JP4985815B2 - Air conditioner air purifier - Google Patents

Air conditioner air purifier Download PDF

Info

Publication number
JP4985815B2
JP4985815B2 JP2010106106A JP2010106106A JP4985815B2 JP 4985815 B2 JP4985815 B2 JP 4985815B2 JP 2010106106 A JP2010106106 A JP 2010106106A JP 2010106106 A JP2010106106 A JP 2010106106A JP 4985815 B2 JP4985815 B2 JP 4985815B2
Authority
JP
Japan
Prior art keywords
peltier element
high voltage
air
air conditioner
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010106106A
Other languages
Japanese (ja)
Other versions
JP2010210234A (en
Inventor
靖人 向井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2010106106A priority Critical patent/JP4985815B2/en
Publication of JP2010210234A publication Critical patent/JP2010210234A/en
Application granted granted Critical
Publication of JP4985815B2 publication Critical patent/JP4985815B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Air Conditioning Control Device (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)
  • Air Humidification (AREA)

Description

本発明は、室内空気の脱臭や室内壁面等の付着物の脱臭を行うことができる空気調和機の空気清浄装置に関するものである。   The present invention relates to an air purifier for an air conditioner that can deodorize indoor air and deodorize deposits such as indoor wall surfaces.

従来の、空気調和機の空気清浄装置としては、臭い分子を吸着する活性炭等のフィルタや空気中の埃や臭い分子を帯電させてフィルタに吸着させる空気清浄機などが提供されている。しかしながら、フィルタに吸着させる空気清浄機では、空気清浄機内に取り込んだ空気を浄化するだけで室内壁面などの付着物は脱臭できなかった。これを解決するために、静電霧化の技術を利用して脱臭を行うものも提供されている(例えば、特許文献1及び2参照)。静電霧化とは、水などの液体に高電圧を印加すると液体が霧化するという現象であり、この現象は、古くから知られている。   As a conventional air purifier for an air conditioner, there are provided a filter such as activated carbon that adsorbs odor molecules, an air cleaner that charges dust and odor molecules in the air and adsorbs them on the filter, and the like. However, in the air cleaner to be adsorbed by the filter, the deposits such as the indoor wall surface cannot be deodorized only by purifying the air taken into the air cleaner. In order to solve this, what deodorizes using the technique of electrostatic atomization is also provided (for example, refer patent document 1 and 2). Electrostatic atomization is a phenomenon in which when a high voltage is applied to a liquid such as water, the liquid is atomized. This phenomenon has been known for a long time.

図15は、上記特許文献1に記載された従来の静電霧化式空気浄化装置を示すもので、静電霧化式空気浄化装置には、汚染空気の中心部に向け、細水柱を噴出せしめる噴水ノズル18が設けられ、高圧電極13と細水注の間に直流バイアスを付与した交流高電圧19を印加し、微細水滴を霧状に有する静電霧化雰囲気を形成せしめるものである。   FIG. 15 shows a conventional electrostatic atomization type air purification device described in Patent Document 1, in which a fine water column is ejected toward the center of contaminated air. A fountain nozzle 18 is provided, and an AC high voltage 19 imparted with a DC bias is applied between the high-voltage electrode 13 and the fine water injection to form an electrostatic atomization atmosphere having fine water droplets in a mist form.

また、図16は、上記特許文献2に開示された従来の空気清浄機を示すもので、内部に静電霧化装置9が配され、その静電霧化装置9は、水溜め部5と、水溜め部5の水を水溜め部5の外部に位置する先端側へ搬送する搬送部(図示せず)と、搬送部に対向するように配置された電極(図示せず)とを備え、搬送部と電極との間に高電圧を印加することにより搬送部の水が霧化してミストを発生せしめるものである。   Moreover, FIG. 16 shows the conventional air cleaner disclosed by the said patent document 2, The electrostatic atomizer 9 is distribute | arranged inside and the electrostatic atomizer 9 is the water reservoir part 5 and the inside. A transport unit (not shown) for transporting the water in the water reservoir 5 to the tip side located outside the water reservoir 5, and an electrode (not shown) arranged to face the transport unit By applying a high voltage between the transport unit and the electrode, water in the transport unit is atomized to generate mist.

特開昭53−141167号公報JP-A-53-141167 特開2004−85185号公報JP 2004-85185 A

しかしながら、このような静電霧化により室内空気の脱臭や室内壁面等の付着物の脱臭を行う空気清浄装置を一般空気調和機に搭載する場合、人手あるいは、水道配管により静電霧化に必要な水を供給しなければならないという課題を有していた。   However, when air purifiers that deodorize indoor air and deodorize deposits on the walls of the room by electrostatic atomization are installed in general air conditioners, they are necessary for electrostatic atomization by hand or water pipes. Had the problem of having to supply fresh water.

本発明は、前記従来の課題を解決するもので、空気中より静電霧化に必要な水を得て、無給水で静電霧化による脱臭を実現する空気調和機の空気清浄装置を提供することを目的とする。   The present invention solves the above-mentioned conventional problems, and provides an air purifier for an air conditioner that obtains water necessary for electrostatic atomization from the air and realizes deodorization by electrostatic atomization without water supply. The purpose is to do.

前記従来の課題を解決するために、本発明の空気調和機の空気清浄装置は、ペルチェ素子、前記ペルチェ素子の冷却面に配設され前記ペルチェ素子によって露点温度以下に冷却される高電圧電極、前記高電圧電極に対向して配設される対向電極を有し、空気調和機内
に配され前記高電圧電極に生じた結露水を静電霧化してミストを発生させる静電霧化ユニットと、前記高電圧電極と前記対向電極との間に高電圧を印加する高電圧電源を有する高電圧電源ユニットと、前記ペルチェ素子を駆動するペルチェ素子駆動電源と、前記高電圧電源ユニット及び前記ペルチェ素子駆動電源を制御する制御手段とを備え前記制御手段は、前記空気調和機の運転状態に応じて前記ペルチェ素子に供給する最大電力に上限を設け、前記最大電力内で、前記ペルチェ素子を前記空気調和機周辺の空気の露点温度以下に制御が可能な場合のみ、前記ペルチェ素子への電圧印加を継続するものである。これにより、空気清浄装置の運転よりも空気調和機の運転を優先させることができる。
In order to solve the conventional problem, an air conditioner for an air conditioner according to the present invention includes a Peltier element, a high voltage electrode disposed on a cooling surface of the Peltier element and cooled to a dew point temperature or less by the Peltier element, a counter electrode disposed in opposition to the high voltage electrode, and an electrostatic atomizing unit condensed water generated in the high voltage electrode is disposed in the air conditioning machine with an electrostatic atomizer for generating mist A high voltage power supply unit having a high voltage power source for applying a high voltage between the high voltage electrode and the counter electrode, a Peltier element driving power source for driving the Peltier element, the high voltage power supply unit, and the Peltier element and control means for controlling the driving power source, the control means, in response to said operating state of the air conditioner an upper limit is provided to the maximum power supplied to the Peltier device, in said maximum power, the When the Peltier element capable of controlling the below the dew point temperature of the air near the air conditioner only, is to continue the application of voltage to the Peltier element. Thereby, the operation of the air conditioner can be prioritized over the operation of the air purifier.

本発明の空気調和機の空気清浄装置は、無給水で静電霧化による室内空気の脱臭や室内壁面等の付着物の脱臭を行うことができるとともに、空気清浄装置の運転よりも空気調和機の運転を優先させることができる。   The air purifier for an air conditioner according to the present invention can deodorize indoor air and deodorize deposits such as indoor wall surfaces by electrostatic atomization with no water supply, and it can perform the air conditioner rather than operating the air purifier. Priority can be given to driving.

本発明の実施の形態1における空気清浄装置を搭載した空気調和機の断面図Sectional drawing of the air conditioner carrying the air purifying apparatus in Embodiment 1 of this invention. 同空気清浄装置の静電霧化ユニットの断面図Sectional view of the electrostatic atomization unit of the air purifier 同空気清浄装置のブロックダイアグラムを示す図The figure which shows the block diagram of the same air purifier 同空気清浄装置における空気の温度及び相対湿度と露点温度の相関関係を示すテーブルを示す図The figure which shows the table which shows the correlation of the temperature of air, relative humidity, and dew point temperature in the same air purifying apparatus. 本発明の実施の形態2における空気調和機の空気清浄装置のペルチェ素子の冷却面の露点温度制御方法を示すタイミングチャートTiming chart showing a method for controlling the dew point temperature of the cooling surface of the Peltier element of the air purifier for an air conditioner according to Embodiment 2 of the present invention 同空気清浄装置における空気の温度及び相対湿度とペルチェ素子電圧印加時間Ton/Toffのデューティーの相関関係を示すテーブルを示す図The figure which shows the table which shows the correlation of the temperature of air, relative humidity, and the duty of Peltier device voltage application time Ton / Toff in the same air purifier. 本発明の実施の形態3における空気調和機の空気清浄装置のペルチェ素子の冷却面の露点温度制御方法を示すタイミングチャートTiming chart showing a method for controlling the dew point temperature of the cooling surface of the Peltier element of the air purifier for an air conditioner according to Embodiment 3 of the present invention 本発明の実施の形態4における空気調和機の空気清浄装置のペルチェ素子の冷却面の露点温度制御方法を示すタイミングチャートTiming chart showing a dew point temperature control method for the cooling surface of the Peltier element of the air purifier for an air conditioner according to Embodiment 4 of the present invention 同空気清浄装置における空気の温度及び相対湿度とペルチェ素子印加電圧のデューティーの相関関係を示すテーブルを示す図The figure which shows the table which shows the correlation of the duty of the temperature of air, relative humidity, and the Peltier device applied voltage in the air purifier 本発明の実施の形態5における空気調和機の空気清浄装置のペルチェ素子の冷却面の露点温度制御方法を示すタイミングチャートTiming chart showing the dew point temperature control method for the cooling surface of the Peltier element of the air purifier for an air conditioner according to Embodiment 5 of the present invention 本発明の実施の形態6における空気調和機の空気清浄装置を搭載した空気調和機の各部の消費電力を示す関係図The relationship figure which shows the power consumption of each part of the air conditioner which mounts the air purifier of the air conditioner in Embodiment 6 of this invention. 同空気清浄装置における空気の温度及び相対湿度とペルチェ素子の消費電力の相関関係を示すテーブルを示す図The figure which shows the table which shows the correlation of the temperature and relative humidity of air in the same air purifier, and the power consumption of a Peltier device 本発明の実施の形態7における空気調和機の空気浄化装置の高電圧電源の垂下特性を示す図The figure which shows the drooping characteristic of the high voltage power supply of the air purification apparatus of the air conditioner in Embodiment 7 of this invention 本発明の実施の形態8における空気調和機の空気清浄装置の一部の回路を示すブロックダイアグラムを示す図The figure which shows the block diagram which shows the one part circuit of the air cleaner of the air conditioner in Embodiment 8 of this invention. 従来の空気調和機の静電霧化式空気浄化装置の具体的構造を示す正面図The front view which shows the specific structure of the electrostatic atomization type air purification apparatus of the conventional air conditioner 従来の空気清浄機の断面図Cross section of conventional air purifier

第1の発明は、ペルチェ素子、前記ペルチェ素子の冷却面に配設され前記ペルチェ素子によって露点温度以下に冷却される高電圧電極、前記高電圧電極に対向して配設される対向電極を有し、空気調和機内に配され前記高電圧電極に生じた結露水を静電霧化してミストを発生させる静電霧化ユニットと、前記高電圧電極と前記対向電極との間に高電圧を印加する高電圧電源を有する高電圧電源ユニットと、前記ペルチェ素子を駆動するペルチェ素子駆動電源と、前記高電圧電源ユニット及び前記ペルチェ素子駆動電源を制御する制
御手段とを備え前記制御手段は、前記空気調和機の運転状態に応じて前記ペルチェ素子に供給する最大電力に上限を設け、前記最大電力内で、前記ペルチェ素子を前記空気調和機周辺の空気の露点温度以下に制御が可能な場合のみ、前記ペルチェ素子への電圧印加を継続することを特徴とするものである。
The first invention has a Peltier element, a high voltage electrode disposed on a cooling surface of the Peltier element and cooled to a dew point temperature or less by the Peltier element, and a counter electrode disposed opposite to the high voltage electrode. and, an electrostatic atomizing unit for generating a mist condensation water is arranged in the air-conditioning machine occurs in the high voltage electrode electrostatically atomizing, a high voltage between the counter electrode and the high voltage electrode a high voltage power supply unit with a high-voltage power supply for applying a Peltier element drive power source for driving the Peltier element, and a control means for controlling the high voltage power supply unit and the Peltier element drive power source, wherein, wherein according to the operating state of the air conditioner an upper limit is provided to the maximum power supplied to the Peltier device, in said maximum power, the Peltier element is below the dew point temperature of the air near the air conditioner If your is only possible, it is characterized in that to continue applying a voltage to the Peltier element.

これにより、ペルチェ素子により空気中から静電霧化に必要な水を無給水で安定して得られ、それを静電霧化によりミストを発生させ室内空気の脱臭や室内壁面等の付着物の脱臭を行うことができる。 As a result, the water required for electrostatic atomization can be stably obtained from the air by the Peltier element without supplying water, and mist is generated by electrostatic atomization to deodorize indoor air and Deodorization can be performed.

第2の発明は、ペルチェ素子、前記ペルチェ素子の冷却面温度を測定する冷却面温度測定手段、前記ペルチェ素子の冷却面に配設され前記ペルチェ素子によって露点温度以下に冷却される高電圧電極、前記高電圧電極に対向して配設される対向電極を有し、空気調和機内に配され前記高電圧電極に生じた結露水を静電霧化してミストを発生させる静電霧化ユニットと、前記高電圧電極と前記対向電極との間に高電圧を印加する高電圧電源、前記高電圧電極と前記対向電極との間に流れる放電電流によりミストの発生状況を検出する静電霧化状態検出手段を有する高電圧電源ユニットと、前記空気調和機周辺の空気の温度を検出する吸い込み温度検出手段と、前記空気調和機周辺の空気の湿度を検出する湿度検出手段と、前記ペルチェ素子を駆動するペルチェ素子駆動電源と、前記高電圧電源ユニット及び前記ペルチェ素子駆動電源を制御する制御手段とを備え、前記制御手段は、前記吸い込み温度検出手段と前記湿度検出手段の検出結果に基づいて、前記ペルチェ素子駆動電源及び前記高電圧電源を制御することにより前記ペルチェ素子および前記高電圧電極を前記空気調和機周辺の空気の露点温度以下にするとともに、前記空気調和機の運転状態に応じてペルチェ素子に供給する最大電力に上限を設け、前記最大電力内で、前記ペルチェ素子の露点温度制御が可能な場合のみ、前記ペルチェ素子への電圧印加を継続することを特徴とするものである。 The second invention comprises a Peltier element, cooling surface temperature measuring means for measuring the cooling surface temperature of the Peltier element, a high voltage electrode disposed on the cooling surface of the Peltier element and cooled to a dew point temperature or less by the Peltier element, a counter electrode disposed in opposition to the high voltage electrode, and an electrostatic atomizing unit condensed water generated in the high voltage electrode is disposed in the air conditioning machine with an electrostatic atomizer for generating mist A high voltage power source for applying a high voltage between the high voltage electrode and the counter electrode; an electrostatic atomization state for detecting a mist generation state by a discharge current flowing between the high voltage electrode and the counter electrode; a high voltage power supply unit having a detecting means, the suction temperature detecting means for detecting the temperature of air around the air conditioner, and humidity detecting means for detecting the humidity of the air near the air conditioner, the Peltier element With a Peltier element driving power source for moving, and control means for controlling the high voltage power supply unit and the Peltier element drive power source, said control means, based on a detection result of said humidity detecting means and said suction temperature detecting means, together with the Peltier element and the high voltage electrode to below the dew point temperature of the air surrounding the air conditioner by controlling the Peltier element drive power source and the high voltage power supply, the Peltier in accordance with the operation state of the air conditioner An upper limit is set for the maximum power supplied to the element, and voltage application to the Peltier element is continued only when the dew point temperature control of the Peltier element is possible within the maximum power .

これにより、ペルチェ素子により空気中から得る静電霧化に必要な水を無給水で安定して得られ、それを静電霧化によりミストを発生させ室内空気の脱臭や室内壁面等の付着物の脱臭を行うことができる。 As a result, the water required for electrostatic atomization obtained from the air by the Peltier element can be stably obtained with no water supply, and the mist is generated by electrostatic atomization to deodorize indoor air and deposits such as indoor walls. Can be deodorized.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1は、本発明の第1の実施の形態における空気清浄装置を搭載した空気調和機の断面図、図2は、同空気清浄装置の静電霧化ユニットの断面図、図3は、同空気清浄装置のブロックダイアグラム、図4は、空気の温度及び相対湿度と露点温度の相関関係を示すテーブルを示すものである。
(Embodiment 1)
FIG. 1 is a cross-sectional view of an air conditioner equipped with the air purifier according to the first embodiment of the present invention, FIG. 2 is a cross-sectional view of an electrostatic atomization unit of the air purifier, and FIG. FIG. 4 is a block diagram of an air cleaning device, and shows a table showing the correlation between air temperature and relative humidity and dew point temperature.

空気調和機2は、熱交換された空気を吹出す吹き出し口45と、吹き出し風の向きを変える上下羽根46とフイルタ3を備えている。   The air conditioner 2 includes a blowout port 45 that blows out heat-exchanged air, upper and lower blades 46 that change the direction of the blown air, and the filter 3.

本実施の形態における空気調和機の空気清浄装置1は、図1〜3に示すように、空気調和機2の吹出し口45に配設されると共に、後述の高電圧電極8に結露した水を霧化してミストを発生させる静電霧化ユニット12と、空気調和機の吸い込み側に配され空気調和機周辺の空気の露点温度を求めるための吸い込み温度検出手段4と湿度検出手段30と、高電圧電源ユニット14と、ペルチェ素子駆動電源15と、制御手段16から構成されている。   As shown in FIGS. 1 to 3, the air purifier 1 for an air conditioner in the present embodiment is disposed at a blow-out port 45 of the air conditioner 2 and also condenses water condensed on a high-voltage electrode 8 described later. An electrostatic atomization unit 12 that atomizes and generates mist, a suction temperature detection means 4 and a humidity detection means 30 that are arranged on the suction side of the air conditioner to determine the dew point temperature of the air around the air conditioner, The power supply unit 14 includes a Peltier element drive power supply 15 and a control means 16.

静電霧化ユニット12から発生したミスト11は、空気調和機2の吹出し流れに乗って
、室内空間に拡散し、室内空気や室内壁面等の付着物の脱臭を行う。
The mist 11 generated from the electrostatic atomization unit 12 rides on the blowout flow of the air conditioner 2 and diffuses into the indoor space, thereby deodorizing deposits such as indoor air and indoor wall surfaces.

図2において、6は、ペルチェ素子であり、ペルチェ素子6の上面側は、冷却面6aであり、冷却面6aの温度を測定する冷却面温度測定手段7と高電圧電極8が配され、ペルチェ素子6に電圧が印加され、高電圧電極8が露点温度以下に冷却されると高電圧電極8に結露水31が生じ、対向電極32との間に高電圧を印加されると、結露水31は、静電霧化して、ミスト11となり、空気調和機2の吹出し流れに乗って、居室内に拡散していく。   In FIG. 2, 6 is a Peltier element, and the upper surface side of the Peltier element 6 is a cooling surface 6a. A cooling surface temperature measuring means 7 for measuring the temperature of the cooling surface 6a and a high voltage electrode 8 are arranged. When a voltage is applied to the element 6 and the high voltage electrode 8 is cooled below the dew point temperature, dew condensation water 31 is generated on the high voltage electrode 8, and when a high voltage is applied between the counter electrode 32, the dew condensation water 31 is generated. Becomes electrostatic mist, becomes mist 11, rides on the flow of air conditioner 2, and diffuses into the room.

14は、高電圧電源ユニットで、高電圧電極8と対向電極32に高電圧を印加する高電圧電源14cと、ミスト11の発生状況を検出する静電霧化状態検出手段13を備えている。   Reference numeral 14 denotes a high-voltage power supply unit that includes a high-voltage power supply 14 c that applies a high voltage to the high-voltage electrode 8 and the counter electrode 32, and an electrostatic atomization state detection means 13 that detects the occurrence of mist 11.

16は、空気調和機2に設けられた空気清浄装置1の制御手段であり、吸い込み温度検出手段4、湿度検出手段30、静電霧化状態検出手段13、ペルチェ素子6の冷却面温度測定手段7など各検出手段の検出情報が入力され、前記検出情報や制御系の応答時間に応じて、高電圧電源ユニット14やペルチェ素子駆動電源15の制御を行うものである。   Reference numeral 16 denotes control means for the air purifying apparatus 1 provided in the air conditioner 2, which includes suction temperature detection means 4, humidity detection means 30, electrostatic atomization state detection means 13, and cooling surface temperature measurement means for the Peltier element 6. Detection information of each detection means such as 7 is input, and the high voltage power supply unit 14 and the Peltier element driving power supply 15 are controlled according to the detection information and the response time of the control system.

以上のように構成された空気調和機の空気清浄装置について、以下その動作、作用を説明する。   About the air purifier of the air conditioner comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.

空気調和機2の空気清浄装置1の制御手段16は、吸い込み温度検出手段4と湿度検出手段30から得られた空気の温度及び相対湿度により、演算あるいは、テーブル参照により、空気調和機周辺の空気の露点温度を求める。ここで、制御手段16は、空気調和機2の制御手段(図示せず)の一部であっても、空気清浄装置1専用の制御装置であってもよい。   The control means 16 of the air cleaning device 1 of the air conditioner 2 calculates the air around the air conditioner by calculation or referring to a table based on the air temperature and relative humidity obtained from the suction temperature detection means 4 and the humidity detection means 30. Find the dew point temperature. Here, the control means 16 may be a part of the control means (not shown) of the air conditioner 2 or may be a control device dedicated to the air cleaning device 1.

テーブル参照の場合は、図4のように、空気の温度及び相対湿度と露点温度の相関関係を示すテーブルを設け、空気清浄装置1の使用温度・湿度範囲を複数領域に分割し、分割された各領域内における露点温度の最小値を湿り空気線図から求め、分割された各領域の露点温度とする。図4において、太線で囲まれた領域33が、空気清浄装置1の使用温度・湿度範囲であり、領域33は、空気調和機2から空気清浄装置1に対して供給可能電力や空気調和機2の実使用範囲や露点温度などにより定められている。   In the case of table reference, as shown in FIG. 4, a table showing the correlation between air temperature and relative humidity and dew point temperature is provided, and the operating temperature / humidity range of the air cleaning device 1 is divided into a plurality of regions. The minimum value of the dew point temperature in each region is obtained from the wet air diagram and used as the dew point temperature of each divided region. In FIG. 4, a region 33 surrounded by a thick line is the operating temperature / humidity range of the air purifier 1, and the region 33 is the power that can be supplied from the air conditioner 2 to the air purifier 1 and the air conditioner 2. It is determined by the actual use range and dew point temperature.

制御手段16は、吸い込み温度検出手段4で得られた空気温度T1と湿度検出手段30で得られた空気の相対湿度RH1から図4のテーブルに基づいて、露点温度TOが求められる。制御手段16は、冷却面温度測定手段7で検出される冷却面6aの温度を露点温度TOに近づけるようにペルチェ素子駆動電源15の電圧の制御を行う。ペルチェ素子駆動電源15の制御開始からしばらく時間が経過すると、冷却面6aに配された高電圧電極8も露点温度に達し、高電圧電極8の表面に結露水31が生じる。   The control means 16 obtains the dew point temperature TO from the air temperature T1 obtained by the suction temperature detection means 4 and the relative humidity RH1 of the air obtained by the humidity detection means 30 based on the table of FIG. The control means 16 controls the voltage of the Peltier element driving power supply 15 so that the temperature of the cooling surface 6a detected by the cooling surface temperature measuring means 7 is close to the dew point temperature TO. When a certain amount of time elapses from the start of control of the Peltier element driving power supply 15, the high voltage electrode 8 disposed on the cooling surface 6 a also reaches the dew point temperature, and dew condensation water 31 is generated on the surface of the high voltage electrode 8.

この状態で制御手段16により高電圧電源ユニット14を駆動し、静電霧化ユニット12の高電圧電極8と対向電極32間に高電圧を印加すると、高電圧電極8の表面の結露水31は、静電霧化現象によりミスト11となり、空気調和機2の吹出し流れに乗って、居室に拡散していく。静電霧化によりミスト11が良好に発生しているかどうかは、静電霧化状態検出手段13から得られる放電電流の状況から判断できる。   In this state, when the high voltage power supply unit 14 is driven by the control means 16 and a high voltage is applied between the high voltage electrode 8 and the counter electrode 32 of the electrostatic atomization unit 12, the dew condensation water 31 on the surface of the high voltage electrode 8 is Then, it becomes mist 11 due to the electrostatic atomization phenomenon and rides on the blowing flow of the air conditioner 2 and diffuses into the living room. Whether or not the mist 11 is favorably generated by electrostatic atomization can be determined from the state of the discharge current obtained from the electrostatic atomization state detection means 13.

これにより、無給水で静電霧化による室内空気の脱臭や室内壁面等の付着物の脱臭を行うことができる。   Thereby, deodorization of indoor air and debris such as indoor wall surface by electrostatic atomization can be performed without water supply.

(実施の形態2)
図5は、本発明の第2の実施の形態における空気調和機の空気清浄装置におけるペルチェ素子の冷却面の露点温度制御方法を示すタイミングチャート、図6は、同空気清浄装置における空気の温度及び相対湿度とペルチェ素子電圧印加時間Ton/Toffのデューティーの相関関係を示すテーブルである。なお、上記実施の形態と同一部分については、同一符号を付してその説明を省略する。
(Embodiment 2)
FIG. 5 is a timing chart showing a dew point temperature control method for the cooling surface of the Peltier element in the air purifier of the air conditioner according to the second embodiment of the present invention, and FIG. It is a table | surface which shows the correlation of the relative humidity and the duty of Peltier device voltage application time Ton / Toff. In addition, about the same part as the said embodiment, the same code | symbol is attached | subjected and the description is abbreviate | omitted.

図5において、ペルチェ素子駆動電源15は、制御手段16からの指示により、t1周期で、Ton/Toffの任意のデューティーでペルチェ素子6に電圧を印加する。t1周期が、ペルチェ素子6の熱時定数に対して、十分に短い範囲なら、Ton/Toffのデューティーでの電圧制御によって、ペルチェ素子6の冷却が可能であり、ペルチェ素子6の熱的耐久性にも大きな影響を与えない。   In FIG. 5, the Peltier element driving power supply 15 applies a voltage to the Peltier element 6 at an arbitrary duty of Ton / Toff at a cycle t 1 according to an instruction from the control means 16. When the period t1 is sufficiently short with respect to the thermal time constant of the Peltier element 6, the Peltier element 6 can be cooled by voltage control with a duty of Ton / Toff, and the thermal durability of the Peltier element 6 It does not have a big influence on.

20は、ペルチェ素子駆動電源15の出力波形を示したものであり、一定電圧Vconstが出力される。24は、ペルチェ素子6の冷却面6aの温度の目標となる露点温度TOであり、25は、ペルチェ素子6の冷却面温度である。   Reference numeral 20 denotes an output waveform of the Peltier element driving power source 15, and a constant voltage Vconst is output. Reference numeral 24 denotes a dew point temperature TO that is a target of the temperature of the cooling surface 6 a of the Peltier element 6, and reference numeral 25 denotes a cooling surface temperature of the Peltier element 6.

以上のように構成されたペルチェ素子6の冷却面6aの露点温度制御方法について、以下その動作、作用を説明する。   About the dew point temperature control method of the cooling surface 6a of the Peltier element 6 comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.

制御手段16は、吸い込み温度検出手段4と湿度検出手段30で得られた空気の温度と相対湿度から空気調和機周辺の空気の露点温度TO24を求め、ペルチェ素子6の冷却面温度25と露点温度TO24の温度差によって、ペルチェ素子駆動電源15のTon/Toffのデューティーを変更して、ペルチェ素子6の冷却面6aの温度を制御する。 The control means 16 obtains the dew point temperature TO24 of the air around the air conditioner from the air temperature and the relative humidity obtained by the suction temperature detection means 4 and the humidity detection means 30 , and the cooling surface temperature 25 and the dew point temperature of the Peltier element 6 The temperature of the cooling surface 6a of the Peltier element 6 is controlled by changing the Ton / Toff duty of the Peltier element drive power supply 15 according to the temperature difference of the TO24.

ペルチェ素子駆動電源15の制御開始から高電圧電極8に結露水が発生していると考えられる時間ta経過後より、ペルチェ素子6の冷却面温度25と露点温度TO24の差が±△Taの領域では、空気の温度、相対湿度から予め実験で求められた一定のTon/Toffのデューティーサイクルでペルチェ素子駆動電源15の制御を行う。   A region where the difference between the cooling surface temperature 25 of the Peltier element 6 and the dew point temperature TO24 is ± ΔTa from the time ta when it is considered that condensed water is generated in the high voltage electrode 8 from the start of the control of the Peltier element driving power supply 15. Then, the Peltier device driving power source 15 is controlled at a constant Ton / Toff duty cycle obtained in advance from experiments based on the temperature and relative humidity of the air.

空気の温度、相対湿度から実験によって得られたTon/Toffのデューティーは、図6のようなテーブルを有する。例えば、制御手段16は、吸い込み温度検出手段4で得られた空気温度T1と湿度検出手段30で得られた空気の相対湿度RH1から図6のテーブルに基づいて、Ton/Toffのデューティー50:50が求められる。 The Ton / Toff duty obtained by experiments from the air temperature and relative humidity has a table as shown in FIG. For example, the control means 16 determines the duty 50:50 of Ton / Toff from the air temperature T1 obtained by the suction temperature detection means 4 and the relative humidity RH1 of the air obtained by the humidity detection means 30 based on the table of FIG. Is required.

高電圧電極8に過不足なく結露を発生させるためには、空気の温度、湿度と静電霧化の状態を確認しながら求められたTon/Toffのデューティーサイクルを維持することが必要であり、図6のテーブルは、図4のテーブルと対応して、空気清浄装置1の使用温度、湿度範囲を複数領域に分割され、分割された各領域内には、実験にて求められたTon/Toffデューティーが各領域の代表値として代入されている。   In order to generate condensation without excess or deficiency in the high voltage electrode 8, it is necessary to maintain the duty cycle of Ton / Toff determined while confirming the temperature, humidity and electrostatic atomization state of the air, The table in FIG. 6 corresponds to the table in FIG. 4, and the operating temperature and humidity range of the air cleaning device 1 are divided into a plurality of regions, and in each of the divided regions, Ton / Toff determined by experiments. Duty is substituted as a representative value of each area.

ペルチェ素子駆動電源15によるペルチェ素子6の冷却面温度25の制御開始からtaの時間が経過すると、冷却面6aに配された高電圧電極8も冷却され、高電圧電極8の表面に結露水31が生じる。この状態で制御手段16により高電圧電源ユニット14を制御して、静電霧化ユニット12の高電圧電極8と対向電極32間に高電圧を印加すると、高電圧電極8の表面の結露水は、静電霧化によりミスト11となり、空気中に拡散していく。静電霧化によりミスト11が良好に発生しているかどうかは、静電霧化状態検出手段13から得られる放電電流の状況から判断できる。   When the time ta has elapsed since the start of the control of the cooling surface temperature 25 of the Peltier element 6 by the Peltier element driving power supply 15, the high voltage electrode 8 disposed on the cooling surface 6 a is also cooled, and condensed water 31 is formed on the surface of the high voltage electrode 8. Occurs. In this state, when the high voltage power supply unit 14 is controlled by the control means 16 and a high voltage is applied between the high voltage electrode 8 and the counter electrode 32 of the electrostatic atomization unit 12, the condensed water on the surface of the high voltage electrode 8 is Then, it becomes mist 11 by electrostatic atomization and diffuses in the air. Whether or not the mist 11 is favorably generated by electrostatic atomization can be determined from the state of the discharge current obtained from the electrostatic atomization state detection means 13.

これにより、比較的簡単なペルチェ素子駆動電源15で、無給水で静電霧化による室内
空気の脱臭や室内壁面等の付着物の脱臭を行うことができる。
Thereby, with a relatively simple Peltier device driving power source 15, it is possible to deodorize indoor air or deodorize deposits such as indoor wall surfaces by electrostatic atomization without water supply.

(実施の形態3)
図7は、本発明の第3の実施の形態における空気調和機の空気清浄装置のペルチェ素子の冷却面の露点温度制御方法を示すタイミングチャートである。なお、上記実施の形態と同一部分については、同一符号を付してその説明を省略する。
(Embodiment 3)
FIG. 7 is a timing chart showing a dew point temperature control method for the cooling surface of the Peltier element of the air purifier for an air conditioner according to the third embodiment of the present invention. In addition, about the same part as the said embodiment, the same code | symbol is attached | subjected and the description is abbreviate | omitted.

ペルチェ素子駆動電源15は、制御手段16からの指示により、t1周期で、Ton/Toffの任意のデューティーでペルチェ素子6に電圧を印加する。t1周期が、ペルチェ素子6の熱時定数に対して、十分に短い範囲なら、Ton/Toffのデューティーサイクルでの電圧制御によって、ペルチェ素子6の冷却が可能となる。一旦、ペルチェ素子6の冷却面温度25が露点温度の±Ta範囲内に入ると、図6で示される空気の温度、相対湿度から予め実験で求められた一定のTon/Toffのデューティーサイクルでペルチェ素子駆動電源15が制御される。   The Peltier element driving power supply 15 applies a voltage to the Peltier element 6 at an arbitrary duty of Ton / Toff in a cycle t1 according to an instruction from the control unit 16. If the period t1 is in a sufficiently short range with respect to the thermal time constant of the Peltier element 6, the Peltier element 6 can be cooled by voltage control with a duty cycle of Ton / Toff. Once the cooling surface temperature 25 of the Peltier element 6 falls within the ± Ta range of the dew point temperature, the Peltier is operated at a constant Ton / Toff duty cycle obtained in advance from experiments based on the air temperature and relative humidity shown in FIG. The element drive power supply 15 is controlled.

27は、高電圧電源14cの出力状態を示し、図7では、高電圧電極8と対向電極32間には、高電圧が印加された状態となっている。また、26は、静電霧化状態検出手段13から得られたミスト発生状況である。   Reference numeral 27 denotes an output state of the high voltage power supply 14c. In FIG. 7, a high voltage is applied between the high voltage electrode 8 and the counter electrode 32. Reference numeral 26 denotes a mist generation state obtained from the electrostatic atomization state detection means 13.

以上のように構成されたペルチェ素子の冷却面の露点温度制御方法について、以下その動作、作用を説明する。   About the dew point temperature control method of the cooling surface of the Peltier device comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.

ペルチェ素子6の冷却面温度25を吸い込み温度検出手段4と湿度検出手段30で得られた空気の温度、相対湿度から空気調和機周辺の空気の露点温度TOとペルチェ素子駆動電源15のTon/Toffのデューティーにより、理想的には、図7のA区間において、高電圧電極8に結露水が生じ、静電霧化によりミストが発生することになるが、吸い込み温度検出手段4と湿度検出手段30の個体差や検出誤差、冷却面温度測定手段7の個体差や検出誤差及びペルチェ素子6自体の冷却能力の個体差により図6のように予め定められたペルチェ素子駆動電源15のTon/Toffのデューティーでは、図7の区間Aのようにペルチェ素子6の冷却面温度25が見かけ上、露点温度以下に達しているにも関わらず、静電霧化状態検出手段13で、ミストが良好でないことが検出される可能性がある。 The cooling surface temperature 25 of the Peltier element 6 is sucked in. The dew point temperature TO of the air around the air conditioner and the Ton / Toff of the Peltier element drive power supply 15 from the air temperature and relative humidity obtained by the temperature detection means 4 and the humidity detection means 30. Ideally, in the section A of FIG. 7, condensed water is generated in the high voltage electrode 8 and mist is generated due to electrostatic atomization. However, the suction temperature detecting means 4 and the humidity detecting means 30 The Ton / Toff of the Peltier element driving power supply 15 determined in advance as shown in FIG. In terms of duty, the electrostatic atomization state detecting means 1 despite the fact that the cooling surface temperature 25 of the Peltier element 6 apparently reaches the dew point temperature or lower as in the section A of FIG. In, it may be detected that the mist is not good.

したがって、高電圧電極8に高電圧を印加してから、一定時間経過しても、静電霧化状態検出手段13により、良好なミストが検出されない場合には、図7の区間Bのように冷却面6aの温度目標である露点温度TO24を下げるとともに、予め定められたペルチェ素子駆動電源15のTon/Toffデュ−ティーをTonが増加する方向に補正する。これにより、ペルチェ素子6の冷却能力を向上させ、ペルチェ素子6の冷却面温度25を露点温度TO24以下に到達させることができる。この制御における露点温度TO24の変更値及びTonの補正値については、空気清浄装置1の使用温度、湿度範囲を複数領域に分割し、分割された各領域毎に、露点温度変更値及びTonの補正値を定めてもよいし、全ての領域において、一律に変更させてもよい。   Therefore, if a good mist is not detected by the electrostatic atomization state detection means 13 even after a lapse of a certain time after applying a high voltage to the high voltage electrode 8, as shown in section B of FIG. The dew point temperature TO24 which is the temperature target of the cooling surface 6a is lowered, and the predetermined Ton / Toff duty of the Peltier element driving power supply 15 is corrected in a direction in which Ton increases. Thereby, the cooling capacity of the Peltier element 6 can be improved, and the cooling surface temperature 25 of the Peltier element 6 can be made to reach the dew point temperature TO24 or less. Regarding the change value of the dew point temperature TO24 and the correction value of Ton in this control, the operating temperature and humidity range of the air cleaning device 1 are divided into a plurality of regions, and the dew point temperature change value and the correction of Ton are divided for each divided region. A value may be set, or may be changed uniformly in all regions.

冷却面6aが真の露点温度に達すると、冷却面6aに配された高電圧電極8も冷却され、高電圧電極8の表面に結露水31が生じ、静電霧化ユニット12の高電圧電極8と対向電極32間に高電圧を印加すると、高電圧電極8の表面の結露水31は、静電霧化によりミスト11となり、空気中に拡散していく。   When the cooling surface 6a reaches the true dew point temperature, the high voltage electrode 8 disposed on the cooling surface 6a is also cooled, and dew condensation water 31 is generated on the surface of the high voltage electrode 8, and the high voltage electrode of the electrostatic atomization unit 12 When a high voltage is applied between 8 and the counter electrode 32, the dew condensation water 31 on the surface of the high voltage electrode 8 becomes mist 11 due to electrostatic atomization and diffuses into the air.

これにより、比較的簡単なペルチェ素子駆動電源15及び制御方法で、無給水で静電霧化による室内空気の脱臭や室内壁面等の付着物の脱臭を行うことができる。   Thereby, with the relatively simple Peltier element drive power supply 15 and control method, it is possible to deodorize indoor air and deodorize deposits such as indoor wall surfaces by electrostatic atomization without water supply.

(実施の形態4)
図8は、本発明の第4の実施の形態における空気調和機の空気清浄装置のペルチェ素子の冷却面の露点温度制御方法を示すタイミングチャート、図9は、空気の温度及び相対湿度とペルチェ素子印加電圧のデューティーの相関関係を示すテーブルである。なお、上記実施の形態と同一部分については、同一符号を付してその説明を省略する。
(Embodiment 4)
FIG. 8 is a timing chart showing a dew point temperature control method for the cooling surface of the Peltier element of the air purifier of the air conditioner according to the fourth embodiment of the present invention, and FIG. 9 shows the air temperature, relative humidity and Peltier element. It is a table which shows the correlation of the duty of an applied voltage. In addition, about the same part as the said embodiment, the same code | symbol is attached | subjected and the description is abbreviate | omitted.

ペルチェ素子駆動電源15は、制御手段16からの指示された任意の電圧をペルチェ素子6に対して印加することができる構成となっている。図8において、20は、ペルチェ素子駆動電源15の出力波形、24は、ペルチェ素子6の冷却面温度の目標となる露点温度TOであり、25は、ペルチェ素子6の冷却面温度である。   The Peltier element drive power supply 15 is configured to be able to apply an arbitrary voltage instructed from the control means 16 to the Peltier element 6. In FIG. 8, 20 is an output waveform of the Peltier element driving power supply 15, 24 is a dew point temperature TO that is a target of the cooling surface temperature of the Peltier element 6, and 25 is a cooling surface temperature of the Peltier element 6.

以上のように構成されたペルチェ素子6の冷却面の露点温度制御方法について、以下その動作、作用を説明する。   The operation and action of the dew point temperature control method for the cooling surface of the Peltier element 6 configured as described above will be described below.

制御手段16は、ペルチェ素子6の冷却面温度25を、吸い込み温度検出手段4と湿度検出手段30で得られた空気の温度と相対湿度から空気調和機周辺の空気の露点温度TO24を求め、ペルチェ素子6の冷却面温度25と露点温度TO24との温度差によって、ペルチェ素子駆動電源15の電圧を変えて、ペルチェ素子6の冷却面6aの露点温度制御を行う。 The control means 16 obtains the dew point temperature TO24 of the air around the air conditioner from the air temperature and the relative humidity obtained by the suction temperature detection means 4 and the humidity detection means 30 , and determines the cooling surface temperature 25 of the Peltier element 6 The dew point temperature of the cooling surface 6a of the Peltier element 6 is controlled by changing the voltage of the Peltier element driving power supply 15 according to the temperature difference between the cooling surface temperature 25 of the element 6 and the dew point temperature TO24.

また、ペルチェ素子6の冷却面温度25と露点温度TO24の差が±△Taの領域では、空気の温度と相対湿度から予め実験で求められた一定の電圧となるようにペルチェ素子駆動電源15を制御する。空気の温度と相対湿度から実験によって得られた露点温度制御に必要なペルチェ素子駆動電圧は、図9のようなテーブルを有する。   Further, in the region where the difference between the cooling surface temperature 25 of the Peltier element 6 and the dew point temperature TO24 is ± ΔTa, the Peltier element driving power source 15 is set so as to be a constant voltage obtained beforehand through experiments from the air temperature and relative humidity. Control. The Peltier element driving voltage necessary for dew point temperature control obtained by experiments from the air temperature and relative humidity has a table as shown in FIG.

例えば、制御手段16は、吸い込み温度検出手段4で得られた空気温度T1と湿度検出手段30で得られた空気の相対湿度RH1から図9のテーブルに基づいて、1.4Vが求められる。高電圧電極8に過不足なく結露を発生させるためには、空気の温度と湿度と静電霧化の状態を確認しながら求められたペルチェ素子印加電圧を維持することが必要であり、図9のテーブルは、図4のテーブルと対応して、空気清浄装置1の使用温度・湿度範囲を複数領域に分割され、分割された領域毎に印加すべき電圧が割り当てられている。 For example, the control unit 16 obtains 1.4V from the air temperature T1 obtained by the suction temperature detection unit 4 and the relative humidity RH1 of the air obtained by the humidity detection unit 30 based on the table of FIG. In order to generate dew condensation on the high voltage electrode 8 without excess or deficiency, it is necessary to maintain the Peltier element applied voltage obtained while confirming the temperature and humidity of the air and the state of electrostatic atomization. 4 corresponds to the table of FIG. 4, the operating temperature / humidity range of the air cleaning device 1 is divided into a plurality of regions, and a voltage to be applied is assigned to each of the divided regions.

ペルチェ素子駆動電源15による冷却面6aの露点温度の制御開始からしばらく時間が経過すると、冷却面6aに配された高電圧電極8も冷却され、高電圧電極8の表面に結露水31が生じる。この状態で制御手段16により高電圧電源ユニット14を制御して、静電霧化ユニット12の高電圧電極8と対向電極32間に高電圧を印加すると、高電圧電極8の表面の結露水31は、静電霧化によりミスト11となり、空気中に拡散していく。静電霧化によりミスト11が良好に発生しているかどうかは、静電霧化状態検出手段13から得られる放電電流の状況から判断できる。   When a certain amount of time elapses from the start of control of the dew point temperature of the cooling surface 6 a by the Peltier element driving power supply 15, the high voltage electrode 8 disposed on the cooling surface 6 a is also cooled, and dew condensation water 31 is generated on the surface of the high voltage electrode 8. In this state, when the high voltage power supply unit 14 is controlled by the control means 16 and a high voltage is applied between the high voltage electrode 8 and the counter electrode 32 of the electrostatic atomization unit 12, condensed water 31 on the surface of the high voltage electrode 8. Becomes mist 11 by electrostatic atomization and diffuses in the air. Whether or not the mist 11 is favorably generated by electrostatic atomization can be determined from the state of the discharge current obtained from the electrostatic atomization state detection means 13.

以上のように、ペルチェ素子駆動電源15の電圧を細かく制御することで、無給水で静電霧化による室内空気の脱臭や室内壁面等の付着物の脱臭を行うことができる。   As described above, by finely controlling the voltage of the Peltier device driving power source 15, it is possible to deodorize indoor air and deodorize deposits such as indoor wall surfaces by electrostatic atomization without water supply.

(実施の形態5)
図10は、本発明の第5の実施の形態における空気調和機の空気清浄装置のペルチェ素子の冷却面の露点温度制御方法を示すタイミングチャートである。なお、上記実施の形態と同一部分については、同一符号を付してその説明を省略する。
(Embodiment 5)
FIG. 10 is a timing chart showing a dew point temperature control method for the cooling surface of the Peltier element of the air purifier for an air conditioner according to the fifth embodiment of the present invention. In addition, about the same part as the said embodiment, the same code | symbol is attached | subjected and the description is abbreviate | omitted.

ペルチェ素子駆動電源15は、制御手段16からの指示により、任意の電圧をペルチェ
素子6に印加し、ペルチェ素子6の冷却を行う。一旦、ペルチェ素子6の冷却面温度25が露点温度TO24の±Ta範囲内に入ると、図9で示される空気の温度・相対湿度から予め実験で求められた電圧をペルチェ素子6に印加する。
The Peltier element driving power supply 15 applies an arbitrary voltage to the Peltier element 6 according to an instruction from the control unit 16 to cool the Peltier element 6. Once the cooling surface temperature 25 of the Peltier element 6 falls within the ± Ta range of the dew point temperature TO24, a voltage obtained in advance by experiments from the air temperature and relative humidity shown in FIG. 9 is applied to the Peltier element 6.

27は、高電圧電源14cの出力状態を示し、高電圧電極8と対向電極32間に、高電圧が印加された状態となっている。また、26は、静電霧化状態検出手段13から得られたミスト発生状況である。   Reference numeral 27 denotes an output state of the high voltage power supply 14 c, in which a high voltage is applied between the high voltage electrode 8 and the counter electrode 32. Reference numeral 26 denotes a mist generation state obtained from the electrostatic atomization state detection means 13.

以上のように構成された空気清浄装置1の冷却面6aの温度制御方法について、以下その動作、作用を説明する。   About the temperature control method of the cooling surface 6a of the air purifying apparatus 1 comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.

ペルチェ素子6の冷却面温度25を、吸い込み温度検出手段4と湿度検出手段30で得られた空気の温度と相対湿度から、空気調和機2周辺の空気の露点温度TO24とペルチェ素子駆動電源15の電圧により、理想的には、図10のA区間において、高電圧電極8に結露水31が生じ、静電霧化によりミストが発生することになる。 The cooling surface temperature 25 of the Peltier element 6 is determined from the air temperature and relative humidity obtained by the suction temperature detection means 4 and the humidity detection means 30 , and the dew point temperature TO 24 of the air around the air conditioner 2 and the Peltier element drive power supply 15. Ideally, the condensed water 31 is generated in the high voltage electrode 8 in the section A of FIG. 10 due to the voltage, and mist is generated by electrostatic atomization.

しかしながら、吸い込み温度検出手段4と湿度検出手段30の個体差や検出誤差や冷却面温度測定手段7の個体差や検出誤差及びペルチェ素子6自体の冷却能力の個体差により予め定められたペルチェ素子6への印加電圧では、図10の区間Aのようにペルチェ素子6の冷却面温度25が見かけ上、露点温度TO24以下に達しているにも関わらず、静電霧化状態検出手段13で良好なミストが検出されないことも考えられる。 However, an individual difference or detection error between the suction temperature detecting means 4 and the humidity detecting means 30, an individual difference or detection error of the cooling surface temperature measuring means 7, and an individual difference in the cooling capacity of the Peltier element 6 itself are determined in advance. As shown in the section A of FIG. 10, the electrostatic atomization state detection means 13 is satisfactory even though the cooling surface temperature 25 of the Peltier element 6 apparently reaches the dew point temperature TO24 or less. It is also conceivable that mist is not detected.

したがって、高電圧電極8に高電圧を印加してから、一定時間経過しても、静電霧化状態検出手段13で、ミストが良好に発生していないと検出された場合には、図10の区間Bのようにペルチェ素子6の冷却面6aの温度目標である露点温度TO24を補正するとともに、予め定められたペルチェ素子駆動電源15の電圧も増加する方向に補正する。   Therefore, when it is detected by the electrostatic atomization state detection means 13 that mist is not generated well even after a predetermined time has elapsed since the high voltage is applied to the high voltage electrode 8, FIG. As in section B, the dew point temperature TO24 that is the temperature target of the cooling surface 6a of the Peltier element 6 is corrected, and the predetermined voltage of the Peltier element driving power supply 15 is also corrected to increase.

これにより、ペルチェ素子6の冷却能力を増大させ、ペルチェ素子6の冷却面温度25が露点温度TO24以下に到達させることができる。この制御における露点温度TO24の変更値及び印加電圧の補正値については、空気清浄装置1の使用温度、湿度範囲を複数領域に分割し、分割各領域毎に露点温度変更値及び印加電圧の補正値を定めてもよいし、全ての領域において、一律に変更させてもよい。   Thereby, the cooling capacity of the Peltier element 6 can be increased, and the cooling surface temperature 25 of the Peltier element 6 can reach the dew point temperature TO24 or less. Regarding the change value of the dew point temperature TO24 and the correction value of the applied voltage in this control, the operating temperature and humidity range of the air cleaning device 1 are divided into a plurality of regions, and the dew point temperature change value and the correction value of the applied voltage are divided for each divided region. Or may be changed uniformly in all regions.

ペルチェ素子の冷却面6aが真の露点温度に達すると、冷却面6aに配された高電圧電極8も冷却され、高電圧電極8の表面に結露水31が生じ、静電霧化ユニット12の高電圧電極8と対向電極32間に高電圧が印加されると、高電圧電極8の表面の結露水31は、静電霧化によりミスト11となり、空気中に拡散していく。   When the cooling surface 6a of the Peltier element reaches the true dew point temperature, the high voltage electrode 8 disposed on the cooling surface 6a is also cooled, and dew condensation water 31 is generated on the surface of the high voltage electrode 8, and the electrostatic atomizing unit 12 When a high voltage is applied between the high voltage electrode 8 and the counter electrode 32, the dew condensation water 31 on the surface of the high voltage electrode 8 becomes mist 11 due to electrostatic atomization and diffuses into the air.

これにより、比較的簡単なペルチェ素子駆動電源15及び制御方法で、無給水で静電霧化による室内空気の脱臭や室内壁面等の付着物の脱臭を行うことができる。   Thereby, with the relatively simple Peltier element drive power supply 15 and control method, it is possible to deodorize indoor air and deodorize deposits such as indoor wall surfaces by electrostatic atomization without water supply.

(実施の形態6)
図11は、本発明の第6の実施の形態における空気調和機の空気清浄装置を搭載した空気調和機の各部の消費電力を示す関係図、図12は、空気の温度及び相対湿度とペルチェ素子の消費電力の相関関係を示すテーブルである。なお、上記実施の形態と同一部分については、同一符号を付してその説明を省略する。
(Embodiment 6)
FIG. 11 is a relational diagram showing the power consumption of each part of an air conditioner equipped with the air purifier for an air conditioner according to the sixth embodiment of the present invention, and FIG. 12 is the temperature and relative humidity of air and the Peltier element. It is a table which shows the correlation of power consumption. In addition, about the same part as the said embodiment, the same code | symbol is attached | subjected and the description is abbreviate | omitted.

当然のことながら、空気調和機2の各機能動作は、電源の許容電力内で行なうことが必要となる。   As a matter of course, each functional operation of the air conditioner 2 needs to be performed within the allowable power of the power source.

図11において、空気調和機2の電源許容出力は、18Wであり、マイコンなどの定常的に消費される電力は10W、残された8Wを用いて、空気清浄装置1やその他の機能を並列運転させなければならない。したがって、空気調和機2の運転状態によって、ペルチェ素子6に対する最大供給電力に上限を設けることが必要となり、例えば、空気調和機2の上下羽根46が動作している場合には、これに要する2Wと高電圧電源ユニット14の消費電力2Wが差し引かれ、ペルチェ素子6への最大供給電力は、4Wとなる。   In FIG. 11, the allowable power output of the air conditioner 2 is 18 W, the constant power consumed by a microcomputer or the like is 10 W, and the remaining 8 W is used to operate the air purifier 1 and other functions in parallel. I have to let it. Therefore, it is necessary to set an upper limit on the maximum power supply to the Peltier element 6 depending on the operating state of the air conditioner 2. For example, when the upper and lower blades 46 of the air conditioner 2 are operating, 2 W required for this is required. And the power consumption 2 W of the high voltage power supply unit 14 is subtracted, and the maximum power supplied to the Peltier element 6 is 4 W.

図12は、吸い込み温度検出手段4と湿度検出手段30から得られた空気の温度及び相対湿度と冷却面6aの露点温度制御を行った時のペルチェ素子6の消費電力を示すもので、空気清浄装置1の使用温度、湿度範囲を複数領域に分割し、各領域内におけるペルチェ素子6の消費電力が収められてある。制御手段16は、上記図12のテーブルを有し、上記のような例では、空気温度及び相対湿度が図12の斜線部の領域にあるときのみ、空気清浄装置1を動作させるようにする。 12 shows the air temperature and relative humidity obtained from the suction temperature detecting means 4 and the humidity detecting means 30 and the power consumption of the Peltier element 6 when the dew point temperature control of the cooling surface 6a is performed. The operating temperature and humidity range of the device 1 is divided into a plurality of regions, and the power consumption of the Peltier element 6 in each region is stored. The control means 16 has the table of FIG. 12, and in the example as described above, the air purifier 1 is operated only when the air temperature and relative humidity are in the shaded area of FIG.

これにより、空気調和機2の安定運転を確保できるとともに、空気調和機2の電源容量を小さくすることができ、空気調和機2の電源コストを抑えることができる。   Thereby, while being able to ensure the stable operation of the air conditioner 2, the power capacity of the air conditioner 2 can be reduced, and the power supply cost of the air conditioner 2 can be suppressed.

(実施の形7)
図13は、本発明の第7の実施の形態における空気調和機の空気清浄装置の高電圧電源の垂下特性を示したものである。なお、上記実施の形態と同一部分については、同一符号を付してその説明を省略する。
(Embodiment 7)
FIG. 13 shows the drooping characteristic of the high voltage power supply of the air purifier of the air conditioner according to the seventh embodiment of the present invention. In addition, about the same part as the said embodiment, the same code | symbol is attached | subjected and the description is abbreviate | omitted.

本実施の形態は、図13に示すように、正常な静電霧化状態で高電圧電源14cの2次側を流れる電流を基準に、垂下点負荷電流40を設定し、垂下点を超える負荷電流が流れると急激に出力電圧及び電流を低下させる特性を持たせたものである。   In the present embodiment, as shown in FIG. 13, a droop point load current 40 is set based on the current flowing through the secondary side of the high voltage power supply 14c in a normal electrostatic atomization state, and the load exceeds the droop point. When current flows, the output voltage and current are rapidly reduced.

以上のように構成された空気調和機2の空気清浄装置1について、以下その動作、作用を説明する。   About the air purifying apparatus 1 of the air conditioner 2 comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.

第1の実施の形態で述べたように、高電圧電極8に結露した水を霧化してミストを発生させる静電霧化ユニット12を空気調和機2の吹き出し口45に配設しているため、高電圧電極8と対向電極32間は塵埃に晒され、前記2つの電極間で異常放電が発生する恐れがある。さらに、高電圧電極8は、ペルチェ素子6で冷却され、結露水31が発生することを考えると、高電圧電極8と対向電極32の間は、塵埃の積層により短絡異常あるいは、異常放電が発生する恐れがある。短絡異常や異常放電を放置しておくと最悪、静電霧化ユニット12あるいは、空気調和機2から発火・発煙に至るケースが考えられるが、高電圧電源14cに、短絡異常あるいは、異常放電に対して、負荷電流の垂下特性41を持たせる事により、短絡異常及び異常放電の継続を防止することができる。   As described in the first embodiment, the electrostatic atomization unit 12 that atomizes the water condensed on the high voltage electrode 8 to generate mist is disposed at the outlet 45 of the air conditioner 2. The high voltage electrode 8 and the counter electrode 32 are exposed to dust, and abnormal discharge may occur between the two electrodes. Furthermore, considering that the high voltage electrode 8 is cooled by the Peltier element 6 and the condensed water 31 is generated, a short circuit abnormality or an abnormal discharge occurs between the high voltage electrode 8 and the counter electrode 32 due to the accumulation of dust. There is a fear. If the short circuit abnormality or abnormal discharge is left as it is, the worst case is that the electrostatic atomization unit 12 or the air conditioner 2 leads to ignition / smoke. However, the high voltage power supply 14c may cause short circuit abnormality or abnormal discharge. On the other hand, by providing the load current drooping characteristic 41, it is possible to prevent the short-circuit abnormality and the abnormal discharge from continuing.

すなわち、高電圧電源14cに、負荷電流が所定の値を超えたときに出力電圧及び電流を低下させる垂下特性を持たせて、短絡保護装置としたものである。   That is, the high-voltage power supply 14c has a drooping characteristic that lowers the output voltage and current when the load current exceeds a predetermined value, thereby providing a short-circuit protection device.

これにより、静電霧化ユニット12の高電圧電極8と対向電極間32間に異常放電や短絡異常が発生しても、高電圧電源14cにて、前記2つの異常を継続させないため、静電霧化ユニット12及び空気調和機2の発火・発煙を防止、空気清浄装置1の安全性を向上させることができる。   Thereby, even if abnormal discharge or short circuit abnormality occurs between the high voltage electrode 8 and the counter electrode 32 of the electrostatic atomization unit 12, the two abnormalities are not continued in the high voltage power supply 14c. The ignition / smoke of the atomizing unit 12 and the air conditioner 2 can be prevented, and the safety of the air cleaning device 1 can be improved.

(実施の形態8)
図14は、本発明の第8の実施の形態における空気調和機の空気清浄装置の高電圧電源ユニット14のブロックダイアグラムを示したものである。
(Embodiment 8)
FIG. 14 shows a block diagram of the high voltage power supply unit 14 of the air purifier of the air conditioner according to the eighth embodiment of the present invention.

本実施の形態は、高電圧電源ユニット14に、垂下特性を有する高電圧発生回路14aと短絡異常や放電異常を検出する異常検出回路14bを備え、高電圧電源ユニット14への電力供給を入り切りするスイッチ43と、ユーザーに対して、短絡や放電等の異常発生を表示する異常表示手段42を設けたものである。   In the present embodiment, the high voltage power supply unit 14 includes a high voltage generation circuit 14a having a drooping characteristic and an abnormality detection circuit 14b that detects a short circuit abnormality or a discharge abnormality, and turns on and off the power supply to the high voltage power supply unit 14. The switch 43 and an abnormality display means 42 for displaying the occurrence of an abnormality such as a short circuit or discharge to the user are provided.

以上のように構成された空気調和機の空気清浄装置について、以下その動作、作用を説明する。   About the air purifier of the air conditioner comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.

高電圧電極8に結露した水を霧化してミストを発生させる静電霧化ユニット12が、空気調和機2の吹き出し口45に配設されているため、高電圧電極8と対向電極32間が塵埃で短絡され、前記2つの電極間で異常放電が発生したり、高電圧電極8は、ペルチェ素子6で冷却され、結露水が発生することを考えると、高電圧電極8と対向電極32間に、短絡異常あるいは、異常放電が発生する恐れがある。また、短絡異常や異常放電を放置しておくと最悪、発火発煙に至るケースが考えられるが、本実施の形態では、高電圧電源ユニット14の高電圧発生回路14aは、短絡異常あるいは、異常放電の際に流れる負荷電流の垂下特性を有しているので、短絡異常及び異常放電の継続を防止することができる。さらに、異常検出回路14bで短絡異常や放電異常が検出された時に、その発生状況を制御手段16に伝達することにより、制御手段16により高電圧電源ユニット14への電力供給をスイッチ43で切ったり、ユーザーに対して、異常表示手段42にて、静電霧化ユニット12の保守・点検を知らしめることができる。   Since the electrostatic atomization unit 12 that atomizes water condensed on the high voltage electrode 8 to generate mist is disposed at the outlet 45 of the air conditioner 2, the gap between the high voltage electrode 8 and the counter electrode 32 is provided. Considering that a short circuit is caused by dust and abnormal discharge occurs between the two electrodes, or that the high voltage electrode 8 is cooled by the Peltier element 6 to generate dew condensation water, the condensation between the high voltage electrode 8 and the counter electrode 32 occurs. In addition, there is a risk of short circuit abnormality or abnormal discharge. In addition, in the present embodiment, the high voltage generation circuit 14a of the high voltage power supply unit 14 may be short circuit abnormal or abnormal discharge. Therefore, it is possible to prevent the short-circuit abnormality and the abnormal discharge from continuing. Further, when a short circuit abnormality or a discharge abnormality is detected by the abnormality detection circuit 14b, the state of occurrence is transmitted to the control means 16, whereby the control means 16 cuts off the power supply to the high voltage power supply unit 14 with the switch 43. The user can be informed of maintenance / inspection of the electrostatic atomizing unit 12 by the abnormality display means 42.

これにより、静電霧化ユニット12の高電圧電極8と対向電極32間に異常放電や短絡異常が発生しても、高電圧電源14cにて前記2つの異常を継続させないため、静電霧化ユニット12及び空気調和機2の発火・発煙を防止、空気清浄装置1及び空気調和機2の安全性を向上させることができる。   Thereby, even if abnormal discharge or short circuit abnormality occurs between the high voltage electrode 8 and the counter electrode 32 of the electrostatic atomization unit 12, the two abnormalities are not continued in the high voltage power supply 14c. It is possible to prevent the unit 12 and the air conditioner 2 from igniting and smoking, and to improve the safety of the air purifier 1 and the air conditioner 2.

以上のように、本発明にかかる空気調和機の空気清浄装置は、無給水で放電霧化による脱臭を実現することが可能であり、しかも、ペルチェ素子の露点温度制御が可能な場合のみ、前記ペルチェ素子への電圧印加を継続するので、空気清浄装置の運転よりも空気調和機の運転を優先させることができ、居室やトイレや車室内などの空間の脱臭用途に適用できる。また、生ゴミ処理機や洗濯機や掃除機など機器から発生する臭気の脱臭の用途にも適用できる。   As described above, the air purifier for an air conditioner according to the present invention can realize deodorization by discharge atomization without water supply, and only when the dew point temperature control of the Peltier element is possible. Since the voltage application to the Peltier device is continued, the operation of the air conditioner can be prioritized over the operation of the air purifier, and can be applied to the deodorizing use in spaces such as a living room, a toilet, and a vehicle interior. It can also be applied to deodorizing odors generated from devices such as garbage disposal machines, washing machines and vacuum cleaners.

1 空気清浄装置
2 空気調和機
4 吸い込み温度検出手段
6 ペルチェ素子
7 冷却面温度測定手段
8 高電圧電極
11 ミスト
12 静電霧化ユニット
13 静電霧化状態検出手段
14 高電圧電源ユニット
14c 高電圧電源
15 ペルチェ素子駆動電源
30 湿度検出手段
31 結露水
32 対向電極
DESCRIPTION OF SYMBOLS 1 Air cleaning apparatus 2 Air conditioner 4 Suction temperature detection means 6 Peltier element 7 Cooling surface temperature measurement means 8 High voltage electrode 11 Mist 12 Electrostatic atomization unit 13 Electrostatic atomization state detection means 14 High voltage power supply unit 14c High voltage Power supply 15 Peltier element drive power supply 30 Humidity detection means 31 Condensation water 32 Counter electrode

Claims (2)

ペルチェ素子、前記ペルチェ素子の冷却面に配設され前記ペルチェ素子によって露点温度以下に冷却される高電圧電極、前記高電圧電極に対向して配設される対向電極を有し、空気調和機内に配され前記高電圧電極に生じた結露水を静電霧化してミストを発生させる静電霧化ユニットと、前記高電圧電極と前記対向電極との間に高電圧を印加する高電圧電源を有する高電圧電源ユニットと、前記ペルチェ素子を駆動するペルチェ素子駆動電源と、前記高電圧電源ユニット及び前記ペルチェ素子駆動電源を制御する制御手段とを備え前記制御手段は、前記空気調和機の運転状態に応じて前記ペルチェ素子に供給する最大電力に上限を設け、前記最大電力内で、前記ペルチェ素子を前記空気調和機周辺の空気の露点温度以下に制御が可能な場合のみ、前記ペルチェ素子への電圧印加を継続することを特徴とする空気調和機の空気清浄装置。 A Peltier element, a high voltage electrode disposed on the cooling surface of the Peltier element and cooled to a dew point temperature or less by the Peltier element, and a counter electrode disposed opposite to the high voltage electrode. and an electrostatic atomizing unit for generating mist by electrostatically atomizing the water condensation is arranged caused to the high voltage electrode, a high voltage power supply for applying a high voltage between the counter electrode and the high voltage electrode a high voltage power supply unit, a Peltier element drive power source for driving the Peltier element, and a control means for controlling the high voltage power supply unit and the Peltier element drive power source, said control means, operation of the air conditioner having the upper limit on the maximum power supplied to the Peltier element is provided in accordance with the state, the inside maximum power, which can control the Peltier element to below the dew point temperature of the air near the air conditioner situ Only, characterized by continuing the voltage application to the Peltier element, the air cleaning apparatus of the air conditioner. ペルチェ素子、前記ペルチェ素子の冷却面温度を測定する冷却面温度測定手段、前記ペルチェ素子の冷却面に配設され前記ペルチェ素子によって露点温度以下に冷却される高電圧電極、前記高電圧電極に対向して配設される対向電極を有し、空気調和機内に配され前記高電圧電極に生じた結露水を静電霧化してミストを発生させる静電霧化ユニットと、前記高電圧電極と前記対向電極との間に高電圧を印加する高電圧電源、前記高電圧電極と前記対向電極との間に流れる放電電流によりミストの発生状況を検出する静電霧化状態検出手段を有する高電圧電源ユニットと、前記空気調和機周辺の空気の温度を検出する吸い込み温度検出手段と、前記空気調和機周辺の空気の湿度を検出する湿度検出手段と、前記ペルチェ素子を駆動するペルチェ素子駆動電源と、前記高電圧電源ユニット及び前記ペルチェ素子駆動電源を制御する制御手段とを備え、前記制御手段は、前記吸い込み温度検出手段と前記湿度検出手段の検出結果に基づいて、前記ペルチェ素子駆動電源及び前記高電圧電源を制御することにより前記ペルチェ素子および前記高電圧電極を前記空気調和機周辺の空気の露点温度以下にするとともに、前記空気調和機の運転状態に応じてペルチェ素子に供給する最大電力に上限を設け、前記最大電力内で、前記ペルチェ素子の露点温度制御が可能な場合のみ、前記ペルチェ素子への電圧印加を継続することを特徴とする、空気調和機の空気清浄装置。
Peltier element, cooling surface temperature measuring means for measuring the cooling surface temperature of the Peltier element, a high voltage electrode disposed on the cooling surface of the Peltier element and cooled to a dew point temperature or less by the Peltier element, opposite to the high voltage electrode and having a counter electrode are disposed, and an electrostatic atomizing unit condensed water generated in the high voltage electrode is disposed in the air conditioning machine with an electrostatic atomizer for generating mist, and the high voltage electrode A high voltage power supply for applying a high voltage between the counter electrode and a high voltage having an electrostatic atomization state detecting means for detecting a mist generation state by a discharge current flowing between the high voltage electrode and the counter electrode a power supply unit, a suction temperature detecting means for detecting the temperature of air around the air conditioner, and humidity detecting means for detecting the humidity of the air near the air conditioner, Perch for driving the Peltier element Comprising an element driving power source, and the high voltage power supply unit and a control unit for controlling the Peltier element drive power source, said control means, based on a detection result of said humidity detecting means and said suction temperature detecting means, said Peltier element as well as the Peltier element and the high voltage electrode to below the dew point temperature of the air surrounding the air conditioner by controlling the driving power source and the high voltage power supply to the Peltier element according to the operating condition of the air conditioner An air purifier for an air conditioner, wherein an upper limit is set for the maximum power to be applied, and voltage application to the Peltier element is continued only when the dew point temperature control of the Peltier element is possible within the maximum power. .
JP2010106106A 2010-05-06 2010-05-06 Air conditioner air purifier Active JP4985815B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010106106A JP4985815B2 (en) 2010-05-06 2010-05-06 Air conditioner air purifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010106106A JP4985815B2 (en) 2010-05-06 2010-05-06 Air conditioner air purifier

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004342213A Division JP4742572B2 (en) 2004-11-26 2004-11-26 Air conditioner air purifier

Publications (2)

Publication Number Publication Date
JP2010210234A JP2010210234A (en) 2010-09-24
JP4985815B2 true JP4985815B2 (en) 2012-07-25

Family

ID=42970589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010106106A Active JP4985815B2 (en) 2010-05-06 2010-05-06 Air conditioner air purifier

Country Status (1)

Country Link
JP (1) JP4985815B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102032635B (en) * 2010-12-27 2012-10-10 东莞市丰远电器有限公司 Variable-frequency ultrahigh-pressure micro mist humidifier
JP7442094B2 (en) * 2020-09-18 2024-03-04 パナソニックIpマネジメント株式会社 air conditioner

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002203657A (en) * 2000-12-27 2002-07-19 Daikin Ind Ltd Ion generator
JP2003017297A (en) * 2001-07-04 2003-01-17 Daikin Ind Ltd Discharge device and plasma reactor
JP5149473B2 (en) * 2001-09-14 2013-02-20 パナソニック株式会社 Deodorization device
JP4004437B2 (en) * 2002-06-25 2007-11-07 松下電工株式会社 Air cleaner
JP4089661B2 (en) * 2004-07-14 2008-05-28 松下電器産業株式会社 Purification device
JP4123203B2 (en) * 2004-07-15 2008-07-23 松下電器産業株式会社 Air conditioner

Also Published As

Publication number Publication date
JP2010210234A (en) 2010-09-24

Similar Documents

Publication Publication Date Title
JP4742572B2 (en) Air conditioner air purifier
JP4123203B2 (en) Air conditioner
WO2019150735A1 (en) Air cleaning device and air cleaning method
JP5692176B2 (en) Air conditioner
US20110067571A1 (en) Air purification apparatus
JP2007101034A (en) Refrigerator
US20110126551A1 (en) Electrostatic atomizing device and air conditioner using same
JP5045781B2 (en) Air conditioner air purifier
JP2006150162A (en) Air cleaner and air conditioner
JP5211820B2 (en) Air conditioner
JP2007010233A (en) Air cleaner
JP4985815B2 (en) Air conditioner air purifier
JP6952821B2 (en) Air cleaner
JP2003056873A (en) Electric space heater with humidifying function
KR100478706B1 (en) Air- cleaning apparatus for Heating, Ventilation, and Air Conditioning controls on vehicle
JP2006153316A (en) Vaporizing type humidifier
JP2006097982A (en) Range hood
JP2009295359A (en) Ion generating device
JP4687740B2 (en) Air conditioner
JP2006026117A (en) Air cleaner
JP5265998B2 (en) Electrostatic atomizer
JP2006102202A (en) Air cleaning device
JP2024019806A (en) Air cleaner
JP2010065941A (en) Air conditioner
KR20230041424A (en) Sterilization apparatus

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120403

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120416

R151 Written notification of patent or utility model registration

Ref document number: 4985815

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3