JP4984134B2 - Transparent electrode and manufacturing method thereof - Google Patents

Transparent electrode and manufacturing method thereof Download PDF

Info

Publication number
JP4984134B2
JP4984134B2 JP2007086415A JP2007086415A JP4984134B2 JP 4984134 B2 JP4984134 B2 JP 4984134B2 JP 2007086415 A JP2007086415 A JP 2007086415A JP 2007086415 A JP2007086415 A JP 2007086415A JP 4984134 B2 JP4984134 B2 JP 4984134B2
Authority
JP
Japan
Prior art keywords
transparent
transparent electrode
transparent conductive
conductive film
work function
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007086415A
Other languages
Japanese (ja)
Other versions
JP2008243759A (en
Inventor
昌久 岡田
吉村  和記
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2007086415A priority Critical patent/JP4984134B2/en
Publication of JP2008243759A publication Critical patent/JP2008243759A/en
Application granted granted Critical
Publication of JP4984134B2 publication Critical patent/JP4984134B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Non-Insulated Conductors (AREA)

Description

本発明は、透明電極及びその製造方法に関するものであり、更に詳しくは、表面の仕事関数の値を大きくせしめた透明導電性酸化物薄膜材料及びその製造方法に関するものである。本発明は、有機エレクトロルミネッセンス素子、無機エレクトロルミネッセンス素子、透明トランジスタ素子又はそれらを用いた物品のための透明電極及びその製造方法、及びそれらの電子デバイス素子部材を提供するものである。   The present invention relates to a transparent electrode and a method for producing the same, and more particularly to a transparent conductive oxide thin film material having a large work function value on the surface and a method for producing the same. The present invention provides an organic electroluminescence element, an inorganic electroluminescence element, a transparent transistor element or a transparent electrode for an article using the same, a method for producing the transparent electrode, and an electronic device element member thereof.

近年、透明導電膜が、液晶ディスプレイに代表される各種平面型表示素子や太陽電池の透明電極として用いられており、更には、赤外線を通さない建築用省エネルギーガラスにも用いられている。透明導電膜とは、見た目が透明であり、且つ電気伝導度が高い薄膜であり、具体的には、可視光の波長領域380〜780nmで透過率が80%以上であり、抵抗率がおよそ1×10−3Ωcm以下であるという二つの性質を併せ持つ。 In recent years, transparent conductive films have been used as transparent electrodes for various flat display elements typified by liquid crystal displays and solar cells, and are also used in building energy-saving glass that does not transmit infrared rays. A transparent conductive film is a thin film that is transparent in appearance and has high electrical conductivity. Specifically, it has a transmittance of 80% or more in a visible light wavelength region of 380 to 780 nm and a resistivity of about 1. It has two properties of × 10 −3 Ωcm or less.

一般的な透明導電膜では、半導体的な描像のエネルギーバンド構造を考えることができ、フェルミ準位が伝導帯に達した縮退状態になっており、伝導帯に存在する自由電子が金属的な振る舞いに寄与する。透明導電膜は、In、SnO、ZnOなどの透明酸化物に種々の不純物元素をドーピングしたものが代表的であり、ITO、ATO、FTO、AZO、GZOなどと呼ばれている。 In general transparent conductive films, the energy band structure of a semiconductor image can be considered, the Fermi level is in a degenerate state reaching the conduction band, and free electrons existing in the conduction band behave like a metal. Contribute to. The transparent conductive film is typically a transparent oxide such as In 2 O 3 , SnO 2 , or ZnO doped with various impurity elements, and is called ITO, ATO, FTO, AZO, GZO, or the like.

ITOとは、InにSnOを5〜10%固溶させたものである。ATOもしくはFTOとは、SnO中の一部の酸素原子をSbあるいはFで置換したものであり、SnO:SbあるいはSnO:Fとも表記される。AZOもしくはGZOとは、ZnO中の一部の酸素原子をAlあるいはGaで置換したものであり、ZnO:AlあるいはZnO:Gaとも表記される。 ITO is obtained by dissolving 5 to 10% of SnO 2 in In 2 O 3 . ATO or FTO is obtained by substituting a part of oxygen atoms in SnO 2 with Sb or F, and is also expressed as SnO 2 : Sb or SnO 2 : F. AZO or GZO is obtained by substituting some oxygen atoms in ZnO with Al or Ga, and is also expressed as ZnO: Al or ZnO: Ga.

現在、透明電極材料の用途は液晶向けが最も多い。ITOは、可視光域での透過率が高く、且つ抵抗率が低いため、液晶向けの主たる透明電極材料として用いられている。一方、有機エレクトロルミネッセンス素子(以下、有機EL素子と記す。)は、直流低電圧で高輝度が得られ、且つ大面積発光が可能であるため、次世代薄型ディスプレイや照明用光源としての応用が期待されるとともに、カーオーディオ、携帯電話、ミュージックプレイヤーなどの表示部には既に1997年から実用化されている(非特許文献1)。エレクトロルミネッセンス(EL)とは、注入された電子と正孔の再結合によって生じた励起子によって発光する現象である。   Currently, transparent electrode materials are most often used for liquid crystals. ITO is used as a main transparent electrode material for liquid crystals because of its high transmittance in the visible light region and low resistivity. On the other hand, an organic electroluminescence element (hereinafter referred to as an organic EL element) can obtain high luminance at a low DC voltage and can emit light in a large area, so that it can be applied as a next-generation thin display or a light source for illumination. As expected, it has already been put into practical use since 1997 in display units such as car audio, mobile phones, and music players (Non-Patent Document 1). Electroluminescence (EL) is a phenomenon in which light is emitted by excitons generated by recombination of injected electrons and holes.

有機EL素子は、例えば、図7に示すように、ガラスなどの透明基材71上にアノード(陽極)72/正孔輸送層73/発光層74/電子輸送層75/カソード(陰極)76の多層構造を有し(非特許文献2)、正孔輸送層73/発光層74/電子輸送層75は有機物薄膜からなり、陰極と陽極の間に電圧をかけ、電子と正孔がそれぞれ電子輸送層・正孔輸送層を通過して発光層で結合し、更には結合が起こった際のエネルギーで周りの分子が励起され、励起状態から再び基底状態に戻る際に光を発生する。   For example, as shown in FIG. 7, the organic EL element has an anode (anode) 72 / hole transport layer 73 / light emitting layer 74 / electron transport layer 75 / cathode (cathode) 76 on a transparent substrate 71 such as glass. It has a multilayer structure (Non-Patent Document 2), and the hole transport layer 73 / light emitting layer 74 / electron transport layer 75 is made of an organic thin film, and a voltage is applied between the cathode and the anode so that electrons and holes are transported respectively. The light passes through the layer / hole transport layer, bonds in the light emitting layer, and the surrounding molecules are excited by the energy when the binding occurs, and light is generated when returning from the excited state to the ground state again.

通常、有機EL素子の陰極側の電極は、銀やアルミニウム等の金属を使い、陽極側の電極はITOなどの透明酸化物を使い、金属陰極をバックミラーとしながら透明陽極と透明基板(ガラス板やプラスチック板など)を透過して光を得る。従来の有機EL素子では、陽極たるITO膜と正孔輸送層たる有機薄膜との間に、該ITO膜の仕事関数の値と該有機薄膜のイオン化ポテンシャルの値の差に起因するエネルギー障壁があり、有機EL素子の駆動電圧を上げる必要が生じたり、発光性能の経時的な低減を招く要因となっていた。   Usually, the cathode side electrode of an organic EL element uses a metal such as silver or aluminum, the anode side electrode uses a transparent oxide such as ITO, and the transparent cathode and transparent substrate (glass plate) while using the metal cathode as a back mirror. Or light through a plastic plate). In the conventional organic EL element, there is an energy barrier between the ITO film as the anode and the organic thin film as the hole transport layer due to the difference between the work function value of the ITO film and the ionization potential value of the organic thin film. Therefore, it has become necessary to increase the driving voltage of the organic EL element, or cause a decrease in light emission performance over time.

ここで、仕事関数とは、大雑把には、固体内部から真空中へ電子を放出させるのに必要な最小のエネルギーのことであり、より具体的には、固体試料の真空準位とフェルミ準位の位置エネルギー差として定義される。ITO膜の仕事関数の値は、4.2〜5.0eV程度の範囲で数多くの報告例があるが、一般的には、例えば、文献(非特許文献3)に示されているように、4.6eV程度であることが知られている。   Here, the work function is roughly the minimum energy required to emit electrons from inside the solid into the vacuum, and more specifically, the vacuum level and the Fermi level of the solid sample. Is defined as the difference in potential energy. There are many reported examples of the work function value of the ITO film in the range of about 4.2 to 5.0 eV. In general, for example, as shown in the literature (Non-Patent Document 3), It is known to be about 4.6 eV.

一方、正孔輸送層たる有機薄膜についても様々な材料が検討されているが、それらのイオン化ポテンシャルの値は、例えば、文献(非特許文献4)に示されているように、5.0〜5.8eV程度の範囲であることが知られている。陽極から発光層への正孔注入効率を高めるためには、陽極表面の仕事関数の値が大きいほうが望ましい。   On the other hand, various materials have been studied for the organic thin film as the hole transport layer, and the value of their ionization potential is, for example, 5.0 to 5.0 as shown in the literature (Non-Patent Document 4). It is known that the range is about 5.8 eV. In order to increase the efficiency of hole injection from the anode to the light emitting layer, it is desirable that the work function value of the anode surface is large.

そこで、ITO薄膜の表面を改質して、ITO膜の表面の仕事関数の値を大きくせしめる従来例の一つが、例えば、先行特許文献に開示されている(特許文献1)。これは、非晶質もしくは微結晶から成る非晶質に近いITO薄膜を形成し、次に、該ITO薄膜を減圧下もしくは非酸化性雰囲気下で100〜500℃でアニール処理し、次に、該ITO薄膜表面に酸素プラズマ照射を行うことにより、該ITO薄膜の表面の仕事関数の値を大きくせしめようとする先行技術である。   Therefore, one of the conventional examples in which the surface of the ITO thin film is modified to increase the value of the work function of the surface of the ITO film is disclosed in, for example, a prior patent document (Patent Document 1). This forms an amorphous amorphous or microcrystalline ITO thin film, then anneals the ITO thin film at 100-500 ° C. under reduced pressure or in a non-oxidizing atmosphere, This is a prior art that attempts to increase the work function value of the surface of the ITO thin film by irradiating the surface of the ITO thin film with oxygen plasma.

ITO薄膜の表面を改質して、ITO膜の表面の仕事関数の値を大きくせしめる従来例の他の一つが、例えば、先行特許文献に開示されている(特許文献2)。これは、ITO薄膜の表面にプラズマ化された酸素イオンを注入することにより、該ITO薄膜の表面の仕事関数の値を大きくせしめようとする先行技術である。   Another prior art that modifies the surface of the ITO thin film to increase the work function value of the surface of the ITO film is disclosed in, for example, a prior patent document (Patent Document 2). This is a prior art that attempts to increase the value of the work function on the surface of the ITO thin film by implanting plasma-ized oxygen ions on the surface of the ITO thin film.

上記先行特許文献に示される従来例では、ITO膜中にキャリア電子を放出している酸素空孔の密度を、該ITO膜の表面近傍で減少せしめ、フェルミ準位の位置を価電子帯の方へ変調せしめることで仕事関数の値を大きくせしめることを提案している。しかしながら、該ITO膜表面のフェルミ準位の位置が、該ITO膜表面の伝導帯端よりも下方に変調されると、キャリア電子の金属的な振る舞いができなくなるため、該透明陽極は、表面近傍において導電性が著しく低下するという問題がある。   In the conventional example shown in the above-mentioned prior patent document, the density of oxygen vacancies emitting carrier electrons in the ITO film is reduced near the surface of the ITO film, and the position of the Fermi level is set toward the valence band. It is proposed to increase the value of work function by modulating to. However, if the position of the Fermi level on the surface of the ITO film is modulated below the conduction band edge on the surface of the ITO film, the metallic behavior of carrier electrons cannot be obtained. In this case, there is a problem that the conductivity is remarkably lowered.

一方、ITO薄膜よりも仕事関数が大きい金属酸化物薄膜を、該ITO膜の上に積層することにより、該透明陽極表面の仕事関数の値を大きくせしめる方法が提案されている。これは、例えば、先行特許文献では、ITO薄膜上に、該ITO薄膜よりも仕事関数が大きい金属酸化物薄膜を、具体的には、Ru、Mo、もしくはVの酸化物から成る薄膜を形成することにより、該ITO薄膜と該Ru、Mo、もしくはVの酸化物から成る薄膜の積層構造を有機EL素子の陽極として用いることにより、該陽極表面の仕事関数の値を大きくせしめる先行技術である(特許文献3)。   On the other hand, a method has been proposed in which a work function value on the surface of the transparent anode is increased by laminating a metal oxide thin film having a work function larger than that of the ITO thin film on the ITO film. For example, in the prior patent document, a metal oxide thin film having a work function larger than that of the ITO thin film, specifically, a thin film made of an oxide of Ru, Mo, or V is formed on the ITO thin film. This is a prior art for increasing the work function value of the anode surface by using the laminated structure of the ITO thin film and the thin film made of the oxide of Ru, Mo, or V as the anode of the organic EL element ( Patent Document 3).

しかしながら、この先行特許文献に示される従来例では、該陽極表面の仕事関数の値を大きくすることができるものの、該Ru、Mo、もしくはVの酸化物の薄膜は、いずれも可視域での光透過率が極めて低く、且つRu酸化物薄膜を除いたMoもしくはVの酸化物薄膜は電気抵抗率の値も極めて高いため、ITOと該Ru、Mo、もしくはVの酸化物の薄膜を積層して透明電極とせしめた場合、ITO単層膜では90%である可視光透過率が、該透明電極では60%以下にまで低下し、シート抵抗の値も該Mo、もしくはVの酸化物の薄膜とITOとの積層構造を用いた透明電極の場合は、ITO単層膜の1.5倍以上になるという問題がある。   However, in the conventional example shown in this prior patent document, although the work function value of the anode surface can be increased, the Ru, Mo, or V oxide thin films are all light in the visible region. Since the Mo or V oxide thin film excluding the Ru oxide thin film has extremely low transmittance and the electric resistivity is also extremely high, the ITO and the Ru, Mo or V oxide thin film are laminated. In the case of a transparent electrode, the visible light transmittance of 90% is reduced to 60% or less in the case of the ITO single layer film, and the sheet resistance value is also reduced to that of the Mo or V oxide thin film. In the case of a transparent electrode using a laminated structure with ITO, there is a problem that it becomes 1.5 times or more of the ITO single layer film.

特開平8−167479号公報JP-A-8-167479 特開2001−284060号公報JP 2001-284060 A 特開平9−63771号公報JP-A-9-63771 城戸淳二「有機EL照明デバイスの現状」応用物理、Vol.74,p.144(2005)Junji Kido “Current Status of Organic EL Lighting Devices” Applied Physics, Vol. 74, p. 144 (2005) C. Adachi, T. Tsutsui and S. Saito, Applied Physics Letters, Vol.55,p.531 (1990)C. Adachi, T. Tsutsui and S. Saito, Applied Physics Letters, Vol.55, p.531 (1990) V.L. Colvin, M.C. Schlamp andA.P. Allivisatos, Nature, Vol.370, p.354 (1994)V.L.Colvin, M.C.Schlamp and A.P.Allivisatos, Nature, Vol.370, p.354 (1994) C. Adachi, K. Nagai and N. Tamoto, Applied Physics Letters, Vol.66,p.2679 (1990)C. Adachi, K. Nagai and N. Tamoto, Applied Physics Letters, Vol.66, p.2679 (1990)

このような状況の中で、本発明者らは、上記従来技術に鑑みて、上記従来技術の諸問題を抜本的に解消することを可能とする新規な透明電極材料、即ち、仕事関数の値が大きく、可視域での光透過率が高く、電気抵抗率が低い透明電極材料を開発することを目標として鋭意研究を積み重ねた結果、酸化錫を主成分とし、チタン元素、バナジウム元素、モリブデン元素のうち1種もしくは2種以上を不純物として含む透明導電膜とせしめることにより所期の目的を達成し得ることを見出し、更に研究を重ねて、本発明を完成するに至った。   Under such circumstances, the present inventors, in view of the above-mentioned prior art, are novel transparent electrode materials that can drastically solve the problems of the above prior art, that is, the value of work function. As a result of intensive research aimed at developing transparent electrode materials with a large light transmittance, high visible light transmittance, and low electrical resistivity, the main element is tin oxide, and titanium, vanadium, and molybdenum elements. It has been found that the intended purpose can be achieved by using a transparent conductive film containing one or more of them as impurities, and further research has been made to complete the present invention.

本発明は、仕事関数の値が大きく、可視域での光透過率が高く、電気抵抗率が低い透明電極材料、及びその製造方法を提供することを目的とするものである。本発明の他の目的は、仕事関数の値が大きく、可視域での光透過率が高く、電気抵抗率が低い透明電極材料を用いた有機EL素子、無機EL素子、透明トランジスタ素子、及びそれらを用いた物品のための素子部材を提供することである。   An object of the present invention is to provide a transparent electrode material having a large work function value, a high light transmittance in the visible region, and a low electrical resistivity, and a method for producing the same. Another object of the present invention is to provide an organic EL element, an inorganic EL element, a transparent transistor element using a transparent electrode material having a large work function value, a high light transmittance in the visible range, and a low electrical resistivity, and those It is providing the element member for the articles | goods using.

上記課題を解決するための本発明は、以下の技術的手段から構成される。
(1)表面の仕事関数の値を向上させた透明導電性酸化物薄膜を有する透明電極であって、透明基板と、前記透明基板上に設けられた第一の透明酸化物の透明導電膜の層と、該透明導電膜の表面に、酸化錫を主成分とし、且つチタン元素、バナジウム元素、モリブデン元素のうち1種もしくは2種以上を仕事関数変調のための不純物として含む第二の透明酸化物の透明導電膜の層から成る2層以上の多層の薄膜の積層構造を有し、前記不純物組成による表面の仕事関数の値が5.2eV以上であり、可視光透過率が70%以上であり、シート抵抗が200Ω/□以下であることを特徴とする透明電極。
(2)前記透明導電膜の表面に、フッ素元素もしくはアンチモン元素を導電性制御のための不純物として含む層を有する、前記(1)に記載の透明電極。
(3)前記透明導電膜の表面に、酸化錫を主成分とし、且つチタン元素、バナジウム元素、モリブデン元素のうち1種もしくは2種以上を仕事関数変調のための不純物として含む層を有し、且つ該不純物の組成が、M/(M+Sn)=0.005〜0.03(MはTi、V、Moのうち一種もしくは2種以上の不純物元素)である、前記(1)に記載の透明電極。
(4)前記透明導電膜が、2層以上の多層の薄膜の積層構造からなり、少なくとも最上層を含まない薄膜は、インジウム錫酸化物、亜鉛酸化物、チタン酸化物のうちいずれかを主成分とする、前記(1)に記載の透明電極。
(5)前記透明導電膜が、2層以上の多層の薄膜の積層構造からなり、最上層の膜厚が5〜40nmの範囲であり、且つ最上層を含まない層の膜厚が50〜700nmの範囲である、前記(1)から(4)のいずれかに記載の透明電極。
(6)前記(1)から(5)のいずれかに記載の透明電極を陽極として用い、該陽極の透明電極上に形成された有機層と、前記有機層上に形成された陰極層と、前記有機層内に形成された発光層から成ることを特徴とする電子デバイス素子部材。
(7)前記電子デバイス素子部材が、有機エレクトロルミネッセンス素子、無機エレクトロルミネッセンス素子、透明トランジスタ素子、又はそれらを用いた物品である、前記(6)に記載の電子デバイス素子部材。
The present invention for solving the above-described problems comprises the following technical means.
(1) A transparent electrode having a transparent conductive oxide thin film with an improved surface work function value, comprising: a transparent substrate; and a transparent conductive film of a first transparent oxide provided on the transparent substrate . and the layer, the surface of the transparent conductive film, a tin oxide as a main component, and titanium element, vanadium element, a second transparent oxide containing as an impurity for the workfunction modulating one or more of elemental molybdenum A multilayer structure composed of two or more multilayered thin films composed of a transparent conductive film , a surface work function value of 5.2 eV or more by the impurity composition , and a visible light transmittance of 70% or more. A transparent electrode having a sheet resistance of 200Ω / □ or less.
(2) The transparent electrode according to (1), wherein the transparent conductive film has a layer containing a fluorine element or an antimony element as an impurity for controlling conductivity on the surface of the transparent conductive film.
(3) The surface of the transparent conductive film has a layer containing tin oxide as a main component and one or more of titanium element, vanadium element, and molybdenum element as impurities for work function modulation, The transparent composition according to (1), wherein the composition of the impurities is M / (M + Sn) = 0.005 to 0.03 (M is one or more impurity elements of Ti, V, and Mo). electrode.
(4) The transparent conductive film has a laminated structure of two or more multilayer thin films, and the thin film not including at least the uppermost layer is mainly composed of any one of indium tin oxide, zinc oxide, and titanium oxide. The transparent electrode according to (1).
(5) The transparent conductive film has a laminated structure of two or more multilayer thin films, the thickness of the uppermost layer is in the range of 5 to 40 nm, and the thickness of the layer not including the uppermost layer is 50 to 700 nm. The transparent electrode according to any one of (1) to (4), wherein
(6) Using the transparent electrode according to any one of (1) to (5) as an anode, an organic layer formed on the transparent electrode of the anode, a cathode layer formed on the organic layer, An electronic device element member comprising a light emitting layer formed in the organic layer.
(7) The electronic device element member according to (6), wherein the electronic device element member is an organic electroluminescence element, an inorganic electroluminescence element, a transparent transistor element, or an article using them.

次に、本発明について更に詳細に説明する。
本発明は、表面の仕事関数の値を向上させた透明導電性酸化物薄膜を有する透明電極であって、透明基板と、前記透明基板上に設けられた透明導電膜から成り、該透明導電膜の表面に、酸化錫を主成分とし、且つチタン元素、バナジウム元素、モリブデン元素のうち1種もしくは2種以上を仕事関数変調のための不純物として含む層を有することを特徴とするものである。また、本発明は、上記の透明電極を陽極として用い、該陽極の透明電極上に形成された有機層と、前記有機層上に形成された陰極層と、前記有機層内に形成された発光層から成る素子部材の点に特徴を有するものである。
Next, the present invention will be described in more detail.
The present invention relates to a transparent electrode having a transparent conductive oxide thin film with an improved surface work function value, comprising a transparent substrate and a transparent conductive film provided on the transparent substrate. A layer containing tin oxide as a main component and containing one or more of titanium element, vanadium element, and molybdenum element as an impurity for work function modulation. In addition, the present invention uses the transparent electrode as an anode, an organic layer formed on the transparent electrode of the anode, a cathode layer formed on the organic layer, and a light emission formed in the organic layer It is characterized by the point of the element member composed of layers.

本発明では、前記透明導電膜の表面に、フッ素元素もしくはアンチモン元素を導電性制御のための不純物として含む層を有すること、前記透明導電膜の表面の仕事関数が、少なくても5.2エレクトロンボルトであること、を好ましい実施の態様としている。   In the present invention, the surface of the transparent conductive film has a layer containing fluorine element or antimony element as an impurity for controlling conductivity, and the work function of the surface of the transparent conductive film is at least 5.2 electrons. A bolt is a preferred embodiment.

更に、本発明では、前記透明導電膜が、2層以上の多層の薄膜の積層構造からなり、少なくとも最上層を含まない薄膜は、インジウム錫酸化物、亜鉛酸化物、チタン酸化物のうちいずれかを主成分とすること、前記透明導電膜が、2層以上の多層の薄膜の積層構造からなり、最上層の膜厚が5〜40nmの範囲であり、且つ最上層を含まない層の膜厚が50〜700nmの範囲であること、を好ましい実施の態様としている。   Furthermore, in the present invention, the transparent conductive film has a laminated structure of two or more multilayer thin films, and the thin film not including at least the uppermost layer is any one of indium tin oxide, zinc oxide, and titanium oxide. The transparent conductive film has a laminated structure of two or more multilayer thin films, the film thickness of the uppermost layer is in the range of 5 to 40 nm, and the film thickness of the layer not including the uppermost layer Is in the range of 50 to 700 nm as a preferred embodiment.

本発明によって提供される透明電極を構成する透明導電膜の表面は、酸化錫を主成分とし、チタン元素、バナジウム元素、モリブデン元素のうち1種もしくは2種以上を仕事関数変調のための不純物として含み、フッ素もしくはアンチモン元素を導電性制御のための不純物として含むものとすることにより、該透明導電膜の表面は、従来の酸化錫薄膜ならびに従来の酸化チタン薄膜の表面よりも高い値の仕事関数を有しせしめるという作用をもたらす。   The surface of the transparent conductive film constituting the transparent electrode provided by the present invention has tin oxide as a main component, and one or more of titanium element, vanadium element, and molybdenum element as impurities for work function modulation. By including fluorine or antimony element as an impurity for controlling conductivity, the surface of the transparent conductive film has a higher work function than the surface of the conventional tin oxide thin film and the conventional titanium oxide thin film. It brings about the effect of shamming.

透明導電膜のフェルミ準位の状態密度は、各種金属のフェルミ準位の状態密度に比べ非常に小さいため、また、フェルミ準位は、水分子や炭素不純物分子等が吸着することによって大きく変動するため、透明導電膜のフェルミ準位の測定ならびに仕事関数の測定には、細心の注意を要する。薄膜材料表面の仕事関数の値を最も精密に求める方法の一つとして、真空紫外線光電子分光(以下、UPSと示す。)法が、一般に用いられる。   Since the density of states of the Fermi level of the transparent conductive film is very small compared to the density of states of various metals, the Fermi level fluctuates greatly due to adsorption of water molecules, carbon impurity molecules, etc. Therefore, careful attention is required for the measurement of the Fermi level and the work function of the transparent conductive film. As one of the methods for obtaining the work function value on the surface of a thin film material most precisely, a vacuum ultraviolet photoelectron spectroscopy (hereinafter referred to as UPS) method is generally used.

前記のような、薄膜表面に水分子や炭素不純物分子等が吸着することによって仕事関数の値が大きく変動することを防ぐため、UPS法による仕事関数測定では、真空成膜室内で薄膜試料を作製した後、試料表面を大気暴露することなく、且つ高い真空雰囲気を保持したままで、UPS測定のための真空分析室中に試料を搬送し、直ちにUPS測定を行うこと、即ち、いわゆる“その場”観察を行うことが望ましい。   In order to prevent the work function value from fluctuating greatly due to adsorption of water molecules, carbon impurity molecules, etc. on the surface of the thin film as described above, a thin film sample is prepared in a vacuum film forming chamber in the work function measurement by the UPS method. After that, the sample surface is transported into a vacuum analysis chamber for UPS measurement without exposing the sample surface to the atmosphere and maintaining a high vacuum atmosphere, and immediately UPS measurement is performed. “It is desirable to make observations.

次に、本発明の実施の態様について具体的に説明する。本発明者らは、上記の作用を明らかにするための検証実験を行った。本発明者らは、図2に示すような成膜・分析を真空一貫の環境で行うことができる装置を構築した。本装置は、真空成膜チェンバ21、真空分析チェンバ22、バッファチェンバ23、ゲートバルブ24、及びゲートバルブ25から成る。該真空成膜チェンバ21は、到達真空度1×10−5パスカル(Pa)であり、加熱機構を有する試料ホルダ21A、スパッタリング成膜を行うための3基のスパッタ源21B、アルゴンガスならびに酸素ガス供給ライン21C、から主に構成される。 Next, an embodiment of the present invention will be specifically described. The present inventors conducted a verification experiment to clarify the above action. The present inventors constructed an apparatus capable of performing film formation / analysis as shown in FIG. 2 in a consistent vacuum environment. This apparatus includes a vacuum film formation chamber 21, a vacuum analysis chamber 22, a buffer chamber 23, a gate valve 24, and a gate valve 25. The vacuum film forming chamber 21 has an ultimate vacuum of 1 × 10 −5 Pascal (Pa), a sample holder 21A having a heating mechanism, three sputtering sources 21B for performing sputtering film forming, argon gas and oxygen gas. Mainly composed of a supply line 21C.

該真空成膜チェンバ21内にて形成された薄膜試料は、ゲートバルブ24を介して、到達真空度4×10−6Paのバッファチェンバ23内に直ちに真空搬送された後、ゲートバルブ25を介して、真空分析チェンバ22に直ちに真空搬送される。該真空分析チェンバ22は、サーモフィッシャーサイエンティフィック株式会社製の複合型表面分析装置シグマプローブを改造したものである。 The thin film sample formed in the vacuum film formation chamber 21 is immediately vacuum-transferred through the gate valve 24 into the buffer chamber 23 having an ultimate vacuum of 4 × 10 −6 Pa, and then through the gate valve 25. Then, the vacuum analysis chamber 22 is immediately vacuum-conveyed. The vacuum analysis chamber 22 is a modified version of a combined surface analyzer sigma probe manufactured by Thermo Fisher Scientific Co., Ltd.

該真空分析チェンバ22は、到達真空度1×10−8Paであり、試料ホルダ22A、真空紫外光源22B、半球型電子分光器22Cから主に構成される。更に、該真空分析チェンバ22は、単色化X線源(図示せず)を備えているため、X線光電子分光(以下、XPSと示す。)法により薄膜試料の化学組成を見積もることができる。 The vacuum analysis chamber 22 has an ultimate vacuum of 1 × 10 −8 Pa, and mainly includes a sample holder 22A, a vacuum ultraviolet light source 22B, and a hemispherical electron spectrometer 22C. Further, since the vacuum analysis chamber 22 includes a monochromatic X-ray source (not shown), the chemical composition of the thin film sample can be estimated by an X-ray photoelectron spectroscopy (hereinafter referred to as XPS) method.

薄膜試料の形成方法を、図3を参照して以下に示す。株式会社信越化学製のシリコン基板31を、いわゆるRCA洗浄と呼ばれる方法で表面清浄化処理した後、該真空成膜チェンバ21に導入した。なお、本確証実験で用いたシリコン基板は、透明基材ではないため、有機EL素子ならびに透明トランジスタ素子のための透明基材としては用いられない。   A method for forming a thin film sample will be described below with reference to FIG. A silicon substrate 31 manufactured by Shin-Etsu Chemical Co., Ltd. was surface-cleaned by a so-called RCA cleaning method, and then introduced into the vacuum film formation chamber 21. In addition, since the silicon substrate used in this verification experiment is not a transparent base material, it is not used as a transparent base material for an organic EL element or a transparent transistor element.

続いて、該シリコン基板31の表面上に、直流(DC)反応性マグネトロンスパッタリング法により、膜厚が30nmの透明導電膜32を形成した。該透明導電膜32は、SnO:Sb中にTiをドーピングしたものである。Ti組成ならびにSb組成を、それぞれxならびにyとした場合は、TiSn1−x2−ySbとも表記される(itanium and ntimony−doped in dixide、以下、TATOとも記す)。 Subsequently, a transparent conductive film 32 having a thickness of 30 nm was formed on the surface of the silicon substrate 31 by direct current (DC) reactive magnetron sputtering. The transparent conductive film 32 is made of SnO 2 : Sb doped with Ti. The Ti composition and Sb composition, if the x and y respectively, with Ti x Sn 1-x O 2 -y Sb y , denoted (T itanium and A ntimony-doped T in di O xide, below, tato both Write down).

用いたスパッタリングターゲットは、金属Tiタブレット及び8%のSbが混合されたSnタブレットの2種類であった。8%Sb混合Sn用のスパッタリングガンの出力は20Wであり、Ti用のスパッタリングガンの出力は16W〜30Wであり、Tiのスパッタリング出力を個別に制御することによってTi組成xを変調させた。用いた導入がガスは、アルゴンと酸素の混合ガスであった。成膜時の全ガス圧は0.53Paであり、そのうち酸素の圧力は0.26Paであった。成膜時の基板表面温度は350℃であった。   There were two types of sputtering targets used: a metal Ti tablet and an Sn tablet mixed with 8% Sb. The output of the sputtering gun for 8% Sb mixed Sn was 20 W, the output of the sputtering gun for Ti was 16 W to 30 W, and the Ti composition x was modulated by individually controlling the Ti sputtering output. The gas used was a mixed gas of argon and oxygen. The total gas pressure during film formation was 0.53 Pa, of which the oxygen pressure was 0.26 Pa. The substrate surface temperature during film formation was 350 ° C.

次に、薄膜試料表面のUPS測定方法を以下に示す。該真空成膜チェンバ21内で形成された薄膜試料は、ゲートバルブ24を介して真空搬送チェンバ23に搬送された後、更にゲートバルブ25を介して真空分析チェンバ22内に搬送され、直ちにUPS測定が開始された。紫外線光源は、He気体の放電により発生させたHeI(hν=21.22eV)であり、更に表面に放出された運動エネルギーゼロの光電子を確実に検出するために、試料ホルダ22Aと半球型電子分光器22Cの間に−10Vのバイアスが印加された。   Next, the UPS measurement method on the surface of the thin film sample is shown below. The thin film sample formed in the vacuum film forming chamber 21 is transferred to the vacuum transfer chamber 23 via the gate valve 24, and then transferred to the vacuum analysis chamber 22 via the gate valve 25, and immediately UPS measurement is performed. Has started. The ultraviolet light source is HeI (hν = 21.22 eV) generated by the discharge of He gas. Further, in order to reliably detect photoelectrons with zero kinetic energy emitted to the surface, the sample holder 22A and hemispherical electron spectroscopy are used. A bias of -10V was applied across the vessel 22C.

種々の薄膜試料について測定されたUPSスペクトルを図4に示す。図4中の束縛エネルギーの較正は、清浄化されたAu薄膜表面のフェルミ端により行われた。検出されたスペクトルは、2つのピークを持った形状をしており、低エネルギー側が価電子帯の状態密度の分布に起因しており、高エネルギー側は2次電子放出に起因している。図4において、入射紫外光のエネルギー(21.22eV)と検出された光電子のエネルギー幅の差から仕事関数の値が見積もられた。より具体的には、例えば、図4に示すように、光電子の中の最大運動エネルギー(Emax)はフェルミ端をとり、最小運動エネルギー(Emin)は2次電子放出ピークの高束縛エネルギー側の変曲点をとり、図4より、仕事関数の値は、21.22−(Emax−Emin)(eV)として得ることができる。 The UPS spectra measured for various thin film samples are shown in FIG. The calibration of binding energy in FIG. 4 was performed by the Fermi edge of the cleaned Au thin film surface. The detected spectrum has a shape having two peaks, the low energy side is caused by the distribution of state density in the valence band, and the high energy side is caused by secondary electron emission. In FIG. 4, the work function value was estimated from the difference between the energy of incident ultraviolet light (21.22 eV) and the energy width of the detected photoelectrons. More specifically, for example, as shown in FIG. 4, the maximum kinetic energy (E max ) in the photoelectron takes the Fermi edge, and the minimum kinetic energy (E min ) is on the high binding energy side of the secondary electron emission peak. taking an inflection point in, from FIG. 4, the work function can be obtained as 21.22- (E max -E min) ( eV).

表1には、図4中の各薄膜試料について、XPS法により見積もられた化学組成ならびにUPS法により見積もられた仕事関数の値を示す。図4中の試料41ならびに試料45は、それぞれSnO:SbならびにTiOであるが、該試料41ならびに試料45の仕事関数は、各々4.88eVならびに5.20eVであった。 Table 1 shows the chemical composition estimated by the XPS method and the work function value estimated by the UPS method for each thin film sample in FIG. Sample 41 and sample 45 in FIG. 4 are SnO 2 : Sb and TiO 2 , respectively. The work functions of sample 41 and sample 45 were 4.88 eV and 5.20 eV, respectively.

SnO:Sb中に僅かにTiをドープした場合、仕事関数の値は急激に大きくなり、TiOの仕事関数の値5.20eVよりも大きくなった。特に、Ti組成xの値が0.012である試料42の仕事関数の値は5.34eVであったが、Ti組成が大きくなるにしたがって仕事関数の値は減少し、TiOの仕事関数の値5.20eVに近づいていくことがわかった。上記作用をもたらす理由は、SnO:Sb薄膜中のSnの位置に置換ドーピングされたTi原子とその周りのSn原子との間での電荷移動が生じ、SnOのエネルギーバンドが低エネルギー側へシフトするためと考えられる。 When Sn was slightly doped with SnO 2 : Sb, the value of the work function increased rapidly and became larger than the work function value of 5.20 eV of TiO 2 . In particular, the work function value of the sample 42 having a Ti composition x value of 0.012 was 5.34 eV, but the work function value decreased as the Ti composition increased, and the work function value of TiO 2 decreased. It was found that the value approached to 5.20 eV. The reason for the above effect is that charge transfer occurs between substitutionally doped Ti atoms and Sn atoms around them at the Sn position in the SnO 2 : Sb thin film, and the energy band of SnO 2 moves to the lower energy side. It is thought to shift.

更に、図2に示す装置中で成膜・分析を行った薄膜試料を、該装置外に取り出し、分光エリプソメトリー法による光学定数の測定を行った。分光エリプソメトリー法は、J.A.Woollam社製のM−2000を用いて波長範囲380〜1700nmの範囲で行われた。データ解析にあたり、図3中の該透明導電膜32の分散モデルとして、DrudeモデルとTauc−Lorenzモデルを組み合わせたものを用いた(藤原裕之著「分光エリプソメトリー」第5章及び第6章,丸善,2003)。   Further, a thin film sample which was formed and analyzed in the apparatus shown in FIG. 2 was taken out of the apparatus, and an optical constant was measured by a spectroscopic ellipsometry method. Spectroscopic ellipsometry is described in J. A. The measurement was performed in a wavelength range of 380 to 1700 nm using M-2000 manufactured by Woollam. In the data analysis, a combination of the Drude model and the Tauc-Lorenz model was used as the dispersion model of the transparent conductive film 32 in FIG. , 2003).

上記のモデルから計算される複素屈折率n+ikの中の屈折率nならびに消衰係数kのグラフを図5に示す。表2には、図5中の各薄膜試料について、XPS法により見積もられた化学組成を示す。図5中の試料51は、Tiを含まないSnO:Sb(Sb組成0.08)であるが、赤外領域において該試料51のnは大きく減少し、kは大きく増加する。 FIG. 5 shows a graph of the refractive index n and the extinction coefficient k in the complex refractive index n + ik calculated from the above model. Table 2 shows the chemical composition estimated by the XPS method for each thin film sample in FIG. The sample 51 in FIG. 5 is SnO 2 : Sb (Sb composition 0.08) that does not contain Ti. In the infrared region, n of the sample 51 is greatly reduced and k is greatly increased.

これらのn及びkの変化は、透明導電膜であるSnO:Sb中の自由電子が光を吸収し、誘電関数が変化するために生じることが一般的に良く知られている。SnO:Sb中に僅かにTiをドープした場合、例えば、Ti組成xが0.008ならびに0.025である試料52ならびに試料53の場合も、SnO:Sbよりも僅かに小さくなっているものの、赤外領域でのn及びkの変化が確認でき、薄膜中の自由電子が光を吸収する透明導電膜としての特性をしていることがわかった。 It is generally well known that these changes in n and k occur because free electrons in SnO 2 : Sb, which is a transparent conductive film, absorb light and the dielectric function changes. When SnO 2 : Sb is slightly doped with Ti, for example, Sample 52 and Sample 53 with Ti composition x of 0.008 and 0.025 are slightly smaller than SnO 2 : Sb. However, changes in n and k in the infrared region could be confirmed, and it was found that the free electrons in the thin film have characteristics as a transparent conductive film that absorbs light.

ただし、Ti組成が大きくなるにしたがって、赤外領域のn及びkの変化は小さくなり、Ti組成xが0.068以上である試料54ならびに試料55では、赤外領域におけるn及びkの変化は殆どなく、導電膜としての特性を示さなくなることがわかった。   However, as the Ti composition increases, the changes in n and k in the infrared region decrease, and in samples 54 and 55 where the Ti composition x is 0.068 or more, the changes in n and k in the infrared region are It was found that there was almost no characteristic as a conductive film.

以上のような、図4、表1、図5、ならびに表2に示した検証実験の結果より、SnO:Sb中に僅かにTiをドープした場合、即ち、Ti組成xを0.005から0.03程度の割合でドープした場合、仕事関数の値が5.2eV以上である透明導電膜とせしめることができることは明らかである。 From the results of the verification experiments shown in FIGS. 4, 1, 5, and 2, SnO 2 : Sb is slightly doped with Ti, that is, the Ti composition x is decreased from 0.005. It is clear that when doped at a rate of about 0.03, a transparent conductive film having a work function value of 5.2 eV or more can be obtained.

更に、上記と同様の成膜条件下において、ガラス基板上にTiSn1−x2−ySb薄膜を形成し、市販のITOガラス基板と特性比較した結果を表3に示す。表3中の抵抗率は、四探針法により測定された。表3より、380〜780nmにおける可視光透過率は、TiSn1−x2−ySb薄膜の方がITO薄膜よりも低く、抵抗率はTiSn1−x2−ySb薄膜の方がITO薄膜よりも大きくなった。 Further, in the same film formation conditions as described above, Ti x Sn 1-x O 2-y Sb y thin film was formed on a glass substrate are shown in Table 3 the results of a comparison of commercially available ITO glass substrate and properties. The resistivity in Table 3 was measured by the four probe method. From Table 3, the visible light transmittance at 380~780nm is, Ti x Sn 1-x O 2-y Sb y direction of the thin film is lower than ITO film, the resistivity Ti x Sn 1-x O 2 -y Sb The y thin film was larger than the ITO thin film.

そこで、本発明によって提供される透明電極は、例えば、ガラスなとからなる透明基材上に、例えば、ITOなどからなる可視光透過率が高く抵抗率の低い第一の透明酸化物が形成され、該第一の透明酸化物薄膜上に、例えば、TiSn1−x2−ySbなどからなる仕事関数の値が大きい第二の透明酸化物薄膜が形成される工程を有することで、表面の仕事関数の値が大きく、可視光透過率が高く、電気抵抗率が低いものとせしめることができる。また、仕事関数変調のための不純物として、ドープしたチタンに代え、モリブデン、バナジウム、もしくはチタン、モリブデン、バナジウムのうち2種以上を混合したものを用いても同様の作用効果が得られる。 Therefore, the transparent electrode provided by the present invention is formed, for example, on a transparent substrate made of glass, for example, by forming a first transparent oxide having a high visible light transmittance and a low resistivity made of, for example, ITO. , on a transparent oxide thin film of the first, for example, further comprising the step of second transparent oxide thin value of the work function made of Ti x Sn 1-x O 2 -y Sb y is large is formed Thus, the surface work function value is large, the visible light transmittance is high, and the electrical resistivity is low. Similar effects can be obtained by using molybdenum, vanadium, or a mixture of two or more of titanium, molybdenum, and vanadium as impurities for work function modulation instead of doped titanium.

モリブデン酸化物ならびにバナジウム酸化物の仕事関数は、5.2eV以上の値であることが報告されているので(特開平9−63771号公報ならびにD.S. Toledano, P. Metcalf and V.E. Henrich, Surface Science,
Vol.472, p.21 (2001))、SnO:Sb中にV、Mo、もしくはTi、V、Moのうちいずれか2種以上を僅かにドープしたものを該第二の透明酸化物薄膜とした場合にも、表面の仕事関数の値が大きく、可視光透過率が高く、電気抵抗率が低い透明電極を作製し、提供することができる。
Since the work function of molybdenum oxide and vanadium oxide is reported to be a value of 5.2 eV or more (Japanese Patent Laid-Open No. 9-63771 and DS Toledano, P. Metcalf and VE Henrich, Surface Science,
Vol. 472, p. 21 (2001)), SnO 2 : Sb in which only two or more of V, Mo, Ti, V, and Mo are slightly doped in Sb. In this case, a transparent electrode having a large work function value on the surface, a high visible light transmittance, and a low electrical resistivity can be produced and provided.

例えば、従来の有機EL素子では、陽極のITO膜と正孔輸送層の有機薄膜との間に、該ITO膜の仕事関数と該有機薄膜のイオン化ポテンシャルの値の差に起因するエネルギー障壁があり、このことが、有機EL素子の駆動電圧を上げる必要が生じたり、発光性能の経時的な低減を招く要因となっていた。これに対し、本発明では、陽極のITO膜等の表面に、酸化錫を主成分とし、且つチタン元素、バナジウム元素、モリブデン元素のうち1種もしくは2種以上を仕事関数変調のための不純物として含む最上層を形成することで、陽極と正孔輸送層とのエネルギー障壁を小さくすることを可能とした。そのため、より低電圧駆動ならびに低消費電力が可能となり、有機EL素子等の長寿命化を達成でき、発光輝度や耐久性に優れた薄型ディスプレイ等への応用が可能となる。   For example, in a conventional organic EL device, there is an energy barrier between the ITO film of the anode and the organic thin film of the hole transport layer due to the difference in the work function of the ITO film and the ionization potential value of the organic thin film. This has led to the need to increase the drive voltage of the organic EL element, and to cause a reduction in light emission performance over time. In contrast, in the present invention, the surface of the anode ITO film or the like is mainly composed of tin oxide, and one or more of titanium element, vanadium element, and molybdenum element are used as impurities for work function modulation. By forming the uppermost layer including it, the energy barrier between the anode and the hole transport layer can be reduced. Therefore, lower voltage driving and lower power consumption are possible, the lifetime of the organic EL element and the like can be extended, and application to a thin display having excellent light emission luminance and durability is possible.

本発明により、次のような効果が奏される。
(1)表面の仕事関数の値が大きく、可視光透過率が高く、電気抵抗率が低い透明電極を製造し、提供することができる。
(2)前記透明電極を有機EL素子、無機EL素子の陽極に用いることにより、低電圧で発光可能で且つ発光効率を高くせしめることができる。
(3)前記透明電極を有機EL素子、無機EL素子の陽極に用いることにより、有機EL素子、無機EL素子を用いた物品の耐久性を著しく向上させることができる。
The present invention has the following effects.
(1) A transparent electrode having a large surface work function value, high visible light transmittance, and low electrical resistivity can be produced and provided.
(2) By using the transparent electrode as an anode of an organic EL element or an inorganic EL element, it is possible to emit light at a low voltage and increase luminous efficiency.
(3) By using the transparent electrode as an anode of an organic EL element or an inorganic EL element, the durability of an article using the organic EL element or the inorganic EL element can be remarkably improved.

次に、実施例に基づいて本発明を具体的に説明するが、本発明は、以下の実施例によって、何ら限定されるものではない。   EXAMPLES Next, although this invention is demonstrated concretely based on an Example, this invention is not limited at all by the following examples.

(1)試料の作製
本実施例では、図1に基づいて透明電極の作製方法を示す。本実施例の透明電極の態様は、ガラスなどから成る透明基材11上に、第一の透明導電膜12が形成され、該第一の透明酸化物薄膜12上に第二の透明導電膜13が形成され、該第二の透明導電膜13の表面は酸化錫を主成分とし、且つ前記透明導電膜の表面はチタン元素を仕事関数変調のための不純物として含むことを特徴とする。
(1) Preparation of sample In a present Example, the preparation method of a transparent electrode is shown based on FIG. In the embodiment of the transparent electrode of the present example, a first transparent conductive film 12 is formed on a transparent substrate 11 made of glass or the like, and a second transparent conductive film 13 is formed on the first transparent oxide thin film 12. The surface of the second transparent conductive film 13 is mainly composed of tin oxide, and the surface of the transparent conductive film contains titanium element as an impurity for work function modulation.

本実施例では、該透明基材11及び該第一の透明導電膜12として、市販のITOガラス基板(旭硝子製、ソーダライムガラス上にITO膜が形成されており、ITOの膜厚は170nm)を用いた。本実施例では、該第一の透明導電膜12としてITOを用いたが、例えば、該第一の透明導電膜12としてAlあるいはGaをドープしたZnO、即ち、AZOあるいはGZOを用いてもほぼ同様の作用効果が得られる。   In this example, as the transparent base material 11 and the first transparent conductive film 12, a commercially available ITO glass substrate (manufactured by Asahi Glass, an ITO film is formed on soda lime glass, and the ITO film thickness is 170 nm). Was used. In the present embodiment, ITO is used as the first transparent conductive film 12, but for example, ZnO doped with Al or Ga, that is, AZO or GZO, is almost the same as the first transparent conductive film 12. The following effects can be obtained.

また、例えば、該第一の透明導電膜12として、NbあるいはTaをドープしたTiO、即ち、TiO:NbあるいはTiO:Taを用いることができる。該透明基材11及び該第一の透明導電膜12からなる上記のITOガラス基板は、有機溶剤及びセミコクリーン溶液を用いた超音波洗浄を施されて表面清浄化がなされた。 For example, TiO 2 doped with Nb or Ta, that is, TiO 2 : Nb or TiO 2 : Ta can be used as the first transparent conductive film 12. The ITO glass substrate composed of the transparent substrate 11 and the first transparent conductive film 12 was subjected to ultrasonic cleaning using an organic solvent and a semi-clean solution to clean the surface.

次に、例えば、直流(DC)反応性マグネトロンスパッタリング法により、該第二の透明導電膜13たるTiSn1−x2−ySb薄膜を、該第一の透明導電膜12たるITO薄膜上に形成した。本実施例では、該第二の透明導電膜13として、TiSn1−x2−ySbを用いたが、例えば、Sbの代わりに、Fをドープしたものや、Tiの代わりに、V、Mo、もしくはTi、V、Moのうちのいずれか2種以上の元素をドープしたものを用いることができる。 Then, for example, a direct current by (DC) reactive magnetron sputtering, said second transparent conductive film 13 serving as Ti x Sn 1-x O 2 -y Sb y thin film, said first transparent conductive film 12 serving as ITO It was formed on a thin film. In this embodiment, as said second transparent conductive film 13, was used Ti x Sn 1-x O 2 -y Sb y, for example, instead of Sb, doped with F and, instead of Ti , V, Mo, or one doped with two or more elements of Ti, V, and Mo can be used.

用いたスパッタリングターゲットは、例えば、金属Tiタブレット及び8%のSbが混合されたSnタブレットの2種類であったが、例えば、2〜8%のSbならびに0.5〜3%のTiが混合されたSnタブレットを用いることができる。また、Snタブレットの変わりにSn酸化物タブレットを用いても良いが、この場合は、交流(RF)スパッタリング法を用いる。   The sputtering target used was, for example, two types of metal tablets and Sn tablets mixed with 8% Sb. For example, 2 to 8% Sb and 0.5 to 3% Ti were mixed. Sn tablets can be used. An Sn oxide tablet may be used instead of the Sn tablet. In this case, an alternating current (RF) sputtering method is used.

本実施例における8%Sb混合Sn用のスパッタリングガンの出力は20Wであり、Ti用のスパッタリングガンの出力は0〜30Wの範囲で制御された。Ti組成xを約0.01とせしめる場合のTi用のスパッタリングガンの出力は、16Wであった。用いた導入がガスはアルゴンと酸素の混合ガスであった。成膜時の全ガス圧は0.53Paであり、そのうち酸素の圧力は0.26Paであった。成膜時の基板表面温度は350℃であった。   In this example, the output of the sputtering gun for 8% Sb mixed Sn was 20 W, and the output of the sputtering gun for Ti was controlled in the range of 0 to 30 W. The output of the sputtering gun for Ti when the Ti composition x was about 0.01 was 16W. The gas used was a mixed gas of argon and oxygen. The total gas pressure during film formation was 0.53 Pa, of which the oxygen pressure was 0.26 Pa. The substrate surface temperature during film formation was 350 ° C.

しかし、これらのガス圧ならびに成膜時の基板表面温度は、本実施例に限定されるものではない。該第二の透明酸化物薄膜13たるTiSn1−x2−ySb薄膜の膜厚は、8nmもしくは32nmとしたが、これに制限されるものではない。 However, these gas pressures and the substrate surface temperature during film formation are not limited to the present embodiment. It said second transparent oxide thin film 13 serving as Ti x Sn 1-x O 2 -y Sb y thin film having a film thickness is set to 8nm or 32 nm, but is not limited thereto.

(2)結果
表4に、本実施例によって得られた透明電極の特性、ならびに比較として、該透明基材11及び該第一の透明導電膜12として用いた市販のITO透明電極の特性を示した。また、図6に、実施例によって得られた透明電極、ならびに比較として、該透明基材11及び該第一の透明導電膜12として用いた市販のITO透明電極の分光透過率を示した。
(2) Results Table 4 shows the characteristics of the transparent electrode obtained by this example, and the characteristics of the commercially available ITO transparent electrode used as the transparent base material 11 and the first transparent conductive film 12 as a comparison. It was. In addition, FIG. 6 shows the spectral transmittance of the transparent electrode obtained by Examples and a commercially available ITO transparent electrode used as the transparent base material 11 and the first transparent conductive film 12 for comparison.

本実施例の場合、透明電極を2層構造とし、ITO薄膜を170nm、TiSn1−x2−ySb薄膜のTi組成xを0.012、膜厚を32nmとした場合、シート抵抗10.2Ω/□、380〜780nmにおける可視光透過率74.0%、仕事関数5.34eVとせしめることができた。 In this embodiment, the transparent electrode has a two-layer structure, the ITO thin film 170nm, Ti x Sn 1-x O 2-y Sb y 0.012 a Ti composition x of the thin film, when the film thickness 32 nm, sheet The resistance was 10.2Ω / □, the visible light transmittance at 380 to 780 nm was 74.0%, and the work function was 5.34 eV.

一方、透明電極を2層構造とし、ITO薄膜を170nm、TiSn1−x2−ySb薄膜のTi組成xを0.012、膜厚を8nmとした場合、仕事関数の値は5.34eVとなり8nmの場合よりも大きいものの、シート抵抗ならびに可視光透過率は、8.9Ω/□ならびに81.5%となり、該第二の透明導電膜の膜厚が32nmの場合よりも向上するものの、仕事関数の値は5.27eVとなり、該第二の透明導電膜の膜厚が32nmの場合よりも低下する。 On the other hand, the transparent electrode has a two-layer structure, the ITO thin film 170nm, Ti x Sn 1-x O 2-y Sb y 0.012 a Ti composition x of the thin film, when a 8nm thickness, the value of the work function Although it is 5.34 eV, which is larger than the case of 8 nm, the sheet resistance and visible light transmittance are 8.9 Ω / □ and 81.5%, which is an improvement over the case where the film thickness of the second transparent conductive film is 32 nm. However, the value of the work function is 5.27 eV, which is lower than when the film thickness of the second transparent conductive film is 32 nm.

該第一の透明導電膜たるITOの仕事関数の値が4.6eVと小さいため、該第二の透明導電膜の膜厚を小さくするほどITO膜の影響が大きくなり、本実施例のように仕事関数の値が低下するものと考えられる。   Since the work function value of ITO as the first transparent conductive film is as small as 4.6 eV, the influence of the ITO film increases as the film thickness of the second transparent conductive film is reduced. It is thought that the work function value decreases.

該第二の透明導電膜の膜厚が8nm、32nmのいずれの場合も、透明電極としての特性は、仕事関数5.2eV以上、シート抵抗20Ω/□以下、可視光透過率70%以上の範囲内であるが、所望の透明電極の性能が発現できるように該第二の透明導電膜たるTiSn1−x2−ySb薄膜の膜厚を5〜40nmの範囲で随時設定することが可能である。 When the film thickness of the second transparent conductive film is 8 nm or 32 nm, the characteristics as a transparent electrode are as follows: work function is 5.2 eV or more, sheet resistance is 20 Ω / □ or less, and visible light transmittance is 70% or more. is a inner, from time to time set by serving said second transparent conductive film Ti x Sn 1-x O 2 -y Sb y range 5~40nm the thickness of the thin film so that performance can be expressed in a desired transparent electrode It is possible.

以上詳述したように、本発明は、有機EL素子、無機EL素子、透明トランジスタ素子などに用いられる透明電極材料及びその製造方法に係るものであり、本発明により、ガラスなどからなる透明基材表面上に、第一の透明導電薄膜、第二の透明導電膜の順に積層された前期透明電極は、表面の仕事関数の値が5.2eV以上であり、可視光透過率が70%以上であり、シート抵抗は20Ω/□以下にせしめることが可能となる。   As described above in detail, the present invention relates to a transparent electrode material used for an organic EL element, an inorganic EL element, a transparent transistor element, and the like, and a method for producing the transparent electrode material. The previous transparent electrode laminated on the surface in the order of the first transparent conductive thin film and the second transparent conductive film has a surface work function value of 5.2 eV or more and a visible light transmittance of 70% or more. Yes, the sheet resistance can be reduced to 20Ω / □ or less.

本発明に係る透明電極を有機EL素子に用いた場合、陽極と正孔輸送層とのエネルギー障壁を小さくすることができるため、より低電圧駆動ならびに低消費電力が可能となる。本発明は、有機EL素子の長寿命化を達成でき、発光輝度や耐久性に優れた薄型ディスプレイ、照明デバイス、携帯電話やポータブルオーディオやカーオーディオの表示窓へ応用可能な透明電極材料を提供するものとして有用である。   When the transparent electrode according to the present invention is used in an organic EL element, the energy barrier between the anode and the hole transport layer can be reduced, and therefore, lower voltage driving and lower power consumption are possible. The present invention provides a transparent electrode material that can achieve a long life of an organic EL element and can be applied to a thin display, a lighting device, a mobile phone, a portable audio display, and a car audio display window having excellent emission luminance and durability. Useful as a thing.

本発明に係る透明電極の概略図である。It is the schematic of the transparent electrode which concerns on this invention. 本発明の検証実験のための真空一貫成膜・分析装置である。It is the vacuum consistent film-forming and analysis apparatus for the verification experiment of this invention. 本発明の検証実験に係る薄膜試料の概略図である。It is the schematic of the thin film sample which concerns on the verification experiment of this invention. 本発明の検証実験に係るUPSスペクトルの測定結果である。It is a measurement result of UPS spectrum concerning a verification experiment of the present invention. 本発明の検証実験に係る種々の薄膜試料についてデータ解析された複素屈折率のグラフである。It is a graph of the complex refractive index by which data analysis was carried out about various thin film samples concerning the verification experiment of the present invention. ITOならびにTATO/ITO膜がコーティングされた透明電極の分光透過率のグラフである。It is a graph of the spectral transmission factor of the transparent electrode with which ITO and TATO / ITO film | membrane were coated. 有機EL素子の構成例を示す概念図である。It is a conceptual diagram which shows the structural example of an organic EL element.

符号の説明Explanation of symbols

11 透明基材
12 第一の透明導電膜
13 第二の透明導電膜
21 真空成膜チェンバ
22 真空分析チェンバ
23 バッファチェンバ
24 ゲートバルブ
25 ゲートバルブ
21A 試料ホルダ
21B スパッタ源
21C ガス供給ライン
22A 試料ホルダ
22B 真空紫外光源
22C 半球型電子分光器
31 シリコン基板
32 TiSn1−x2−ySbからなる透明導電膜
71 透明基材
72 アノード(陽極)
73 正孔輸送層
74 発光層
75 電子輸送層
76 カソード(陰極)
DESCRIPTION OF SYMBOLS 11 Transparent base material 12 1st transparent conductive film 13 2nd transparent conductive film 21 Vacuum film-forming chamber 22 Vacuum analysis chamber 23 Buffer chamber 24 Gate valve 25 Gate valve 21A Sample holder 21B Sputter source 21C Gas supply line 22A Sample holder 22B vacuum ultraviolet light source 22C hemispherical electron spectrometer 31 silicon substrate 32 Ti x Sn 1-x O 2-y Sb y composed of a transparent conductive film 71 transparent substrate 72 anode (anode)
73 hole transport layer 74 light emitting layer 75 electron transport layer 76 cathode (cathode)

Claims (7)

表面の仕事関数の値を向上させた透明導電性酸化物薄膜を有する透明電極であって、透明基板と、前記透明基板上に設けられた第一の透明酸化物の透明導電膜の層と、該透明導電膜の表面に、酸化錫を主成分とし、且つチタン元素、バナジウム元素、モリブデン元素のうち1種もしくは2種以上を仕事関数変調のための不純物として含む第二の透明酸化物の透明導電膜の層から成る2層以上の多層の薄膜の積層構造を有し、前記不純物組成による表面の仕事関数の値が5.2eV以上であり、可視光透過率が70%以上であり、シート抵抗が200Ω/□以下であることを特徴とする透明電極。 A transparent electrode having a transparent conductive oxide thin film having an improved surface work function value, a transparent substrate, and a layer of a transparent conductive film of a first transparent oxide provided on the transparent substrate, on the surface of the transparent conductive film, a tin oxide as a main component, and titanium element, vanadium element, a transparent second transparent oxide as an impurity for the workfunction modulating one or more of elemental molybdenum A sheet having a multilayer structure of two or more layers of conductive films , a surface work function value of 5.2 eV or more due to the impurity composition , a visible light transmittance of 70% or more, and a sheet A transparent electrode having a resistance of 200Ω / □ or less. 前記透明導電膜の表面に、フッ素元素もしくはアンチモン元素を導電性制御のための不純物として含む層を有する、請求項1に記載の透明電極。   The transparent electrode according to claim 1, further comprising a layer containing fluorine element or antimony element as an impurity for controlling conductivity on a surface of the transparent conductive film. 前記透明導電膜の表面に、酸化錫を主成分とし、且つチタン元素、バナジウム元素、モリブデン元素のうち1種もしくは2種以上を仕事関数変調のための不純物として含む層を有し、且つ該不純物の組成が、M/(M+Sn)=0.005〜0.03(MはTi、V、Moのうち一種もしくは2種以上の不純物元素)である、請求項1に記載の透明電極。   The transparent conductive film has a layer containing tin oxide as a main component and one or more of titanium element, vanadium element, and molybdenum element as impurities for work function modulation, and the impurities The transparent electrode of Claim 1 whose composition is M / (M + Sn) = 0.005-0.03 (M is 1 type, or 2 or more types of impurity elements among Ti, V, and Mo). 前記透明導電膜が、2層以上の多層の薄膜の積層構造からなり、少なくとも最上層を含まない薄膜は、インジウム錫酸化物、亜鉛酸化物、チタン酸化物のうちいずれかを主成分とする、請求項1に記載の透明電極。   The transparent conductive film has a multilayer structure of two or more multilayer thin films, and the thin film not including at least the uppermost layer is mainly composed of any one of indium tin oxide, zinc oxide, and titanium oxide. The transparent electrode according to claim 1. 前記透明導電膜が、2層以上の多層の薄膜の積層構造からなり、最上層の膜厚が5〜40nmの範囲であり、且つ最上層を含まない層の膜厚が50〜700nmの範囲である、請求項1から4のいずれかに記載の透明電極。   The transparent conductive film has a multilayer structure of two or more multilayer thin films, the uppermost layer has a thickness of 5 to 40 nm, and the layer not including the uppermost layer has a thickness of 50 to 700 nm. The transparent electrode according to any one of claims 1 to 4. 請求項1から5のいずれかに記載の透明電極を陽極として用い、該陽極の透明電極上に形成された有機層と、前記有機層上に形成された陰極層と、前記有機層内に形成された発光層から成ることを特徴とする電子デバイス素子部材。   A transparent electrode according to any one of claims 1 to 5 is used as an anode, an organic layer formed on the transparent electrode of the anode, a cathode layer formed on the organic layer, and formed in the organic layer An electronic device element member comprising the light emitting layer formed. 前記電子デバイス素子部材が、有機エレクトロルミネッセンス素子、無機エレクトロルミネッセンス素子、透明トランジスタ素子、又はそれらを用いた物品である、請求項6に記載の電子デバイス素子部材。   The electronic device element member according to claim 6, wherein the electronic device element member is an organic electroluminescence element, an inorganic electroluminescence element, a transparent transistor element, or an article using the same.
JP2007086415A 2007-03-29 2007-03-29 Transparent electrode and manufacturing method thereof Expired - Fee Related JP4984134B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007086415A JP4984134B2 (en) 2007-03-29 2007-03-29 Transparent electrode and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007086415A JP4984134B2 (en) 2007-03-29 2007-03-29 Transparent electrode and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2008243759A JP2008243759A (en) 2008-10-09
JP4984134B2 true JP4984134B2 (en) 2012-07-25

Family

ID=39914815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007086415A Expired - Fee Related JP4984134B2 (en) 2007-03-29 2007-03-29 Transparent electrode and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4984134B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230102906A1 (en) * 2021-09-28 2023-03-30 Samsung Electronics Co., Ltd. Capacitor, memory device including the capacitor, and method of manufacturing the capacitor

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013128504A1 (en) * 2012-03-02 2013-09-06 パナソニック株式会社 Organic el element and method for manufacturing same, and metal oxide film and method for growing same
JPWO2014021177A1 (en) * 2012-08-02 2016-07-21 ソニー株式会社 SEMICONDUCTOR ELEMENT, SEMICONDUCTOR ELEMENT MANUFACTURING METHOD, SOLID-STATE IMAGING DEVICE, AND ELECTRONIC DEVICE
US9444068B2 (en) * 2013-03-12 2016-09-13 Ppg Industries Ohio, Inc. Transparent conductive oxide coatings for organic light emitting diodes and solar devices

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1167459A (en) * 1997-08-12 1999-03-09 Tdk Corp Organic electroluminescent element and its manufacture
JP4481593B2 (en) * 2003-05-26 2010-06-16 キヤノン株式会社 Display element
CN1914695B (en) * 2004-02-09 2010-05-05 旭硝子株式会社 Method for forming transparent electrode
JP2006032100A (en) * 2004-07-15 2006-02-02 Fuji Photo Film Co Ltd Inorganic dispersion type electroluminescent element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230102906A1 (en) * 2021-09-28 2023-03-30 Samsung Electronics Co., Ltd. Capacitor, memory device including the capacitor, and method of manufacturing the capacitor

Also Published As

Publication number Publication date
JP2008243759A (en) 2008-10-09

Similar Documents

Publication Publication Date Title
TWI651433B (en) Metal oxide film, organic electroluminescence device having the film, solar cell and organic solar cell
US7772762B2 (en) White light organic electroluminescent element
EP2690683B1 (en) Transparent conductive oxide thin film substrate, method of fabricating the same, and organic light-emitting device and photovoltaic cell having the same
Yang et al. Flexible organic light-emitting diodes with ZnS/Ag/ZnO/Ag/WO3 multilayer electrode as a transparent anode
TWI702189B (en) Metal oxide thin film, method for depositing metal oxide thin film and device comprising metal oxide thin film
US20080210551A1 (en) Target for Transparent Conductive Thin Film, Transparent Conductive Thin Film and Manufacturing Method Thereof, Electrode Material for Display, and Organic Electroluminescence Element
WO2010021106A1 (en) Semiconductor device, method for manufacturing semiconductor device, transistor substrate, light emitting device and display device
JP2002015623A (en) Transparent electrode
US20130040516A1 (en) Transparent electrode based on combination of transparent conductive oxides, metals and oxides
US11152587B2 (en) Light transmissive electrode for light emitting devices
Kim et al. Design of a MoOx/Au/MoOx transparent electrode for high-performance OLEDs
CN106068247B (en) Coated glazing
JP4468546B2 (en) Transparent electrode
US11751412B2 (en) Quantum dot light-emitting device and preparation method thereof
Mahdiyar et al. The effects of chemical treatment on ITO properties and performance of OLED devices
WO2011016312A1 (en) Anode structure to be used in organic el element, manufacturing method thereof, and organic el element
JP4984134B2 (en) Transparent electrode and manufacturing method thereof
CN108878683B (en) A kind of metal oxide stack field-effect electrode
WO2014020788A1 (en) Method for manufacturing organic electroluminescent element
US20220278299A1 (en) Opto-electronic device including an auxiliary electrode and a partition
US20150155521A1 (en) Transparent supported electrode for oled
Jeong et al. Inverted OLED with low resistance IZO–Ag–IZO top anode prepared by linear FTS system at room temperature
JP2015528628A (en) Scattering conductive support for OLED device and OLED device incorporating the same
JP2004342375A (en) Luminous body
Meyer et al. Transparent OLED displays

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110722

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110722

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111024

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120124

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120327

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120411

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees