JP4984252B2 - Non-condensable gas sensor using thermoelectric element - Google Patents

Non-condensable gas sensor using thermoelectric element Download PDF

Info

Publication number
JP4984252B2
JP4984252B2 JP2007267998A JP2007267998A JP4984252B2 JP 4984252 B2 JP4984252 B2 JP 4984252B2 JP 2007267998 A JP2007267998 A JP 2007267998A JP 2007267998 A JP2007267998 A JP 2007267998A JP 4984252 B2 JP4984252 B2 JP 4984252B2
Authority
JP
Japan
Prior art keywords
thermoelectric element
condensable gas
temperature
gas sensor
steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007267998A
Other languages
Japanese (ja)
Other versions
JP2009097919A (en
Inventor
雅継 天野
淳 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2007267998A priority Critical patent/JP4984252B2/en
Publication of JP2009097919A publication Critical patent/JP2009097919A/en
Application granted granted Critical
Publication of JP4984252B2 publication Critical patent/JP4984252B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Description

本発明は、熱電素子を利用した不凝縮ガスセンサーに関するものである。   The present invention relates to a non-condensable gas sensor using a thermoelectric element.

管や容器内のガスをサンプリングし、このサンプリング試料をガスクロマトグラフィーで分析する手段は、従来、いろいろな分野に利用されている(特許文献1参照)。   A means for sampling a gas in a tube or a container and analyzing the sampled sample by gas chromatography has been conventionally used in various fields (see Patent Document 1).

図1は、従来のガス測定装置の一例を示す図である。1bは凝縮器、1a、2a、3aはガスクロマトグラフィーである。1c、2c、3cはガス試料をサンプリングするためのパイプである。   FIG. 1 is a diagram illustrating an example of a conventional gas measuring apparatus. 1b is a condenser, 1a, 2a, 3a are gas chromatography. Reference numerals 1c, 2c and 3c are pipes for sampling a gas sample.

この不凝縮ガス測定装置では、凝縮器1bは、ガス試料を入れるガス収容容器として機能しており、この中には試料と水蒸気が入っている。この水蒸気のうちの不凝縮ガス(空気)の濃度が小さいと、不凝縮ガスセンサーによる不凝縮ガスの検出がしにくくなり、高精度で大がかりな装置を必要とし、さらに、また測定には、数十分の時間と多数のサンプリングが必要である。   In this non-condensable gas measuring device, the condenser 1b functions as a gas storage container in which a gas sample is placed, in which a sample and water vapor are contained. If the concentration of the non-condensable gas (air) in the water vapor is small, it will be difficult to detect the non-condensable gas by the non-condensable gas sensor, and a high-precision and large-scale device will be required. Sufficient time and a large number of samplings are required.

凝縮器内では蒸気状態は凝縮面近傍で変化し、完全混合状態にないため、各サンプリング点で同一の値を得ることは難しく、1の点のサンプリング値から不凝縮ガス量を得ても実際の凝縮への影響を推定しにくく、数多くのサンプリングが必要という問題がある。
特開2002−39925号公報
In the condenser, the vapor state changes near the condensation surface and is not completely mixed, so it is difficult to obtain the same value at each sampling point. Even if the amount of non-condensable gas is obtained from the sampling value at one point, It is difficult to estimate the influence on the condensation of the material, and there is a problem that a lot of sampling is required.
JP 2002-39925 A

本発明は、上記のような従来装置の問題を解決することを目的とするものであり、凝縮への影響を直接的に計測すると共にリアルタイムで正確な相変化状態を知ることができる小型化された不凝縮ガスセンサーを実現することを課題とする。   The object of the present invention is to solve the problems of the conventional apparatus as described above, and it is miniaturized so that it can directly measure the influence on condensation and know the accurate phase change state in real time. An object is to realize a non-condensable gas sensor.

本発明は上記課題を解決するために、所定の容器内の蒸気中に存在する微量な不凝縮ガスの濃度を計測する不凝縮ガスセンサーであって、前記蒸気に接触する熱電素子を設け、
該熱電素子に、一定の周期で連続的に変化する電流を印加して前記蒸気の加熱及び冷却を繰り返し、前記蒸気の蒸発及び凝縮を行わせるとともに、該熱電素子における前記蒸気との接触表面の温度変化を測定し、前記印加した電流の周期的な変化の位相と、前記熱電素子表面温度の周期的な変化の位相との差により、蒸気中の不凝縮ガスの濃度を計測することを特徴とする熱電素子を利用した不凝縮ガスセンサーを提供する。
In order to solve the above problems, the present invention is a non-condensable gas sensor that measures the concentration of a small amount of non-condensable gas present in the vapor in a predetermined container, and is provided with a thermoelectric element that contacts the vapor.
The thermoelectric element is repeatedly heated and cooled by applying a current that continuously changes at a constant period to cause the vapor to evaporate and condense, and the surface of the thermoelectric element in contact with the vapor A temperature change is measured, and a concentration of non-condensable gas in the vapor is measured by a difference between a phase of the periodic change of the applied current and a phase of the periodic change of the surface temperature of the thermoelectric element. A non-condensable gas sensor using a thermoelectric element is provided.

従来、微量な不凝縮ガスの測定は多くの時間と大がかりな装置を必要としたが、本発明によれば、熱電素子の冷却、加熱特性を用いることで、相変化状態を直接的かつ即時的に得ることができ、同時に小型化、低価格化を図ることが可能となる。   Conventionally, measurement of a small amount of non-condensable gas has required a lot of time and a large-scale apparatus. However, according to the present invention, the phase change state can be directly and immediately determined by using the cooling and heating characteristics of the thermoelectric element. At the same time, it is possible to reduce the size and the price.

本発明に係る熱電素子を利用した不凝縮ガスセンサーの実施の形態を実施例に基づいて図面を参照して、以下に説明する。   Embodiments of a non-condensable gas sensor using a thermoelectric element according to the present invention will be described below with reference to the drawings based on examples.

図2は、本発明に係る熱電素子を利用した不凝縮ガスセンサーの実施例を説明する図である。不凝縮ガスセンサー1は、全体が筒状に形成されており、その先端ヘッド2には熱電素子3を備えている。この熱電素子3には、電源4から、一定の周期で連続的に変化する電流が加えられ、周期的に加熱及び冷却されるように構成されている。   FIG. 2 is a diagram for explaining an example of a non-condensable gas sensor using a thermoelectric element according to the present invention. The non-condensable gas sensor 1 is formed in a cylindrical shape as a whole, and has a thermoelectric element 3 at the tip head 2 thereof. The thermoelectric element 3 is configured to be supplied with a current continuously changing from a power source 4 at a constant cycle, and to be heated and cooled periodically.

ここで、一定の周期で連続的に変化する電流とは、「断続された連続的な電流」または「交番的な電流」である。   Here, the current continuously changing at a constant period is “intermittent continuous current” or “alternating current”.

また、凝縮ガスセンサー1内には、ヒータ5及び冷却水路10が設けられている。ヒータ5及び冷却水路10は、温度制御部を構成するものであり、この温度制御部は、熱電素子3がジュール熱による温度上昇を抑え一定温度を保つための恒温手段として設けられている。   In the condensed gas sensor 1, a heater 5 and a cooling water channel 10 are provided. The heater 5 and the cooling water channel 10 constitute a temperature control unit, and this temperature control unit is provided as a constant temperature means for the thermoelectric element 3 to keep a constant temperature while suppressing a temperature rise due to Joule heat.

このような構成の不凝縮ガスセンサー1が、試料ガス容器(凝縮器)6の壁7を貫通し、その先端ヘッド2の熱電素子3を不凝縮ガスセンサー1の内に露出するように装着される。試料ガス容器6内には、試料ガスと水蒸気が存在する。水蒸気は、熱電素子3の表面(熱電素子3の試料ガス容器6側の面)に触れている。水蒸気は、不凝縮ガスである空気と水からなる。   The non-condensable gas sensor 1 having such a configuration is mounted so as to penetrate the wall 7 of the sample gas container (condenser) 6 and to expose the thermoelectric element 3 of the tip head 2 in the non-condensable gas sensor 1. The In the sample gas container 6, there are sample gas and water vapor. The water vapor touches the surface of the thermoelectric element 3 (the surface of the thermoelectric element 3 on the sample gas container 6 side). Water vapor consists of air and water, which are non-condensable gases.

熱電素子3の表面の温度が、水蒸気の飽和温度より高い温度のとき蒸発が生じ、低い温度のとき蒸気の凝縮が生じる。よって、熱電素子3で加熱及び冷却を繰り返し、その表面温度を変化させることで、凝縮した水を蒸発させ、水蒸気の水成分は凝縮したりする。   Evaporation occurs when the surface temperature of the thermoelectric element 3 is higher than the saturation temperature of water vapor, and vapor condensation occurs when the temperature is lower. Therefore, by repeating heating and cooling with the thermoelectric element 3 and changing the surface temperature, the condensed water is evaporated and the water component of the water vapor is condensed.

このような熱電素子3の表面には、その表面温度を測定するための第1の温度測定用の温度測定素子8(熱電対、サーミスター、測温抵抗体など)が付設されている。そして、熱電素子3の裏面(熱電素子3のヒータ5側の面)にも、第2の温度測定用の温度測定素子9(熱電対、サーミスター、測温抵抗体など)が設けられている。   A temperature measuring element 8 (thermocouple, thermistor, resistance thermometer, etc.) for the first temperature measurement for measuring the surface temperature is attached to the surface of such a thermoelectric element 3. A second temperature measuring element 9 (thermocouple, thermistor, resistance thermometer, etc.) for temperature measurement is also provided on the back surface of the thermoelectric element 3 (the surface of the thermoelectric element 3 on the heater 5 side). .

この熱電素子3の裏面側は、一定温度となるように、ヒータ5及び冷却水路10を流れる冷却水によりコントロールされている。ヒータ5は、熱電素子3がその裏面側の温度を恒温状態となるようにするものであり、第2の温度測定素子9で熱電素子3の裏面側を測定し、モニタリングしている。   The back surface side of the thermoelectric element 3 is controlled by cooling water flowing through the heater 5 and the cooling water passage 10 so as to have a constant temperature. The heater 5 makes the thermoelectric element 3 have a constant temperature on the back surface side, and the second temperature measuring element 9 measures and monitors the back surface side of the thermoelectric element 3.

以上の構成の不凝縮ガスセンサー1を使用する場合には、電源4により熱電素子3に一定の周期で繰り返し電流を加える。すると、熱電素子3は、加熱、冷却され、熱電素子3の表面に付着されている水は蒸発、凝縮し、そのような相変化に伴い、熱電素子3の表面温度は変化する。   When the non-condensable gas sensor 1 having the above configuration is used, a current is repeatedly applied to the thermoelectric element 3 by a power source 4 at a constant period. Then, the thermoelectric element 3 is heated and cooled, and water adhering to the surface of the thermoelectric element 3 evaporates and condenses, and the surface temperature of the thermoelectric element 3 changes with such a phase change.

このように熱電素子3に周期的に加えられる電流を電流計(図示せず)で測定するととともに、電流の変化に応答して変化する熱電素子3の表面における温度(表面温度)を測定する。熱電素子3の表面温度は、電流の変化に応答し、電流の変化と同じ周期(同期)で変化するが、電流の周期的な変化から時間的な遅れが生じ、即ち位相がずれて、熱電素子3の表面温度は変化する。   In this way, the current periodically applied to the thermoelectric element 3 is measured by an ammeter (not shown), and the temperature (surface temperature) at the surface of the thermoelectric element 3 that changes in response to the change of the current is measured. The surface temperature of the thermoelectric element 3 responds to a change in current and changes in the same cycle (synchronization) as the change in current. However, a time delay occurs from the periodic change in current, that is, the phase shifts, and the thermoelectric element 3 changes. The surface temperature of the element 3 changes.

即ち、水蒸気と水の間で相変化が起こると、熱電素子3の表面において熱量変化が生じるために、熱電素子3の表面の温度に変化が起こる。飽和温度から少し高くずれた温度になるまで電流を増加させ、一定時間後電流を減少させる。   That is, when a phase change occurs between water vapor and water, a change in the amount of heat occurs on the surface of the thermoelectric element 3, so that the temperature of the surface of the thermoelectric element 3 changes. The current is increased until a temperature slightly deviated from the saturation temperature, and the current is decreased after a certain time.

このように、周期的に変化する電流(断続された連続的に変化する電流または交番的な電流)を加えることで、水蒸気と水の間での相変化により熱電素子3表面の温度は周期的な変化となって現れる。即ち、電流の周期的な変化に対する熱電素子3の表面温度の周期的な変化は、時間的な遅れ、即ち、位相のずれを生じる。   Thus, by applying a periodically changing current (intermittent continuously changing current or alternating current), the temperature of the surface of the thermoelectric element 3 is periodically changed by the phase change between water vapor and water. Appears as a change. That is, a periodic change in the surface temperature of the thermoelectric element 3 with respect to a periodic change in current causes a time delay, that is, a phase shift.

ところで、試料ガス容器6内の水蒸気の水成分が多い場合(不凝縮ガス濃度が低い場合)は、熱電素子3の表面への水の付着量が多いので、熱電素子3の表面に付着した水を蒸発するために要する時間が多くかかる。   By the way, when the water component of the water vapor in the sample gas container 6 is large (when the concentration of the non-condensable gas is low), the amount of water adhering to the surface of the thermoelectric element 3 is large. It takes a lot of time to evaporate.

即ち、不凝縮ガス濃度が低い場合(水成分が多い場合)は、電流の周期的な変化に対する熱電素子3の表面温度の周期的な変化の時間的遅れ、即ち、位相のずれ幅は大きくなる。   That is, when the non-condensable gas concentration is low (when the water component is large), the time delay of the periodic change of the surface temperature of the thermoelectric element 3 with respect to the periodic change of the current, that is, the phase shift width becomes large. .

本発明は、熱電素子3に一定周期で付加される電流を測定するとともに、熱電素子3の試料ガス容器6内での表面温度を測定し、電流と表面温度の周期的な変化の位相差を検出することにより、試料ガス容器6内の水蒸気量に対する空気の割合(不凝縮ガス濃度)の大小が把握できることとなる。   The present invention measures the current applied to the thermoelectric element 3 at a constant period, measures the surface temperature of the thermoelectric element 3 in the sample gas container 6, and calculates the phase difference between the periodic changes in the current and the surface temperature. By detecting, the magnitude of the ratio of air (noncondensable gas concentration) to the amount of water vapor in the sample gas container 6 can be grasped.

予め、試料ガス容器6内の不凝縮ガス濃度と温度測定素子8の温度変化の位相差の対応について、関係曲線を作成しておけば、位相差を検出することで、不凝縮ガス濃度を測定することができる。   If a relationship curve is created in advance for the correspondence between the non-condensable gas concentration in the sample gas container 6 and the phase difference of the temperature change of the temperature measuring element 8, the non-condensable gas concentration is measured by detecting the phase difference. can do.

即ち、予め、試料ガス容器6内の不凝縮ガス濃度をいくつか変えて、それらのそれぞれについて、熱電素子3に加えられる電流の変化と温度測定素子8の温度変化の位相差を検出し、関係曲線を作成しておけば、その関係曲線を利用することにより、蒸気内部に存在する不凝縮ガスの濃度を容易かつ正確に計測できる。   That is, several non-condensable gas concentrations in the sample gas container 6 are changed in advance, and the phase difference between the change in current applied to the thermoelectric element 3 and the temperature change in the temperature measuring element 8 is detected for each of them. If a curve is prepared, the concentration of non-condensable gas existing in the vapor can be easily and accurately measured by using the relationship curve.

本発明に係る熱電素子3を利用した不凝縮ガスセンサー1は、以上のような構成であるから、熱電素子3に印加する電流及び熱電素子3の表面温度を計測することで、直接的な相変化乃至不凝縮ガス濃度計測が可能であり、従来の装置に比べ、リアルタイムで不凝縮ガス濃度を計測でき、しかも、装置の小型化を図ることが可能となる。   Since the non-condensable gas sensor 1 using the thermoelectric element 3 according to the present invention is configured as described above, a direct phase can be obtained by measuring the current applied to the thermoelectric element 3 and the surface temperature of the thermoelectric element 3. Changes or non-condensable gas concentration can be measured, the non-condensable gas concentration can be measured in real time as compared with the conventional device, and the device can be downsized.

換言すると、本発明によれば、熱電素子3表面での相変化において不凝縮ガスの影響による熱抵抗(別の観点からすると、熱伝達)を電流変化と温度変化として計測可能であり、蒸気中に含まれる不凝縮ガスによる相変化への影響を感知、計測がリアルタイムで可能である。   In other words, according to the present invention, in the phase change at the surface of the thermoelectric element 3, the thermal resistance (from another viewpoint, heat transfer) due to the influence of the non-condensable gas can be measured as a current change and a temperature change. It is possible to detect and measure the effect on the phase change caused by the non-condensable gas contained in.

以上、本発明に係る熱電素子を利用した凝縮ガスセンサーの最良の形態を実施例に基づいて説明したが、本発明はこのような実施例に限定されることなく、特許請求の範囲記載の技術的事項の範囲内で、いろいろな実施例があることは言うまでもない。   As described above, the best mode of the condensed gas sensor using the thermoelectric element according to the present invention has been described based on the embodiments. However, the present invention is not limited to such embodiments, and the technology described in the claims. It goes without saying that there are various embodiments within the scope of the subject matter.

本発明に係る熱電素子を利用した不凝縮ガスセンサーは、以上のような構成であるから、冷却、加熱装置と、その表面の温度測定装置に関し、不凝縮ガス測定ばかりでなく、飽和蒸気温度計測による相変化現象観測装置として利用が可能である。   Since the non-condensable gas sensor using the thermoelectric element according to the present invention is configured as described above, the present invention relates to a cooling and heating device and a temperature measuring device for the surface thereof, and not only non-condensable gas measurement but also saturated vapor temperature measurement. It can be used as a phase change phenomenon observation device.

従来のガス測定装置を説明する図である。It is a figure explaining the conventional gas measuring device. 本発明に係る熱電素子を利用した凝縮ガスセンサーの実施例を説明する図である。It is a figure explaining the Example of the condensed gas sensor using the thermoelectric element which concerns on this invention.

符号の説明Explanation of symbols

1 不凝縮ガスセンサー
2 先端ヘッド
3 熱電素子
4 電源
5 ヒータ
6 試料ガス容器(凝縮器)
7 試料ガス容器の壁
8 第1の温度測定用の温度測定素子(熱電対、サーミスター、測温抵抗体など)
9 第2の温度測定用の温度測定素子(熱電対、サーミスター、測温抵抗体など)
10 冷却水路
DESCRIPTION OF SYMBOLS 1 Non-condensable gas sensor 2 Tip head 3 Thermoelectric element 4 Power supply 5 Heater 6 Sample gas container (condenser)
7 Wall of sample gas container 8 Temperature measuring element for first temperature measurement (thermocouple, thermistor, resistance temperature detector, etc.)
9 Temperature measuring element for second temperature measurement (thermocouple, thermistor, resistance temperature detector, etc.)
10 Cooling channel

Claims (1)

所定の容器内の蒸気中に存在する微量な不凝縮ガスの濃度を計測する不凝縮ガスセンサーであって、
前記蒸気に接触する熱電素子を設け、該熱電素子の前記蒸気に接触する表面の温度を測定する温度測定素子と、該熱電素子の裏面側には当該裏面を一定温度に保つ恒温手段を設け
前記熱電素子に、一定の周期で連続的に変化する電流を印加して前記蒸気の加熱及び冷却を繰り返し、前記蒸気の蒸発及び凝縮を行わせるとともに、前記熱電素子における前記蒸気との接触表面の温度変化を測定し、
前記印加した電流の周期的な変化の位相と、前記熱電素子の表面温度の周期的な変化の位相との位相を検出し
当該位相差から、予め、前記容器内の不凝縮ガス濃度をいくつか変えて作成した不凝縮ガス濃度と位相差の関係曲線を利用することにより、蒸気中の不凝縮ガスの濃度を計測することを特徴とする熱電素子を利用した不凝縮ガスセンサー。
A non-condensable gas sensor that measures the concentration of a small amount of non-condensable gas present in the vapor in a predetermined container,
A thermoelectric element in contact with the steam, a temperature measuring element for measuring the temperature of the surface of the thermoelectric element in contact with the steam, and a thermostatic means for maintaining the back surface at a constant temperature on the back surface side of the thermoelectric element;
To the thermoelectric element, repeating the heating and cooling of the steam by applying a continuously varying current at a constant period, along with causing the evaporation and condensation of the steam, the contact surface between the vapor in the thermoelectric element Measure the temperature change,
Detecting the phase difference between the phase of the periodic change of the applied current and the phase of the periodic change of the surface temperature of the thermoelectric element;
From the phase difference, the concentration of the non-condensable gas in the steam is measured by using a relationship curve between the non-condensable gas concentration and the phase difference created in advance by changing several non-condensable gas concentrations in the container. A non-condensable gas sensor using a thermoelectric element.
JP2007267998A 2007-10-15 2007-10-15 Non-condensable gas sensor using thermoelectric element Expired - Fee Related JP4984252B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007267998A JP4984252B2 (en) 2007-10-15 2007-10-15 Non-condensable gas sensor using thermoelectric element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007267998A JP4984252B2 (en) 2007-10-15 2007-10-15 Non-condensable gas sensor using thermoelectric element

Publications (2)

Publication Number Publication Date
JP2009097919A JP2009097919A (en) 2009-05-07
JP4984252B2 true JP4984252B2 (en) 2012-07-25

Family

ID=40701069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007267998A Expired - Fee Related JP4984252B2 (en) 2007-10-15 2007-10-15 Non-condensable gas sensor using thermoelectric element

Country Status (1)

Country Link
JP (1) JP4984252B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3377881B8 (en) * 2015-11-16 2023-03-22 Universiteit Maastricht Devices and methods for detecting analytes using thermal waves
JP6970412B2 (en) * 2016-04-11 2021-11-24 ユニフェルシテイト マーストリヒトUniversiteit Maastricht Thermocouples and related methods comprising a polymer coating for detecting the test substance
US20230417693A1 (en) * 2020-10-15 2023-12-28 National University Corporation Shizuoka University Moisture sensor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6117055A (en) * 1984-07-02 1986-01-25 Kanagawaken Relative humidity measuring method and humidity sensor used in this method
FR2702049B1 (en) * 1993-02-24 1995-03-31 Imra Europe Sa Method and device for determining the risk of water condensation on a surface in contact with a volume of humid air.
JP4093333B2 (en) * 1998-07-08 2008-06-04 アルバック理工株式会社 Thermophysical property measuring method and apparatus
JP2003075380A (en) * 2001-09-04 2003-03-12 Kobe Steel Ltd Instrument for measuring dryness

Also Published As

Publication number Publication date
JP2009097919A (en) 2009-05-07

Similar Documents

Publication Publication Date Title
JP4984252B2 (en) Non-condensable gas sensor using thermoelectric element
CN103134834A (en) Device and method for measuring dryness of wet steam
US10935507B2 (en) Thermal conductivity detector for gas mixtures having at least three components
Agresti et al. Temperature controlled photoacoustic device for thermal diffusivity measurements of liquids and nanofluids
Wang et al. Heat transfer characteristics of steam condensation flow in vacuum horizontal tube
CA2878092A1 (en) Operating a thermal anemometer flow meter
US20100086005A1 (en) Method and apparatus for determining a phase transition of a substance
Trampe et al. A dew point technique for limiting activity coefficients in nonionic solutions
US7637655B2 (en) Performance testing apparatus for heat pipes
RU2005129502A (en) METHOD FOR THERMAL NON-DESTRUCTIVE TESTING OF THE RESISTANCE OF HEAT TRANSFER OF BUILDING STRUCTURES
JP2011164032A (en) Method for measuring principal-axis thermal constant of two-dimensional anisotropic heat conductor using multi-point temperature measurement by pulse/period method, and measurement apparatus thereof
Atherton et al. Thermal characterisation of μL volumes using a thin film thermocouple based sensor
JP4523567B2 (en) Dew point meter
Vidi et al. Round-Robin test of paraffin phase-change material
KR100306361B1 (en) Measurement Apparatus for Multiful Thermal Properties of Meterial Using the Needle Probe and Method Thereof
JP2004069667A (en) Thermal mass flow meter for liquid
Godts et al. Direct measurement of the latent heat of evaporation by flowmetric method
RU2316759C2 (en) Humidity metering device
KR101152839B1 (en) Layered type micro heat flux sensor
RU2380641C1 (en) Heat pipe filling quality control method
JP2002048742A (en) Analyzer
Štofanik et al. RT-Lab-the Equipment for measuring thermophysical properties by transient methods
US20220341794A1 (en) Thermometer
CN107727684B (en) Boiling point tester for engine antifreeze fluid and brake oil
JP2020071146A (en) Gas state acquisition device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120410

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120412

R150 Certificate of patent or registration of utility model

Ref document number: 4984252

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees