JP4984906B2 - Charged particle beam irradiation equipment - Google Patents

Charged particle beam irradiation equipment Download PDF

Info

Publication number
JP4984906B2
JP4984906B2 JP2007009544A JP2007009544A JP4984906B2 JP 4984906 B2 JP4984906 B2 JP 4984906B2 JP 2007009544 A JP2007009544 A JP 2007009544A JP 2007009544 A JP2007009544 A JP 2007009544A JP 4984906 B2 JP4984906 B2 JP 4984906B2
Authority
JP
Japan
Prior art keywords
irradiation
charged particle
particle beam
irradiated
proton beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007009544A
Other languages
Japanese (ja)
Other versions
JP2008173299A (en
Inventor
禎治 西尾
尚 荻野
和弘 野村
敏樹 立川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
National Cancer Center Japan
Original Assignee
Sumitomo Heavy Industries Ltd
National Cancer Center Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd, National Cancer Center Japan filed Critical Sumitomo Heavy Industries Ltd
Priority to JP2007009544A priority Critical patent/JP4984906B2/en
Publication of JP2008173299A publication Critical patent/JP2008173299A/en
Application granted granted Critical
Publication of JP4984906B2 publication Critical patent/JP4984906B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、被照射体を載置した載置台を照射室内の所定の位置に配置して、被照射体へ荷電粒子線を照射する荷電粒子線照射装置関する。
The present invention, by placing the mounting table mounting the object to be irradiated to a predetermined position of the irradiation chamber, relates to a charged particle beam irradiation apparatus for irradiating a charged particle beam to the irradiation object.

従来、荷電粒子線を照射する荷電粒子線照射装置として、例えば陽子線を照射して腫瘍を治療する陽子線治療装置が知られている。このような腫瘍の治療では、腫瘍の形状や位置に応じて、絶対線量、線量分布、照射位置等の照射計画を立案し、この照射計画に従って精度良く荷電粒子線の照射を行う必要がある。陽子線を患者に照射する場合には、重要臓器、脳幹、視神経、脊髄等への照射を避けるため、照射位置の精度は特に重要である。そして、このような腫瘍の治療に適用される陽子線治療装置は、患者回りに回転自在な陽子線照射部を有する照射室(回転ガントリ)を備えることで、陽子線照射部の移動の自由度が向上されている(例えば、特許文献1参照)。
特開平11−47287号公報
Conventionally, as a charged particle beam irradiation apparatus that irradiates a charged particle beam, for example, a proton beam therapy apparatus that treats a tumor by irradiating a proton beam is known. In the treatment of such a tumor, it is necessary to formulate an irradiation plan such as an absolute dose, a dose distribution, and an irradiation position according to the shape and position of the tumor, and perform irradiation with a charged particle beam with high accuracy according to this irradiation plan. When irradiating a patient with a proton beam, the accuracy of the irradiation position is particularly important in order to avoid irradiation of important organs, brain stem, optic nerve, spinal cord and the like. And the proton beam therapy apparatus applied to the treatment of such a tumor is equipped with the irradiation chamber (rotating gantry) which has a proton beam irradiation part rotatable around a patient, The freedom degree of movement of a proton beam irradiation part (For example, refer to Patent Document 1).
JP 11-47287 A

ここで、近年、荷電粒子線照射装置では、荷電粒子線の照射位置の精度の向上が望まれ、照射室内における被照射体の位置決め精度の向上が求められている。   Here, in recent years, in charged particle beam irradiation apparatuses, it is desired to improve the accuracy of the irradiation position of the charged particle beam, and there is a need to improve the positioning accuracy of the irradiated object in the irradiation chamber.

本発明は、このような課題を解決するために成されたものであり、照射室内における被照射体の位置決め精度の向上を図った荷電粒子線照射装置提供することである。
The present invention has been made in order to solve such problems, and it is an object of the present invention to provide a charged particle beam irradiation apparatus which improves the positioning accuracy of an irradiated object in an irradiation chamber.

本発明による荷電粒子線照射装置は、被照射体を載置した載置台が回転ガントリにより構成される照射室内の所定の位置に配置されて、被照射体へ荷電粒子線の照射が行われる荷電粒子線照射装置において、被照射体に注入された放射性薬剤が到達した位置である照射目標位置から発生する消滅γ線を検出する第1の検出器と、第1の検出器による消滅γ線の検出結果に基づいて照射目標位置を検出する照射目標位置検出手段と、回転ガントリに取り付けられて載置台回りに回転可能とされると共に被照射体に照射された荷電粒子線と照射体内の原子核との核反応によって生成されたポジトロン放出核からの消滅γ線を検出する第2の検出器と、第2の検出器による消滅γ線の検出結果に基づいて荷電粒子線到達位置を検出する荷電粒子線到達位置検出手段と、荷電粒子線到達位置検出手段によって検出された荷電粒子線到達位置と目標位置検出手段によって検出された照射目標位置とが一致するように荷電粒子線のビームを調整する照射制御部と、を備えることを特徴としている。
The charged particle beam irradiation apparatus according to the present invention is a charge in which a mounting table on which an object to be irradiated is placed is arranged at a predetermined position in an irradiation chamber constituted by a rotating gantry , and the object to be irradiated is irradiated with a charged particle beam. In the particle beam irradiation apparatus, a first detector that detects annihilation γ-rays generated from an irradiation target position that is a position where the radiopharmaceutical injected into the irradiation object reaches, and annihilation γ-rays generated by the first detector Irradiation target position detecting means for detecting the irradiation target position based on the detection result, a charged particle beam attached to the rotating gantry and capable of rotating around the mounting table and irradiated to the irradiated object, and nuclei in the irradiated body A second detector for detecting annihilation γ-rays from positron emission nuclei generated by the nuclear reaction of the nuclei, and charged particles for detecting the arrival position of charged particle beams based on the detection results of annihilation γ-rays by the second detector Line arrival置検detecting means and, irradiation control unit for adjusting the beam of the charged particle beam so that the detected illuminated target position by the detected charged particle beam arrival position and the target position detection unit by the charged particle beam arrival position detecting means matches It is characterized in that it comprises, when.

このように構成された荷電粒子線照射装置によれば、照射室内において、被照射体に注入された放射性薬剤の到達位置から発生する消滅γ線が第1の検出器によって検出され、この第1の検出器による消滅γ線の検出結果に基づいて、放射性薬剤の到達位置である照射目標位置を検出することができる。これにより、照射室内において被照射体を載置台に載置したまま照射目標位置を検出することができる。また、荷電粒子線照射装置によれば、照射室内において、被照射体に照射された荷電粒子線と被照射体内の原子核との核反応によって生成されたポジトロン放出核からの消滅γ線が第2に検出器によって検出され、この第2の検出器による消滅γ線の検出結果に基づいて、実際に照射された荷電粒子線の到達位置を検出することができる。このため、照射室内において、照射目標位置、及び実際に照射された荷電粒子線の到達位置を確認することができるので、照射目標位置と実際に照射された荷電粒子線の到達位置との位置ずれを修正し、適切な位置に被照射体を位置決めすることができる。その結果、被照射体の位置決め精度が向上される。また、荷電粒子線到達位置検出手段によって検出された荷電粒子線到達位置と、目標位置検出手段によって検出された照射目標位置とが一致するように、荷電粒子線のビームを調整する照射制御部を更に備えることにより、実際に照射された荷電粒子線の到達位置に応じて、荷電粒子線のビームを適切に調節することができる。また、第2の検出器は回転ガントリに取り付けられて載置台回りに回転可能とされるため、回転ガントリの回転に合わせて第2の検出器を載置台に載置された被照射体回りに回転させることができ、荷電粒子線を照射した直後に消滅γ線の測定を行うことができる。また、第2の検出器用の別の回転駆動部を設ける必要がない。また、第2の検出器は回転ガントリと同期して回転するため、第2の検出器と荷電粒子線照射部との回転方向における位置関係を維持しながら消滅γ線の検出を行うことができる。
According to the charged particle beam irradiation apparatus configured as described above, annihilation γ rays generated from the arrival position of the radiopharmaceutical injected into the irradiation object are detected by the first detector in the irradiation chamber. Based on the detection result of the annihilation γ rays by the detector, the irradiation target position that is the arrival position of the radiopharmaceutical can be detected. Thereby, the irradiation target position can be detected while the irradiated object is placed on the mounting table in the irradiation chamber. In addition, according to the charged particle beam irradiation apparatus, the annihilation γ-rays from the positron emission nuclei generated by the nuclear reaction between the charged particle beam irradiated to the irradiated body and the nuclei in the irradiated body in the irradiation chamber are second. The arrival position of the actually irradiated charged particle beam can be detected based on the detection result of the annihilation γ-ray detected by the second detector. For this reason, since the irradiation target position and the arrival position of the actually irradiated charged particle beam can be confirmed in the irradiation chamber, the positional deviation between the irradiation target position and the actual irradiation position of the charged particle beam has been reached. Can be corrected, and the irradiated object can be positioned at an appropriate position. As a result, the positioning accuracy of the irradiated object is improved. An irradiation control unit that adjusts the beam of the charged particle beam so that the charged particle beam arrival position detected by the charged particle beam arrival position detection unit and the irradiation target position detected by the target position detection unit coincide with each other. By further providing, the beam of the charged particle beam can be appropriately adjusted according to the arrival position of the actually irradiated charged particle beam. Further, since the second detector is attached to the rotating gantry and can be rotated around the mounting table, the second detector is rotated around the irradiated object mounted on the mounting table in accordance with the rotation of the rotating gantry. It can be rotated, and the annihilation gamma ray can be measured immediately after the irradiation with the charged particle beam. Further, it is not necessary to provide a separate rotation drive unit for the second detector. Further, since the second detector rotates in synchronization with the rotating gantry, it is possible to detect annihilation γ-rays while maintaining the positional relationship between the second detector and the charged particle beam irradiation unit in the rotation direction. .

ここで、照射目標位置検出手段によって検出された照射目標位置に荷電粒子線が照射されるように、載置台の位置調整を行う載置台制御部を更に備えることが好ましい。これにより、照射目標位置に応じて、載置台を適切に位置決めすることができる。   Here, it is preferable to further include a mounting table controller that adjusts the position of the mounting table so that the irradiation target position detected by the irradiation target position detection unit is irradiated with the charged particle beam. Thereby, according to an irradiation target position, a mounting base can be appropriately positioned.

また、被照射体のX線透視画像を取得するX線透視画像取得手段を更に備えることが好ましい。これにより、X線透視画像を用いて、被照射体内の目標照射位置を確認することが可能となり、被照射体の位置決め精度を一層向上させることができる。   Moreover, it is preferable to further include an X-ray fluoroscopic image acquisition means for acquiring an X-ray fluoroscopic image of the irradiated object. Thereby, it becomes possible to confirm the target irradiation position in the irradiated body using the X-ray fluoroscopic image, and the positioning accuracy of the irradiated body can be further improved.

また、照射室は、被照射体の回りに回転可能な荷電粒子線照射部を有することが好ましい。これにより、荷電粒子線照射部の移動の自由度が向上される。   Moreover, it is preferable that the irradiation chamber has a charged particle beam irradiation unit that can rotate around the irradiated object. Thereby, the freedom degree of a movement of a charged particle beam irradiation part is improved.

このように本発明による荷電粒子線照射装置よれば、照射室内において、照射目標位置、及び実際に照射された荷電粒子線の到達位置を確認することができるので、照射目標位置と実際に照射された荷電粒子線の到達位置の位置ずれを修正して、被照射体を適切な位置に配置することが可能となり、照射室内における被照射体の位置決め精度を向上させることができる。 According to the charged particle beam irradiation apparatus according to the present invention, in the irradiation chamber, irradiating the target position, and so actually it is possible to confirm the arrival position of the irradiated charged particle beam actually irradiated and the irradiation target position The positional deviation of the arrival position of the charged particle beam thus corrected can be corrected to arrange the irradiated object at an appropriate position, and the positioning accuracy of the irradiated object in the irradiation chamber can be improved.

以下、本発明による荷電粒子線照射装置の好適な第1実施形態について図1〜図5を参照しながら説明する。なお、図面の説明において、同一または相当要素には同一の符号を付し、重複する説明は省略する。本実施形態では、荷電粒子線照射装置を陽子線治療装置とした場合について説明する。   Hereinafter, a preferred first embodiment of a charged particle beam irradiation apparatus according to the present invention will be described with reference to FIGS. In the description of the drawings, the same or corresponding elements are denoted by the same reference numerals, and redundant description is omitted. This embodiment demonstrates the case where a charged particle beam irradiation apparatus is used as a proton beam therapy apparatus.

図1〜図3に示すように、陽子線治療装置100は、患者(被照射体)51の体内の腫瘍(照射目標物)Pに対して陽子線(荷電粒子線)を照射する装置である。   As shown in FIGS. 1 to 3, the proton beam therapy apparatus 100 is an apparatus that irradiates a tumor (irradiation target) P in the body of a patient (irradiated body) 51 with a proton beam (charged particle beam). .

この陽子線治療装置100は、回転ガントリ103(照射室)に取り付けられて治療台(載置台)105の回りに回転可能とされた陽子線照射部(荷電粒子線照射部)1を備えている。   The proton beam treatment apparatus 100 includes a proton beam irradiation unit (charged particle beam irradiation unit) 1 that is attached to a rotating gantry 103 (irradiation chamber) and is rotatable around a treatment table (mounting table) 105. .

この陽子線照射部1は、図3に示すように、陽子線の照射方向Aに順に配列され、陽子線ビームを順に通過させてビームを整形する散乱体5、リッジフィルタ部7、ファインディグレーダ9、ブロックコリメータ11、ボーラス13、マルチリーフコリメータ15、装置各部の駆動を制御する照射制御部17を備えている。   As shown in FIG. 3, the proton beam irradiation unit 1 is arranged in order in the proton beam irradiation direction A, and sequentially passes the proton beam and shapes the beam, the scatterer 5, the ridge filter unit 7, and the fine degrader. 9, the block collimator 11, the bolus 13, the multi-leaf collimator 15, and the irradiation control part 17 which controls the drive of each part of an apparatus are provided.

この陽子線照射部1には、陽子線発生部として機能するサイクロトロン3で発生した陽子線が輸送装置を通じて送り込まれる。そして、送り込まれた細い陽子線を、例えば厚さ数mmの鉛からなる散乱体(ビーム拡大部)5を通過させることによって、照射方向Aに直交する方向に広がりを持たせて、幅広いビームに拡大する。   A proton beam generated by a cyclotron 3 functioning as a proton beam generator is sent to the proton beam irradiation unit 1 through a transport device. Then, by passing the thin proton beam that has been fed through, for example, a scatterer (beam expanding portion) 5 made of lead having a thickness of several millimeters, the beam is expanded in a direction perpendicular to the irradiation direction A, and a wide beam is obtained. Expanding.

上記散乱体5からの陽子線ビームは、患者51体内の腫瘍Pの厚み(照射方向Aの長さ)に対応して陽子線のエネルギー深さに分布を持たせるためのリッジフィルタ部(ピーク調整フィルタ部)7に入射される。このリッジフィルタ部7は、階段状に厚みの変化する金属棒が簾状に並べられてなるフィルタ7aを複数有しており、それら複数のフィルタ7aは、金属棒の形状の相違により互いに異なる陽子線の拡大ブラッグピーク(以下「SOBP」という)を形成させる。そして、リッジフィルタ部7は、照射制御部17の制御により駆動され、上記複数のフィルタ7aの中から適宜選択されたフィルタを陽子線の通過位置に挿入する機構を有している。この構成により、リッジフィルタ部7は、陽子線を通過させるフィルタ7aを選択的に変更可能であり、陽子線のSOBPのピークの幅及び位置を調整することができる。   The proton beam from the scatterer 5 has a ridge filter portion (peak adjustment) for distributing the proton beam energy depth corresponding to the thickness of the tumor P in the patient 51 (length in the irradiation direction A). The light is incident on the filter unit 7. The ridge filter portion 7 has a plurality of filters 7a in which metal rods whose thickness changes stepwise are arranged in a bowl shape, and the plurality of filters 7a have different protons due to differences in the shape of the metal rods. An extended Bragg peak (hereinafter referred to as “SOBP”) of the line is formed. The ridge filter unit 7 is driven by the control of the irradiation control unit 17 and has a mechanism for inserting a filter appropriately selected from the plurality of filters 7a into a proton beam passing position. With this configuration, the ridge filter unit 7 can selectively change the filter 7a that passes the proton beam, and can adjust the width and position of the SOBP peak of the proton beam.

このリッジフィルタ部7を通過した陽子線は、治療対象である患者体内51の腫瘍Pの深さに応じてビームのエネルギーを調整し、最大到達深さを調整するためのファインディグレーダ(ビームエネルギー調整部)9に入射される。このファインディグレーダ9は、例えば2個の楔型をした対向するアクリルブロック9a、9bから構成され、照射制御部17の制御により上記ブロック9a、9bの重なり方を調節することによって、陽子線が通過する部分の厚みを連続的に変化させることができる。陽子線は、通過した物質の厚みに応じてエネルギーを失い、患者51体内において到達する深さが変わるので、このファインディグレーダ9の調節により、陽子線のSOBPの位置を、患者51体内における腫瘍Pの深さ方向(照射方向A)の位置に合わせることができる。   The proton beam that has passed through the ridge filter unit 7 adjusts the beam energy in accordance with the depth of the tumor P in the patient body 51 to be treated, and a fine degrader (beam energy) for adjusting the maximum reachable depth. The light is incident on the adjusting unit 9. The fine degrader 9 is composed of, for example, two wedge-shaped opposing acrylic blocks 9a and 9b. By adjusting the overlapping of the blocks 9a and 9b under the control of the irradiation control unit 17, the proton beam is generated. The thickness of the passing part can be continuously changed. The proton beam loses energy in accordance with the thickness of the substance that has passed through, and the depth that the proton beam reaches within the patient 51 changes. Therefore, by adjusting the fine degrader 9, the position of the SOBP of the proton beam is changed to the tumor in the patient 51. It can be adjusted to the position of P in the depth direction (irradiation direction A).

このファインディグレーダ9を通過した陽子線ビームは、陽子線の平面形状(照射方向Aから見た形状)を粗く整形するためのブロックコリメータ11に入射される。後述するマルチリーフコリメータ15に加えて、ここで、ブロックコリメータ11による整形を行っているのは、患者の近くでブロックコリメータ11による2次放射線が発生しないようにするためである。   The proton beam that has passed through the fine degrader 9 is incident on a block collimator 11 for roughly shaping the planar shape of the proton beam (the shape viewed from the irradiation direction A). The reason why the block collimator 11 performs shaping in addition to the multi-leaf collimator 15 described later is to prevent secondary radiation from being generated by the block collimator 11 near the patient.

このブロックコリメータ11を通過した陽子線は、例えば樹脂製の不整形フィルタであるボーラス(補償フィルタ)13に入力され、腫瘍Pの最大深さの断面形状と組織の不均一性に関する補正が行われる。このボーラス13の形状は、腫瘍の輪郭線と、例えばX線CTのデータから求められる周辺組織の電子密度とに基づいて、算出される。このようなボーラス13を用いることにより、陽子線ビームの最遠部(最大到達深さの部分)の立体形状が、腫瘍Pの最大深さ部分の形状に合わせて整形されるので腫瘍Pに対する線量集中性を更に高めることができる。   The proton beam that has passed through the block collimator 11 is input to a bolus (compensation filter) 13 that is, for example, a resin-made irregular filter, and correction is performed regarding the cross-sectional shape of the maximum depth of the tumor P and tissue non-uniformity. . The shape of the bolus 13 is calculated based on the outline of the tumor and the electron density of the surrounding tissue obtained from, for example, X-ray CT data. By using such a bolus 13, the three-dimensional shape of the farthest part of the proton beam (the portion with the maximum reachable depth) is shaped according to the shape of the maximum depth portion of the tumor P. Concentration can be further enhanced.

このボーラス13を通過した陽子線ビームは、マルチリーフコリメータ(形状可変コリメータ)15に入射される。マルチリーフコリメータ15は、真鍮製で幅数mmの多数の櫛歯をもつ2つの遮線部15a,15bが、上記櫛歯の先端を中心で突き合わせるように配列されて構成されている。そして、照射制御部17の制御により、遮線部15a,15bが、多数の上記櫛歯のそれぞれを長手方向に進退させることで、マルチリーフコリメータ15は、陽子線ビームが通過する開口15cの位置及び形状を変化させることができる。   The proton beam passing through the bolus 13 is incident on a multi-leaf collimator (shape variable collimator) 15. The multi-leaf collimator 15 is configured by arranging two shielding portions 15a and 15b made of brass and having a large number of comb teeth with a width of several mm so that the tips of the comb teeth are abutted on the center. Then, under the control of the irradiation control unit 17, the shielding units 15 a and 15 b advance and retract each of the numerous comb teeth in the longitudinal direction, so that the multileaf collimator 15 is positioned at the opening 15 c through which the proton beam passes. And the shape can be changed.

マルチリーフコリメータ15を通過した陽子線ビームは、上記開口15cの形状に対応する輪郭に切り取られるので、マルチリーフコリメータ15は、開口15cの形状を変化させることで、入射する陽子線ビームの所望の平面位置及び平面形状を切り出すことができる。このように所望の平面位置において所望の平面形状に切り出された陽子線ビームは、治療用陽子線として患者51に照射される。そして、マルチコリメータ15の開口15cの平面位置及び平面形状を変化させて照射野の位置を順次水平方向(照射方向Aに直交する方向)に移動しながら照射を繰り返すことで、腫瘍P全体に陽子線ビームを照射する。   The proton beam beam that has passed through the multi-leaf collimator 15 is cut into a contour corresponding to the shape of the opening 15c. Therefore, the multi-leaf collimator 15 changes the shape of the opening 15c to change the desired shape of the incident proton beam. A plane position and a plane shape can be cut out. Thus, the proton beam cut out in a desired planar shape at a desired planar position is irradiated to the patient 51 as a therapeutic proton beam. Then, by changing the planar position and planar shape of the opening 15c of the multi-collimator 15 and repeating the irradiation while sequentially moving the irradiation field position in the horizontal direction (direction orthogonal to the irradiation direction A), the entire tumor P is protonated. Irradiate a line beam.

更に、この1陽子線照射部1は、照射野に照射された照射線量をモニタする手段として、線量モニタ23を備えている。線量モニタ23は、ファインディグレーダ9とブロックコリメータ11との間に設けられ、通過する陽子線の線量を検知する。線量モニタ23は、検知した線量をモニタ信号s1として照射制御部17に送信し、照射制御部17はモニタ信号s1に基づいて照射野に照射された照射線量を認識することができる。   Furthermore, this 1 proton beam irradiation part 1 is provided with the dose monitor 23 as a means to monitor the irradiation dose irradiated to the irradiation field. The dose monitor 23 is provided between the fine degrader 9 and the block collimator 11 and detects the dose of the proton beam that passes therethrough. The dose monitor 23 transmits the detected dose as the monitor signal s1 to the irradiation control unit 17, and the irradiation control unit 17 can recognize the irradiation dose irradiated to the irradiation field based on the monitor signal s1.

また、陽子線治療装置100には、患者51のX線透視画像取得するX線撮影装置(X線透視画像取得手段)が設けられている。このX線撮影装置は、X線発生器、患者51を透過したX線を検出するX線検出器を備えている。これらのX線発生器及びX線検出器は、回転ガントリ103に固定され、患者51回りに回転可能とされている。本実施形態では、二つのX線発生器を備え、これらのX線発生装置は、90度異なる位置に配置されている。また、X線発生器に対向する位置に、X線検出器が配置されている。X線撮影装置は、X線検出器によって検出されたデータに基づいて、患者51のX線透視画像を作成し、骨、金属マーカーを検出して患者51の位置を測定することができる。   In addition, the proton therapy apparatus 100 is provided with an X-ray imaging apparatus (X-ray fluoroscopic image acquisition means) that acquires X-ray fluoroscopic images of the patient 51. This X-ray imaging apparatus includes an X-ray generator and an X-ray detector that detects X-rays transmitted through the patient 51. These X-ray generator and X-ray detector are fixed to the rotating gantry 103 and are rotatable around the patient 51. In this embodiment, two X-ray generators are provided, and these X-ray generators are arranged at positions different by 90 degrees. An X-ray detector is disposed at a position facing the X-ray generator. The X-ray imaging apparatus can create an X-ray fluoroscopic image of the patient 51 based on the data detected by the X-ray detector, and can detect a bone and a metal marker to measure the position of the patient 51.

ここで、陽子線治療装置100は、回転ガントリ103に取り付けられて治療台105の回りに回転可能とされた一対のPETカメラ(第1の検出器、第2の検出器)30を有するPET装置31を備えている。すなわち、PETカメラ30は、回転ガントリ103に取付けられた陽子線照射部1と一体としてX軸回りに回転可能とされている。PET装置31は、PETカメラ30の他に、図示していない画像処理部、記録部、表示部等を備えている。画像処理部は、PETカメラ30によって取得された画像情報に基づいて画像処理を行いPET画像を生成する。記録部は、生成されたPET画像等を記録する。生成されたPET画像は、表示部により表示される。   Here, the proton therapy apparatus 100 is a PET apparatus having a pair of PET cameras (first detector and second detector) 30 attached to the rotating gantry 103 and capable of rotating around the treatment table 105. 31 is provided. That is, the PET camera 30 is rotatable around the X axis integrally with the proton beam irradiation unit 1 attached to the rotating gantry 103. In addition to the PET camera 30, the PET apparatus 31 includes an image processing unit, a recording unit, a display unit, and the like (not shown). The image processing unit performs image processing based on the image information acquired by the PET camera 30, and generates a PET image. The recording unit records the generated PET image and the like. The generated PET image is displayed by the display unit.

このPETカメラ30は、治療台105上の患者51の両側に配置され、消滅γ線を検出するものである。具体的には、患者51には腫瘍Pに集積する放射性薬剤(例えば、11Cメチオニン)が投与(注入)され、PETカメラ30は、腫瘍P(放射性薬剤の到達位置)から発生する消滅γ線を検出する。PET装置31は、PETカメラ30による消滅γ線の検出結果に基づいて腫瘍Pの位置を検出する照射目標位置検出手段として機能するものである。 The PET cameras 30 are disposed on both sides of the patient 51 on the treatment table 105 and detect annihilation γ rays. Specifically, the patient 51 is administered (injected) with a radiopharmaceutical (for example, 11 C methionine) that accumulates in the tumor P, and the PET camera 30 detects annihilation γ rays generated from the tumor P (the arrival position of the radiopharmaceutical). Is detected. The PET apparatus 31 functions as an irradiation target position detection unit that detects the position of the tumor P based on the detection result of the annihilation γ rays by the PET camera 30.

また、PETカメラ30は、患者51に照射された陽子線の入射陽子核と腫瘍P内の原子核との核反応によって生成されたポジトロン放出核からの消滅γ線を検出することができる。更に、PET装置31は、PETカメラ30による消滅γ線の検出結果に基づいて実際に照射された陽子線の患者51の体内における到達位置を検出する陽子線(荷電粒子線)到達位置検出手段として機能するものである。すなわち、PET装置31は、治療で用いる陽子線の入射陽子核と患者51の体内中の原子核との相互核反応により体内中で生成されるポジトロン放出核種から消滅γ線を計測し生成核種ごとの強度分布を測定することで、患者51体内における実際の陽子線到達位置を検出することができる。   Further, the PET camera 30 can detect annihilation γ-rays from the positron emission nucleus generated by the nuclear reaction between the incident proton nucleus of the proton beam irradiated to the patient 51 and the nucleus in the tumor P. Further, the PET apparatus 31 serves as a proton beam (charged particle beam) arrival position detection means for detecting the arrival position of the proton beam actually irradiated on the basis of the detection result of the annihilation γ rays by the PET camera 30 in the patient 51. It functions. That is, the PET apparatus 31 measures annihilation γ-rays from positron-emitting nuclides generated in the body by a mutual nuclear reaction between the incident proton nuclei of the proton beam used in the treatment and the nuclei in the patient 51, and generates each nuclides. By measuring the intensity distribution, the actual proton beam arrival position in the patient 51 can be detected.

PETカメラ30は、図4に示すように、回転ガントリ103の回転中心軸X(以下、「X軸」という。)方向に移動可能とされると共に、X軸と直交するY軸方向に移動可能とされている。一対のPETカメラ30を各々支持するPETカメラ支持部32は、X軸方向に延在する支持部材33と、この支持部材33に沿ってX軸方向に移動するX軸方向移動部材34と、このX軸方向移動部材34の先端部34aに設けられY軸方向に延在するY軸方向延在部材35と、このY軸方向延在部材35に沿ってY軸方向に移動するY軸方向移動部材36とを有している。そして、PETカメラ30は、Y軸方向移動部材36に固定され、その検出面30aが互いに対向するように配置されている。   As shown in FIG. 4, the PET camera 30 is movable in the direction of the rotation center axis X (hereinafter referred to as “X axis”) of the rotating gantry 103 and is also movable in the Y axis direction orthogonal to the X axis. It is said that. A PET camera support portion 32 that supports each of the pair of PET cameras 30 includes a support member 33 extending in the X-axis direction, an X-axis direction moving member 34 that moves in the X-axis direction along the support member 33, A Y-axis direction extending member 35 provided at the tip 34a of the X-axis direction moving member 34 and extending in the Y-axis direction, and a Y-axis direction movement moving in the Y-axis direction along the Y-axis direction extending member 35 Member 36. The PET camera 30 is fixed to the Y-axis direction moving member 36, and is arranged so that the detection surfaces 30a face each other.

支持部材33には、Y軸方向における外方に張り出す張出部33aが形成され、この張出部33aが回転ガントリ103のフレーム103a(図2参照)に固定されている。また、支持部材33は、回転ガントリ103の背面パネル103bの背面側(図示右側)に配置されている。支持部材33及びX軸方向移動部材34には、X軸方向移動部材34が移動する方向を案内するスライドガイド38が形成され、X軸方向移動部材34は、スライドガイド38を介してX軸方向に移動可能に支持されている。そして、X軸方向移動部材34は、支持部材33に固定されたエアシリンダ37によって駆動され、X軸方向に往復動可能とされている。   The support member 33 is formed with an overhang portion 33 a that protrudes outward in the Y-axis direction, and this overhang portion 33 a is fixed to the frame 103 a (see FIG. 2) of the rotating gantry 103. The support member 33 is disposed on the back side (right side in the drawing) of the back panel 103 b of the rotating gantry 103. The support member 33 and the X-axis direction moving member 34 are formed with a slide guide 38 that guides the direction in which the X-axis direction moving member 34 moves, and the X-axis direction moving member 34 passes through the slide guide 38 in the X-axis direction. Is supported so as to be movable. The X-axis direction moving member 34 is driven by an air cylinder 37 fixed to the support member 33, and can reciprocate in the X-axis direction.

Y軸方向延在部材35及びY軸方向移動部材36には、図5に示すように、Y軸方向移動部材36が移動する方向を案内するスライドガイド39が設置され、Y軸方向移動部材36は、スライドガイド39を介してY軸方向に移動可能に支持されている。そして、Y軸方向移動部材36は、Y軸方向延在部材35に固定されたモータ40によって駆動され、Y軸方向に往復動可能とされている。   As shown in FIG. 5, the Y-axis direction extending member 35 and the Y-axis direction moving member 36 are provided with a slide guide 39 for guiding the direction in which the Y-axis direction moving member 36 moves. Is supported through a slide guide 39 so as to be movable in the Y-axis direction. The Y-axis direction moving member 36 is driven by a motor 40 fixed to the Y-axis direction extending member 35, and can reciprocate in the Y-axis direction.

モータ40は、その出力軸41がX軸及びY軸に直交するZ軸方向(図5における上下方向)に延在するように配置されている。出力軸41は、カップリング42を介して、Z軸方向に延在する駆動軸43に接続されている。駆動軸43は、一対の軸受け44によってY軸方向延在部材35に回転可能に支持されている。駆動軸43の一対の軸受け44間には、ギア45が設けられている。また、駆動軸43のカップリング42と反対側の端部には、ブレーキ46及び、ポテンションメータ47が設置されている。   The motor 40 is arranged such that its output shaft 41 extends in the Z-axis direction (vertical direction in FIG. 5) perpendicular to the X-axis and the Y-axis. The output shaft 41 is connected via a coupling 42 to a drive shaft 43 extending in the Z-axis direction. The drive shaft 43 is rotatably supported by the Y-axis direction extending member 35 by a pair of bearings 44. A gear 45 is provided between the pair of bearings 44 of the drive shaft 43. A brake 46 and a potentiometer 47 are installed at the end of the drive shaft 43 opposite to the coupling 42.

また、Y軸方向移動部材36には、ギア45と噛み合うラック48がY軸方向に形成されている。そして、モータ40を回転駆動することで、ギア45及びラック48によって駆動力が伝達され、Y軸方向移動部材36がY軸方向に往復動する。これにより、PETカメラ30を患者51に対して接近させることができる。患者に接近させてPETカメラ30を配置することで、消滅γ線の検出精度が向上される。   A rack 48 that meshes with the gear 45 is formed in the Y-axis direction moving member 36 in the Y-axis direction. Then, by driving the motor 40 to rotate, the driving force is transmitted by the gear 45 and the rack 48, and the Y-axis direction moving member 36 reciprocates in the Y-axis direction. Thereby, the PET camera 30 can be brought close to the patient 51. By placing the PET camera 30 close to the patient, the detection accuracy of annihilation gamma rays is improved.

このPETカメラ30は、回転ガントリ103の背面パネル103bより背面側に収納可能とされ、計測時には、エアシリンダ37によって駆動されて、患者51の両側に配置される。   The PET camera 30 can be stored on the back side of the back panel 103 b of the rotating gantry 103, and is driven by the air cylinder 37 and arranged on both sides of the patient 51 at the time of measurement.

また、陽子線治療装置100は、治療台105の位置調整を行う治療台位置制御部(載置台制御部)を有している。そして、この治療台位置制御部は、PET装置31によって取得されたPET画像、X線撮影装置によって取得されたX線透視画像に基づいて、治療台105の位置を制御するものであり、治療台105上の患者51の腫瘍Pに陽子線が照射されるように、治療台105の位置を調整する。   In addition, the proton therapy apparatus 100 includes a treatment table position control unit (mounting table control unit) that adjusts the position of the treatment table 105. The treatment table position control unit controls the position of the treatment table 105 based on the PET image acquired by the PET apparatus 31 and the X-ray fluoroscopic image acquired by the X-ray imaging apparatus. The position of the treatment table 105 is adjusted so that a proton beam is irradiated to the tumor P of the patient 51 on 105.

照射制御部17は、患者51の腫瘍Pの立体形状に基づいて作成された腫瘍マップ(目標物マップ)19に格納された情報を参照しながら、特に、リッジフィルタ部7、ファインディグレーダ9、及びマルチリーフコリメータ15の動作を制御するものである。また、ここでは、照射野の最遠部の形状が、腫瘍の最大深さ部分の複雑な形状に対応して整形されるように、予め準備されたボーラス13が、所定の位置にセットされている。   The irradiation control unit 17 refers to the information stored in the tumor map (target object map) 19 created based on the three-dimensional shape of the tumor P of the patient 51, in particular, the ridge filter unit 7, the fine degrader 9, And the operation of the multi-leaf collimator 15. Here, the bolus 13 prepared in advance is set at a predetermined position so that the shape of the farthest part of the irradiation field is shaped corresponding to the complicated shape of the maximum depth portion of the tumor. Yes.

さらに、照射制御部17は、PET装置によって検出された陽子線の到達位置に応じて、陽子線のビーム調整を行う。すなわち、照射制御部17は、患者51体内における陽子線の実際の到達位置と腫瘍Pの位置とが一致するように、リッジフィルタ部7、ファインディグレーダ9、及びマルチリーフコリメータ15の動作を制御して陽子線のビームを調整する。   Further, the irradiation control unit 17 performs proton beam adjustment according to the arrival position of the proton beam detected by the PET apparatus. That is, the irradiation control unit 17 controls the operations of the ridge filter unit 7, the fine degrader 9, and the multi-leaf collimator 15 so that the actual arrival position of the proton beam in the patient 51 matches the position of the tumor P. Then adjust the proton beam.

次に、このように構成された陽子線治療装置100を用いた陽子線照射方法(荷電粒子線照射方法)について説明する。   Next, a proton beam irradiation method (charged particle beam irradiation method) using the thus configured proton beam treatment apparatus 100 will be described.

陽子線治療装置100を使用していないときには、PETカメラ30は、背面パネル103bの背面側に収納され状態となっている。ここでは、一例として、脳腫瘍の患者に対する陽子線治療について説明する。まず、回転ガントリ103内の治療台105上に患者51を寝かせる。患者51の長手方向が、X軸方向に沿うように配置されている。次に、患者51に11Cメチオニンを投与し(S1)、脳腫瘍に11Cメチオニンが集積するのを待つ(S2)。続いて、脳腫瘍に集積した11Cメチオニンから放出される消滅γ線をPETカメラ30によって測定する(第1の検出工程、S3)。このとき、エアシリンダ37を駆動して、PETカメラ30をX軸方向に移動させて患者51の両側に配置し、モータ40を駆動してPETカメラ30をY軸方向に移動させて、PETカメラ30同士の間隔を調節する。3次元画像測定を行う場合には、回転ガントリ103を回転させて、消滅γ線の計測を行う。 When the proton beam therapy apparatus 100 is not used, the PET camera 30 is housed on the back side of the back panel 103b. Here, as an example, proton beam therapy for a patient with a brain tumor will be described. First, the patient 51 is laid on the treatment table 105 in the rotating gantry 103. The longitudinal direction of the patient 51 is arranged along the X-axis direction. Next, 11 C methionine is administered to the patient 51 (S1), and it waits for 11 C methionine to accumulate in the brain tumor (S2). Subsequently, annihilation γ rays released from 11 C methionine accumulated in the brain tumor are measured by the PET camera 30 (first detection step, S3). At this time, the air cylinder 37 is driven, the PET camera 30 is moved in the X-axis direction and arranged on both sides of the patient 51, and the motor 40 is driven to move the PET camera 30 in the Y-axis direction. Adjust the interval between 30. When performing three-dimensional image measurement, the rotating gantry 103 is rotated to measure annihilation gamma rays.

次に、PETカメラ30による測定結果に基づいて、PET画像を作成して脳腫瘍の位置を検出する(照射目標位置検出工程、S4)。続いて、X線撮影装置によって透視撮影を行い患者51のX線画像を作成して(X線透視画像取得工程)、骨及び金属マーカーの位置を確認する。なお、PET撮影及びX線撮影の順序を入れ替えてもよく、交互に複数回撮影を行っても良い。また、必要に応じて、回転ガントリ103を回転させて、X線発生器、X線検出器の位置を変える。   Next, based on the measurement result by the PET camera 30, a PET image is created to detect the position of the brain tumor (irradiation target position detection step, S4). Subsequently, fluoroscopic imaging is performed by an X-ray imaging apparatus to create an X-ray image of the patient 51 (X-ray fluoroscopic image acquisition process), and the positions of bones and metal markers are confirmed. Note that the order of PET imaging and X-ray imaging may be interchanged, and imaging may be performed multiple times alternately. Further, as necessary, the rotary gantry 103 is rotated to change the positions of the X-ray generator and the X-ray detector.

次に、PET画像とX線画像に基づいて、照射計画を立案する(S6)。ここでは、照射計画として、例えば、絶対線量、線量分布、患者51の位置等を決定する。続いて、決定された照射計画に基づいて、治療台105の位置調整を行い(載置台位置調整工程、S7)、患者51を適切な位置に配置する。   Next, an irradiation plan is made based on the PET image and the X-ray image (S6). Here, as the irradiation plan, for example, the absolute dose, the dose distribution, the position of the patient 51, etc. are determined. Subsequently, based on the determined irradiation plan, the position of the treatment table 105 is adjusted (mounting table position adjustment step, S7), and the patient 51 is placed at an appropriate position.

次に、決定された照射計画に従ってビーム調整を行い、必要に応じて回転ガントリ103を回転させて、陽子線照射部1の位置を変更し、腫瘍に向けて陽子線を1回照射する(S8)。そして、照射された陽子線と患者51体内の原子核との核反応によって生成されたポジトロン放出核からの消滅γ線をPETカメラ30で測定する(第2の検出工程、S9)。このとき、PETカメラ30同士が互いに接近するようにY軸方向に移動させ、PETカメラ30を患者51に近づけて、消滅γ線の検出を行う。また、PETカメラ30を回転させて測定を行ってもよい。続いて、PETカメラ30による測定結果に基づいて、PET画像を作成し患者51の体内における陽子線の到達位置を検出し、実際の照射野を確認する(荷電粒子線到達位置検出工程、S10)。   Next, beam adjustment is performed according to the determined irradiation plan, the rotating gantry 103 is rotated as necessary, the position of the proton beam irradiation unit 1 is changed, and the proton beam is irradiated once toward the tumor (S8). ). Then, the annihilation γ-rays from the positron emission nuclei generated by the nuclear reaction between the irradiated proton beam and the nuclei in the patient 51 are measured by the PET camera 30 (second detection step, S9). At this time, the PET cameras 30 are moved in the Y-axis direction so as to approach each other, and the PET camera 30 is brought close to the patient 51 to detect annihilation γ rays. Further, the measurement may be performed by rotating the PET camera 30. Subsequently, based on the measurement result by the PET camera 30, a PET image is created, the arrival position of the proton beam in the body of the patient 51 is detected, and the actual irradiation field is confirmed (charged particle beam arrival position detection step, S10). .

次に、実際に照射された陽子線の患者51体内における到達位置と、照射計画による照射目標位置(腫瘍の位置)とを比較し、位置ずれがある場合には、陽子線が照射目標位置の許容範囲内に照射されるようにビームの調整を行う(ビーム調整工程、S11)。ビーム調整終了後、陽子線を照射する(S12)。なお、再度、S8〜S11を実施してよい。   Next, the arrival position of the actually irradiated proton beam in the patient 51 is compared with the irradiation target position (tumor position) according to the irradiation plan. The beam is adjusted so as to be irradiated within the allowable range (beam adjustment step, S11). After the beam adjustment is completed, a proton beam is irradiated (S12). In addition, you may implement S8-S11 again.

このような陽子線治療装置100によれば、回転ガントリ103にPETカメラ30が設けられ、このPETカメラ30によって、照射された陽子線の入射陽子核と腫瘍内の原子核との核反応により生成されるポジトロン放出核からの消滅γ線を計測することができるので、実際に照射された陽子線の到達位置を確認することができる。すなわち、治療中に陽子線を照射しながら陽子線の到達位置を検出することができる。また、回転ガントリ103にPETカメラ30が固定されているので、回転ガントリ103の回転に合わせて、PETカメラ30を患者51回りに回転させることができ、陽子線を照射した直後に消滅γ線の測定を行うことができる。また、PETカメラ30の移動の自由度が向上されると共に、小型化されたPETカメラ30を用いて3次元測定を行うことができ、PETカメラ30用の別の回転駆動部を設ける必要もない。また、PETカメラ30が陽子線照射部1に同期して回転するので、PETカメラ30と陽子線照射部1との回転方向における位置関係を維持しながら、消滅γ線の検出を行うことが可能とされている。   According to such a proton beam treatment apparatus 100, the rotating gantry 103 is provided with the PET camera 30, and is generated by the nuclear reaction between the incident proton nucleus of the irradiated proton beam and the nucleus in the tumor. The annihilation γ-rays from the positron emitting nuclei can be measured, so the arrival position of the actually irradiated proton beam can be confirmed. That is, the arrival position of the proton beam can be detected while irradiating the proton beam during treatment. Further, since the PET camera 30 is fixed to the rotating gantry 103, the PET camera 30 can be rotated around the patient 51 in accordance with the rotation of the rotating gantry 103, and the annihilation γ-rays immediately after the proton beam is irradiated. Measurements can be made. In addition, the degree of freedom of movement of the PET camera 30 is improved, three-dimensional measurement can be performed using the miniaturized PET camera 30, and there is no need to provide another rotation driving unit for the PET camera 30. . Further, since the PET camera 30 rotates in synchronization with the proton beam irradiation unit 1, it is possible to detect annihilation γ rays while maintaining the positional relationship between the PET camera 30 and the proton beam irradiation unit 1 in the rotation direction. It is said that.

また、PETカメラ30は、X軸方向に移動可能であると共に、回転ガントリ103の背面パネル103bの背面側に収納可能とされている。このようにPETカメラ30をX軸方向に移動させることで、PETカメラ30による検出範囲の拡大することができる。また、PETカメラ30を適宜移動させることで、PETカメラ30が陽子線照射部1の回転の妨げになることがない。さらに、患者51の回転ガントリ103内への搬入、搬出の際にPETカメラ30が邪魔にならない。また、被照射体の大きさに合わせて、PETカメラ30を移動させることもできるので、所望の部位の照射位置の確認が容易になる。   The PET camera 30 can be moved in the X-axis direction and can be stored on the back side of the back panel 103 b of the rotating gantry 103. Thus, by moving the PET camera 30 in the X-axis direction, the detection range of the PET camera 30 can be expanded. Further, by appropriately moving the PET camera 30, the PET camera 30 does not hinder the rotation of the proton beam irradiation unit 1. Furthermore, the PET camera 30 does not get in the way when the patient 51 is carried into and out of the rotating gantry 103. Further, since the PET camera 30 can be moved in accordance with the size of the irradiated object, it is easy to confirm the irradiation position of a desired part.

また、PETカメラ30が患者51を挟み込む方向(Y軸方向)に移動可能であり、PETカメラ30間の距離を任意に変えることが可能とされているので、PETカメラ30をY軸方向に患者51に接近させることで、消滅γ線の検出精度を向上させることができる。   Further, since the PET camera 30 can move in the direction (Y-axis direction) that sandwiches the patient 51 and the distance between the PET cameras 30 can be arbitrarily changed, the PET camera 30 can be moved in the Y-axis direction. By making it approach 51, the detection accuracy of annihilation gamma rays can be improved.

また、従来、例えば脳腫瘍の放射線治療では、患者の位置決めを高精度で実現すべく、患者の頭部を、固定具を用いて固定していたため、患者にとって大きな負担となっていた。本発明による陽子線照射装置及び陽子線照射方法では、照射室内において、患者51を治療台105に寝かせた状態でPETカメラ30を用いて腫瘍の位置確認を行うことができ、腫瘍位置と実際に照射された陽子線の到達位置との位置ずれを修正し、適切な位置に患者51を位置決めすることができる。これにより、患者の位置決めを高い精度で行うことができるため、患者の固定の簡素化が図られ、患者への負担を軽減することができる。   Conventionally, for example, in the case of radiation therapy for brain tumors, the patient's head has been fixed using a fixing tool in order to realize the positioning of the patient with high accuracy, which has been a heavy burden on the patient. In the proton beam irradiation apparatus and the proton beam irradiation method according to the present invention, the position of the tumor can be confirmed using the PET camera 30 while the patient 51 is laid on the treatment table 105 in the irradiation chamber. The patient 51 can be positioned at an appropriate position by correcting the positional deviation from the arrival position of the irradiated proton beam. Thereby, since positioning of a patient can be performed with high precision, simplification of patient fixation is achieved and the burden on the patient can be reduced.

次に、本発明の第2実施形態に係る陽子線治療装置について、図7及び図8を参照しながら説明する。この第2実施形態の陽子線治療装置が第1実施形態の陽子線治療装置100と違う点は、第2実施形態のPETカメラ60は更にY軸回りに回転可能である点、及びPETカメラ60の検出面60aの形状が異なる点である。   Next, a proton beam therapy apparatus according to the second embodiment of the present invention will be described with reference to FIGS. The proton beam treatment apparatus according to the second embodiment is different from the proton beam treatment apparatus 100 according to the first embodiment in that the PET camera 60 according to the second embodiment can further rotate around the Y axis, and the PET camera 60. This is that the shape of the detection surface 60a is different.

PETカメラ60を支持するPETカメラ支持部61は、Y軸方向移動部材36の内側の端部36aにPETカメラ60を固定するカメラ固定部62を備えている。このカメラ固定部62には、PETカメラ60を回転駆動するモータ63が取り付けられている。このモータ63は、その出力軸64がY軸方向に沿って配置されている。そして、モータ63の出力軸64にPETカメラ60が接続されY軸回りに回転可能とされている。   The PET camera support unit 61 that supports the PET camera 60 includes a camera fixing unit 62 that fixes the PET camera 60 to the inner end 36 a of the Y-axis direction moving member 36. A motor 63 that rotationally drives the PET camera 60 is attached to the camera fixing unit 62. The motor 63 has an output shaft 64 arranged along the Y-axis direction. A PET camera 60 is connected to the output shaft 64 of the motor 63 and is rotatable about the Y axis.

PETカメラ60の検出面60aは、円弧状に湾曲し、一対の検出面60aは互いに対向して配置されている。PETカメラ60は、収納時、及びX軸方向への移動の際には、その長手方向がX軸方向に沿うように配置される(図9に示す状態)。また、γ線の計測時には、PETカメラ60は、円弧の中心軸がX軸方向と平行になる様に配置される。なお、X軸方向と平行にならない位置でPETカメラ60の回転を停止させ、様々な角度からの測定も可能である。   The detection surface 60a of the PET camera 60 is curved in an arc shape, and the pair of detection surfaces 60a are disposed to face each other. The PET camera 60 is arranged so that its longitudinal direction is along the X-axis direction during storage and when moving in the X-axis direction (state shown in FIG. 9). When measuring γ rays, the PET camera 60 is arranged so that the center axis of the arc is parallel to the X-axis direction. Note that the rotation of the PET camera 60 is stopped at a position that is not parallel to the X-axis direction, and measurement from various angles is also possible.

このように構成しても第1実施形態の陽子線治療装置100と同様の効果を得ることができ、加えて、PETカメラ60がY軸回りに回転可能であるため、PETカメラ60の移動の自由度が一層向上され、様々な方向から照射位置の測定を行うことができ、測定精度の向上が図られている。   Even if comprised in this way, the effect similar to the proton beam treatment apparatus 100 of 1st Embodiment can be acquired, and in addition, since the PET camera 60 can be rotated around the Y axis, the movement of the PET camera 60 can be reduced. The degree of freedom is further improved, the irradiation position can be measured from various directions, and the measurement accuracy is improved.

本発明は、上記実施形態に限定されるものではない。上記実施形態では、PETカメラがX軸回りに回転可能な構成とされているが、X軸回りに回転しない構成でもよく、その他の方向に回転可能な構成としてもよい。また、PETカメラが互いに接近する方向に移動可能な構成とされているが、PETカメラは互いに接近する方向に移動しない構成としてもよい。また、エアシリンダ、モータを用いて、PETカメラを移動させているが、油圧シリンダ等その他の駆動装置を用いてPETカメラを移動させてもよい。また、PETカメラのX軸方向の移動、Y軸方向の移動は、直線状に移動しなくてもよく、曲線状、円弧状に移動してもよい。   The present invention is not limited to the above embodiment. In the above embodiment, the PET camera is configured to be rotatable about the X axis, but may be configured not to rotate about the X axis, or may be configured to be rotatable in other directions. Further, although the PET cameras are configured to be movable in a direction approaching each other, the PET cameras may be configured not to move in a direction approaching each other. Moreover, although the PET camera is moved using an air cylinder and a motor, the PET camera may be moved using another driving device such as a hydraulic cylinder. Further, the movement in the X-axis direction and the movement in the Y-axis direction of the PET camera may not be moved linearly, but may be moved in a curved shape or an arc shape.

また、上記実施形態では、PETカメラは、回転ガントリに取り付けられ、陽子線照射部と一体としてX軸回りに回転可能とされているが、PETカメラは回転ガントリ及び陽子線照射部と一体として回転しなくてもよい。例えば、PETカメラを回転駆動させるための駆動装置を別に設けて、回転ガントリ及び陽子線照射部の回転に追従するようにPETカメラを回転させてもよく、回転ガントリ及び陽子線照射部の回転と無関係にPETカメラを回転させてもよい。   In the above embodiment, the PET camera is attached to the rotating gantry and is rotatable around the X axis integrally with the proton beam irradiation unit. However, the PET camera is rotated integrally with the rotating gantry and the proton beam irradiation unit. You don't have to. For example, a separate driving device for rotationally driving the PET camera may be provided, and the PET camera may be rotated so as to follow the rotation of the rotating gantry and the proton beam irradiation unit. The PET camera may be rotated regardless.

また、上記実施形態では、X線装置を備え、X線撮影を実施しているが、X線撮影を省略してもよい。また、上記実施形態では、放射性薬剤をメチオニンとしているが、照射目標物に応じて、その他の放射性薬剤を適用してもよい。また、上記実施形態では、脳腫瘍について、説明しているが、その他の腫瘍に対して適用してもよい。   In the above embodiment, an X-ray apparatus is provided and X-ray imaging is performed. However, X-ray imaging may be omitted. In the above embodiment, the radiopharmaceutical is methionine, but other radiopharmaceuticals may be applied depending on the irradiation target. Moreover, although the said embodiment demonstrated the brain tumor, you may apply with respect to another tumor.

また、上記実施形態では、陽子線を照射する陽子線照射装置に本発明を適用しているが、本発明は、炭素線照射装置等の他の荷電粒子線照射装置にも適用が可能である。   Moreover, in the said embodiment, although this invention is applied to the proton beam irradiation apparatus which irradiates a proton beam, this invention is applicable also to other charged particle beam irradiation apparatuses, such as a carbon beam irradiation apparatus. .

また、上記実施形態では、第1の検出器及び第2の検出器を同一のPETカメラとしているが、別々のPETカメラを備える構成としても良い。   Moreover, in the said embodiment, although the 1st detector and the 2nd detector are made into the same PET camera, it is good also as a structure provided with a separate PET camera.

本発明の第1実施形態に係る陽子線治療装置を示す斜視図である。1 is a perspective view showing a proton beam therapy apparatus according to a first embodiment of the present invention. 図1に示す陽子線治療装置の断面図である。It is sectional drawing of the proton beam therapy apparatus shown in FIG. 図1中の陽子線照射部を構成する各要素を示す図である。It is a figure which shows each element which comprises the proton beam irradiation part in FIG. 図1中のPETカメラ、及びPETカメラ支持部を示す平面図である。It is a top view which shows the PET camera in FIG. 1, and a PET camera support part. 図4のV−V矢視図である。It is a VV arrow line view of FIG. 本発明の実施形態に係る陽子線照射方法の工程を示すフロー図である。It is a flowchart which shows the process of the proton beam irradiation method which concerns on embodiment of this invention. 本発明の第2実施形態に係る陽子線治療装置のPETカメラ、及びPETカメラ支持部を示す平面図である。It is a top view which shows the PET camera of the proton beam therapy apparatus which concerns on 2nd Embodiment of this invention, and a PET camera support part. 図7のVIII−VIII矢視図である。It is a VIII-VIII arrow line view of FIG.

符号の説明Explanation of symbols

1…陽子線照射部(荷電粒子線照射部)、17…照射制御部、30…PETカメラ(第1の検出器、第2の検出器)、51…患者(被照射体)、100…陽子線治療装置、103…回転ガントリ(照射室)、105…治療台(載置台)、P…腫瘍(照射目標物)、X…X軸方向、Y…Y軸方向。   DESCRIPTION OF SYMBOLS 1 ... Proton beam irradiation part (charged particle beam irradiation part), 17 ... Irradiation control part, 30 ... PET camera (1st detector, 2nd detector), 51 ... Patient (irradiated body), 100 ... Proton Line therapy device, 103 ... Rotating gantry (irradiation chamber), 105 ... Treatment table (mounting table), P ... Tumor (irradiation target), X ... X-axis direction, Y ... Y-axis direction.

Claims (4)

被照射体を載置した載置台が回転ガントリにより構成される照射室内の所定の位置に配置されて、前記被照射体へ荷電粒子線の照射が行われる荷電粒子線照射装置において、
前記被照射体に注入された放射性薬剤が到達した位置である照射目標位置から発生する消滅γ線を検出する第1の検出器と、
前記第1の検出器による消滅γ線の検出結果に基づいて照射目標位置を検出する照射目標位置検出手段と、
前記回転ガントリに取り付けられて前記載置台回りに回転可能とされると共に、前記被照射体に照射された荷電粒子線と前記被照射体内の原子核との核反応によって生成されたポジトロン放出核からの消滅γ線を検出する第2の検出器と、
前記第2の検出器による消滅γ線の検出結果に基づいて荷電粒子線到達位置を検出する荷電粒子線到達位置検出手段と、
前記荷電粒子線到達位置検出手段によって検出された荷電粒子線到達位置と、前記目標位置検出手段によって検出された照射目標位置とが一致するように、荷電粒子線のビームを調整する照射制御部と、
を備えることを特徴とする荷電粒子線照射装置。
In a charged particle beam irradiation apparatus in which a mounting table on which an object to be irradiated is placed is arranged at a predetermined position in an irradiation chamber constituted by a rotating gantry , and the charged particle beam is irradiated to the object to be irradiated.
A first detector for detecting annihilation γ-rays generated from an irradiation target position, which is a position where a radiopharmaceutical injected into the irradiated body has reached;
Irradiation target position detection means for detecting the irradiation target position based on the detection result of the annihilation γ-ray by the first detector;
The gantry is attached to the rotating gantry and can be rotated around the mounting table, and from a positron emitting nucleus generated by a nuclear reaction between a charged particle beam irradiated on the irradiated object and a nucleus in the irradiated object. A second detector for detecting annihilation gamma rays;
Charged particle beam arrival position detection means for detecting a charged particle beam arrival position based on the detection result of annihilation γ rays by the second detector;
An irradiation control unit that adjusts the charged particle beam so that the charged particle beam arrival position detected by the charged particle beam arrival position detection unit matches the irradiation target position detected by the target position detection unit; ,
A charged particle beam irradiation apparatus comprising:
前記照射目標位置検出手段によって検出された照射目標位置に荷電粒子線が照射されるように、前記載置台の位置調整を行う載置台制御部を更に備えることを特徴とする請求項1記載の荷電粒子線照射装置。   The charge according to claim 1, further comprising a mounting table control unit that adjusts the position of the mounting table so that the irradiation target position detected by the irradiation target position detection unit is irradiated with a charged particle beam. Particle beam irradiation device. 前記被照射体のX線透視画像を取得するX線透視画像取得手段を更に備えることを特徴とする請求項1または2に記載の荷電粒子線照射装置。   The charged particle beam irradiation apparatus according to claim 1, further comprising X-ray fluoroscopic image acquisition means for acquiring an X-ray fluoroscopic image of the irradiated object. 前記照射室は、前記被照射体の回りに回転可能な荷電粒子線照射部を有することを特徴とする請求項1〜3の何れか一項に記載の荷電粒子線照射装置。
The charged particle beam irradiation apparatus according to claim 1, wherein the irradiation chamber includes a charged particle beam irradiation unit that is rotatable around the irradiated object.
JP2007009544A 2007-01-18 2007-01-18 Charged particle beam irradiation equipment Expired - Fee Related JP4984906B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007009544A JP4984906B2 (en) 2007-01-18 2007-01-18 Charged particle beam irradiation equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007009544A JP4984906B2 (en) 2007-01-18 2007-01-18 Charged particle beam irradiation equipment

Related Child Applications (3)

Application Number Title Priority Date Filing Date
JP2011103181A Division JP5317227B2 (en) 2011-05-02 2011-05-02 Charged particle beam irradiation equipment
JP2011223669A Division JP5481711B2 (en) 2011-10-11 2011-10-11 Charged particle beam irradiation equipment
JP2011223670A Division JP5504398B2 (en) 2011-10-11 2011-10-11 Charged particle beam irradiation equipment

Publications (2)

Publication Number Publication Date
JP2008173299A JP2008173299A (en) 2008-07-31
JP4984906B2 true JP4984906B2 (en) 2012-07-25

Family

ID=39700799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007009544A Expired - Fee Related JP4984906B2 (en) 2007-01-18 2007-01-18 Charged particle beam irradiation equipment

Country Status (1)

Country Link
JP (1) JP4984906B2 (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8017915B2 (en) 2008-03-14 2011-09-13 Reflexion Medical, Inc. Method and apparatus for emission guided radiation therapy
JP5104951B2 (en) * 2008-08-08 2012-12-19 株式会社島津製作所 Particle beam therapy system
JP5130175B2 (en) * 2008-09-29 2013-01-30 株式会社日立製作所 Particle beam irradiation system and control method thereof
US8497480B2 (en) * 2008-12-16 2013-07-30 Shimadzu Corporation Particle radiotherapy apparatus
US20120165651A1 (en) * 2009-03-23 2012-06-28 National Institute Of Radiological Sciences Detector rotation type radiation therapy and imaging hybrid device
WO2010109586A1 (en) 2009-03-23 2010-09-30 独立行政法人放射線医学総合研究所 Concealment-type radiotherapy/imaging combined device
WO2010110255A1 (en) * 2009-03-24 2010-09-30 国立大学法人北海道大学 Radiation therapy apparatus
JP5349145B2 (en) * 2009-06-05 2013-11-20 株式会社東芝 Particle beam therapy system
JP5472731B2 (en) 2010-03-02 2014-04-16 大学共同利用機関法人 高エネルギー加速器研究機構 Muon monitoring system in charged particle beam medicine
US9220921B2 (en) * 2010-09-01 2015-12-29 Empire Technology Development Llc Method and system for radioisotope ion beam gamma therapy
CN103650095B (en) 2011-03-31 2016-12-07 反射医疗公司 For the system and method used in launching the radiotherapy guided
JP2013013613A (en) * 2011-07-05 2013-01-24 Sumitomo Heavy Ind Ltd Charged particle beam irradiation device
CN104939847A (en) * 2014-03-25 2015-09-30 北京亿仁赛博医疗科技研发中心有限公司 Linear accelerator
CN107924730B (en) 2015-06-10 2021-09-28 反射医疗公司 High bandwidth binary multileaf collimator design
US10695586B2 (en) 2016-11-15 2020-06-30 Reflexion Medical, Inc. System for emission-guided high-energy photon delivery
WO2018093849A1 (en) 2016-11-15 2018-05-24 Reflexion Medical, Inc. Methods for radiation delivery in emission-guided radiotherapy
CN116943051A (en) 2016-11-15 2023-10-27 反射医疗公司 Radiotherapy patient platform
WO2018183748A1 (en) 2017-03-30 2018-10-04 Reflexion Medical, Inc. Radiation therapy systems and methods with tumor tracking
CN114699655A (en) 2017-07-11 2022-07-05 反射医疗公司 Method for persistence management of PET detectors
JP7315961B2 (en) 2017-08-09 2023-07-27 リフレクション メディカル, インコーポレイテッド Systems and methods for anomaly detection in guided emission radiation therapy
US11369806B2 (en) 2017-11-14 2022-06-28 Reflexion Medical, Inc. Systems and methods for patient monitoring for radiotherapy

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4514907B2 (en) * 2000-07-06 2010-07-28 浜松ホトニクス株式会社 Diagnosis and treatment equipment
WO2002063638A1 (en) * 2001-02-06 2002-08-15 Gesellschaft für Schwerionenforschung mbH Gantry system for transport and delivery of a high energy ion beam in a heavy ion cancer therapy facility
JP2006021046A (en) * 2005-07-05 2006-01-26 Mitsubishi Heavy Ind Ltd Radiotherapy apparatus

Also Published As

Publication number Publication date
JP2008173299A (en) 2008-07-31

Similar Documents

Publication Publication Date Title
JP4984906B2 (en) Charged particle beam irradiation equipment
JP4797140B2 (en) Charged particle beam irradiation equipment
US10328285B2 (en) Hadron radiation installation and verification method
JP6844942B2 (en) Particle beam therapy system and management system for particle beam therapy
US9061143B2 (en) Charged particle beam irradiation system and charged particle beam irradiation planning method
EP1871477B1 (en) System for taking wide-field beam-eye-view (bev) x-ray-images simultaneously to the proton therapy delivery
WO2013146945A1 (en) Device for remotely cross-firing particle beams
EP3251600B1 (en) Radiographic imaging apparatus and particle beam therapy system
EP2623155A1 (en) Radiation therapy device control device and radiation therapy device control method
WO2011061827A1 (en) Radiation therapy apparatus control method and radiation therapy apparatus control device
JP2013046709A (en) Displacement measurement method of isocenter in radiotherapy apparatus, adjustment method of displacement of the same, and phantom for displacement measurement
WO2013127005A1 (en) Reduced dose x-ray imaging
US20080279339A1 (en) Stand For Holding a Radiation Detector For a Radiation Therapy Device
JP5317227B2 (en) Charged particle beam irradiation equipment
JP5504398B2 (en) Charged particle beam irradiation equipment
JP5481711B2 (en) Charged particle beam irradiation equipment
US8403821B2 (en) Radiotherapy apparatus controller and radiation irradiating method
JP6719621B2 (en) Particle therapy system and management system for particle therapy
JP2013013613A (en) Charged particle beam irradiation device
KR101474926B1 (en) X-ray imaging apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090716

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100507

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110301

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110311

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110502

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111011

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111020

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20111122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120131

R155 Notification before disposition of declining of application

Free format text: JAPANESE INTERMEDIATE CODE: R155

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120416

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120416

R150 Certificate of patent or registration of utility model

Ref document number: 4984906

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees