JP4985479B2 - Noise component removal apparatus and program - Google Patents

Noise component removal apparatus and program Download PDF

Info

Publication number
JP4985479B2
JP4985479B2 JP2008054775A JP2008054775A JP4985479B2 JP 4985479 B2 JP4985479 B2 JP 4985479B2 JP 2008054775 A JP2008054775 A JP 2008054775A JP 2008054775 A JP2008054775 A JP 2008054775A JP 4985479 B2 JP4985479 B2 JP 4985479B2
Authority
JP
Japan
Prior art keywords
value
noise
linear combination
term
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008054775A
Other languages
Japanese (ja)
Other versions
JP2009210460A (en
Inventor
賢太郎 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2008054775A priority Critical patent/JP4985479B2/en
Publication of JP2009210460A publication Critical patent/JP2009210460A/en
Application granted granted Critical
Publication of JP4985479B2 publication Critical patent/JP4985479B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、GPS(グローバル・ポジショニング・システム、Global Positioning System)受信機もしくは全地球航法衛星システム(GNSS)受信機において、搬送波位相測定値から雑音成分を除去する技術に関する。   The present invention relates to a technique for removing a noise component from a carrier phase measurement value in a GPS (Global Positioning System) receiver or a Global Navigation Satellite System (GNSS) receiver.

GPS受信機や全地球航法衛星システム(GNSS)受信機(以下、総称してGPS受信機とする)は、衛星から受信した周波数信号から搬送波位相測定値を算出し、算出した値を用いて自装置の位置座標を計算している。GPS受信機において算出される搬送波位相測定値は、高精度ではあるが、受信機の周辺環境において発生する反射波が間接波として混入し、GPS受信機で測定されてしまう。このような原因により、搬送波位相測定値に誤差が生じ、測定値から計算される位置推定の精度が損なわれることとなる。   A GPS receiver or a Global Navigation Satellite System (GNSS) receiver (hereinafter collectively referred to as a GPS receiver) calculates a carrier phase measurement value from a frequency signal received from a satellite, and uses the calculated value to The position coordinates of the device are calculated. Although the carrier phase measurement value calculated in the GPS receiver is highly accurate, a reflected wave generated in the surrounding environment of the receiver is mixed as an indirect wave and is measured by the GPS receiver. Due to such a cause, an error occurs in the carrier phase measurement value, and the accuracy of the position estimation calculated from the measurement value is impaired.

上記の問題に対して、公知の技術として、特別に設計した受信アンテナをGPS受信機に設けることにより、GPS受信機において算出する搬送波位相測定値に対して間接波の強度をある程度抑制することのできる技術が提供されている(例えば、非特許文献1)。   As a known technique for the above problem, by providing a specially designed receiving antenna in the GPS receiver, the intensity of the indirect wave can be suppressed to some extent with respect to the carrier phase measurement value calculated in the GPS receiver. A technique that can be used is provided (for example, Non-Patent Document 1).

また、上記の問題に対する他の公知の技術として、GPS受信機の信号処理方式を特別に設計することにより、GPS受信機において算出する搬送波位相測定値に対して間接波の強度をある程度抑制することのできる技術が提供されている。   In addition, as another known technique for the above problem, the intensity of the indirect wave is suppressed to some extent with respect to the carrier phase measurement value calculated in the GPS receiver by specially designing the signal processing method of the GPS receiver. Technology that can be used.

ここで、GPS受信機の搬送波位相測定値の計算方法に関しては、2周波数の受信信号の搬送波位相測定値に対して線形結合量を算出し、幾何距離項及び電離層遅延項を推定する方法が広く知られている。
B.ホフマン−ウェレンホフ,H.リヒテネガー,J.コリンズ、「GPS理論と応用」、シュプリンガー・フェアラーク東京株式会社、2005年3月31日、p.108−109、p.120−123、p.240−241
Here, regarding the calculation method of the carrier phase measurement value of the GPS receiver, there is a wide range of methods for calculating the linear combination amount with respect to the carrier phase measurement value of the received signal of two frequencies and estimating the geometric distance term and the ionospheric delay term. Are known.
B. Hoffman-Wellenhof, H.H. Richteneger, J.A. Collins, “GPS Theory and Applications”, Springer Fairlark Tokyo Co., Ltd., March 31, 2005, p. 108-109, p. 120-123, p. 240-241

上記のとおり、従来においては、搬送波位相測定値から反射波による雑音成分を除去するためには、特別に受信アンテナや信号処理回路を設ける必要があった。そして、製造コスト削減のためには、特別な構成を備える必要がなく、プログラム等により雑音成分を推定できることが好ましい。   As described above, conventionally, in order to remove the noise component due to the reflected wave from the carrier wave phase measurement value, it is necessary to provide a receiving antenna and a signal processing circuit. In order to reduce the manufacturing cost, it is not necessary to provide a special configuration, and it is preferable that the noise component can be estimated by a program or the like.

本発明は、簡便な構成で、GPS受信機の搬送波位相測定値に含まれる雑音成分を推定することのできる技術を提供することを目的とする。   An object of this invention is to provide the technique which can estimate the noise component contained in the carrier wave phase measured value of a GPS receiver with a simple structure.

上記課題を解決するために、開示の雑音低減プログラムは、グローバル・ポジショニング・システム受信機もしくは全地球航法衛星システム(GNSS)受信機において測定した搬送波位相測定値に対して雑音成分を除去するための雑音成分除去プログラムであって、前記グローバル・ポジショニング・システム受信機もしくは全地球航法衛星システム受信機で測定した搬送波位相測定値に基づき、2周波数の受信信号に対する幾何距離項を含む第1の線形結合及び電離層遅延項を含む第2の線形結合を算出し、前記算出した第1及び第2の線形結合から、第1及び第2の時間変動成分をそれぞれ抽出し、前記第1及び第2の
時間変動成分を抽出した値に基づき、共分散行列を算出し、前記算出した共分散行列の成分に基づいた比例係数値と前記第2の時間変動成分とを用いて、前記第1の線形結合に含まれる測定雑音由来項を推定した値を算出する処理をコンピュータに実行させること構成とする。
In order to solve the above problems, the disclosed noise reduction program is for removing noise components from carrier phase measurement values measured in a global positioning system receiver or a global navigation satellite system (GNSS) receiver. A first linear combination including a geometric distance term for a received signal of two frequencies based on a carrier phase measurement value measured by the global positioning system receiver or the global navigation satellite system receiver. And a second linear combination including an ionospheric delay term, and first and second time variation components are extracted from the calculated first and second linear combinations, respectively, and the first and second time periods are extracted. A covariance matrix is calculated based on the extracted value of the fluctuation component, and the proportional coefficient value based on the calculated covariance matrix component and the first The computer is configured to execute a process of calculating a value obtained by estimating the term derived from the measurement noise included in the first linear combination using the two time fluctuation components.

搬送波位相測定値から作成される線形結合の時間変動成分に対する分散を算出し、算出した分散から、位置測定計算において測定値に含まれる雑音成分を推定することができる。   It is possible to calculate a variance for a time-varying component of the linear combination created from the carrier phase measurement value, and to estimate a noise component included in the measurement value in the position measurement calculation from the calculated variance.

更に、前記第1の線形結合から、上記測定雑音由来項を推定した値を減算する処理を更にコンピュータに実行させる構成としてもよい。測定値に含まれる雑音成分を除去することにより、位置測定の精度が向上する。   Furthermore, it is good also as a structure which makes a computer perform further the process which subtracts the value which estimated the said measurement noise origin term from said 1st linear combination. By removing the noise component included in the measurement value, the accuracy of position measurement is improved.

開示の雑音低減装置によれば、簡便な構成で、グローバル・ポジショニング・システム受信機の搬送波位相測定値に対する雑音成分を推定することが可能となる。   According to the disclosed noise reduction apparatus, it is possible to estimate a noise component with respect to a carrier phase measurement value of a global positioning system receiver with a simple configuration.

以下、本発明の好適な実施の形態について、図面を参照して詳細に説明する。
図1は、本実施形態に係るGPS受信機を含むグローバル・ポジショニング・システムの構成図である。図1に示すように、グローバル・ポジショニング・システムは、GPS衛星10と、GPS受信機1とを含む。
DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments of the invention will be described in detail with reference to the drawings.
FIG. 1 is a configuration diagram of a global positioning system including a GPS receiver according to the present embodiment. As shown in FIG. 1, the global positioning system includes a GPS satellite 10 and a GPS receiver 1.

GPS衛星10は、時間情報及びGPS衛星10自身の軌道情報を含むデータを信号に乗せて地上に向けて発信している。GPS受信機1は、GPS衛星10から受信した2周波数信号から自装置の位置座標を算出する。   The GPS satellite 10 transmits data including time information and orbit information of the GPS satellite 10 itself on a signal and transmits it to the ground. The GPS receiver 1 calculates the position coordinates of its own device from the two frequency signals received from the GPS satellite 10.

本実施形態に係るGPS受信機1は、搬送波位相測定部2、雑音低減部3及び座標計算部4を含んで構成される。
GPS受信機1の搬送波位相測定部2は、GPS衛星10から受信した2周波数信号から搬送波位相測定値を算出する。雑音低減部3は、搬送波位相測定値に含まれる雑音成分を算出し、求めた雑音成分を除去する。座標計算部4は、雑音低減部3において雑音成分を除去した搬送波位相測定値を用いて、GPS受信機1の位置座標を計算し、出力する。
The GPS receiver 1 according to the present embodiment includes a carrier phase measurement unit 2, a noise reduction unit 3, and a coordinate calculation unit 4.
The carrier wave phase measurement unit 2 of the GPS receiver 1 calculates a carrier wave phase measurement value from the two frequency signals received from the GPS satellite 10. The noise reduction unit 3 calculates a noise component included in the carrier phase measurement value and removes the obtained noise component. The coordinate calculation unit 4 calculates and outputs the position coordinates of the GPS receiver 1 using the carrier phase measurement value from which the noise component has been removed in the noise reduction unit 3.

なお、GPS受信機1は複数の衛星10から2周波数信号を受信しているが、図1においては省略して記載している。また、図1においては、搬送波位相測定値からGPS受信機1の位置座標を算出する処理に関わる構成のみを示す。   The GPS receiver 1 receives two frequency signals from a plurality of satellites 10 but is omitted from FIG. FIG. 1 shows only the configuration related to the process of calculating the position coordinates of the GPS receiver 1 from the carrier phase measurement value.

図1に示すGPS受信機1では、雑音低減部3において、搬送波位相測定値の雑音成分を推定し、雑音成分の除去を行う。以下、本実施形態に係るGPS受信機1による雑音成分を推定する方法について、具体的に説明する。   In the GPS receiver 1 shown in FIG. 1, the noise reduction unit 3 estimates the noise component of the carrier phase measurement value and removes the noise component. Hereinafter, a method for estimating a noise component by the GPS receiver 1 according to the present embodiment will be specifically described.

図2は、本実施形態に係るGPS受信機1における雑音低減部3の構成図である。図2に示す雑音低減部3は、線形結合量算出部11、第1の時間変動成分抽出部12、第2の時間変動成分抽出部13、共分散行列算出部14、相関係数・比例係数推定部15、更新判定部16、推定比例係数記憶部17、推定雑音算出部18及び雑音除去部19を含む。   FIG. 2 is a configuration diagram of the noise reduction unit 3 in the GPS receiver 1 according to the present embodiment. 2 includes a linear combination amount calculation unit 11, a first time variation component extraction unit 12, a second time variation component extraction unit 13, a covariance matrix calculation unit 14, a correlation coefficient / proportional coefficient. An estimation unit 15, an update determination unit 16, an estimated proportional coefficient storage unit 17, an estimated noise calculation unit 18, and a noise removal unit 19 are included.

線形結合量算出部11は、搬送波位相測定部2から入力される2周波数GPS受信機1の搬送波位相測定値から、線形結合量を算出する。
第1の時間変動成分抽出部12及び第2の時間変動成分抽出部13は、線形結合量算出
部11において算出された線形結合量から、時間変動成分(速く変動する成分)を抽出し、分離する。具体的には、ハイパスフィルタから構成される。このうち、第1の時間変動成分抽出部12は、幾何距離項ρを含む線形結合から時間変動成分(第1の時間変動成分)を分離し、第2の時間変動成分抽出部13は、電離層遅延項Iを含む線形結合から時間変動成分(第2の時間変動成分)を分離する。
The linear combination amount calculation unit 11 calculates the linear combination amount from the carrier phase measurement value of the two-frequency GPS receiver 1 input from the carrier phase measurement unit 2.
The first time variation component extraction unit 12 and the second time variation component extraction unit 13 extract a time variation component (a component that varies rapidly) from the linear combination amount calculated by the linear combination amount calculation unit 11 and separates it. To do. Specifically, it is composed of a high-pass filter. Among these, the first time variation component extraction unit 12 separates the time variation component (first time variation component) from the linear combination including the geometric distance term ρ, and the second time variation component extraction unit 13 includes the ionosphere. A time variation component (second time variation component) is separated from the linear combination including the delay term I.

なお、幾何距離項ρとは、GPS衛星10とGPS受信機1との幾何距離を表す項であり、電離層遅延項Iとは、GPS衛星10とGPS受信機1の間に存在する電離層の電子密度により生じる遅延を表す項である。   The geometric distance term ρ is a term representing the geometric distance between the GPS satellite 10 and the GPS receiver 1, and the ionospheric delay term I is the ionospheric electron existing between the GPS satellite 10 and the GPS receiver 1. This is a term representing the delay caused by density.

共分散行列算出部14は、第1及び第2の時間変動成分抽出部12、13において抽出・分離して得られた第1及び第2の時間変動成分から、共分散行列を算出する。
相関係数・比例係数推定部15は、共分散行列算出部14において算出した共分散行列から相関係数と比例係数を求める。ここで、比例係数とは、後述する式(12)に表されるσαβ/σααをいう。更新判定部16は、相関係数・比例係数推定部15において求めた時刻tの搬送波位相測定値から計算した相関係数について、所定の条件を満たすか否かを判定する。推定比例係数記憶部17は、更新判定部16により、相関係数について、上記所定の条件を満たし、雑音成分の推定に利用可能であると判定された場合に、時刻tの搬送波位相測定値から計算した共分散行列から求めた比例係数σαβ/σααを記憶させる。それ以前の記憶値は更新される(上書きされる)ことになる。
The covariance matrix calculation unit 14 calculates a covariance matrix from the first and second time variation components obtained by extraction and separation by the first and second time variation component extraction units 12 and 13.
The correlation coefficient / proportional coefficient estimation unit 15 obtains a correlation coefficient and a proportional coefficient from the covariance matrix calculated by the covariance matrix calculation unit 14. Here, the proportionality coefficient means σ αβ / σ αα expressed in the equation (12) described later. The update determination unit 16 determines whether or not a predetermined condition is satisfied for the correlation coefficient calculated from the carrier phase measurement value at time t obtained by the correlation coefficient / proportional coefficient estimation unit 15. When the update determination unit 16 determines that the correlation coefficient satisfies the above-described predetermined condition and can be used for noise component estimation, the estimated proportional coefficient storage unit 17 uses the carrier phase measurement value at time t. The proportionality coefficient σ αβ / σ αα obtained from the calculated covariance matrix is stored. The stored value before that is updated (overwritten).

推定雑音算出部18は、推定比例係数記憶部17にその時点において記憶されている比例係数を乗算し、幾何距離項ρを含む線形結合のうち、測定雑音由来項を推定する。
雑音除去部19は、推定雑音算出部18において算出した雑音成分を用いて、搬送波位相測定値から雑音成分を除去し、出力する。
The estimated noise calculation unit 18 multiplies the estimated proportional coefficient storage unit 17 by the proportional coefficient stored at that time, and estimates the measurement noise-derived term from the linear combination including the geometric distance term ρ.
The noise removing unit 19 removes the noise component from the carrier phase measurement value using the noise component calculated by the estimated noise calculating unit 18 and outputs the result.

図2に示す雑音低減部3における測定雑音の推定方法について、具体的に説明する。
まず、線形結合量算出部11に入力される搬送波位相測定値φ及びその測定雑音δφは、以下の式(1)、(2)で表される。
A method for estimating the measurement noise in the noise reduction unit 3 shown in FIG. 2 will be specifically described.
First, the carrier phase measurement value φ and the measurement noise δφ input to the linear combination amount calculation unit 11 are expressed by the following equations (1) and (2).

Figure 0004985479
Figure 0004985479

Figure 0004985479
上記の式(1)及び式(2)のうち、kはGPS衛星10、L1及びL2は2周波数信号、λはGPS信号波長、Iは電離圏遅延項、ρはGPS受信機1とGPS衛星10との幾何距離、Nはバイアス項、κ(=5929/3600=1.6469)は定数をそれぞれ表す。このうち、バイアス項Nについては、時間的に一定値である。
Figure 0004985479
Of the above equations (1) and (2), k is a GPS satellite 10, L1 and L2 are two frequency signals, λ is a GPS signal wavelength, I is an ionospheric delay term, and ρ is a GPS receiver 1 and a GPS satellite. 10 is a geometric distance, N is a bias term, and κ (= 5929/3600 = 1.6469) is a constant. Among these, the bias term N is a constant value in time.

線形結合量算出部11は、上記の式(1)及び式(2)から、以下の式(3)〜式(6)で表される線形結合量を得る。   The linear combination amount calculation unit 11 obtains the linear combination amounts represented by the following equations (3) to (6) from the above equations (1) and (2).

Figure 0004985479
Figure 0004985479

Figure 0004985479
このうち、式(4)及び式(6)にそれぞれ含まれる測定雑音
Figure 0004985479
Among these, the measurement noise included in each of the equations (4) and (6)

Figure 0004985479
及び
Figure 0004985479
as well as

Figure 0004985479
の線形結合量については、以下の式(7)及び式(8)で表される。
Figure 0004985479
The linear combination amount is expressed by the following equations (7) and (8).

Figure 0004985479
Figure 0004985479

Figure 0004985479
式(3)及び式(4)においては、幾何距離項ρを含まず、電離層遅延項Iを含んでいる。一般的には電離層遅延項Iの時間変動は小さいため、時系列データに対するフィルタ処理の方法を用いて時間変動雑音
Figure 0004985479
In the equations (3) and (4), the geometric distance term ρ is not included and the ionospheric delay term I is included. In general, since the time variation of the ionospheric delay term I is small, the time variation noise is calculated using a filtering method for time series data.

Figure 0004985479
を分離することにより、測定雑音由来項、すなわち式(7)をほぼ正確に分離抽出することができる。
Figure 0004985479
Can be separated and extracted almost accurately from the measurement noise-derived term, that is, the equation (7).

一方、式(5)及び式(6)においては、電離層遅延項Iを含まず、幾何距離項ρを含んでいる。幾何距離項ρには、GPS受信機1の座標が反映されているため、上記フィルタ処理を行うことにより分離される成分は、測定雑音だけでなく、GPS受信機1の座標の変動が存在すれば、それによる影響が含まれる。このため、式(8)に示す測定雑音を正確に分離したことにはならない。   On the other hand, in the equations (5) and (6), the ionospheric delay term I is not included, but the geometric distance term ρ is included. Since the coordinates of the GPS receiver 1 are reflected in the geometric distance term ρ, the components separated by performing the filtering process include not only measurement noise but also fluctuations in the coordinates of the GPS receiver 1. The impact of that. For this reason, the measurement noise shown in Expression (8) is not accurately separated.

そこで、まず、搬送波位相測定値から求めた線形結合量に対して時間変動成分を分離抽
出する。具体的には、式(5)に対し、図2の第1の時間変動成分抽出部12において更にフィルタ処理を行い、時間変動雑音
Therefore, first, a time variation component is separated and extracted from the linear combination obtained from the carrier phase measurement value. Specifically, the filter processing is further performed on the expression (5) by the first time variation component extraction unit 12 in FIG.

Figure 0004985479
を分離する。また、式(3)に対し、図2の第2の時間変動成分抽出部13においてフィルタ処理を行い、時間変動雑音
Figure 0004985479
Isolate. Further, the filter processing is performed on the expression (3) in the second time variation component extraction unit 13 of FIG.

Figure 0004985479
を分離する。
そして、共分散行列算出部14において、これらの共分散行列を計算する。共分散行列は、以下の式(9)、式(10)で表される。
Figure 0004985479
Isolate.
Then, the covariance matrix calculation unit 14 calculates these covariance matrices. The covariance matrix is expressed by the following equations (9) and (10).

Figure 0004985479
式(9)、(10)で表される共分散行列の相関係数は、以下の式(11)により表される。
Figure 0004985479
The correlation coefficient of the covariance matrix expressed by the equations (9) and (10) is expressed by the following equation (11).

Figure 0004985479
相関係数・比例係数推定部15は、2変量相関に関する一般論に基づき、得られた共分散行列の成分を用いて比例係数σαβ/σααを計算し、推定雑音算出部18は、第2の時間変動成分(電離層遅延項Iを含む線形結合から抽出した時間変動成分)と比例係数σαβ/σααとから、式(12)の計算を行い、第1の線形結合のうちの測定雑音由来項の推定値を得る。
Figure 0004985479
The correlation coefficient / proportional coefficient estimation unit 15 calculates the proportional coefficient σ αβ / σ αα using the components of the obtained covariance matrix based on the general theory regarding bivariate correlation, and the estimated noise calculation unit 18 From the two time-varying components (time-varying components extracted from the linear combination including the ionospheric delay term I) and the proportionality coefficient σ αβ / σ αα , the calculation of Expression (12) is performed, and the measurement of the first linear combination Obtain an estimate of the noise-derived term.

Figure 0004985479
そして、式(12)により表される第1の線形結合のうちの測定雑音の推定値を、式(13)に示すように幾何距離項ρを含む線形結合(すなわち式(6))から減算する。
Figure 0004985479
Then, the estimated value of the measurement noise in the first linear combination represented by the equation (12) is subtracted from the linear combination including the geometric distance term ρ as shown in the equation (13) (that is, the equation (6)). To do.

Figure 0004985479
これにより、幾何距離項ρを含む線形結合から測定雑音が除去される。
図3は、本実施形態に係る雑音低減方法を用いて搬送波位相測定値から雑音成分を除去した場合の幾何距離項ρを含む線形結合の時系列値を示す例のグラフである。ただしグラフ内に収まるように幾何距離の既知オフセット成分は除去してグラフ化している。
Figure 0004985479
Thereby, measurement noise is removed from the linear combination including the geometric distance term ρ.
FIG. 3 is a graph of an example showing a linear combination time series value including the geometric distance term ρ when the noise component is removed from the carrier phase measurement value using the noise reduction method according to the present embodiment. However, the known offset component of the geometric distance is removed so as to fit in the graph.

図3に示すように、電離層遅延項Iを含む線形結合から雑音成分を推定し、幾何距離項ρを含む線形結合から推定した雑音成分を除去することにより、より小さい雑音を含む幾何距離測定値を得たことに相当するので座標計算の精度を向上させることができる。   As shown in FIG. 3, a geometric distance measurement including smaller noise is obtained by estimating a noise component from a linear combination including an ionospheric delay term I and removing the estimated noise component from a linear combination including a geometric distance term ρ. Therefore, the accuracy of coordinate calculation can be improved.

なお、式(11)に示す相関係数については、GPS受信機1の位置測定中においても常時その値を監視し、相関性が変化する可能性に対応することもできる。
具体的には、更新判定部16において、相関係数・係数推定部15において求めた相関係数が所定の条件を満たすか否かを判定する。所定の条件として、実施例では、相関係数が0.5以上の値をとる場合に、雑音成分が有意の相関を持つと判断し、比例係数σαβ/σααを用いて雑音成分の推定に利用する。相関係数が0.5未満である場合は、過去に「0.5以上」の条件を満たした際の比例係数σαβ/σααが推定係数記憶部17に記憶されているので、それから読み出し、読み出した値を用いて雑音成分の推定を行う。
In addition, about the correlation coefficient shown to Formula (11), even during the position measurement of the GPS receiver 1, the value is always monitored and it can respond to the possibility that a correlation changes.
Specifically, the update determination unit 16 determines whether or not the correlation coefficient obtained by the correlation coefficient / coefficient estimation unit 15 satisfies a predetermined condition. As a predetermined condition, in the embodiment, when the correlation coefficient takes a value of 0.5 or more, it is determined that the noise component has a significant correlation, and the noise component is estimated using the proportional coefficient σ αβ / σ αα. To use. When the correlation coefficient is less than 0.5, since the proportional coefficient σ αβ / σ αα when the condition of “0.5 or more” has been satisfied in the past is stored in the estimated coefficient storage unit 17, it is read out therefrom. The noise component is estimated using the read value.

更には、移動体等に搭載したGPS受信機1では、例えば、受信機座標の変動の影響により、測定値雑音の相関効果を推定しにくい場合がある。このような場合であっても、過去に推定できていた条件下の比例係数σαβ/σααを記憶しておき、測定値雑音の大きさの推定に利用することができる。 Furthermore, in the GPS receiver 1 mounted on a moving body or the like, it may be difficult to estimate the correlation effect of measured value noise due to the influence of fluctuations in the receiver coordinates, for example. Even in such a case, the proportionality coefficient σ αβ / σ αα under conditions that have been estimated in the past can be stored and used to estimate the magnitude of the measured value noise.

受信機座標の変動の影響の有無については、静止センサによりGPS受信機1の移動の有無を判定する。GPS受信機1が移動中であると判定された場合には、例えば、GPS受信機1において計算した座標から速度変動を算出する。GPS受信機1が自動車等に搭載されている場合には、タイヤの回転数により加速度を計算し、加速度から自動車等の移動体の速度を求める。   As for the presence or absence of the influence of the receiver coordinate fluctuation, the presence or absence of movement of the GPS receiver 1 is determined by a stationary sensor. When it is determined that the GPS receiver 1 is moving, for example, the speed fluctuation is calculated from the coordinates calculated in the GPS receiver 1. When the GPS receiver 1 is mounted on an automobile or the like, acceleration is calculated from the number of rotations of the tire, and the speed of a moving body such as an automobile is obtained from the acceleration.

そして、上記の方法により速度変動量を計算し、ハイパスフィルタにより時間変動成分を抽出して幾何距離と比較することにより、受信機座標の変動の影響の有無を判定することができる。時定数としては、例えば180秒とする。受信機座標の変動の影響が大きいと判定された場合には、推定比例係数記憶部17に記憶されている比例係数σαβ/σααを用いて、測定雑音の推定を行う。 Then, by calculating the speed fluctuation amount by the above method, extracting the time fluctuation component by the high-pass filter and comparing it with the geometric distance, it is possible to determine the presence or absence of the influence of the receiver coordinate fluctuation. For example, the time constant is 180 seconds. When it is determined that the influence of the receiver coordinate fluctuation is large, the measurement noise is estimated using the proportionality coefficient σ αβ / σ αα stored in the estimated proportionality coefficient storage unit 17.

以上説明したように、本実施形態に係る雑音低減方法によれば、搬送波位相測定値について線形結合量で表し、線形結合で表される式のうち、測定雑音に由来する項を推定し、幾何距離項ρを含む線形結合から除去することにより、座標計算における推定雑音の影響を低減させている。測定雑音を除去するために特別に受信アンテナや信号処理回路を設ける必要がない。すなわち、簡便な構成で、例えば上記の方法をコンピュータに実行させるためのプログラムをGPS受信機1に搭載することにより、GPS受信機1の座標計算における測定雑音による影響を低減させることが可能となる。   As described above, according to the noise reduction method according to the present embodiment, the carrier phase measurement value is expressed by the linear combination amount, and the term derived from the measurement noise is estimated from the expression expressed by the linear combination, and the geometric By removing from the linear combination including the distance term ρ, the influence of the estimated noise in the coordinate calculation is reduced. There is no need to provide a special receiving antenna or signal processing circuit in order to eliminate measurement noise. That is, it is possible to reduce the influence of measurement noise in the coordinate calculation of the GPS receiver 1 by mounting the program for causing the computer to execute the above method in the GPS receiver 1 with a simple configuration. .

実施形態に係るGPS受信機を含むグローバル・ポジショニング・システムの構成図である。It is a block diagram of the global positioning system containing the GPS receiver which concerns on embodiment. 実施形態に係る雑音低減部の構成図である。It is a block diagram of the noise reduction part which concerns on embodiment. 実施形態に係る雑音低減方法を用いて搬送波位相測定値から雑音成分を除去した場合の幾何距離項を含む線形結合の時系列値の例を示すグラフである。It is a graph which shows the example of the time series value of the linear combination containing the geometric distance term at the time of removing a noise component from a carrier wave phase measured value using the noise reduction method concerning an embodiment.

符号の説明Explanation of symbols

1 GPS受信機
2 搬送波位相測定部
3 雑音低減部
4 座標計算部
10 GPS衛星
11 線形結合量算出部
12 第1の時間変動成分抽出部
13 第2の時間変動成分抽出部
14 共分散行列算出部
15 比例係数・相関係数推定部
16 更新判定部
17 推定比例係数記憶部
18 推定雑音算出部
19 雑音除去部
DESCRIPTION OF SYMBOLS 1 GPS receiver 2 Carrier phase measurement part 3 Noise reduction part 4 Coordinate calculation part 10 GPS satellite 11 Linear combination amount calculation part 12 1st time fluctuation component extraction part 13 2nd time fluctuation component extraction part 14 Covariance matrix calculation part 15 Proportional Coefficient / Correlation Coefficient Estimating Unit 16 Update Determination Unit 17 Estimated Proportional Coefficient Storage Unit 18 Estimated Noise Calculation Unit 19 Noise Removal Unit

Claims (5)

グローバル・ポジショニング・システム受信機もしくは全地球航法衛星システム(GNSS)受信機において測定した搬送波位相測定値に対して雑音成分を除去するための雑音成分除去プログラムであって、
前記グローバル・ポジショニング・システム受信機もしくは全地球航法衛星システム受信機で測定した搬送波位相測定値に基づき、2周波数の受信信号に対する幾何距離項を含む第1の線形結合及び電離層遅延項を含む第2の線形結合を算出し、
前記算出した第1及び第2の線形結合から、第1及び第2の時間変動成分をそれぞれ抽出し、
前記第1及び第2の時間変動成分を抽出した値に基づき、共分散行列を算出し、
前記算出した共分散行列の成分に基づいた比例係数値と前記第2の時間変動成分とを用いて、前記第1の線形結合に含まれる測定雑音由来項を推定した値を算出する、
処理をコンピュータに実行させることを特徴とする雑音成分除去プログラム。
A noise component removal program for removing noise components from carrier phase measurement values measured by a global positioning system receiver or a global navigation satellite system (GNSS) receiver,
A second linear combination including a first linear combination and an ionospheric delay term including a geometric distance term for a received signal of two frequencies based on a carrier phase measurement measured by the global positioning system receiver or the global navigation satellite system receiver; Calculate the linear combination of
First and second time variation components are extracted from the calculated first and second linear combinations, respectively.
Calculating a covariance matrix based on the extracted values of the first and second time-varying components;
Using the proportional coefficient value based on the calculated covariance matrix component and the second time-varying component, calculate a value that estimates the measurement noise-derived term included in the first linear combination;
A noise component removal program that causes a computer to execute processing.
前記第1の線形結合から、上記測定雑音由来項を推定した値を減算する
処理を更にコンピュータに実行させることを特徴とする請求項1記載の雑音成分除去プログラム。
The noise component removal program according to claim 1, further causing the computer to execute a process of subtracting a value obtained by estimating the term derived from the measurement noise from the first linear combination.
前記共分散行列についての相関係数の値が所定の条件を満たすか否かを判定する
処理を更にコンピュータに実行させ、
前記測定雑音由来項を推定した値を算出する処理において、前記相関係数の値が前記条件を満たさないと判定された場合に、その時点の比例係数値を用いず、それ以前に記憶手段に記憶しておいた前記比例係数値を用いて、前記測定雑音由来項を推定した値を算出する
ことを特徴とする請求項2記載の雑音成分除去プログラム。
Further causing the computer to execute a process of determining whether or not a value of a correlation coefficient for the covariance matrix satisfies a predetermined condition,
In the process of calculating a value that estimates the term derived from the measurement noise, if it is determined that the value of the correlation coefficient does not satisfy the condition, the proportional coefficient value at that time is not used, and the storage means before that The noise component removal program according to claim 2, wherein a value obtained by estimating the term derived from the measurement noise is calculated using the stored proportional coefficient value.
前記相関係数の値が所定の条件を満たすか否かを判定する処理において、
前記相関係数の値が所定のしきい値以上の相関値をとるか否かを判定し、
前記相関係数の値が前記所定のしきい値以上の相関値をとる場合には、時刻tの比例係数を前記記憶手段に記憶し、
前記測定雑音由来項を推定した値を算出する処理において、時刻t+nにおける前記相関係数の値が前記所定のしきい値未満の相関値をとると判定された場合には、前記記憶手段に記憶されている時刻tの比例係数を用いて、前記測定雑音由来項を推定した値を算出する
ことを特徴とする請求項3記載の雑音成分除去プログラム。
In the process of determining whether the value of the correlation coefficient satisfies a predetermined condition,
Determining whether the value of the correlation coefficient takes a correlation value equal to or greater than a predetermined threshold;
When the value of the correlation coefficient takes a correlation value equal to or greater than the predetermined threshold value, the proportional coefficient at time t is stored in the storage means,
In the process of calculating a value obtained by estimating the term derived from the measurement noise, if it is determined that the correlation coefficient value at time t + n takes a correlation value less than the predetermined threshold value, it is stored in the storage means. The noise component elimination program according to claim 3, wherein a value obtained by estimating the term derived from the measurement noise is calculated using a proportional coefficient of time t.
グローバル・ポジショニング・システム受信機もしくは全地球航法衛星システム(GNSS)受信機で測定した搬送波位相測定値に基づき、2周波数の受信信号に対する幾何距離項を含む第1の線形結合及び電離層遅延項を含む第2の線形結合を算出する線形結合量算出手段と、
前記線形結合量算出手段において算出した第1及び第2の線形結合から、第1及び第2の時間変動成分をそれぞれ抽出する時間変動成分抽出手段と、
前記時間変動成分抽出手段により第1及び第2の時間変動成分を抽出した値に基づき、共分散行列を算出する共分散行列算出手段と、
前記共分散行列算出手段において算出した共分散行列の成分に基づいた比例係数値と前記第2の時間変動成分とを用いて、前記第1の線形結合に含まれる測定雑音由来項を推定した値を算出する推定手段と、
を備えたことを特徴とする雑音成分除去装置。
Includes a first linear combination and ionospheric delay term that includes a geometric distance term for a received signal at two frequencies based on a carrier phase measurement measured with a Global Positioning System receiver or a Global Navigation Satellite System (GNSS) receiver A linear combination amount calculating means for calculating a second linear combination;
Time variation component extraction means for extracting the first and second time variation components from the first and second linear combinations calculated by the linear combination amount calculation means;
A covariance matrix calculating means for calculating a covariance matrix based on values obtained by extracting the first and second time varying components by the time varying component extracting means;
A value obtained by estimating a measurement noise-derived term included in the first linear combination by using a proportional coefficient value based on the component of the covariance matrix calculated by the covariance matrix calculating means and the second time variation component. An estimation means for calculating
A noise component removing apparatus comprising:
JP2008054775A 2008-03-05 2008-03-05 Noise component removal apparatus and program Expired - Fee Related JP4985479B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008054775A JP4985479B2 (en) 2008-03-05 2008-03-05 Noise component removal apparatus and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008054775A JP4985479B2 (en) 2008-03-05 2008-03-05 Noise component removal apparatus and program

Publications (2)

Publication Number Publication Date
JP2009210460A JP2009210460A (en) 2009-09-17
JP4985479B2 true JP4985479B2 (en) 2012-07-25

Family

ID=41183762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008054775A Expired - Fee Related JP4985479B2 (en) 2008-03-05 2008-03-05 Noise component removal apparatus and program

Country Status (1)

Country Link
JP (1) JP4985479B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101169766B1 (en) 2011-07-28 2012-07-30 주식회사 현대제이콤 Apparatus of detecting gps jamming signal

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050216210A1 (en) * 2004-03-25 2005-09-29 Bartone Chris G Real-time code multipath mitigation in the frequency domain using FDsmooth™ for Global Navigation Satellite Systems
US7868820B2 (en) * 2005-09-09 2011-01-11 Trimble Navigation Limited Ionosphere modeling apparatus and methods
JP2007278708A (en) * 2006-04-03 2007-10-25 Japan Radio Co Ltd Satellite navigation system
JP2009063479A (en) * 2007-09-07 2009-03-26 Japan Radio Co Ltd Noise detector and positioning device

Also Published As

Publication number Publication date
JP2009210460A (en) 2009-09-17

Similar Documents

Publication Publication Date Title
EP3009860B1 (en) Method for computing an error bound of a Kalman filter based GNSS position solution
JP2006189320A (en) Positioning computation unit, positioning device, and positioning computation method
JP5253067B2 (en) Position measuring apparatus and position measuring method using GPS
JP2013019893A (en) Error detection for satellite navigation system based on biased measurement
JP5590010B2 (en) Positioning device and program
EP3226034A1 (en) Improved gnss receiver using velocity integration
WO2013016800A4 (en) System, method, and computer program for a low power and low cost gnss receiver
JP2011095184A (en) Positioning device and program
JP2012233800A (en) Multi-sensor determination device and program
JP2020056701A (en) Navigation device, flight assisting information generation method, and flight assisting information generation program
US8624777B2 (en) Method for determining the distance between a transmitter and a receiver
US20190004181A1 (en) Method and apparatus applicable to positioning in nlos environment
JP5386732B2 (en) Displacement measuring apparatus and displacement measuring method using GPS with RTK abnormal positioning data processing
JP4498399B2 (en) Positioning system and positioning method
JP5879977B2 (en) Speed estimation apparatus and program
JP5352492B2 (en) Positioning device and program
KR101981225B1 (en) Method for estimating precisely abnormal signal elements included in gnss measurments
KR20190050554A (en) Multi-constellation gnss positioning system and method by correcting the inter-system time difference
JP4985479B2 (en) Noise component removal apparatus and program
KR101946492B1 (en) Method for measurement of vertical movement of ship and the system using the same
JP7111298B2 (en) Satellite selection device and program
KR102072630B1 (en) Method and device based on position-domain hatch filter utilizing multi-gnss
JP4928114B2 (en) Carrier phase relative positioning device
JP5962397B2 (en) Reliability deriving device, navigation device, and reliability deriving method
KR101151670B1 (en) Standard deviation establishing method for gnss pseudorange correction considering reference receiver clock adjustment effect

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120403

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120416

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4985479

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees