. It is supposed to be configured. The compressor 21 that can be used in the present invention is not limited to the multistage compression rotary compressor of the embodiment, and various other compressors such as a scroll type and a reciprocating type compressor can be applied. Further, the refrigerant to be sealed in the refrigerant circuit 20 is not limited to carbon dioxide, and other refrigerants may be used.

前記圧縮機21の冷媒吐出管26は、空気循環経路50内の吹出口54側に設けられた空気加熱用の放熱器22の入口に接続される。そして、放熱器22を出た配管27は膨張弁23に至り、膨張弁23の出口に接続された配管28は空気循環経路50のファン55の空気吐出側(空気下流側)に設けられた蒸発器24の入口に接続され、蒸発器24の出口には上記圧縮機21の冷媒導入管25が接続されて、係る環状の冷媒回路20を構成している。   The refrigerant discharge pipe 26 of the compressor 21 is connected to an inlet of an air heating radiator 22 provided on the outlet 54 side in the air circulation path 50. The pipe 27 exiting the radiator 22 reaches the expansion valve 23, and the pipe 28 connected to the outlet of the expansion valve 23 is an evaporation provided on the air discharge side (air downstream side) of the fan 55 of the air circulation path 50. The refrigerant inlet pipe 25 of the compressor 21 is connected to the outlet of the evaporator 24, and the annular refrigerant circuit 20 is configured.

尚、本実施例の洗濯乾燥機Wは、前述したコントローラCにより運転が制御されている。このコントローラCは洗濯乾燥機Wの制御を司る制御手段であり、駆動モータMの運転、給水通路及び排水通路の各バルブの開閉、圧縮機21の運転、膨張弁23の絞り調整、ファン55の風量等を制御している。更に、コントローラCは収容室10内に収容された被洗濯物が変色及び損傷しないように放熱器22を経た空気温度も制御している。具体的に、コントローラCは、入口温度検出手段により、放熱器22にて加熱されて、収容室10に入る循環空気の温度を検出し、当該空気温度が、所定の温度となるように圧縮機21の運転や膨張弁23の絞り量等を制御している。本実施例では、上記入口温度検出手段を温度センサS1により構成し、この温度センサS1を図2に示すように吹出口54の近傍の空気循環経路50内に設置するものとする。   The operation of the washing / drying machine W of this embodiment is controlled by the controller C described above. The controller C is a control means for controlling the washing and drying machine W. The operation of the drive motor M, the opening and closing of each valve of the water supply passage and the drainage passage, the operation of the compressor 21, the throttle adjustment of the expansion valve 23, the fan 55 The air volume is controlled. Further, the controller C controls the temperature of the air that has passed through the radiator 22 so that the laundry to be stored in the storage chamber 10 is not discolored and damaged. Specifically, the controller C detects the temperature of the circulating air that is heated by the radiator 22 by the inlet temperature detection means and enters the storage chamber 10, and the compressor is set so that the air temperature becomes a predetermined temperature. 21 and the throttle amount of the expansion valve 23 are controlled. In this embodiment, the inlet temperature detecting means is constituted by a temperature sensor S1, and this temperature sensor S1 is installed in the air circulation path 50 in the vicinity of the outlet 54 as shown in FIG.

ところで、このような洗濯乾燥機Wでは、乾燥運転の開始直後(乾燥運転の初期)は、収容室10内の被洗濯物に多量の水分が含まれているため、放熱器22にて加熱された高温の空気を収容室10に吐出させて、被洗濯物と接触させることで、被洗濯物と空気とが充分に熱交換して、被洗濯物からの水分の蒸発と、空気の温度低下が生じる。その結果、収容室10を出て空気循環経路に戻る空気の相対湿度は80%程と飽和状態、或いは、それに近い状態となるため、蒸発器22における除湿効率も良好となり、この空気を蒸発器22で除湿し、放熱器22で加熱することで被洗濯物の乾燥を効率よく行うことが可能である。   By the way, in such a washing / drying machine W, immediately after the start of the drying operation (the initial stage of the drying operation), a large amount of moisture is contained in the laundry in the storage chamber 10, so that it is heated by the radiator 22. When the hot air is discharged into the storage chamber 10 and brought into contact with the laundry, the laundry and the air are sufficiently heat exchanged to evaporate water from the laundry and lower the temperature of the air. Occurs. As a result, the relative humidity of the air that leaves the storage chamber 10 and returns to the air circulation path is saturated or close to about 80%, so that the dehumidification efficiency in the evaporator 22 is improved, and this air is removed from the evaporator. It is possible to efficiently dry the laundry by dehumidifying at 22 and heating with the radiator 22.

しかしながら、被洗濯物の乾燥が進行するに伴い、被洗濯物と高温空気とが接触しても被洗濯物からの水分蒸発が起こり難くなる。その結果、空気循環経路50に戻る空気は湿度を充分に含まない比較的乾いた空気となり、従来では乾燥運転終盤には、その相対湿度が20%程まで低下することもあった。   However, as drying of the laundry progresses, moisture evaporation from the laundry becomes difficult even if the laundry and the hot air come into contact with each other. As a result, the air returning to the air circulation path 50 becomes relatively dry air that does not contain sufficient humidity, and conventionally, the relative humidity may have decreased to about 20% at the end of the drying operation.

このような状況では、収容室10から出る空気は、放熱器22と熱交換して収容室10に入った時の状態と殆ど変わらず、収容室10に吐出される空気と比較して、温度低下が少なく、絶対湿度の増加も少ないものであった。即ち、収容室10から出る空気は、未だ被乾燥物から水分を蒸発させる能力を充分に保持する空気であった。   In such a situation, the air exiting from the storage chamber 10 is almost the same as the state when it enters the storage chamber 10 by exchanging heat with the radiator 22, and the temperature compared to the air discharged into the storage chamber 10. The decrease was small and the increase in absolute humidity was small. That is, the air exiting from the storage chamber 10 is still air that sufficiently retains the ability to evaporate moisture from the material to be dried.

また、かかる空気は露点温度も低下するため、蒸発器22にてかなり冷やさなければ、空気中の水分を凝縮除去することができない。従って、空気の冷却と再加熱に必要な熱量に対して、空気から除去できる水分量は少なく、乾燥効率の悪化を招いていた。   In addition, since the dew point temperature of such air also decreases, moisture in the air cannot be condensed and removed unless the evaporator 22 is considerably cooled. Therefore, the amount of moisture that can be removed from the air is less than the amount of heat required for cooling and reheating the air, leading to deterioration in drying efficiency.

このような乾燥運転における上述した問題を解消するためには、収容室10から戻る空気の湿度を増加することができれば、空気の露点温度が上昇し、空気の冷却と再加熱に必要な熱量を抑えて、乾燥効率を改善することができるようになるものと考えられる。   In order to eliminate the above-described problems in the drying operation, if the humidity of the air returning from the storage chamber 10 can be increased, the dew point temperature of the air rises, and the amount of heat necessary for cooling and reheating the air is increased. It is considered that the drying efficiency can be improved by suppressing the temperature.

そこで、本発明では空気循環経路50内に、循環空気が蒸発器22を通過せずに放熱器22に至るバイパス経路と、蒸発器24を通過する空気量とバイパス経路を通過する空気量との比率を調整する流路調整手段を設けて、当該流路調整手段を制御するものとする。   Therefore, in the present invention, in the air circulation path 50, the circulation air does not pass through the evaporator 22 but reaches the radiator 22; the amount of air that passes through the evaporator 24; and the amount of air that passes through the bypass path A flow path adjusting means for adjusting the ratio is provided to control the flow path adjusting means.

本実施例では、仕切壁75にて空気循環経路50内を蒸発器24が設置される経路と、それをバイパスする経路とに仕切ることで、バイパス経路40を構成するものとする。この場合、仕切壁75は、該仕切壁75により空気循環経路50内の空気の循環に支障を来さないように図2に示すように空気循環経路50内の空気の循環方向に対して平行となるように配置される。そして、流路調整手段をダンパー70により構成し、このダンパー70を、仕切壁75の空気上流側となる一端側(蒸発器24の空気上流側)に取り付けるものとした。   In this embodiment, the bypass path 40 is configured by partitioning the air circulation path 50 into a path where the evaporator 24 is installed and a path which bypasses the path by the partition wall 75. In this case, the partition wall 75 is parallel to the air circulation direction in the air circulation path 50 as shown in FIG. 2 so as not to hinder the air circulation in the air circulation path 50 by the partition wall 75. It arrange | positions so that it may become. Then, the flow path adjusting means is configured by a damper 70, and this damper 70 is attached to one end side (the air upstream side of the evaporator 24) of the partition wall 75 that is the air upstream side.

そして、当該ダンパー70を前記コントローラC(制御手段)により制御することで、コントローラCはダンパー70により蒸発器24を通過する空気量と、バイパス経路40を流れる空気量との比率を調節するものとする。この場合、コントローラCは収容室10内の被洗濯物の乾燥の状態に応じて、蒸発器24を通過する空気量の比率を、蒸発器24を通過する空気量とバイパス経路を通過する空気量の和、即ち、収容室10から出た全空気量の30%〜100%となるように制御する。   And by controlling the said damper 70 by the said controller C (control means), the controller C adjusts the ratio of the air quantity which passes the evaporator 24 by the damper 70, and the air quantity which flows through the bypass path 40, and To do. In this case, the controller C determines the ratio of the amount of air passing through the evaporator 24 and the amount of air passing through the evaporator 24 and the amount of air passing through the bypass path in accordance with the dry state of the laundry in the storage chamber 10. In other words, that is, 30% to 100% of the total amount of air coming out of the storage chamber 10.

具体的に、コントローラCは、上述した被洗濯物の乾燥状態を収容室10の出入口の空気温度差や乾燥運転の経過時間等を変数として目標とする蒸発器24を通過する空気量を演算し、前記ダンパー70を作動する。本実施例では、収容室10の出入口の空気温度差に基づき、前記ダンパー70を制御するものとする。そこで、収容室10に入る循環温度を検出する入口温度検出手段として、前述した温度センサS1を用いると共に、新たに、収容室10から出た循環空気の温度を検出する出口温度検出手段として、吸込口52の近傍の空気循環経路50内に温度センサS2を設置する。   Specifically, the controller C calculates the amount of air passing through the target evaporator 24 using the air temperature difference at the entrance and exit of the storage chamber 10 and the elapsed time of the drying operation as variables as the drying state of the laundry to be described above. The damper 70 is operated. In this embodiment, the damper 70 is controlled based on the air temperature difference at the entrance and exit of the storage chamber 10. Therefore, as the inlet temperature detecting means for detecting the circulating temperature entering the storage chamber 10, the above-described temperature sensor S1 is used, and as the outlet temperature detecting means for newly detecting the temperature of the circulating air exiting the storage chamber 10, suction is performed. A temperature sensor S2 is installed in the air circulation path 50 in the vicinity of the mouth 52.

そして、コントローラCは、温度センサS1にて検出される収容室10に入る循環温度が上述したように収容室10内に収容された被洗濯物が変色及び損傷しないような所定の高温(例えば、+75℃)で一定となるように圧縮機21の運転を制御しながら、温度センサS2にて検出される収容室10を出た循環空気の温度との差により水分蒸発量を推定して、乾燥運転の進行状況(即ち、被洗濯物の乾燥状態)を把握する。この場合、乾燥運転が進行し、被洗濯物の乾燥が進むと、空気が水分を蒸発し難くなるので、蒸発潜熱の吸収による温度低下が小さくなるので、温度センサS1にて検出される収容室10に入る空気温度と温度センサS2にて検出される収容室10を出た空気温度との差が小さくなる。   Then, the controller C has a predetermined high temperature (e.g., the laundry temperature stored in the storage chamber 10 is not discolored and damaged as described above). While controlling the operation of the compressor 21 to be constant at + 75 ° C., the amount of water evaporation is estimated by the difference from the temperature of the circulating air that has exited the storage chamber 10 detected by the temperature sensor S2, and drying is performed. The progress of driving (that is, the dry state of the laundry) is grasped. In this case, when the drying operation proceeds and the laundry is further dried, the air is less likely to evaporate moisture, so that the temperature drop due to absorption of latent heat of vaporization is reduced, and thus the storage chamber detected by the temperature sensor S1. The difference between the air temperature entering 10 and the air temperature exiting the storage chamber 10 detected by the temperature sensor S2 is reduced.

即ち、本実施例では温度センサS1にて検出される収容室10に入る循環温度が所定の高温(例えば、+75℃)で一定となるように制御されるので、温度センサS2にて検出される収容室10を出た空気温度の上昇(即ち、両温度差の縮小度合い)に応じて、蒸発器24をバイパスして、バイパス経路40に流れる空気量が増大するようにダンパー70の開度を段階的に拡大する。即ち、本実施例のコントローラCは収容室10の出入り口の温度差に応じて、ダンパー70の開度をステップ制御するものとする。尚、具体的な制御動作については次の動作説明にて詳述する。   That is, in this embodiment, since the circulating temperature entering the storage chamber 10 detected by the temperature sensor S1 is controlled to be constant at a predetermined high temperature (for example, + 75 ° C.), it is detected by the temperature sensor S2. The opening degree of the damper 70 is increased so that the amount of air flowing through the bypass path 40 increases by bypassing the evaporator 24 in accordance with the rise in the temperature of the air leaving the storage chamber 10 (that is, the degree of reduction of both temperature differences). Expand in stages. That is, the controller C of this embodiment performs step control on the opening degree of the damper 70 in accordance with the temperature difference between the entrance and exit of the storage chamber 10. A specific control operation will be described in detail in the following operation description.

以上の構成で、次に、洗濯乾燥機Wの動作を説明する。取出口6から内層ドラム5内の収容室10に被洗濯物と当該被洗濯物の量に応じた所定量の洗剤が投入され、開閉蓋3が閉じられて、前述した操作スイッチのうちの電源スイッチ及びスタートスイッチが操作されると、前記コントローラCにより洗濯運転が開始される。これにより、前記給水通路の給水バルブが開かれ、給水通路が開放される。これにより、給水源から外層ドラム2及び内層ドラム5の透孔7・・を介して水が供給される。外層ドラム2に供給された水は内層ドラム5に形成された複数の透孔7・・を介しても収容室10に流入する。尚、このとき前記排水通路の排水バルブは閉じられている。   Next, the operation of the washing / drying machine W will be described with the above configuration. A predetermined amount of detergent corresponding to the amount of laundry and the amount of the laundry to be washed is put into the storage chamber 10 in the inner drum 5 from the outlet 6, the open / close lid 3 is closed, and the power of the above-described operation switches When the switch and the start switch are operated, the washing operation is started by the controller C. Thereby, the water supply valve of the water supply passage is opened and the water supply passage is opened. Thereby, water is supplied from the water supply source through the through holes 7 of the outer layer drum 2 and the inner layer drum 5. The water supplied to the outer layer drum 2 also flows into the accommodation chamber 10 through the plurality of through holes 7 formed in the inner layer drum 5. At this time, the drain valve of the drain passage is closed.

そして、内層ドラム5内の収容室10に所定量の水が溜まると、コントローラCにより給水バルブが閉じられて給水通路が閉塞される。これにより、給水源からの水の供給が停止される。   When a predetermined amount of water accumulates in the storage chamber 10 in the inner drum 5, the controller C closes the water supply valve and closes the water supply passage. Thereby, the supply of water from the water supply source is stopped.

次に、コントローラCにより駆動モータMが通電起動される。これにより、軸8が回転し、この軸8に取り付けられた内層ドラム5が外層ドラム2内で回転し始めて、洗濯運転の洗濯行程が開始される。そして、この洗濯行程の開始から所定時間経過すると、コントローラCにより駆動モータMが停止され、排水通路の排水バルブが開放されて内層ドラム5の収容室10内(即ち、外層ドラム2内)の水(洗濯水)が排出されていく。   Next, the drive motor M is energized and activated by the controller C. As a result, the shaft 8 rotates, and the inner layer drum 5 attached to the shaft 8 starts to rotate in the outer layer drum 2, and the washing process of the washing operation is started. When a predetermined time elapses from the start of the washing process, the controller C stops the drive motor M, opens the drain valve of the drain passage, and opens the water in the storage chamber 10 of the inner drum 5 (that is, in the outer drum 2). (Washing water) is discharged.

そして、収容室10(外層ドラム2内)の水が排出されると、コントローラCにより再び駆動モータMが作動され、被洗濯物の脱水が行われる。この脱水が所定時間実行されると、排水バルブが閉じられ排水通路が閉塞されて、すすぎ工程に移行する。   When the water in the storage chamber 10 (in the outer layer drum 2) is discharged, the drive motor M is actuated again by the controller C, and the laundry is dehydrated. When this dehydration is executed for a predetermined time, the drain valve is closed and the drain passage is closed, and the process proceeds to the rinsing process.

このすすぎ行程では、先ず、給水通路の給水バルブが開かれ、給水通路が開放される。これにより、給水源から外層ドラム2内及び収容室10に再び水が供給される。そして、内層ドラム5内の収容室10に所定量の給水が行われると、コントローラCにより給水バルブが閉じられ、給水通路が閉塞される。これにより、給水源からの水の供給が停止される。   In this rinsing process, first, the water supply valve of the water supply passage is opened, and the water supply passage is opened. Thereby, water is again supplied from the water supply source into the outer layer drum 2 and the storage chamber 10. When a predetermined amount of water is supplied to the storage chamber 10 in the inner drum 5, the controller C closes the water supply valve and closes the water supply passage. Thereby, the supply of water from the water supply source is stopped.

そして、前記駆動モータMの回転動作が所定時間繰り返されてすすぎが行われた後、駆動モータMが停止され、排水通路の排水バルブが開かれて、収容室10(外層ドラム2内)のすすぎ水が排水通路に排出されていく。収容室10(外層ドラム2内)のすすぎ水が排出されると、コントローラCにより駆動モータMが作動され、前述同様に内層ドラム5が回転されて、被洗濯物の脱水を行う脱水行程に移行する。   Then, after the rotation of the drive motor M is repeated for a predetermined time to perform rinsing, the drive motor M is stopped, the drain valve of the drain passage is opened, and the accommodation chamber 10 (inside the outer drum 2) is rinsed. Water is discharged into the drainage passage. When the rinse water in the storage chamber 10 (in the outer layer drum 2) is discharged, the drive motor M is actuated by the controller C, and the inner layer drum 5 is rotated in the same manner as described above, and the process proceeds to the dehydration process in which the laundry is dehydrated. To do.

この脱水行程が所定時間実行されると、コントローラCにより排水通路の排水バルブが閉じられ、排水通路が閉塞される。更に、コントローラCにより圧縮機21が起動され、ファン55の運転が開始されると共に、前記駆動モータMにより内層ドラム5を回転させて乾燥運転に移行する。尚、本実施例ではコントローラCによりファン55は定速にて回転され、従って、乾燥運転において空気循環経路50内を流れる循環空気量は被洗濯物(被乾燥物)の乾燥状態によって変化するものの、略一定となる。   When this dehydration process is executed for a predetermined time, the drain valve of the drain passage is closed by the controller C, and the drain passage is closed. Further, the compressor 21 is started by the controller C, and the operation of the fan 55 is started. At the same time, the inner drum 5 is rotated by the drive motor M to shift to the drying operation. In the present embodiment, the fan 55 is rotated at a constant speed by the controller C. Therefore, the amount of circulating air flowing in the air circulation path 50 in the drying operation varies depending on the dry state of the laundry (dry matter). It becomes almost constant.

当該乾燥運転では上述したようにコントローラCにより温度センサS1にて検出される収容室10に入る温度が所定の高温(+75℃)で一定となるように温度センサS1の出力に基づき、圧縮機21の回転数が制御される。更に、コントローラCは、乾燥運転の進行に応じて変化する温度センサS1、S2の出力に基づき、ダンパー70の開度を制御する。尚、本実施例では、上述の如く温度センサS1にて検出される収容室10に入る温度は+75℃で一定となるように制御されるため、乾燥運転の進行に応じて変化するのは、温度センサS2にて検出される収容室10を出た温度となる。即ち、本実施例のコントローラCは、温度センサS1にて検出される温度が一定となるように圧縮機21の回転数を制御しながら、温度センサS2にて検出される収容室10を出た温度との温度差を算出し、当該収容室10内の被洗濯物の水分蒸発量を推定し、それに応じてダンパー70の開度をステップ制御する。   In the drying operation, as described above, the compressor 21 is based on the output of the temperature sensor S1 so that the temperature entering the storage chamber 10 detected by the temperature sensor S1 by the controller C is constant at a predetermined high temperature (+ 75 ° C.). The number of rotations is controlled. Furthermore, the controller C controls the opening degree of the damper 70 based on the outputs of the temperature sensors S1, S2 that change according to the progress of the drying operation. In the present embodiment, the temperature entering the storage chamber 10 detected by the temperature sensor S1 as described above is controlled to be constant at + 75 ° C., and therefore changes according to the progress of the drying operation. It becomes the temperature which went out of the storage chamber 10 detected by temperature sensor S2. That is, the controller C of the present embodiment exits the storage chamber 10 detected by the temperature sensor S2 while controlling the rotation speed of the compressor 21 so that the temperature detected by the temperature sensor S1 is constant. The temperature difference from the temperature is calculated, the water evaporation amount of the laundry in the storage chamber 10 is estimated, and the opening degree of the damper 70 is step-controlled accordingly.

先ず、温度センサS2にて検出される温度が予め設定された所定の低温T1以下、例えば、本実施例では+40℃以下である場合(主に、乾燥運転の開始直後や乾燥運転の初期等)、コントローラCは、図3に示すようにダンパー70を閉じて、バイパス経路40を閉塞する。これにより、収容室10から出た空気はバイパス経路40に流れることなく、全て蒸発器24を通過することとなる。即ち、蒸発器24を通過する空気量の比率が100%となる。一方、上記圧縮機21の起動により、冷媒導入管25から圧縮機21の前記第1の回転圧縮要素に冷媒(CO2)が吸い込まれて圧縮される。第1の回転圧縮要素で圧縮されて中間圧となった冷媒は、第2の回転圧縮要素に吸入され、2段目の圧縮が行われて高温高圧の冷媒ガスとなり、冷媒吐出管26より外部に吐出される。 First, when the temperature detected by the temperature sensor S2 is a predetermined low temperature T1 or less, for example, + 40 ° C. or less in the present embodiment (mainly immediately after the start of the drying operation, the initial stage of the drying operation, etc.). As shown in FIG. 3, the controller C closes the damper 70 and closes the bypass path 40. As a result, all of the air that has exited the storage chamber 10 passes through the evaporator 24 without flowing into the bypass path 40. That is, the ratio of the amount of air passing through the evaporator 24 is 100%. On the other hand, when the compressor 21 is started, the refrigerant (CO 2 ) is sucked into the first rotary compression element of the compressor 21 from the refrigerant introduction pipe 25 and compressed. The refrigerant compressed to the intermediate pressure by the first rotary compression element is sucked into the second rotary compression element and is compressed in the second stage to become a high-temperature and high-pressure refrigerant gas. Discharged.

冷媒吐出管26から吐出された冷媒ガスは空気循環経路50内に設けられた放熱器22に流入する。このとき、放熱器22に流入する冷媒温度は約+85℃程まで上昇しており、係る高温高圧の冷媒ガスはここで、空気循環経路50内を循環する空気と熱交換して放熱し、約+50℃程まで冷却される。   The refrigerant gas discharged from the refrigerant discharge pipe 26 flows into the radiator 22 provided in the air circulation path 50. At this time, the temperature of the refrigerant flowing into the radiator 22 has risen to about + 85 ° C., and the high-temperature and high-pressure refrigerant gas here radiates heat by exchanging heat with the air circulating in the air circulation path 50. It is cooled to about + 50 ° C.

放熱器22にて冷却された冷媒はその後、膨張弁23にて減圧された後、空気循環経路50内に設けられた蒸発器24にて循環空気(収容室10からの湿気を含んだ空気)と熱交換して蒸発する。即ち、冷媒回路20は、蒸発器24にて収容室10からの湿気を含んだ空気を凝結させ、当該空気内の水分を除去させると共に、当該蒸発器24において冷媒により循環空気から熱を汲み上げて、放熱器22に搬送して、収容室10に吐出される循環空気を加熱するヒートポンプとして機能する。   The refrigerant cooled by the radiator 22 is then decompressed by the expansion valve 23, and then circulated air (air including moisture from the storage chamber 10) by the evaporator 24 provided in the air circulation path 50. Evaporates through heat exchange. That is, the refrigerant circuit 20 condenses the air containing moisture from the storage chamber 10 in the evaporator 24 to remove moisture in the air, and pumps heat from the circulating air by the refrigerant in the evaporator 24. It functions as a heat pump that heats the circulating air that is transported to the radiator 22 and discharged into the storage chamber 10.

このように、冷媒回路20を備えて、収容室10からの空気の水分を蒸発器24にて凝結除去し、このとき、空気から汲み上げた熱を、冷媒により放熱器22に搬送し、収容室10に吐出する循環空気の加熱に利用することで、エネルギー効率の改善を図ることができるようになる。特に、放熱器22により電気ヒータなどの格別な加熱手段を用いること無く循環空気を高温に加熱することができるので、電気エネルギー等のエネルギーコストを削減して、より効率の良い乾燥運転を実現することができる。   As described above, the refrigerant circuit 20 is provided, and moisture in the air from the storage chamber 10 is condensed and removed by the evaporator 24. At this time, the heat pumped up from the air is conveyed to the radiator 22 by the refrigerant and is stored in the storage chamber. By using it for heating the circulating air discharged to 10, energy efficiency can be improved. In particular, since the circulating air can be heated to a high temperature without using a special heating means such as an electric heater by means of the radiator 22, energy costs such as electric energy are reduced and a more efficient drying operation is realized. be able to.

そして、蒸発器24にて蒸発した冷媒はその後、冷媒導入管25を経て、再び、圧縮機21に吸い込まれる循環を行う。   The refrigerant evaporated in the evaporator 24 is then circulated through the refrigerant introduction pipe 25 and again sucked into the compressor 21.

また、前記ファン55の運転により、収容室10内の被洗濯物を乾燥させて湿気を含んだ空気(循環空気)は、収容室10を経て他端面5Bに形成された透孔7・・から収容室10を流出する。そして、この空気は、外層ドラム2の他端2Bの上方に形成された吸込口52から空気循環経路50内に入り、ファン55に吸い込まれる。その後、ファン55に吸い込まれた空気は、ファン55の空気吐出側に設けられた蒸発器24に向かって吐出される。このファン55から吐出される空気(収容室10を経て湿気を含んだ空気)は、前述したようにダンパー70によりバイパス経路40が閉塞されているので、バイパス経路40に流れることなく、全て蒸発器24を通過する。   In addition, air (circulation air) containing moisture by drying the laundry in the storage chamber 10 through the operation of the fan 55 passes through the through holes 7 formed in the other end surface 5B through the storage chamber 10. The container 10 flows out. Then, the air enters the air circulation path 50 from the suction port 52 formed above the other end 2 </ b> B of the outer layer drum 2 and is sucked into the fan 55. Thereafter, the air sucked into the fan 55 is discharged toward the evaporator 24 provided on the air discharge side of the fan 55. Since the bypass path 40 is closed by the damper 70 as described above, the air discharged from the fan 55 (air containing moisture through the storage chamber 10) does not flow into the bypass path 40, but is completely evaporated. Pass 24.

このとき、収容室10内の被洗濯物を乾燥させて湿気を含んだ空気は、当該蒸発器24を通過する過程で、蒸発器24を流れる冷媒と熱交換し、冷媒に熱を奪われて、空気中の水分が蒸発器24の表面に凝結する。これにより、当該蒸発器24にて被洗濯物を乾燥させて湿気を含んだ空気から水分を凝結除去し、再び乾燥した空気とすることができる。   At this time, the air containing moisture by drying the laundry in the storage chamber 10 exchanges heat with the refrigerant flowing through the evaporator 24 and is deprived of heat by the refrigerant. The moisture in the air condenses on the surface of the evaporator 24. Thereby, the laundry can be dried by the evaporator 24 to condense and remove moisture from the moisture-containing air, and can be made dry again.

尚、蒸発器24の表面にて凝結した水分は、その後、水滴となって蒸発器24の下部に設けられた図示しないドレンパン上に落下し、図示しないドレンパイプ、排水通路等を介して外部に排出される。   The water condensed on the surface of the evaporator 24 then drops as water droplets onto a drain pan (not shown) provided at the lower part of the evaporator 24, and is exposed to the outside through a drain pipe, a drain passage, etc. (not shown). Discharged.

一方、蒸発器24で湿気が取り除かれて乾燥した空気は、当該蒸発器24を流れる冷媒により熱を奪われて、約+30℃程まで冷却される。その後、放熱器22の周囲を通過し、当該放熱器22を流れる高温高圧の冷媒ガスと熱交換して約+75℃に加熱され、内層ドラム5の一端面5Aの取出口6の外周に設けられた支持部材9の下方に形成された吹出口54から収容室10内に吐出される。   On the other hand, the air that has been dried with moisture removed by the evaporator 24 is deprived of heat by the refrigerant flowing through the evaporator 24 and cooled to about + 30 ° C. Thereafter, the heat passes through the periphery of the radiator 22, exchanges heat with the high-temperature and high-pressure refrigerant gas flowing through the radiator 22, is heated to about + 75 ° C., and is provided on the outer periphery of the outlet 6 on the one end surface 5 </ b> A of the inner drum 5. Then, the air is discharged into the accommodation chamber 10 from the outlet 54 formed below the support member 9.

この収容室10に吐出された循環空気は、当該収容室10を一端5A側から他端5B側に流れる過程で被洗濯物と接触し、被洗濯物を暖めて水分を蒸発させて、被洗濯物を乾燥させる。   The circulating air discharged into the storage chamber 10 comes into contact with the laundry in the process of flowing through the storage chamber 10 from the one end 5A side to the other end 5B side, warms the laundry to evaporate moisture, Let things dry.

そして、収容室10にて被洗濯物を乾燥させて水分を含んだ空気は、内層ドラム5の他端面5Bに形成された透孔7・・から流出し、外層ドラム2の前記吸込口52から空気循環経路50内に吸い込まれるサイクルを繰り返す。   Then, air containing moisture by drying the laundry in the storage chamber 10 flows out from the through holes 7 formed in the other end surface 5B of the inner layer drum 5 and from the suction port 52 of the outer layer drum 2. The cycle sucked into the air circulation path 50 is repeated.

このように、温度センサS2にて検出される収容室10を出た空気の温度が+40℃以下である場合には、収容室10に入る空気(この空気温度は、+75℃)との温度差が大きくなる。これは、収容室10に吐出された空気が、被洗濯物と接触することで、被洗濯物に多量に含まれる水分を蒸発させて、温度が大幅に低下するためである。このとき、放熱器にて加熱された高温の空気を収容室10に吐出させて、被乾燥物と接触させることで、被洗濯物と空気とが充分に熱交換して、収容室10から出る空気の相対湿度が高くなり、空気は飽和湿度に近い状態となる。従って、当該空気をバイパス経路40に流して放熱器22にて再加熱し、収容室10に戻しても被洗濯物から蒸発した水蒸気を吸収できないので、圧縮機21の入力の低減を図り難く、乾燥時間を長期化するなど、乾燥効率の悪化を招くこととなる。   Thus, when the temperature of the air leaving the storage chamber 10 detected by the temperature sensor S2 is + 40 ° C. or less, the temperature difference from the air entering the storage chamber 10 (this air temperature is + 75 ° C.). Becomes larger. This is because the air discharged into the storage chamber 10 comes into contact with the laundry to evaporate a large amount of water contained in the laundry, and the temperature is greatly lowered. At this time, hot air heated by the radiator is discharged into the storage chamber 10 and brought into contact with the object to be dried, so that the laundry and air sufficiently exchange heat and exit from the storage chamber 10. The relative humidity of the air becomes high, and the air becomes close to saturation humidity. Therefore, even if the air flows into the bypass path 40 and is reheated by the radiator 22 and returned to the storage chamber 10, it is difficult to reduce the input of the compressor 21 because water vapor evaporated from the laundry cannot be absorbed. It will lead to deterioration of drying efficiency, such as prolonging the drying time.

そこで、本発明の如く収容室10の出入り口の空気の温度差が大きい場合には、即ち、本実施例では温度センサS2にて検出される空気温度が所定温度T1以下(本実施例では、+40℃以下)である場合には、ダンパー70によりバイパス経路40を閉塞し、収容室10からの全ての空気を蒸発器24に通過させることで、蒸発器24にて被洗濯物から効率よく水分を蒸発させることができる。   Therefore, when the temperature difference between the air at the entrance and exit of the storage chamber 10 is large as in the present invention, that is, in this embodiment, the air temperature detected by the temperature sensor S2 is equal to or lower than the predetermined temperature T1 (in this embodiment, +40 When the temperature is equal to or lower than 0 ° C., the bypass path 40 is closed by the damper 70 and all the air from the storage chamber 10 is allowed to pass through the evaporator 24 so that the evaporator 24 can efficiently remove moisture from the laundry. Can be evaporated.

一方、被洗濯物の乾燥が進行して、被洗濯物からの水分蒸発量が減る、即ち、空気から被洗濯物中の水分に対して熱が移動して空気の温度が低下することが減るので、収容室10に入る循環空気と収容室10から出る循環空気との温度差が小さくなる。従って、被洗濯物の蒸発が起こり難くなって、温度差が或る値まで小さくなったら、ダンパー70を開いて、循環空気の一部が蒸発器24をバイパスして流れるようにする。具体的に、本実施例では、温度センサS2にて検出される温度が前記T1より高く予め設定された所定の温度範囲T2、例えば、本実施例では+40℃より高く、+50℃以下となると、コントローラCは図4に示すようにダンパー70を1ステップ開く。これにより、収容室10から出た全空気量の20%がバイパス経路40を通過するようになる。尚、残りの空気(前記全空気量の80%)は蒸発器24を通過する。   On the other hand, the drying of the laundry progresses and the amount of water evaporation from the laundry decreases, i.e., the transfer of heat from the air to the moisture in the laundry reduces the temperature of the air. Therefore, the temperature difference between the circulating air entering the storage chamber 10 and the circulating air exiting the storage chamber 10 is reduced. Accordingly, when the laundry is less likely to evaporate and the temperature difference is reduced to a certain value, the damper 70 is opened so that a part of the circulating air flows bypassing the evaporator 24. Specifically, in this embodiment, when the temperature detected by the temperature sensor S2 is a predetermined temperature range T2 set in advance higher than T1, for example, higher than + 40 ° C. and + 50 ° C. or lower in this embodiment, The controller C opens the damper 70 by one step as shown in FIG. As a result, 20% of the total amount of air coming out of the storage chamber 10 passes through the bypass path 40. The remaining air (80% of the total air amount) passes through the evaporator 24.

その後、更に温度差が或る値まで小さくなったら更にダンパー70の開度を拡大する。即ち、コントローラCは、温度センサS2にて検出される温度が前記T2より高く予め設定された所定の温度範囲T3、例えば、本実施例では+50℃より高く、+55℃以下となると、図5に示すようにダンパー70を更に1ステップ開く。これにより、収容室10から出た全空気量の50%がバイパス経路40を通過し、その他の空気(前記全空気量の50%)が蒸発器24を通過する。   Thereafter, when the temperature difference further decreases to a certain value, the opening degree of the damper 70 is further expanded. That is, the controller C detects that the temperature detected by the temperature sensor S2 is higher than T2 and is set to a predetermined temperature range T3 set in advance, for example, higher than + 50 ° C. and lower than + 55 ° C. in this embodiment, as shown in FIG. As shown, the damper 70 is further opened one step. As a result, 50% of the total amount of air exiting the storage chamber 10 passes through the bypass path 40, and other air (50% of the total amount of air) passes through the evaporator 24.

そして、上記より更にまた温度差が或る値まで小さくなったらダンパー70の開度を更に拡大する。即ち、コントローラCは、温度センサS2にて検出される温度がT3より高く予め設定された所定の温度T4を超えると、例えば、本実施例では+55℃を超えて上昇すると、図6に示すようにダンパー70を図5の状態から更に1ステップ開く(本実施例の最大の開度)。これにより、収容室10から出た全空気量の70%がバイパス経路40を通過し、その他の空気(前記全空気量の30%)が蒸発器24を通過する。   When the temperature difference further decreases to a certain value, the opening degree of the damper 70 is further expanded. That is, when the temperature detected by the temperature sensor S2 exceeds a predetermined temperature T4 that is set higher than T3, for example, in this embodiment, the controller C rises above + 55 ° C., as shown in FIG. Then, the damper 70 is further opened by one step from the state shown in FIG. 5 (maximum opening degree of this embodiment). As a result, 70% of the total amount of air exiting the storage chamber 10 passes through the bypass path 40, and the other air (30% of the total amount of air) passes through the evaporator 24.

そして、バイパス経路40を経た空気(温度変化無し)は前述したように蒸発器24にて冷媒と熱交換し、冷媒に熱を奪われて、水分が除去された空気(温度は+30℃程)と放熱器22の空気上流側で合流する。尚、収容室10から出た全空気量の50%がバイパス経路40に流れ、残りの空気(前記全空気量の50%)が蒸発器24に流れた場合(図5の場合)には、放熱器22の空気上流側で両空気が合流することで、空気温度が約+42.5℃となる。   The air passing through the bypass path 40 (without temperature change) exchanges heat with the refrigerant in the evaporator 24 as described above, and the air from which moisture has been removed by removing heat from the refrigerant (temperature is about + 30 ° C.). And merge on the air upstream side of the radiator 22. When 50% of the total amount of air exiting the storage chamber 10 flows to the bypass path 40 and the remaining air (50% of the total amount of air) flows to the evaporator 24 (in the case of FIG. 5), The air temperature is about + 42.5 ° C. when both airs merge on the air upstream side of the radiator 22.

合流した空気は、放熱器22のを通過し、当該放熱器22を流れる高温高圧の冷媒ガスと熱交換して約+75℃に加熱される。そして、内層ドラム5の一端面5Aの取出口6の外周に設けられた支持部材9の下方に形成された吹出口54から収容室10内に吐出される。この収容室10に吐出された循環空気は、被洗濯物と接触し、被洗濯物を暖めて水分を蒸発させて、被洗濯物を乾燥させた後、内層ドラム5の他端面5Bに形成された透孔7・・から流出し、外層ドラム2の前記吸込口52から空気循環経路50内に吸い込まれるサイクルを繰り返す。   The merged air passes through the radiator 22 and is heated to about + 75 ° C. through heat exchange with the high-temperature and high-pressure refrigerant gas flowing through the radiator 22. And it discharges in the storage chamber 10 from the blower outlet 54 formed in the downward direction of the supporting member 9 provided in the outer periphery of the outlet 6 of the one end surface 5A of the inner layer drum 5. FIG. The circulating air discharged into the storage chamber 10 is formed on the other end surface 5B of the inner drum 5 after contacting the laundry, heating the laundry, evaporating moisture, and drying the laundry. The cycle that flows out from the through holes 7 and is sucked into the air circulation path 50 from the suction port 52 of the outer layer drum 2 is repeated.

このように、放熱器22にて加熱され、収容室10に入る空気と収容室10にて被洗濯物から水分を蒸発させて収容室10を出る空気との温度差が小さくなるほど、ダンパー70の開度を拡大して、蒸発器24をバイパスする空気量を増やすことで、収容室10に入る空気の絶対湿度が増加し、それに伴い、収容室10から出る空気の絶対湿度が増加する。これにより、当該空気の露点温度が上がるため、蒸発器24において空気から水分を凝縮除去するために必要な熱量を減らすことができるようになる。これにより、乾燥効率の改善を図ることができるようになる。   As described above, the smaller the temperature difference between the air that is heated by the radiator 22 and enters the storage chamber 10 and the air that evaporates moisture from the laundry in the storage chamber 10 and exits the storage chamber 10, By increasing the opening and increasing the amount of air that bypasses the evaporator 24, the absolute humidity of the air entering the storage chamber 10 increases, and accordingly, the absolute humidity of the air exiting the storage chamber 10 increases. Thereby, since the dew point temperature of the said air rises, it becomes possible to reduce the amount of heat required to condense and remove moisture from the air in the evaporator 24. As a result, the drying efficiency can be improved.

特に、本実施例の如く圧縮機21の回転数を制御して温度センサS1にて検出される収容室10に入る温度を一定とした場合には、蒸発器24をバイパスする空気量を増やすことで、蒸発器24を通過する空気量が減る分、圧縮機21の入力を少なくすることができる。これにより、消費電力の削減を図ることができるようになる。   In particular, when the rotation speed of the compressor 21 is controlled and the temperature entering the storage chamber 10 detected by the temperature sensor S1 is constant as in this embodiment, the amount of air that bypasses the evaporator 24 is increased. Thus, the amount of air passing through the evaporator 24 can be reduced, so that the input of the compressor 21 can be reduced. As a result, power consumption can be reduced.

尚、本実施例では図1乃至図6に示すようにダンパー70を、仕切壁75の空気上流側となる一端側(蒸発器24の空気上流側)に取り付けるものとしたが、図7に示すように仕切壁75の空気下流側となる他端側(蒸発器24の空気下流側)にダンパー70を取り付けても同様の効果を得ることができる。また、2つ以上のダンパーを取り付けて、各ダンパーの開閉をそれぞれ制御することで、蒸発器24を通過する空気量とバイパス経路40を通過する空気量との比率を調整することも可能である。また、本発明の流路調整手段はダンパー70に限定されるものでなく、蒸発器24を通過する空気量とバイパス経路40を通過する空気量との比率を調整することができるものであれば他の構成であっても有効である。   In this embodiment, as shown in FIGS. 1 to 6, the damper 70 is attached to one end side of the partition wall 75 on the air upstream side (the air upstream side of the evaporator 24). As described above, the same effect can be obtained even if the damper 70 is attached to the other end side (the air downstream side of the evaporator 24) which is the air downstream side of the partition wall 75. It is also possible to adjust the ratio of the amount of air passing through the evaporator 24 and the amount of air passing through the bypass path 40 by attaching two or more dampers and controlling the opening and closing of each damper. . Further, the flow path adjusting means of the present invention is not limited to the damper 70, as long as the ratio between the amount of air passing through the evaporator 24 and the amount of air passing through the bypass path 40 can be adjusted. Even other configurations are effective.

更に、本実施例ではファン55を空気循環経路50内の蒸発器24の空気上流側となる吸込口52側に配設するものとしたが、ファン55の設置位置はこれに限定されるものでなく、乾燥運転において放熱器22で加熱された空気を空気循環経路50の吹出口54から内層ドラム5内の収容室10に送り、収容室10を経た空気を蒸発器24に送った後、再び、放熱器22に戻すことができるものであれば、何処に設置しても構わない。例えば、図8に示すように空気循環経路50内の放熱器22の空気下流側となる吹出口54側に配設しても差し支えない。   Furthermore, in the present embodiment, the fan 55 is disposed on the suction port 52 side, which is the upstream side of the evaporator 24 in the air circulation path 50, but the installation position of the fan 55 is limited to this. The air heated by the radiator 22 in the drying operation is sent from the outlet 54 of the air circulation path 50 to the storage chamber 10 in the inner drum 5, and the air passing through the storage chamber 10 is sent to the evaporator 24, and then again. As long as it can be returned to the radiator 22, it may be installed anywhere. For example, as shown in FIG. 8, the air circulation path 50 may be disposed on the air outlet 54 side, which is the downstream side of the radiator 22.

上記実施例1ではファン55を定速にて回転させて、空気循環経路50内を流れる循環空気量を一定としたが、収容室10に入る空気と収容室10を出る空気との温度差が小さくなるに伴い、ファン55の回転数を増大するものとすれば、乾燥時間の短縮を図ることができる。この場合、上記の如く圧縮機21の入力の低減による消費電力の削減されるので、例えば、圧縮機21の入力の低減に応じた電力分、ファン55の回転数を増大させることで、従来の消費電力を維持しながら、乾燥運転の迅速化を図ることが可能となる。この場合、ダンパー70の開度制御に同期して、ファン55の回転数を、増大させるよう制御することも可能である。   In the first embodiment, the fan 55 is rotated at a constant speed so that the amount of circulating air flowing in the air circulation path 50 is constant. However, there is a temperature difference between the air entering the storage chamber 10 and the air exiting the storage chamber 10. If the rotational speed of the fan 55 is increased as it decreases, the drying time can be shortened. In this case, since the power consumption is reduced by reducing the input of the compressor 21 as described above, for example, by increasing the number of revolutions of the fan 55 by the amount of power corresponding to the reduction of the input of the compressor 21, It is possible to speed up the drying operation while maintaining power consumption. In this case, in synchronization with the opening degree control of the damper 70, it is also possible to control to increase the rotational speed of the fan 55.

また、上記実施例1において、圧縮機21の回転数を一定とすれば、ダンパー70の開度の拡大に応じて、温度センサS1にて検出される収容室10に入る温度が上昇するため、乾燥運転の迅速化を図ることが可能となる。   In the first embodiment, if the rotation speed of the compressor 21 is constant, the temperature entering the storage chamber 10 detected by the temperature sensor S1 increases as the opening degree of the damper 70 increases. It becomes possible to speed up the drying operation.

更に、上記実施例1では、収容室10の出入口の空気温度差に基づき、前記ダンパー70を制御するものとするものとしたが、経過時間等を変数として目標とする蒸発器24を通過する空気量を演算し、ダンパー70を制御するものとしても良い。この場合、コントローラCがタイマー機能(時限手段)を備えるものとし、そのコントローラCにて乾燥時間の開始と共にカウントを開始し、乾燥運転を開始して、所定の時間経過したらダンパーを1ステップ開き、更に、所定の時間経過したらダンパー70を更に1ステップ開くよう制御することで、上記実施例同様に収容室10に入る空気の絶対湿度が増加し、それに伴い、収容室10から出る空気の絶対湿度が増加する。これにより、当該空気の露点温度が上がるため、蒸発器24において空気から水分を凝縮除去するために必要な熱量を減らすことができるようになる。これにより、乾燥効率の改善を図ることができるようになる。   Further, in the first embodiment, the damper 70 is controlled on the basis of the air temperature difference at the entrance / exit of the storage chamber 10. However, the air passing through the target evaporator 24 with the elapsed time as a variable is used. The amount may be calculated and the damper 70 may be controlled. In this case, it is assumed that the controller C has a timer function (timer means), the controller C starts counting with the start of the drying time, starts the drying operation, and when the predetermined time has elapsed, opens the damper one step, Further, by controlling the damper 70 to open one more step after a predetermined time has elapsed, the absolute humidity of the air entering the storage chamber 10 increases as in the above embodiment, and accordingly, the absolute humidity of the air exiting the storage chamber 10 is increased. Will increase. Thereby, since the dew point temperature of the said air rises, it becomes possible to reduce the amount of heat required to condense and remove moisture from the air in the evaporator 24. As a result, the drying efficiency can be improved.

本発明を適用した乾燥機の一実施例の洗濯乾燥機の概略構成図である。It is a schematic block diagram of the washing dryer of one Example of the dryer to which this invention is applied. 図1の洗濯乾燥機の空気循環経路の模式図である。It is a schematic diagram of the air circulation path | route of the washing-drying machine of FIG. 図2の洗濯乾燥機の乾燥運転における空気循環経路を流れる循環空気の流れを示す第1の図である。It is a 1st figure which shows the flow of the circulating air which flows through the air circulation path | route in the drying operation of the washing-drying machine of FIG. 図2の洗濯乾燥機の乾燥運転における空気循環経路を流れる循環空気の流れを示す第2の図である。It is a 2nd figure which shows the flow of the circulating air which flows through the air circulation path | route in the drying operation of the washing-drying machine of FIG. 図2の洗濯乾燥機の乾燥運転における空気循環経路を流れる循環空気の流れを示す第3の図である。It is a 3rd figure which shows the flow of the circulating air which flows through the air circulation path | route in the drying operation of the washing-drying machine of FIG. 図2の洗濯乾燥機の乾燥運転における空気循環経路を流れる循環空気の流れを示す第4の図である。It is a 4th figure which shows the flow of the circulating air which flows through the air circulation path | route in the drying operation of the washing-drying machine of FIG. 本発明を適用した乾燥機の一実施例の洗濯乾燥機の他の概略構成を示す図である。It is a figure which shows the other schematic structure of the washing dryer of one Example of the dryer to which this invention is applied. 本発明を適用した乾燥機の一実施例の洗濯乾燥機のもう一つの他の概略構成を示す図である。It is a figure which shows another another schematic structure of the washing dryer of one Example of the dryer to which this invention is applied.

C コントローラ(制御手段)
W 洗濯乾燥機
S1 温度センサ(入口温度検出手段)
S2 温度センサ(出口温度検出手段)
1 本体
2 外層ドラム
5 内層ドラム
7 透孔
10 収容室
20 冷媒回路
21 圧縮機
22 放熱器
23 膨張弁(減圧装置)
24 蒸発器
40 バイパス経路
50 空気循環経路
52 吸込口
54 吹出口
55 ファン(送風手段)
70 ダンパー(流路調整手段)
75 仕切壁
C controller (control means)
W Washer / dryer S1 Temperature sensor (Inlet temperature detection means)
S2 Temperature sensor (outlet temperature detection means)
DESCRIPTION OF SYMBOLS 1 Main body 2 Outer layer drum 5 Inner layer drum 7 Through-hole 10 Accommodating chamber 20 Refrigerant circuit 21 Compressor 22 Radiator 23 Expansion valve (decompression device)
24 Evaporator 40 Bypass Path 50 Air Circulation Path 52 Suction Port 54 Air Outlet 55 Fan (Blower Unit)
70 Damper (Flow path adjusting means)
75 partition wall

Claims (4)

被乾燥物を収容する収容室を備え、該収容室内において前記被乾燥物の乾燥運転を実行する乾燥機において、
少なくとも圧縮機、放熱器、減圧装置及び蒸発器が順次環状に配管接続されてなる冷媒回路と、
送風手段により前記放熱器と熱交換した空気を前記収容室内に送り、該収容室内を経た空気を前記蒸発器に送った後、再び前記放熱器に戻す空気循環を構成するための空気循環経路と、
該空気循環経路を、前記蒸発器が設置された経路と、循環空気が前記蒸発器を通過せずに前記放熱器に至るバイパス経路とに仕切る仕切壁と
該仕切壁の空気上流側、若しくは、空気下流側に設けられ、前記蒸発器を通過する空気量と前記バイパス経路を通過する空気量との比率を調整する流路調整手段と、
該流路調整手段を制御する制御手段とを備えたことを特徴とする乾燥機。
In a drier that includes a storage chamber that stores a material to be dried, and performs a drying operation of the material to be dried in the storage chamber.
A refrigerant circuit in which at least a compressor, a radiator, a decompression device, and an evaporator are sequentially connected in a pipe, and
An air circulation path for constructing an air circulation in which air exchanged with the radiator by the blowing means is sent into the accommodation chamber, and the air passing through the accommodation chamber is sent to the evaporator and then returned to the radiator again; ,
A partition wall that divides the air circulation path into a path where the evaporator is installed and a bypass path where the circulating air does not pass through the evaporator and reaches the radiator.
A flow path adjusting means which is provided on the air upstream side or the air downstream side of the partition wall and adjusts the ratio of the amount of air passing through the evaporator and the amount of air passing through the bypass path;
And a control means for controlling the flow path adjusting means.
前記制御手段は、前記収容室に入る循環空気の温度を検出する入口温度検出手段及び該収容室から出た循環空気の温度を検出する出口温度検出手段を備え、乾燥運転の進行によって変化する両温度検出手段の出力に基づき、前記流路調整手段を制御することを特徴とする請求項1に記載の乾燥機。   The control means includes an inlet temperature detection means for detecting the temperature of the circulating air entering the storage chamber and an outlet temperature detection means for detecting the temperature of the circulating air exiting the storage chamber, both of which change with the progress of the drying operation. 2. The dryer according to claim 1, wherein the flow path adjusting unit is controlled based on an output of the temperature detecting unit. 前記制御手段は時限手段を備え、該時限手段によりカウントされる乾燥運転の進行に応じて前記流路調整手段を制御することを特徴とする請求項1に記載の乾燥機。   The dryer according to claim 1, wherein the control means includes a time-limit means, and controls the flow path adjusting means in accordance with the progress of the drying operation counted by the time-limit means. 前記制御手段は、前記温度検出手段の出力に基づき、又は、前記時限手段によりカウントされる乾燥運転の進行に応じて前記送風手段の風量を制御することを特徴とする請求項2又は請求項3に記載の乾燥機。   The said control means controls the air volume of the said ventilation means based on the progress of the drying operation counted by the said time limit means based on the output of the said temperature detection means, The Claim 2 or Claim 3 characterized by the above-mentioned. The dryer as described in.
JP2007066548A 2007-03-15 2007-03-15 Dryer Expired - Fee Related JP4986662B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007066548A JP4986662B2 (en) 2007-03-15 2007-03-15 Dryer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007066548A JP4986662B2 (en) 2007-03-15 2007-03-15 Dryer

Publications (2)

Publication Number Publication Date
JP2008220814A JP2008220814A (en) 2008-09-25
JP4986662B2 true JP4986662B2 (en) 2012-07-25

Family

ID=39840088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007066548A Expired - Fee Related JP4986662B2 (en) 2007-03-15 2007-03-15 Dryer

Country Status (1)

Country Link
JP (1) JP4986662B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5251173B2 (en) * 2008-03-07 2013-07-31 パナソニック株式会社 Dehumidifying and heating device and drying device using the same
EP2489774B1 (en) * 2011-02-18 2015-06-17 Electrolux Home Products Corporation N.V. A heat pump laundry dryer
JP5785447B2 (en) * 2011-06-20 2015-09-30 株式会社前川製作所 Wood dryer control device
KR101613965B1 (en) 2014-12-08 2016-04-20 엘지전자 주식회사 Control method for exhaust-type dryer
KR101632013B1 (en) * 2014-12-08 2016-06-21 엘지전자 주식회사 Condensing type clothes dryer having a heat pump cycle and control method for the same
KR101613963B1 (en) 2014-12-08 2016-04-20 엘지전자 주식회사 Clothes treating apparatus with a heat pump system
CN106480681B (en) 2015-08-31 2019-08-27 青岛海尔滚筒洗衣机有限公司 A kind of straight-line heat pump clothes dryer
JP2022175778A (en) * 2021-05-14 2022-11-25 青島海爾洗衣机有限公司 Washing and drying machine

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05131093A (en) * 1991-11-13 1993-05-28 Matsushita Electric Ind Co Ltd Dryer for clothing
JP4507587B2 (en) * 2003-12-22 2010-07-21 パナソニック株式会社 Dehumidifying dryer
JP4379269B2 (en) * 2004-09-09 2009-12-09 パナソニック株式会社 Washing and drying machine
JP2006087484A (en) * 2004-09-21 2006-04-06 Toshiba Corp Washing/drying machine

Also Published As

Publication number Publication date
JP2008220814A (en) 2008-09-25

Similar Documents

Publication Publication Date Title
JP4986662B2 (en) Dryer
KR101613966B1 (en) Clothes treating apparatus
JP4976965B2 (en) Clothes dryer
JP2008220817A (en) Washing and drying machine
EP1819868B1 (en) Clothes dryer
JP2005253588A (en) Drier
KR20080089232A (en) Dryer and washing machine comprising dryer
JP2006122466A (en) Laundry washer/dryer
JP6486197B2 (en) Clothes dryer
JP2009106566A (en) Washing drying machine and laundry drier
JP6389563B2 (en) Heat pump system, washing dryer and dryer
JP2008067742A (en) Clothes dryer
JP2007143631A (en) Clothes drying machine and its operating method
JP4841377B2 (en) Dryer
JPH01212599A (en) Washer-dryer
JP2015039597A (en) Drying device
JP4384203B2 (en) Clothes dryer
JP7319028B2 (en) clothes dryer
JP2009034409A (en) Clothes dryer
JP4984924B2 (en) Clothes drying apparatus and washing dryer equipped with the apparatus
JP2016087223A (en) Drying machine
JP2011087623A (en) Clothes dryer
JP2007143711A (en) Machine for drying and dehumidification for clothes
KR101119121B1 (en) Control method of dryer
JP2005069539A (en) Dryer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111101

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120327

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120424

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees