JP4986449B2 - Method for examining floating cells - Google Patents

Method for examining floating cells Download PDF

Info

Publication number
JP4986449B2
JP4986449B2 JP2005375195A JP2005375195A JP4986449B2 JP 4986449 B2 JP4986449 B2 JP 4986449B2 JP 2005375195 A JP2005375195 A JP 2005375195A JP 2005375195 A JP2005375195 A JP 2005375195A JP 4986449 B2 JP4986449 B2 JP 4986449B2
Authority
JP
Japan
Prior art keywords
fluorescence
cells
ctc
cell
nucleus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005375195A
Other languages
Japanese (ja)
Other versions
JP2007178193A (en
Inventor
雅夫 福島
昌幸 島田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SRL, INC.
Original Assignee
SRL, INC.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SRL, INC. filed Critical SRL, INC.
Priority to JP2005375195A priority Critical patent/JP4986449B2/en
Publication of JP2007178193A publication Critical patent/JP2007178193A/en
Application granted granted Critical
Publication of JP4986449B2 publication Critical patent/JP4986449B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Description

本発明は、血液中を循環する癌細胞等の浮遊細胞の検査方法に関する。   The present invention relates to a method for examining floating cells such as cancer cells circulating in blood.

固形癌組織から癌細胞が脱落して末梢血中に入り、体内の他の場所に運ばれて増殖することが癌の転移の原因であると考えられている。末梢血中に浮遊する癌細胞は、CTC(Circulating Tumor Cell)と呼ばれている。血液中のCTC数と、癌の転移の可能性及び予後とは相関することが報告されており、癌の診断や癌治療法の効果の判定の指標とするために、血中CTC数を測定することが知られている。特に、血中CTC数を測定することにより乳癌の進行度や悪性度、予後を診断することが米国では臨床的に行われており、我国でも研究用試薬としてではあるが、血中CTC数を測定するためのキットが市販されている。   It is considered that cancer metastasis is caused by cancer cells falling from solid cancer tissues, entering peripheral blood, and being carried to other places in the body to proliferate. Cancer cells floating in the peripheral blood are called CTC (Circulating Tumor Cell). The number of CTCs in blood has been reported to correlate with the possibility of cancer metastasis and prognosis, and the number of CTCs in blood was measured to serve as an index for the diagnosis of cancer and the determination of the effects of cancer treatments. It is known to do. In particular, it is clinically performed in the United States to diagnose the degree of progression, malignancy, and prognosis of breast cancer by measuring the number of blood CTCs. Kits for measuring are commercially available.

市販のキットを用いた、血中CTC数の測定方法は、上皮細胞(癌細胞は上皮細胞であり、通常、末梢血中には存在しない)の細胞表面に特異的に発現する表面抗原(EpCAM (Epithelial Cell Adhesion Molecule))に特異的な抗体を不動化した磁気ビーズと血液とを接触させ、磁気ビーズ上に捕捉された癌細胞を、上記表面抗原とは別の上皮特異的表面抗原(サイトケラチン)に対する蛍光標識抗体で蛍光染色し、蛍光染色された細胞数を計数する。この際、細胞に結合していない未反応の蛍光標識抗体等を測定することがないよう、核酸と特異的に結合する蛍光試薬も同時に検体と接触させ、核と細胞膜の両者が蛍光染色された細胞を計数する。さらに、CTC以外の細胞を測定しないように、蛍光標識CD45抗体も同時に作用させ、核が染色され、細胞膜が蛍光標識抗サイトケラチン抗体で染色され、かつ、蛍光標識抗CD45抗体で染色されない細胞をCTCとして計数する。用いられるこれら3種類の蛍光色素は、それぞれ明瞭に識別可能な程度に蛍光波長が異なっている。   A method for measuring the number of CTCs in the blood using a commercially available kit is a surface antigen (EpCAM) that is specifically expressed on the cell surface of epithelial cells (cancer cells are epithelial cells, usually not present in peripheral blood). (Epithelial Cell Adhesion Molecule)) is contacted with a magnetic bead immobilizing an antibody specific to blood and blood, and cancer cells captured on the magnetic bead are separated from an epithelial specific surface antigen (site). Fluorescence staining with a fluorescently labeled antibody against keratin) and counting the number of fluorescently stained cells. At this time, both the nucleus and the cell membrane were fluorescently stained so that a fluorescent reagent that specifically binds to the nucleic acid was also brought into contact with the specimen at the same time so that unreacted fluorescently labeled antibody that was not bound to cells was not measured. Count cells. Furthermore, in order not to measure cells other than CTC, fluorescent labeled CD45 antibody is also allowed to act simultaneously, the nucleus is stained, the cell membrane is stained with fluorescent labeled anti-cytokeratin antibody, and cells that are not stained with fluorescent labeled anti-CD45 antibody Count as CTC. These three types of fluorescent dyes used have different fluorescence wavelengths so that they can be clearly distinguished from each other.

一方、癌細胞においては発癌遺伝子が増殖することが知られており、癌細胞中の発癌遺伝子数と癌の悪性度や予後とが相関することが知られている。このため、癌の悪性度の診断や予後の予測のために、癌細胞中の発癌遺伝子数が測定されている。例えば、乳癌では、HER-2/neuという発癌遺伝子やEGFR(epidermal growth factor receptor)遺伝子の増殖が調べられている。生細胞中の遺伝子を検出する手段として、蛍光インサイチューハイブリダイゼーション法(fluorescent in situ hybridization, FISH)が広く用いられている。FISH法は、発癌遺伝子とハイブリダイズする蛍光標識DNAプローブを被検細胞と接触させ、細胞中の発癌遺伝子とハイブリダイズした蛍光標識DNAプローブを測定することにより行われる。この場合も、未反応のプローブ等、細胞の核以外のものを測定しないように、核酸と特異的に反応する蛍光試薬で細胞の核を染色する。また、発癌遺伝子以外の遺伝子とハイブリダイズする蛍光標識DNAプローブも同時に作用させ、発癌遺伝子数は、測定された発癌遺伝子検出用DNAプローブの発光部位の数を、発癌遺伝子以外の遺伝子検出用DNAプローブの発光部位の数で除することにより求められる。このように、FISH法においても3種類の異なる蛍光色素が用いられる。これら3種類の蛍光色素は、上記したCTC計数の場合と同様、それぞれ明瞭に識別可能な程度に蛍光波長が異なるものが選択される。なお、末梢血から回収したCTC対してFISH法を行なうことは公知である(非特許文献1)。   On the other hand, it is known that oncogenes proliferate in cancer cells, and it is known that the number of oncogenes in cancer cells correlates with the malignancy and prognosis of cancer. For this reason, the number of oncogenes in cancer cells is measured in order to diagnose cancer malignancy and predict prognosis. For example, in breast cancer, growth of an oncogene called HER-2 / neu and an EGFR (epidermal growth factor receptor) gene has been examined. As a means for detecting genes in living cells, fluorescent in situ hybridization (FISH) is widely used. The FISH method is performed by contacting a fluorescently labeled DNA probe that hybridizes with an oncogene with a test cell and measuring the fluorescently labeled DNA probe that has hybridized with the oncogene in the cell. In this case as well, the cell nucleus is stained with a fluorescent reagent that specifically reacts with the nucleic acid so as not to measure anything other than the cell nucleus, such as an unreacted probe. In addition, a fluorescently labeled DNA probe that hybridizes with a gene other than an oncogene is also allowed to act simultaneously, and the number of oncogenes is determined based on the number of light-emitting sites of the oncogene detection DNA probe. It is calculated by dividing by the number of light emitting sites Thus, three different fluorescent dyes are also used in the FISH method. As these three types of fluorescent dyes, those having different fluorescence wavelengths to the extent that they can be clearly distinguished are selected as in the case of CTC counting described above. It is known that the FISH method is performed on CTC collected from peripheral blood (Non-patent Document 1).

上記の通り、CTC計数とFISH法では、それぞれ、明瞭に識別可能な程度に蛍光波長が異なっている3種類の蛍光色素が用いられる。このため、CTC計数に用いられる蛍光色素の蛍光波長と、FISH法に用いられる蛍光色素の蛍光波長は、波長の範囲が重複ないし近接している。従って、CTC計数と、CTCに対するFISH法を行なう場合、それぞれの測定のための検体を別々に準備し、両者の測定は全く別々に行なわれる(非特許文献1)。   As described above, in the CTC counting and the FISH method, three types of fluorescent dyes having different fluorescence wavelengths to the extent that they can be clearly identified are used. For this reason, the wavelength range of the fluorescent dye used for CTC counting and the fluorescent wavelength of the fluorescent dye used for the FISH method overlap or are close to each other. Therefore, when performing the CTC counting and the FISH method for CTC, samples for each measurement are prepared separately, and both measurements are performed completely (Non-patent Document 1).

Sondong Meng et al., PNAS, June 22, 2004, vol.101, no.25, 9393-9398Sondong Meng et al., PNAS, June 22, 2004, vol.101, no.25, 9393-9398

上記の通り、1つの血液検体について、CTC計数とCTCのFISH法とを行なう場合、CTC計数とFISH法の両方にそれぞれに供するために必要な量の血液を採血する必要がある。また、同一の血液検体を用いるとはいえ、FISH法により発癌遺伝子数が測定されるCTCと、CTC計数により計数されるCTCとは異なる細胞であり、実際にCTCとして計数された細胞中の発癌遺伝子数を知ることはできない。   As described above, when performing CTC counting and the CTC FISH method for one blood sample, it is necessary to collect a necessary amount of blood for both the CTC counting and the FISH method. In addition, although the same blood sample is used, the CTC in which the number of oncogenes is measured by the FISH method is different from the CTC counted by the CTC count, and the carcinogenesis in the cells actually counted as CTC You cannot know the number of genes.

従って、本発明の目的は、1つの検体について、CTC計数とCTCに対するFISH法の両方を行なう場合等のように、浮遊細胞の表面抗原を蛍光染色することを含む方法と、FISH法の両方を行なう場合に、用いる検体の量を従来よりも少なくすることができる検査方法を提供することである。また、本発明の目的は、計数されたCTCのように、実際に蛍光染色された細胞中の遺伝子をFISH法により検出することができる検査方法を提供することである。   Therefore, an object of the present invention is to provide both a method including fluorescent staining of the surface antigen of floating cells and a FISH method, such as when performing both CTC counting and FISH method for CTC for one specimen. When performing, it is providing the test | inspection method which can reduce the quantity of the sample to be used conventionally. Another object of the present invention is to provide a test method that can detect genes in cells that are actually fluorescently stained, such as counted CTCs, by the FISH method.

本願発明者らは、計数されたCTCのように、蛍光染色した後の細胞を材料としてFISH法を行なうことができれば、用いる検体の量を減少させることができ、かつ、実際に蛍光染色された細胞中の遺伝子をFISH法により検出することができることに想到した。しかしながら、上記の通り、CTC計数のために、細胞の表面及び核が蛍光染色され、一方、FISH法においても蛍光が観察される。そして、両者に用いられる蛍光色素の蛍光波長の範囲は重複ないしは近接している。このため、当然ながら、計数された、蛍光染色後のCTCにFISH法を行なっても、蛍光染色による蛍光とFISH法による蛍光の両方が観察されてしまい、FISH法による検出を正確に行なうことはできないと考えられる。実際、蛍光染色後の浮遊細胞に対してFISH法を行なった例は全く知られていない。   The inventors of the present application can reduce the amount of specimen to be used and can actually be fluorescently stained if the FISH method can be carried out using cells after fluorescent staining as a material, such as the counted CTC. It was conceived that genes in cells can be detected by FISH method. However, as described above, the cell surface and nucleus are fluorescently stained for CTC counting, while fluorescence is also observed in the FISH method. The fluorescent wavelength ranges of the fluorescent dyes used for both are overlapping or close to each other. For this reason, of course, even if the FISH method is performed on the counted CTC after fluorescence staining, both fluorescence by fluorescence staining and fluorescence by FISH method are observed, and detection by the FISH method is accurate. It is considered impossible. In fact, there is no known example of performing the FISH method on floating cells after fluorescent staining.

本願発明者らは、FISH法で蛍光染色されるのは細胞の核であり、一方、CTC計測の際に染色される表面抗原は、細胞の表面に存在するため、FISH法において核にピントを合わせて核を蛍光顕微鏡で観察すれば、あるいは蛍光染色された表面抗原の妨害を受けずに核の蛍光を観察することができるかもしれないと考えた。そして実際に、CTC計数に供した、蛍光染色後のCTCに対してFISH法を行ない、その核を、核にピントを合わせて蛍光顕微鏡で観察したところ、驚くべきことに、CTC計数のために用いた蛍光色素による妨害を受けずにFISH法を行なうことができることを見出し、本発明を完成した。   The inventors of the present application fluorescently stained the cell nucleus in the FISH method, while the surface antigen stained in the CTC measurement is present on the cell surface. At the same time, it was thought that the fluorescence of the nucleus could be observed by observing the nucleus with a fluorescence microscope, or without being disturbed by the fluorescently stained surface antigen. Actually, the FISH method was performed on the CTC after fluorescence staining, which was subjected to CTC counting, and when the nucleus was focused on the nucleus and observed with a fluorescence microscope, surprisingly, for CTC counting, The present inventors have found that the FISH method can be performed without being disturbed by the fluorescent dye used, and have completed the present invention.

すなわち、本発明は、細胞表面抗原が蛍光染色された浮遊細胞を、蛍光インサイチューハイブリダイゼーション法に供し、次いで細胞の核にピントを合わせて核を蛍光顕微鏡で観察することを含む、浮遊細胞の検査方法であって、前記浮遊細胞が、血液中を循環している癌細胞であり、前記蛍光インサイチューハイブリダイゼーション法に供される浮遊細胞は、核も蛍光染色されたものであり、かつ、前記蛍光インサイチューハイブリダイゼーション法における観察を、細胞表面抗原の蛍光染色後15時間以上経過した後に行なう、浮遊細胞の検査方法を提供する。 That is, the present invention provides a floating cell test comprising subjecting a floating cell fluorescently stained with a cell surface antigen to a fluorescence in situ hybridization method, then focusing on the cell nucleus and observing the nucleus with a fluorescence microscope. In the method , the floating cells are cancer cells circulating in blood, the floating cells subjected to the fluorescence in situ hybridization method are those in which nuclei are also fluorescently stained, and the fluorescence Provided is a method for examining floating cells, wherein observation in an in situ hybridization method is performed after 15 hours or more have passed after fluorescent staining of a cell surface antigen .

本発明の方法によれば、蛍光染色後の細胞を材料としてFISH法を行なうので、両者の測定に用いる検体の合計量を従来よりも減少させることができる。従って、本発明の方法によりCTC計測とFISH法を行なう場合、患者からの採血量を従来よりも少なくすることができ、貴重な血液検体を有効に活用することができる。また、本発明の方法によれば、実際に蛍光染色された細胞内の遺伝子をFISHにより検出することができる。従って、本発明の方法によりCTC計測とFISH法を行なう場合、実際に計数されたCTC中の発癌遺伝子数を測定することができるので、従来のCTC計測とFISH法を別個に行なう場合に比べて、癌の進行度や悪性度の診断、転移の可能性や予後の推測をより的確に行なうことができる。   According to the method of the present invention, since the FISH method is performed using cells after fluorescent staining as a material, the total amount of specimens used for both measurements can be reduced as compared with the conventional method. Therefore, when CTC measurement and FISH method are performed by the method of the present invention, the amount of blood collected from a patient can be reduced as compared with the conventional case, and a valuable blood sample can be used effectively. In addition, according to the method of the present invention, genes in cells that are actually fluorescently stained can be detected by FISH. Therefore, when performing the CTC measurement and the FISH method according to the method of the present invention, the number of oncogenic genes in the actually counted CTC can be measured, compared with the case where the conventional CTC measurement and the FISH method are performed separately. In addition, the diagnosis of cancer progression and malignancy, the possibility of metastasis and prognosis can be made more accurately.

本発明の方法において、FISH法に供する浮遊細胞は、細胞の表面抗原が蛍光染色されたものであり、計数されたCTCを挙げることができる。なお、本発明における「浮遊細胞」とは、細胞表面の蛍光染色に供する前の細胞が血液や培養液等の液体中に浮遊していた細胞を意味する。CTC計数における染色時には磁気ビーズに結合され、また、FISH法ではスライドガラスに貼り付けられているが、検査開始前に浮遊細胞であったものを本発明では浮遊細胞と呼ぶ。   In the method of the present invention, the floating cells to be subjected to the FISH method are those in which cell surface antigens are fluorescently stained, and can include CTCs counted. The “floating cell” in the present invention means a cell that has been suspended in a liquid such as blood or culture solution before the cell surface is subjected to fluorescent staining. When stained in CTC counting, it is bound to a magnetic bead, and is attached to a glass slide by the FISH method, but what was a floating cell before the start of examination is called a floating cell in the present invention.

蛍光染色の1例として、CTCの計数方法について説明する。上記の通り、CTCを計数するためのキットは市販されている(商品名「ECKIT」、輸入元:オーソ・クリニカル・ダイアグノスティックス株式会社)。このキットは、上皮細胞の細胞表面に特異的に発現する表面抗原(EpCAM)に対するモノクローナル抗体を不動化した磁気ビーズと、上皮細胞に特異的な表面抗原であるサイトケラチン(CK)に対するモノクローナル抗体を蛍光色素であるフィコエリスリン(PE)で標識したPE標識抗CKモノクローナル抗体と、リンパ球の表面抗原であるCD45に対するモノクローナル抗体を蛍光色素であるアロフィコシアニン(APC)で標識したAPC標識抗CD45モノクローナル抗体と、核酸に特異的に結合する蛍光色素である4'-6-ジアミジノ-2-フェニルインドール(DAPI)とを含む。APCの蛍光は赤色、PEの蛍光は橙色、DAPIの蛍光は青色である。   As an example of fluorescent staining, a CTC counting method will be described. As described above, a kit for counting CTC is commercially available (trade name “ECKIT”, importer: Ortho Clinical Diagnostics Inc.). This kit contains magnetic beads immobilized with a monoclonal antibody against the surface antigen (EpCAM) specifically expressed on the cell surface of epithelial cells and a monoclonal antibody against cytokeratin (CK), which is a surface antigen specific to epithelial cells. PE-labeled anti-CK monoclonal antibody labeled with the fluorescent dye phycoerythrin (PE) and APC-labeled anti-CD45 monoclonal labeled with the fluorescent dye allophycocyanin (APC) for the monoclonal antibody against CD45, the lymphocyte surface antigen. An antibody and 4′-6-diamidino-2-phenylindole (DAPI), which is a fluorescent dye that specifically binds to nucleic acid. APC fluorescence is red, PE fluorescence is orange, and DAPI fluorescence is blue.

CTCを計数する際には、先ず、血液検体を抗EpCAMモノクローナル抗体不動化磁気ビーズと接触させ、CTCを磁気ビーズ上に結合させる。磁力を利用して磁気ビーズを集め、PE標識抗CKモノクローナル抗体、APC標識抗CD45モノクローナル抗体及びDAPIを、磁気ビーズ上の細胞と反応させる。CTCの細胞表面はPEにより染色され、核はDAPIにより染色されるがAPCによっては染色されない。磁気ビーズ上に固定化された細胞のうち、PE及びDAPIにより染色され、APCにより染色されない細胞をCTCとして自動アナライザーによりその数を計数する。これにより、所定量の血液中に含まれるCTC数が計数される。   When counting CTC, first, a blood sample is brought into contact with anti-EpCAM monoclonal antibody-immobilized magnetic beads, and CTC is bound onto the magnetic beads. Magnetic beads are collected using magnetic force, and PE-labeled anti-CK monoclonal antibody, APC-labeled anti-CD45 monoclonal antibody and DAPI are reacted with cells on the magnetic beads. The cell surface of CTC is stained with PE, and the nucleus is stained with DAPI but not with APC. Among the cells immobilized on the magnetic beads, the number of cells stained with PE and DAPI but not stained with APC is counted as CTC by an automatic analyzer. Thereby, the number of CTCs contained in a predetermined amount of blood is counted.

本発明の方法では、上記した計数後のCTCのような、浮遊細胞の表面が蛍光染色された後の細胞を材料としてFISH法を行なう。FISH法自体は周知であり、そのためのキットも市販されている。例えば、乳癌細胞における発癌遺伝子であるHER-2/neu遺伝子をFISH法により測定するためのキットは、「パスビジョンHER-2 DNAプローブキット」の商品名でアステラス製薬株式会社から市販されている。FISH法はこのような市販のキットを用いて行なうことができる。同様に、乳癌等の固形癌の診断に有用なEGFR(Epidermal Growth Factor Receptor)遺伝子(HER-1/erb-B1遺伝子とも呼ばれる)をFISH法により測定するためのキットが、「LSI EGFR/CEP 7 Dual Color Probe」の商品名でVYSIS社から市販されている(Bredel, M., et al. (1999) Clin Cancer REs 5, 1786-92)。なお、FISH法により検出される遺伝子はHER-2/neu遺伝子及びEGFR遺伝子に限定されるものではなく、例えば、TOP2A、c-myc、ZNF217 CyclinD1、p53、p16、c-myc、chromosome 5、chromosome 6、Androgen receptor、1p36、1q25、19q13、19p13、SYT、EWSR1、 FUS、BCR、CHOP、FKHR等の遺伝子を挙げることができるがこれらに限定されるものではない。   In the method of the present invention, the FISH method is performed using, as a material, cells after the surface of floating cells such as CTC after counting have been fluorescently stained. The FISH method itself is well known, and kits for that purpose are also commercially available. For example, a kit for measuring the HER-2 / neu gene, which is an oncogene in breast cancer cells, by the FISH method is commercially available from Astellas Pharma Inc. under the trade name “Path Vision HER-2 DNA probe kit”. The FISH method can be performed using such a commercially available kit. Similarly, a kit for measuring EGFR (Epidermal Growth Factor Receptor) gene (also referred to as HER-1 / erb-B1 gene) useful for diagnosis of solid cancer such as breast cancer by FISH method is described as “LSI EGFR / CEP 7 It is commercially available from VYSIS under the trade name "Dual Color Probe" (Bredel, M., et al. (1999) Clin Cancer REs 5, 1786-92). The gene detected by the FISH method is not limited to the HER-2 / neu gene and EGFR gene.For example, TOP2A, c-myc, ZNF217 CyclinD1, p53, p16, c-myc, chromosome 5, chromosome 6. Genes such as androgen receptor, 1p36, 1q25, 19q13, 19p13, SYT, EWSR1, FUS, BCR, CHOP, and FKHR can be exemplified, but are not limited thereto.

FISH法の1例として、上記市販キットを用いたHER-2/neu遺伝子を検出するFISH法について説明する。本発明の方法では、FISH法に供する細胞が、上記した計数後のCTCのような、細胞表面が蛍光染色された細胞であるが、FISH法自体は通常の細胞を材料とするFISH法と同様にして行なうことができる。なお、上記したECKIT(商品名)を用いて計数したCTCを材料として用いる場合、CTCは磁気ビーズに結合された状態にあるが、CTCは磁気ビーズに結合された状態のままでFISH法に供することができる。   As an example of the FISH method, the FISH method for detecting the HER-2 / neu gene using the commercially available kit will be described. In the method of the present invention, the cell to be subjected to the FISH method is a cell whose surface has been fluorescently stained, such as CTC after counting as described above, but the FISH method itself is similar to the FISH method using normal cells as a material. Can be done. In addition, when using CTC counted using the above-mentioned ECKIT (trade name) as a material, CTC is in a state of being bound to magnetic beads, but CTC is still bound to magnetic beads and subjected to the FISH method. be able to.

浮遊液の形態にある、蛍光染色された細胞が結合された磁気ビーズは、市販のサイトスピンを用いてスライドガラス上に付着させることができる。細胞の脱水、固定化は、常法により行なうことができる。上記市販キットによりCTC中のHER-2/neu遺伝子を検出することは次のようにして行なうことができる。キット中には、HER-2/neu遺伝子中の部分領域と相補的な塩基配列を有するHER-2/neu DNAプローブが含まれており、このHER-2/neu DNAプローブは、蛍光色素スペクトラムオレンジで標識されている。また、キット中には、17番染色体のセントロメア領域にあるアルファサテライトDNA配列の部分領域に相補的な塩基配列を有するCEP17 DNAプローブが含まれており、このCEP17 DNAプローブは、蛍光色素スペクトラムグリーンで標識されている。さらに、CTC計数の場合と同様、核を染色するためのDAPIが含まれている。FISH法は、常法に従い、固定した細胞を加熱して染色体DNAを変性させた状態で、上記2種類の蛍光標識DNAプローブを加えて反応させ、各DNAプローブと相補的な塩基配列を有するゲノムDNAの領域に各DNAプローブをハイブリダイズさせる。HER-2/neu DNAプローブは発癌遺伝子であるHER-2/neu遺伝子(17q11.2-q12)の領域とハイブリダイズし、CEP17 DNAプローブは、17番染色体のセントロメア領域にあるアルファサテライトDNA配列(17p11.1-q11.1)とハイブリダイズする。ハイブリダイゼーション後、DAPIを作用させて核を蛍光染色する。HER-2/neu DNAプローブの蛍光標識は、橙色の蛍光を発し、CEP17 DNAプローブの蛍光標識は緑色の蛍光を発し、DAPIは青色の蛍光を発するため、これら3種類の蛍光色素は明瞭に識別できる。各DNAプローブ及びDAPIで処理した後、細胞を蛍光顕微鏡で観察し、HER-2/neu DNAプローブがハイブリダイズした領域(橙色の蛍光が観察されるスポット)の数を、CEP17 DNAプローブがハイブリダイズした領域(緑色の蛍光が観察されるスポット)の数で除することにより、HER-2/neu遺伝子の数を測定することができる。なお、CTC計数においてもDAPIにより核が染色されるので、FISH法においてDAPIによる核の染色を省略してもよいが、再度DAPIで染色してもよい。   Magnetic beads in the form of suspension and bound with fluorescently stained cells can be deposited on a glass slide using commercially available cytospin. Cell dehydration and fixation can be performed by conventional methods. Detection of the HER-2 / neu gene in CTC using the above-mentioned commercially available kit can be performed as follows. The kit includes a HER-2 / neu DNA probe having a base sequence complementary to a partial region in the HER-2 / neu gene. This HER-2 / neu DNA probe is a fluorescent dye spectrum orange. It is labeled with. The kit also contains a CEP17 DNA probe having a base sequence complementary to a partial region of the alpha satellite DNA sequence in the centromere region of chromosome 17, and this CEP17 DNA probe is a fluorescent dye spectrum green. It is labeled. In addition, as in the case of CTC counting, DAPI for staining nuclei is included. In the FISH method, a genome having a base sequence complementary to each DNA probe is reacted with the above-mentioned two types of fluorescently labeled DNA probes in a state where chromosomal DNA is denatured by heating fixed cells according to a conventional method. Each DNA probe is hybridized to the DNA region. The HER-2 / neu DNA probe hybridizes with a region of the oncogenic HER-2 / neu gene (17q11.2-q12), and the CEP17 DNA probe is an alpha satellite DNA sequence in the centromere region of chromosome 17 ( It hybridizes with 17p11.1-q11.1). After hybridization, the nucleus is fluorescently stained with DAPI. The fluorescent label of the HER-2 / neu DNA probe emits orange fluorescence, the fluorescent label of the CEP17 DNA probe emits green fluorescence, and DAPI emits blue fluorescence, so these three types of fluorescent dyes are clearly distinguished. it can. After treatment with each DNA probe and DAPI, the cells are observed with a fluorescence microscope, and the number of regions where the HER-2 / neu DNA probe is hybridized (spots where orange fluorescence is observed) is hybridized with the CEP17 DNA probe. The number of HER-2 / neu genes can be measured by dividing by the number of regions (spots where green fluorescence is observed). In addition, since nuclei are stained with DAPI in CTC counting, staining of nuclei with DAPI may be omitted in the FISH method, but staining with DAPI may be performed again.

同様に、EGFR遺伝子をFISH法により検出するための市販のキット(上記した「LSI EGFR/CEP 7 Dual Color Probe」の商品名でVYSIS社から市販)は、プローブとして、染色体7p12上に位置するEGFR遺伝子とハイブリダイズする、約300kbのDNAを蛍光色素スペクトラムオレンジで標識したDNAプローブと、CEP7遺伝子(7p11.1-q11.1) とハイブリダイズするDNAを蛍光色素スペクトラムグリーンで標識したDNAプローブを含み、その他は上記したHER-2/neu遺伝子検出用のキットと同様である。これらのDNAプローブを用い、上記したHER-2/neu遺伝子検出用のキットと同様にして核内のEGFR遺伝子を検出することができる。   Similarly, a commercially available kit for detecting the EGFR gene by the FISH method (commercially available from VYSIS under the trade name “LSI EGFR / CEP 7 Dual Color Probe” described above) is an EGFR located on chromosome 7p12. A DNA probe that hybridizes with a gene, labeled with approximately 300 kb of DNA with a fluorescent dye spectrum orange, and a DNA probe labeled with a fluorescent dye spectrum green with a DNA that hybridizes with the CEP7 gene (7p11.1-q11.1) The others are the same as the above-described kit for detecting the HER-2 / neu gene. Using these DNA probes, the EGFR gene in the nucleus can be detected in the same manner as in the kit for detecting the HER-2 / neu gene described above.

なお、蛍光染色された浮遊細胞が、上記したDAPIのような核酸と特異的に結合する蛍光試薬によりその核も染色されたものである場合には、FISH法で用いる核酸プローブの蛍光標識としては、核の染色に用いる上記蛍光試薬とは目視により識別できる程度に異なる色の蛍光を発する蛍光色素を用いる。核の染色は、CTC計数でもFISH法でも、市販のキットではDAPIが用いられているので、市販のFISH用キットでは、核酸プローブはDAPIと目視により区別できる色の蛍光を発するものが選択されているので、この要件が満足される。   In addition, when the floating cells stained with fluorescence are those whose nuclei are also stained with a fluorescent reagent that specifically binds to a nucleic acid such as DAPI described above, as a fluorescent label of a nucleic acid probe used in the FISH method, In addition, a fluorescent dye that emits fluorescence of a color different from that of the fluorescent reagent used for staining the nucleus is used. For nuclear staining, DAPI is used in commercially available kits for both CTC counting and FISH methods. Therefore, in the commercially available FISH kit, a nucleic acid probe that emits fluorescence of a color that can be visually distinguished from DAPI is selected. This requirement is satisfied.

また、細胞の表面抗原の蛍光染色に続いてFISH法を行なう際、表面抗原の蛍光染色、15時間以上、好ましくは18時間〜48時間程度経過後にFISH法を行なうことが好ましい。この程度の時間を置くことにより、表面抗原の蛍光染色に用いた蛍光色素の蛍光が多少弱くなるので、FISH法後の蛍光顕微鏡観察をより的確に行なうことができる。
Further, when the FISH method is performed following the fluorescent staining of the cell surface antigen, the FISH method is preferably performed after 15 hours or more, preferably about 18 to 48 hours after the fluorescent staining of the surface antigen. By setting this time, the fluorescence of the fluorescent dye used for fluorescent staining of the surface antigen becomes somewhat weak, so that the fluorescence microscope observation after the FISH method can be performed more accurately.

FISH後の細胞を蛍光顕微鏡で観察する。この際、核にピントを合わせて観察する。細胞表面は蛍光染色されているので、FISH法後に細胞を蛍光顕微鏡で観察しても、細胞表面の蛍光に妨害されて正確な観察ができないと考えられた。しかしながら、驚くべきことに、核にピントを合わせて観察すると、細胞表面の蛍光色素は、核と同一平面内に見えるものは、核とは異なる位置に存在するので障害にはならず、また、核と三次元的に重なる位置に存在する蛍光色素(すなわち、核よりも対物レンズの手前側にある蛍光色素及び対物レンズから見て核の裏側に位置する蛍光色素)は、ピンボケ状態となって、FISH法に用いた蛍光標識核酸プローブを検出するのに全く支障がないことがわかった。本発明は、この驚くべき新知見に基づくものである。   The cells after FISH are observed with a fluorescence microscope. At this time, focus on the nucleus and observe. Since the cell surface was fluorescently stained, even if the cells were observed with a fluorescence microscope after the FISH method, it was thought that accurate observation was not possible due to interference with the fluorescence of the cell surface. Surprisingly, however, when the nucleus is focused and observed, the fluorescent dye on the cell surface, which appears in the same plane as the nucleus, is not a hindrance because it is located at a different position from the nucleus, The fluorescent dye that exists in a three-dimensionally overlapping position with the nucleus (that is, the fluorescent dye located on the front side of the objective lens relative to the nucleus and the fluorescent dye located on the back side of the nucleus as viewed from the objective lens) is out of focus. It was found that there was no problem in detecting the fluorescently labeled nucleic acid probe used in the FISH method. The present invention is based on this surprising new finding.

蛍光顕微鏡による観察は、最大倍率で行なうことが好ましい。倍率が大きくなるほど、対物レンズからの距離がわずかに違うだけでも、ピントが合ってない部分は低倍率の場合に比べてより激しいピンボケ状態になるので、細胞表面の蛍光色素の影響をより受けにくくなり、より正確にFISH法の結果を観察することができる。蛍光顕微鏡の最大倍率は通常1000倍であるので、1000倍で観察することが好ましい。   Observation with a fluorescence microscope is preferably performed at the maximum magnification. The greater the magnification, the less focused the object is, but the out-of-focus area becomes more out of focus compared to low magnification, making it less susceptible to the effects of fluorescent dyes on the cell surface. Thus, the result of the FISH method can be observed more accurately. Since the maximum magnification of the fluorescence microscope is usually 1000 times, it is preferable to observe at 1000 times.

以下、本発明を実施例に基づきより具体的に説明する。もっとも、本発明は下記実施例に限定されるものではない。   Hereinafter, the present invention will be described more specifically based on examples. However, the present invention is not limited to the following examples.

1. CTC数の計測
上記した市販のECKIT(商品名)を用い、その添付文書に記載された通りの操作を行い末梢血中のCTC数を測定した。すなわち、キットに含まれる専用採血管で乳癌患者から末梢血10mlを採血した。次に、採血した血液7.5mlをチューブに移し、キットに含まれる希釈バッファー6.5mlを加えた。その後、転倒混和をおこない、800g、10分間、室温で遠心した。遠心後、チューブをCellTracks (商品名)AutoPrep Systemの機器にかけた。機器の操作は、機器使用説明書に従った。ここで、上記した、磁性ビーズへのCTCの結合、PE標識抗サイトケラチンモノクローナル抗体及びAPC標識抗CD45モノクローナル抗体による細胞表面の蛍光染色並びにDAPIによる核の染色が自動的に行なわれる。次にCellTracks(商品名) AnalyzerIIを用いて、機器手順書に従い操作し、CTC数を計測した。ここでは、磁気ビーズ上に結合し、細胞表面がPE標識抗サイトケラチンモノクローナル抗体で染色され、APC標識抗CD45モノクローナル抗体で染色されず、核がDAPIで染色された細胞が自動的に計数される。
1. Measurement of CTC number Using the above-mentioned commercially available ECKIT (trade name), the operation as described in the package insert was performed to measure the CTC number in peripheral blood. That is, 10 ml of peripheral blood was collected from a breast cancer patient using a dedicated blood collection tube included in the kit. Next, 7.5 ml of the collected blood was transferred to a tube, and 6.5 ml of dilution buffer included in the kit was added. Thereafter, the mixture was inverted and centrifuged at 800 g for 10 minutes at room temperature. After centrifugation, the tube was applied to a CellTracks (trade name) AutoPrep System instrument. The operation of the device was in accordance with the device instruction manual. Here, the above-described binding of CTC to the magnetic beads, fluorescence staining of the cell surface with PE-labeled anti-cytokeratin monoclonal antibody and APC-labeled anti-CD45 monoclonal antibody, and nuclear staining with DAPI are automatically performed. Next, using CellTracks (trade name) Analyzer II, it was operated according to the instrument procedure and the number of CTCs was measured. Here, cells that bind on magnetic beads and are stained with PE-labeled anti-cytokeratin monoclonal antibody, not stained with APC-labeled anti-CD45 monoclonal antibody, and nuclei stained with DAPI are automatically counted. .

2. スライド固定法
CTC計数後、専用カートリッジからサンプルをピペットでとり、サイトスピン法で固定した。すなわち、CTC計数後、専用カートリッジからサンプルをピペットでとり、サイトスピン専用カートリッジに入れた。1400rpm、10分間室温で遠心し、細胞をスライドガラス上に貼り付けた。遠心後、細胞をドライヤーで乾燥した。
2. Slide fixing method
After CTC counting, a sample was pipetted from a dedicated cartridge and fixed by the cytospin method. That is, after CTC counting, a sample was pipetted from a dedicated cartridge and placed in a cytospin dedicated cartridge. Centrifugation was performed at 1400 rpm for 10 minutes at room temperature, and the cells were affixed on a glass slide. After centrifugation, the cells were dried with a dryer.

3. FISH法
FISH法は、EGFR遺伝子を検出するための、上記した市販のキットである「LSI EGFR/CEP 7 Dual Color Probe」(商品名)を用い、キットの添付文書に従って行なった。すなわち、細胞を固定したスライドを73-74℃の70%ホルムアミド/2xSSC溶液中に入れ、2分間静置した。直ちに、スライドを氷温の70%エタノールに中に入れ、5分間静置した。次に、スライドを氷温の100%エタノールに入れ替え、5分間以上静置した。スライドをドライヤーで乾燥させた。スライド1枚につき、キットに含まれるEGFR DNAプローブとCEP7 DNAプローブの溶液2μLを0.5mlのマイクロチューブに加え、恒温槽で75℃、5分間暖めた。マイクロチューブを直ちに氷中に移し、5分間以上静置した。このプローブ溶液をスライドに固定されている細胞に2μLを滴下した。気泡が入らないように注意して、カバーガラスを載せた。次に、カバーガラスより一回り大きいパラフィルム(商品名)を載せ、ボンドで封入した。モイスト・チェンバーにスライドを移し、37℃のインキュベーターで一晩反応させた。パラフィルム(商品名)を剥がし、室温の2xSSC溶液に入れ、カバーガラスが自然に剥がれるのを待った。45-47℃の50% Formamid/2xSSC溶液で15分間洗浄した。続いて、45-47℃の2xSSC溶液で10分間、45-47℃の2xSSC/0.1%Tween 20溶液で5分間洗浄した。洗浄後、ドライヤーで乾燥させた。乾燥させたスライドに、DAPI封入剤で封入した。なお、FISH法は、CTC計数から24時間経過後に操作を開始した。
3. FISH method
The FISH method was performed using the above-mentioned commercially available kit “LSI EGFR / CEP 7 Dual Color Probe” (trade name) for detecting the EGFR gene, according to the package insert of the kit. That is, the slide on which the cells were fixed was placed in a 70% formamide / 2 × SSC solution at 73-74 ° C. and allowed to stand for 2 minutes. Immediately, the slide was placed in 70% ethanol at ice temperature and allowed to stand for 5 minutes. Next, the slide was replaced with ice-cold 100% ethanol and allowed to stand for 5 minutes or longer. The slide was dried with a dryer. For each slide, 2 μL of the EGFR DNA probe and CEP7 DNA probe solution included in the kit was added to a 0.5 ml microtube, and heated in a thermostat at 75 ° C. for 5 minutes. The microtube was immediately transferred to ice and allowed to stand for 5 minutes or more. 2 μL of this probe solution was dropped on the cells fixed on the slide. A cover glass was placed with care to prevent bubbles from entering. Next, a parafilm (trade name) that was slightly larger than the cover glass was placed and sealed with bonds. The slide was transferred to a moist chamber and allowed to react overnight in a 37 ° C. incubator. The parafilm (trade name) was peeled off, placed in a 2x SSC solution at room temperature, and waited for the cover glass to peel off naturally. Washed with 50% Formamid / 2x SSC solution at 45-47 ° C for 15 minutes. Subsequently, the plate was washed with a 2 × SSC solution at 45 to 47 ° C. for 10 minutes and with a 2 × SSC / 0.1% Tween 20 solution at 45 to 47 ° C. for 5 minutes. After washing, it was dried with a dryer. The dried slide was encapsulated with DAPI mounting medium. The FISH method was started after 24 hours from the CTC count.

4. 蛍光顕微鏡観察
解析は、蛍光顕微鏡で、倍率1000倍で観察することにより行なった。核はDAPIにより弱い青色に染色され、EGFR DNAプローブ及びCEP7 DNAプローブがハイブリダイズした位置は、細胞表面の蛍光標識に妨害されることなく明瞭に観察することができた。

4). Fluorescence microscope observation The analysis was performed by observing with a fluorescence microscope at a magnification of 1000 times. The nuclei were stained in weak blue by DAPI, and the position where the EGFR DNA probe and CEP7 DNA probe were hybridized could be clearly observed without being disturbed by the fluorescent label on the cell surface.

Claims (6)

細胞表面抗原が蛍光染色された浮遊細胞を、蛍光インサイチューハイブリダイゼーション法に供し、次いで細胞の核にピントを合わせて核を蛍光顕微鏡で観察することを含む、浮遊細胞の検査方法であって、前記浮遊細胞が、血液中を循環している癌細胞であり、前記蛍光インサイチューハイブリダイゼーション法に供される浮遊細胞は、核も蛍光染色されたものであり、かつ、前記蛍光インサイチューハイブリダイゼーション法における観察を、細胞表面抗原の蛍光染色後15時間以上経過した後に行なう、浮遊細胞の検査方法
A method for inspecting a floating cell , comprising subjecting a floating cell fluorescently stained with a cell surface antigen to a fluorescence in situ hybridization method, then focusing on the cell nucleus and observing the nucleus with a fluorescence microscope, The floating cells are cancer cells circulating in the blood, the floating cells subjected to the fluorescence in situ hybridization method are those in which the nucleus is also fluorescently stained, and observation in the fluorescence in situ hybridization method Is a method for examining floating cells, which is carried out after 15 hours or more have passed after fluorescent staining of a cell surface antigen .
.
前記癌細胞が乳癌細胞である請求項記載の方法。 The method of claim 1 wherein said cancer cells are breast cancer cells. 前記表面抗原がサイトケラチンである請求項記載の方法。 The method according to claim 2 , wherein the surface antigen is cytokeratin. 前記蛍光インサイチューハイブリダイゼーション法に用いるプローブが、EGFR遺伝子とハイブリダイズする、EGFR/遺伝子検出用プローブ又はHER-2/neu遺伝子とハイブリダイズする、HER-2/neu遺伝子検出用プローブである請求項又は記載の方法。 The fluorescence in situ probe used in the hybridization method and hybridized with EGFR gene, EGFR / gene detection probe or HER-2 / neu gene hybridized claim a HER-2 / neu gene detection probe 2 Or the method of 3 . 前記蛍光顕微鏡による観察は、蛍光顕微鏡を最大倍率にして行なう請求項1ないしのいずれか1項に記載の方法。 The method according to any one of claims 1 to 4 , wherein the observation with the fluorescence microscope is performed at a maximum magnification of the fluorescence microscope. 倍率を1000倍にして行なう請求項記載の方法。 6. The method according to claim 5 , wherein the magnification is 1000 times.
JP2005375195A 2005-12-27 2005-12-27 Method for examining floating cells Expired - Fee Related JP4986449B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005375195A JP4986449B2 (en) 2005-12-27 2005-12-27 Method for examining floating cells

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005375195A JP4986449B2 (en) 2005-12-27 2005-12-27 Method for examining floating cells

Publications (2)

Publication Number Publication Date
JP2007178193A JP2007178193A (en) 2007-07-12
JP4986449B2 true JP4986449B2 (en) 2012-07-25

Family

ID=38303543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005375195A Expired - Fee Related JP4986449B2 (en) 2005-12-27 2005-12-27 Method for examining floating cells

Country Status (1)

Country Link
JP (1) JP4986449B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110111377A (en) 2008-12-18 2011-10-11 시스멕스 가부시키가이샤 Method for detecting cancer cells in blood sample
JP5382852B2 (en) 2009-02-06 2014-01-08 株式会社オンチップ・バイオテクノロジーズ Disposable chip type flow cell and flow cytometer using the same
JP5779837B2 (en) * 2010-02-24 2015-09-16 株式会社Ihi Microorganism detection method
JP5916991B2 (en) 2010-11-09 2016-05-11 オリンパス株式会社 Methods for analyzing genetically abnormal cells
JP5943521B2 (en) 2010-11-19 2016-07-05 株式会社オンチップ・バイオテクノロジーズ A method for detecting low-concentration specific cells from high-concentration cell groups and a method for collecting and analyzing the detected cells
WO2013146993A1 (en) 2012-03-28 2013-10-03 株式会社オンチップ・バイオテクノロジーズ Method for detecting degree of malignancy of circulating tumor cell unit, and kit for same
JP6208473B2 (en) 2012-06-20 2017-10-04 アークレイ株式会社 Method for processing samples containing blood components
JP2016174578A (en) * 2015-03-20 2016-10-06 東ソー株式会社 Microparticle sorting apparatus, and microparticle recovery apparatus equipped with the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2361996B (en) * 1998-10-29 2004-05-12 Cell Works Inc Multiple marker characterization of single cells
DE602004030220D1 (en) * 2003-02-27 2011-01-05 Veridex Llc CIRCULATING TUMOR CELLS (CTCs): EARLY ASSESSMENT OF TIME-TO-PROGRESSION, SURVIVAL AND RESPONSE TO THERAPY IN PATIENTS WITH METASTASED CANCER

Also Published As

Publication number Publication date
JP2007178193A (en) 2007-07-12

Similar Documents

Publication Publication Date Title
JP4986449B2 (en) Method for examining floating cells
KR101764597B1 (en) A high sensitivity multiparameter method for rare event analysis in a biological sample
ES2886600T3 (en) Immune cell identification procedures in PD-L1 positive tumor tissue
JP5752688B2 (en) Method and apparatus for antigen activation process
JP2008209419A (en) Method for increasing clinical specificity when detecting tumor and their precursor stage by simultaneously measuring at least two different molecular markers
BR112013014360B1 (en) method to detect a target in a sample and kit
CN114127562A (en) Detection method of tumor cell surface marker molecule PD-L1
JP2002296274A (en) Method of detecting tumor cell and precursor thereof in uterocervical smear
JP2009530621A (en) A method for combining immunostaining and FISH using covalent fluorophores.
WO2021213292A1 (en) Immunofluorescence test kit for measuring pd-l1 expression in circulating tumor cells in peripheral blood in prostate cancer patient, and measurement method
WO2021213262A1 (en) Immunofluorescence test kit for measuring pd-l1 expression in circulating tumor cells in peripheral blood in stomach cancer patient, and measurement method
CN113348356A (en) Methods and systems for preparing and analyzing cell samples for morphological features and biomarker expression
KR101969847B1 (en) A method of sequential and multiple immunostaining for detection of various antigens in the same specimens
Heninger et al. Live cell molecular analysis of primary prostate cancer organoids identifies persistent androgen receptor signaling
KR20190045200A (en) Keratin 17 as a biomarker for bladder cancer
JP6626097B2 (en) Significance of intratumoral HER2 heterogeneity in breast cancer and uses therefor
WO2009117139A2 (en) Dual method for performing in situ hybridization
WO2017204674A1 (en) A biochip for multiplex analysis and a method of studying cells in the diagnosis of oncological diseases
CN104458375A (en) Application of aptamer and derivatives of aptamer and fast imaging method for frozen tissue slices
JP2017531797A (en) Polymers and conjugates containing polymers
CN210071844U (en) Cancer detection device based on PD-L1 receptor
RU2789782C1 (en) Method for determining hyperdiploidy using morphometric analysis in multiple myeloma
Bravaccini Fluorescence in situ hybridization in urine samples (UroVysion Kit)
RU197681U1 (en) Biochip for multiplex analysis
RU197467U1 (en) BIOCHIP FOR MULTIPLEX ANALYSIS

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120417

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120329

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120424

R150 Certificate of patent or registration of utility model

Ref document number: 4986449

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees