JP4983400B2 - Feed-through three-terminal capacitor - Google Patents

Feed-through three-terminal capacitor Download PDF

Info

Publication number
JP4983400B2
JP4983400B2 JP2007139426A JP2007139426A JP4983400B2 JP 4983400 B2 JP4983400 B2 JP 4983400B2 JP 2007139426 A JP2007139426 A JP 2007139426A JP 2007139426 A JP2007139426 A JP 2007139426A JP 4983400 B2 JP4983400 B2 JP 4983400B2
Authority
JP
Japan
Prior art keywords
main body
internal electrode
internal
terminal capacitor
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007139426A
Other languages
Japanese (ja)
Other versions
JP2008294298A (en
Inventor
隆司 澤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2007139426A priority Critical patent/JP4983400B2/en
Publication of JP2008294298A publication Critical patent/JP2008294298A/en
Application granted granted Critical
Publication of JP4983400B2 publication Critical patent/JP4983400B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Description

本発明は、絶縁層と内部電極とが積層されて構成される貫通型三端子コンデンサに関する。 The present invention relates to a feedthrough three-terminal capacitor configured by laminating an insulating layer and internal electrodes.

従来の貫通型三端子コンデンサとして、特許文献1に記載の貫通型三端子電子部品が提案されている。図9は、該貫通型三端子電子部品の分解図である。該貫通型三端子電子部品では、図9(a)に示すような内部電極201が形成された誘電体層202と図9(b)に示すような内部電極203が形成された誘電体層204とが交互に積層されて、コンデンサが形成される。 As a conventional feedthrough three-terminal capacitor , a feedthrough three-terminal electronic component described in Patent Document 1 has been proposed. FIG. 9 is an exploded view of the through-type three-terminal electronic component. In the through-type three-terminal electronic component, a dielectric layer 202 having an internal electrode 201 as shown in FIG. 9A and a dielectric layer 204 having an internal electrode 203 as shown in FIG. 9B. Are alternately stacked to form a capacitor.

前記貫通型三端子電子部品では、各誘電体層202,204に、容量の形成に寄与しないダミー内部電極205が形成されている。これにより、貫通型三端子電子部品の各部において、積層方向に積層された電極の枚数が等しくなる。その結果、貫通型三端子電子部品各部における焼結の程度が等しくなり、内部電極201,203の過焼結や焼結不足が防止され、貫通型三端子電子部品の直流抵抗が小さくなる。   In the through-type three-terminal electronic component, dummy internal electrodes 205 that do not contribute to the formation of capacitance are formed on the dielectric layers 202 and 204. Thereby, in each part of the penetration type three-terminal electronic component, the number of electrodes laminated in the lamination direction becomes equal. As a result, the degree of sintering in each part of the through-type three-terminal electronic component is equalized, oversintering and insufficient sintering of the internal electrodes 201 and 203 are prevented, and the direct current resistance of the through-type three-terminal electronic component is reduced.

しかしながら、前記貫通型三端子電子部品では、各誘電体層202,204間において剥離が発生し易い。具体的には、コンデンサの容量を大きくするために、内部電極201,203を大きくすると、図9中の内部電極201,203の縁と誘電体層202,204の縁との間の部分(サイドギャップ)の幅が狭くなってしまう。その結果、端面206の近傍において、誘電体層202,204同士の接触面積が小さくなり、誘電体層202,204同士の密着性が悪化し、誘電体層202,204間で剥離が発生しやすくなってしまう。   However, in the through-type three-terminal electronic component, peeling is likely to occur between the dielectric layers 202 and 204. Specifically, when the internal electrodes 201 and 203 are enlarged in order to increase the capacitance of the capacitor, the portion between the edges of the internal electrodes 201 and 203 and the edges of the dielectric layers 202 and 204 in FIG. The width of the gap is narrowed. As a result, in the vicinity of the end face 206, the contact area between the dielectric layers 202 and 204 is reduced, the adhesion between the dielectric layers 202 and 204 is deteriorated, and peeling between the dielectric layers 202 and 204 is likely to occur. turn into.

また、各内部電極201,203間でショートが発生するという問題がある。具体的には、積層枚数の増加に伴い、誘電体層202,204が薄型化している。そのため、内部電極201,203間でショートが発生し易くなっている。
特開2003−22932号公報
There is also a problem that a short circuit occurs between the internal electrodes 201 and 203. Specifically, the dielectric layers 202 and 204 are made thinner as the number of stacked layers increases. Therefore, a short circuit is likely to occur between the internal electrodes 201 and 203.
JP 2003-22932 A

そこで、本発明の目的は、絶縁層間の剥離を防止することができると共に、内部電極間でのショートを防止することができる貫通型三端子コンデンサを提供することである。 Accordingly, an object of the present invention is to provide a feedthrough three-terminal capacitor that can prevent separation between insulating layers and can prevent a short circuit between internal electrodes.

本発明は、複数の絶縁層が積層されて構成された積層体と、前記複数の絶縁層と共に積層された複数の内部電極と、前記積層体の側面に形成された複数の外部電極と、を備え、前記複数の内部電極は、四角形の四隅が直線状に切り落とされた形状を有する本体部と、前記本体部と前記外部電極とを接続している引き出し部と、を含み、前記引き出し部の幅は、該引き出し部が接続された前記本体部の辺の長さよりも短く、前記本体部の四隅に形成された直線状部は、隣り合う本体部の直線状部と、積層方向から見たときに重なっていないこと、前記複数の内部電極は、第1の内部電極と第2の内部電極とを含んでおり、かつ、コンデンサを構成しており、前記第1の内部電極は、互いに対向する前記積層体の第1の側面と第2の側面とに形成されている前記外部電極に接続された2つの引き出し部を含み、前記第2の内部電極は、互いに対向する前記積層体の第3の側面と第4の側面とに形成されている前記外部電極に接続された2つの引き出し部を含み、前記第1の内部電極の全ての前記直線状部は、積層方向から平面視したときに前記第2の内部電極と重なっておらず、前記第1の側面及び前記第2の側面に形成された前記外部電極には信号電位が接続され、前記第3の側面及び前記第4の側面に形成された前記外部電極には接地電位が接続されること、を特徴とする。 The present invention includes a laminate configured by laminating a plurality of insulating layers, a plurality of internal electrodes laminated together with the plurality of insulating layers, and a plurality of external electrodes formed on a side surface of the laminate. The plurality of internal electrodes include a main body having a shape in which four corners of a quadrangle are cut off in a straight line, and a lead part connecting the main body part and the external electrode, The width is shorter than the length of the side of the main body portion to which the drawer portion is connected, and the linear portions formed at the four corners of the main body portion are seen from the linear portions of the adjacent main body portions and from the stacking direction. The plurality of internal electrodes include a first internal electrode and a second internal electrode, and constitute a capacitor, and the first internal electrodes are opposed to each other. Formed on the first side surface and the second side surface of the laminate The external electrode includes two lead portions connected to the external electrode, and the second internal electrode is formed on a third side surface and a fourth side surface of the stacked body facing each other. Two linear portions of the first internal electrode do not overlap with the second internal electrode when viewed in plan from the stacking direction, and the first internal electrode A signal potential is connected to the external electrode formed on the side surface and the second side surface, and a ground potential is connected to the external electrode formed on the third side surface and the fourth side surface, It is characterized by.

本発明によれば、引き出し部の幅が、該引き出し部が接続された本体部の辺の長さよりも短い。そのため、引き出し部の幅が、該引き出し部が接続された本体部の辺の長さと同等である場合に比べて、隣接する絶縁層同士の接触面積が大きくなる。その結果、隣接する絶縁層同士の密着度が向上し、絶縁層間における剥離が防止される。   According to the present invention, the width of the drawer portion is shorter than the length of the side of the main body portion to which the drawer portion is connected. For this reason, the contact area between adjacent insulating layers is larger than when the width of the lead portion is equal to the length of the side of the main body portion to which the lead portion is connected. As a result, the degree of adhesion between adjacent insulating layers is improved, and peeling between insulating layers is prevented.

本発明において、前記引き出し部が形成されている領域には、積層方向から見たときに、前記本体部が形成されていなくてもよい。   In the present invention, the main body portion may not be formed in the region where the drawer portion is formed when viewed from the stacking direction.

本発明によれば、引き出し部が形成されている領域には、積層方向から見たときに、本体部が形成されていない。そのため、圧着時に、本体部により引き出し部が圧迫されて、引き出し部が押しつぶされてしまうおそれがない。その結果、引き出し部と外部電極とがより確実に接続されるようになる。   According to the present invention, the main body portion is not formed in the region where the drawer portion is formed when viewed from the stacking direction. Therefore, there is no possibility that the drawer part is pressed by the main body part during crimping and the drawer part is crushed. As a result, the lead portion and the external electrode are more reliably connected.

本発明によれば、引き出し部の幅が、該引き出し部が接続された本体部の辺の長さよりも短いので、隣接する絶縁層同士の密着度が向上し、絶縁層間における剥離が防止される。   According to the present invention, since the width of the lead portion is shorter than the length of the side of the main body portion to which the lead portion is connected, the degree of adhesion between adjacent insulating layers is improved and peeling between the insulating layers is prevented. .

貫通型三端子コンデンサの構成について)
以下に、本発明の一実施形態に係る貫通型三端子コンデンサについて図面を参照しながら説明する。図1は、該貫通型三端子コンデンサ1の外観斜視図である。図2(a)は、該貫通型三端子コンデンサ1のxz平面における断面構造図であり、図2(b)は、該貫通型三端子コンデンサ1のyz平面における断面構造図である。なお、x軸、y軸及びz軸は、互いに直交する。
(About the configuration of feedthrough type three-terminal capacitor )
Hereinafter, a feedthrough three-terminal capacitor according to an embodiment of the present invention will be described with reference to the drawings. Figure 1 is an external perspective view of the through-type three-terminal capacitor 1. 2 (a) is a cross-sectional view in the xz plane of the through-type three-terminal capacitor 1, FIG. 2 (b) is a sectional view in the yz plane of the through-type three-terminal capacitor 1. Note that the x-axis, y-axis, and z-axis are orthogonal to each other.

図1に示すように、貫通型三端子コンデンサ1は、積層体10及び外部電極12a,12b,12c,12dを備える。積層体10は、長方形状の絶縁層が複数枚積層されて構成され、直方体状の外形を有する。 As shown in FIG. 1, the feedthrough three-terminal capacitor 1 includes a multilayer body 10 and external electrodes 12a, 12b, 12c, and 12d. The laminate 10 is configured by laminating a plurality of rectangular insulating layers, and has a rectangular parallelepiped outer shape.

外部電極12aは、積層体10の側面に形成され、積層体10の内部に形成されたコンデンサと電気的に接続される。外部電極12bは、外部電極12aが形成された側面に対向する側面に形成され、積層体10の内部に形成されたコンデンサと電気的に接続される。該貫通型三端子コンデンサ1が回路基板に実装された場合、外部電極12a,12bには、所定の電圧値を有する信号電圧が印加される。 The external electrode 12 a is formed on the side surface of the multilayer body 10 and is electrically connected to a capacitor formed inside the multilayer body 10. The external electrode 12 b is formed on a side surface opposite to the side surface on which the external electrode 12 a is formed, and is electrically connected to a capacitor formed in the multilayer body 10. If the through-type three-terminal capacitor 1 is mounted on a circuit board, the external electrodes 12a, the 12b, a signal voltage having a predetermined voltage value is applied.

外部電極12cは、外部電極12a,12bが形成された側面とは別の側面に形成され、積層体10の内部に形成されたコンデンサと電気的に接続される。外部電極12dは、外部電極12cが形成された側面と対向する側面に形成され、積層体10の内部に形成されたコンデンサと電気的に接続される。該貫通型三端子コンデンサ1が回路基板に実装された場合、外部電極12c,12dには、接地電位が印加される。 The external electrode 12 c is formed on a side surface different from the side surface on which the external electrodes 12 a and 12 b are formed, and is electrically connected to a capacitor formed in the multilayer body 10. The external electrode 12d is formed on a side surface opposite to the side surface on which the external electrode 12c is formed, and is electrically connected to a capacitor formed in the multilayer body 10. If the through-type three-terminal capacitor 1 is mounted on a circuit board, the external electrodes 12c, the 12d, the ground potential is applied.

積層体10に内蔵されるコンデンサは、図2に示すように、内部電極14(Thru用内部電極)及び内部電極16(GND用内部電極)が絶縁層と共にz軸方向に交互に積層されることにより構成される。以下に、内部電極14及び内部電極16について、図2及び図3を参照しながら説明する。図3は、貫通型三端子コンデンサ1のxy平面における断面構造図である。より詳細には、図3(a)は、内部電極14が形成された絶縁層13の構成を示した図である。図3(a)において、内部電極16は、点線で示されている。図3(b)は、内部電極16が形成された絶縁層15の構成を示した図である。図3(b)において、内部電極14は、点線で示されている。 As shown in FIG. 2, the capacitor built in the multilayer body 10 has internal electrodes 14 (Thru internal electrodes) and internal electrodes 16 (GND internal electrodes) alternately stacked together with an insulating layer in the z-axis direction. Consists of. Below, the internal electrode 14 and the internal electrode 16 are demonstrated, referring FIG.2 and FIG.3. FIG. 3 is a cross-sectional structure diagram of the feedthrough three-terminal capacitor 1 in the xy plane. More specifically, FIG. 3A is a diagram showing a configuration of the insulating layer 13 in which the internal electrode 14 is formed. In FIG. 3A, the internal electrode 16 is indicated by a dotted line. FIG. 3B is a diagram showing a configuration of the insulating layer 15 in which the internal electrode 16 is formed. In FIG. 3B, the internal electrode 14 is indicated by a dotted line.

内部電極14は、図3(a)に示すように、外部電極12aと外部電極12bとを接続するように、絶縁層13の主面上においてx軸方向に積層体10を貫通するように延在する。内部電極14は、図3(a)に示すように、本体部20及び引き出し部22a,22bを含む。本体部20は、コンデンサ電極を構成し、長方形の四隅が直線状に切り落とされた形状を有する。これにより、本体部20の四隅のそれぞれには、直線状部L1が形成される。なお、図面が煩雑になることを防止するために、左上の隅の直線上部L1にのみ参照符号を付した。   As shown in FIG. 3A, the internal electrode 14 extends so as to penetrate the laminate 10 in the x-axis direction on the main surface of the insulating layer 13 so as to connect the external electrode 12a and the external electrode 12b. Exists. As shown in FIG. 3A, the internal electrode 14 includes a main body portion 20 and lead portions 22a and 22b. The main body 20 constitutes a capacitor electrode and has a shape in which four corners of a rectangle are cut off in a straight line. Thus, linear portions L1 are formed at the four corners of the main body portion 20, respectively. In addition, in order to prevent the drawing from becoming complicated, only the straight upper part L1 at the upper left corner is given a reference symbol.

引き出し部22a,22bはそれぞれ、外部電極12a,12bと本体部20とを接続する。具体的には、本体部20の辺の内、外部電極12aと対向する辺から、引き出し部22aがx軸方向に延在する。また、本体部20の辺の内、外部電極12bと対向する辺から、引き出し部22bがx軸方向に延在する。更に、引き出し部22a,22bのy軸方向における幅は、該引き出し部22a,22bが接続された本体部20の辺の長さよりも短い。   The lead portions 22a and 22b connect the external electrodes 12a and 12b and the main body portion 20, respectively. Specifically, the lead portion 22a extends in the x-axis direction from the side of the main body 20 that faces the external electrode 12a. Further, the lead-out portion 22b extends in the x-axis direction from the side facing the external electrode 12b among the sides of the main body portion 20. Furthermore, the width in the y-axis direction of the lead portions 22a and 22b is shorter than the length of the side of the main body portion 20 to which the lead portions 22a and 22b are connected.

内部電極16は、図3(b)に示すように、外部電極12cと外部電極12dとを接続するように、絶縁層15の主面上においてy軸方向に積層体10を貫通するように延在する。内部電極16は、図3(b)に示すように、本体部30及び引き出し部32a,32bを含む。本体部30は、コンデンサ電極を構成し、長方形の四隅が直線状に切り落とされた形状を有する。これにより、本体部30の四隅のそれぞれには、直線状部L2が形成される。なお、図面が煩雑になることを防止するために、左上の隅の直線上部L2にのみ参照符号を付した。   As shown in FIG. 3B, the internal electrode 16 extends so as to penetrate the laminate 10 in the y-axis direction on the main surface of the insulating layer 15 so as to connect the external electrode 12c and the external electrode 12d. Exists. As shown in FIG. 3B, the internal electrode 16 includes a main body 30 and lead portions 32a and 32b. The main body 30 constitutes a capacitor electrode and has a shape in which four corners of a rectangle are cut off in a straight line. Thereby, linear portions L <b> 2 are formed at the four corners of the main body 30. In addition, in order to prevent the drawing from becoming complicated, only the straight line upper portion L2 at the upper left corner is given a reference symbol.

引き出し部32a,32bはそれぞれ、外部電極12c,12dと本体部30とを接続する。具体的には、本体部30の辺の内、外部電極12cと対向する辺から、引き出し部32aがy軸方向に延在する。また、本体部30の辺の内、外部電極12dと対向する辺から、引き出し部32bがy軸方向に延在する。更に、引き出し部32a,32bのx軸方向における幅は、該引き出し部32a,32bが接続された本体部30の辺の長さよりも短い。   The lead portions 32a and 32b connect the external electrodes 12c and 12d and the main body portion 30, respectively. Specifically, the lead portion 32a extends in the y-axis direction from the side of the main body 30 that faces the external electrode 12c. In addition, the lead portion 32b extends in the y-axis direction from the side facing the external electrode 12d among the sides of the main body 30. Furthermore, the width of the lead portions 32a and 32b in the x-axis direction is shorter than the length of the side of the main body portion 30 to which the lead portions 32a and 32b are connected.

ここで、内部電極14の本体部20と、内部電極16の本体部30との位置関係について図3を参照しながら説明する。本体部20と本体部30とは、z軸方向(積層方向)から見たときに、互いに重なるように配置される。これにより、本体部20と本体部30との間には、容量が形成される。   Here, the positional relationship between the main body 20 of the internal electrode 14 and the main body 30 of the internal electrode 16 will be described with reference to FIG. The main body 20 and the main body 30 are disposed so as to overlap each other when viewed from the z-axis direction (stacking direction). Thereby, a capacity is formed between the main body 20 and the main body 30.

更に、本体部20の四隅に形成された直線状部L1は、図3(a)及び図3(b)に示すように、隣り合う本体部30の直線状部L2と、z軸方向(積層方向)から見たときに重ならない。より詳細には、z軸方向(積層方向)から見たときに、直線状部L1は、直線状部L2よりも、絶縁層13の中心(対角線の交点)から遠くに位置する。   Further, as shown in FIGS. 3A and 3B, the linear portions L1 formed at the four corners of the main body portion 20 are aligned with the linear portions L2 of the adjacent main body portions 30 in the z-axis direction (lamination). Do not overlap when viewed from (direction). More specifically, when viewed from the z-axis direction (stacking direction), the linear portion L1 is located farther from the center (intersection of diagonal lines) of the insulating layer 13 than the linear portion L2.

以上のような、内部電極14が形成された絶縁層13と、内部電極16が形成された絶縁層15とが交互に積層され、更に、その上層及び下層のそれぞれに内部電極が形成されていない外層用絶縁層が積層される。これにより、図2に示すような積層体10が得られる。   As described above, the insulating layer 13 in which the internal electrode 14 is formed and the insulating layer 15 in which the internal electrode 16 is formed are alternately stacked, and no internal electrode is formed on each of the upper and lower layers. An outer insulating layer is laminated. Thereby, the laminated body 10 as shown in FIG. 2 is obtained.

(製造方法について)
次に、貫通型三端子コンデンサ1の製造方法について説明する。まず、チタン酸バリウム等を主成分とする誘電体の原料粉末を溶剤に分散させてセラミックスラリーを調整し、ドクターブレード法によりセラミックスラリーをシート状に成形する。これにより、絶縁層13,15の原料となるセラミックグリーンシートを得る。
(About manufacturing method)
Next, a method for manufacturing the feedthrough three-terminal capacitor 1 will be described. First, a dielectric raw material powder mainly composed of barium titanate or the like is dispersed in a solvent to prepare a ceramic slurry, and the ceramic slurry is formed into a sheet by a doctor blade method. Thereby, the ceramic green sheet used as the raw material of the insulating layers 13 and 15 is obtained.

次に、セラミックグリーンシート上にAg,Pd,Cu,Auやこれらの合金からなる導電性ペーストをスクリーン印刷法により塗布し、図3(a)及び図3(b)に示す内部電極14,16を形成する。以下に、内部電極14,16の形成工程について詳しく説明する。   Next, a conductive paste made of Ag, Pd, Cu, Au or an alloy thereof is applied onto the ceramic green sheet by screen printing, and the internal electrodes 14 and 16 shown in FIGS. 3 (a) and 3 (b) are applied. Form. Below, the formation process of the internal electrodes 14 and 16 is demonstrated in detail.

スクリーン印刷法は、内部電極14,16の形状の開口を有するシートを、セラミックグリーンシート上に配置し、スキージゴム等により導電性ペーストをセラミックグリーンシートに転写することにより行われる。この転写の際、開口の中央部において、開口の縁よりも、スキージゴムにより多くのペーストが掻き取られるサドル現象が発生する。このサドル現象が発生すると、開口の中央部よりも開口の縁の方が、導電性ペーストの膜厚が厚くなってしまう。このように、導電性ペーストの膜厚が厚くなる部分が発生すると、内部電極14,16にも膜厚が厚くなる部分が発生し、かかる部分においてショートが発生する可能性がある。   The screen printing method is performed by placing a sheet having openings in the shape of the internal electrodes 14 and 16 on a ceramic green sheet, and transferring the conductive paste to the ceramic green sheet with a squeegee rubber or the like. During this transfer, a saddle phenomenon occurs in which more paste is scraped off by the squeegee rubber than at the edge of the opening at the center of the opening. When this saddle phenomenon occurs, the film thickness of the conductive paste becomes thicker at the edge of the opening than at the center of the opening. As described above, when a portion where the film thickness of the conductive paste is increased occurs, a portion where the film thickness is increased also occurs in the internal electrodes 14 and 16, and there is a possibility that a short circuit occurs in the portion.

そこで、貫通型三端子コンデンサ1では、内部電極14,16の本体部20,30は、図3(a)及び図3(b)に示すように、長方形の四隅が直線に切り落とされた形状を有するように形成される。すなわち、内部電極14,16と同じ形状の開口を有するシートを用いて、スクリーン印刷を行う。長方形の開口を有するシートを用いてスクリーン印刷を行った場合、長方形の四隅に導電性ペーストが溜まりやすい。したがって、長方形の四隅が切り落とされた形状の開口を有するシートを用いてスクリーン印刷を行うことにより、内部電極14,16の膜厚が均一になる。すなわち、直線状部L1,L2において導電性ペーストの膜厚が厚くなることが防止され、内部電極14,16間におけるショートの発生が防止される。なお、本体部20,30の角は、丸みを持って切り落とされるよりも、直線状に切り落とされる方が好ましい。丸みを持って切り落とされた場合、スクリーン印刷時ににじみが発生してしまうからである。 Therefore, in the feedthrough three-terminal capacitor 1, the main body portions 20 and 30 of the internal electrodes 14 and 16 have a shape in which the four corners of the rectangle are cut off in a straight line, as shown in FIGS. 3 (a) and 3 (b). Formed to have. That is, screen printing is performed using a sheet having an opening having the same shape as the internal electrodes 14 and 16. When screen printing is performed using a sheet having a rectangular opening, the conductive paste tends to accumulate at the four corners of the rectangle. Therefore, the film thickness of the internal electrodes 14 and 16 is made uniform by performing screen printing using a sheet having an opening in which the four corners of the rectangle are cut off. That is, the conductive paste is prevented from becoming thick in the linear portions L1 and L2, and the occurrence of a short circuit between the internal electrodes 14 and 16 is prevented. In addition, it is more preferable that the corners of the main body portions 20 and 30 are cut off in a straight line rather than being rounded off. This is because if the image is cut off with roundness, bleeding occurs during screen printing.

ところで、スキージゴムの進行方向に対して開口の幅が相対的に広いところでは、導電性ペーストが薄く塗布され、開口の幅が相対的に狭いところでは、導電性ペーストが厚く塗布される。そこで、スキージゴムを図3(a)においてx軸方向に移動させ、かつ、図3(b)においてy軸方向に移動させる場合には、スキージゴムのスキージング時の圧力を、スクリーン印刷中において一定とすることが好ましい。これにより、本体部20,30は、相対的に薄く形成され、引き出し部22a,22b,32a,32bは、相対的に厚く形成される。その結果、引き出し部22a,22b,32a,32bと、外部電極12a,12b,12c,12dとをより確実に接続することが可能となる。   By the way, when the width of the opening is relatively wide with respect to the traveling direction of the squeegee rubber, the conductive paste is applied thinly, and when the width of the opening is relatively narrow, the conductive paste is applied thickly. Therefore, when the squeegee rubber is moved in the x-axis direction in FIG. 3A and in the y-axis direction in FIG. 3B, the pressure during squeegee rubber squeezing is constant during screen printing. It is preferable to do. Thereby, the main-body parts 20 and 30 are formed relatively thin, and the lead-out parts 22a, 22b, 32a, and 32b are formed relatively thick. As a result, the lead portions 22a, 22b, 32a, 32b and the external electrodes 12a, 12b, 12c, 12d can be more reliably connected.

次に、内部電極14,16が形成されていない外層用セラミックグリーンシートを複数枚積層し、これらを圧着する。更に、該外層用セラミックグリーンシート上に、内部電極14が形成されたセラミックグリーンシートと、内部電極16が形成されたセラミックグリーンシートとを交互に積層し、これらを圧着する。更に、内部電極14,16が形成されたセラミックグリーンシートの上に、外層用セラミックグリーンシートを複数枚積層し、圧着する。これにより、未焼成の積層体ブロックが得られる。   Next, a plurality of outer-layer ceramic green sheets on which the internal electrodes 14 and 16 are not formed are stacked and pressure-bonded. Further, the ceramic green sheet on which the internal electrode 14 is formed and the ceramic green sheet on which the internal electrode 16 is formed are alternately laminated on the ceramic green sheet for outer layer, and these are pressure-bonded. Further, a plurality of ceramic green sheets for outer layers are laminated on the ceramic green sheet on which the internal electrodes 14 and 16 are formed, and pressure-bonded. Thereby, an unfired laminated body block is obtained.

次に、未焼成の積層体ブロックを所定のサイズにカットして、未焼成の積層体を得る。この後、該未焼成の積層体を焼成することにより、積層体10を得る。   Next, the unfired laminate block is cut into a predetermined size to obtain an unfired laminate. Thereafter, the unfired laminate is fired to obtain the laminate 10.

次に、積層体10の外部電極12a,12b,12c,12dが形成されるべき領域に、Cuペーストを塗布し、焼成する。更に、焼成されたCuペースト上に、Ni、Snの順にめっきを施すことにより、外部電極12a,12b,12c,12dを得る。なお、Niのめっき層の厚さ及びSnのめっき層の厚さはそれぞれ、0.7〜8.0μm及び1.5〜8.0μmである。以上の工程により、図1に示すような貫通型三端子コンデンサ1が完成する。 Next, a Cu paste is applied to the region where the external electrodes 12a, 12b, 12c, and 12d of the multilayer body 10 are to be formed and baked. Furthermore, by plating Ni and Sn in this order on the fired Cu paste, the external electrodes 12a, 12b, 12c and 12d are obtained. The thickness of the Ni plating layer and the thickness of the Sn plating layer are 0.7 to 8.0 μm and 1.5 to 8.0 μm, respectively. Through the above steps, the feedthrough three-terminal capacitor 1 as shown in FIG. 1 is completed.

(効果)
以上のように、貫通型三端子コンデンサ1によれば、引き出し部22a,22b,32a,32bの幅が、該引き出し部22a,22b,32a,32bが接続された本体部20,30の辺の長さよりも短い。そのため、引き出し部22a,22b,32a,32bの幅が、該引き出し部22a,22b,32a,32bが接続された本体部20,30の辺の長さと同等である場合に比べて、絶縁層13,15間の接触面積が大きくなる。その結果、絶縁層13,15間の密着度が向上し、絶縁層13,15間における剥離が防止される。以下に、本願発明者が行った実験について図面を参照しながら説明する。図5は、貫通型三端子コンデンサ1と従来の貫通型三端子コンデンサとにおける、絶縁層の剥離の発生率を示したグラフである。
(effect)
As described above, according to the feedthrough three-terminal capacitor 1, the widths of the lead portions 22a, 22b, 32a, and 32b are equal to the sides of the main body portions 20 and 30 to which the lead portions 22a, 22b, 32a, and 32b are connected. Shorter than length. Therefore, compared with the case where the width of the lead portions 22a, 22b, 32a, 32b is equal to the length of the sides of the main body portions 20, 30 to which the lead portions 22a, 22b, 32a, 32b are connected, the insulating layer 13 , 15 increases the contact area. As a result, the adhesion between the insulating layers 13 and 15 is improved, and peeling between the insulating layers 13 and 15 is prevented. Hereinafter, experiments conducted by the present inventors will be described with reference to the drawings. FIG. 5 is a graph showing the rate of occurrence of peeling of the insulating layer in the feedthrough three-terminal capacitor 1 and the conventional feedthrough three terminal capacitor .

本願発明者は、貫通型三端子コンデンサ1として、図3(a)のD地点の内部電極14の幅が1.05mmであり、A地点の内部電極14の幅が0.93mm及び0.85mmの貫通型三端子コンデンサ1を準備した。また、本願発明者は、従来の貫通型三端子コンデンサとして、A地点及びD地点の内部電極の幅が共に1.05mmである貫通型三端子コンデンサを準備した。そして、これら3種類の貫通型三端子コンデンサについて、絶縁層の剥離の発生率を調べた。 The inventor of the present application, as the feedthrough three-terminal capacitor 1, has a width of the internal electrode 14 at point D in FIG. 3A of 1.05 mm, and the width of the internal electrode 14 at point A is 0.93 mm and 0.85 mm. A through-type three-terminal capacitor 1 was prepared. The inventor of the present application prepared a feedthrough three-terminal capacitor in which the widths of the internal electrodes at point A and point D were both 1.05 mm as a conventional feedthrough three terminal capacitor . Then, with respect to these three types of feedthrough three-terminal capacitors , the occurrence rate of insulation layer peeling was examined.

図5のグラフによれば、内部電極14のA地点の幅(すなわち、引き出し部22aの幅)を、本体部20の幅よりも狭くした場合(A地点の内部電極14の幅が0.93mm及び0.85mmの場合)には、剥離の発生率は0%であった。一方、内部電極のA地点の幅(すなわち、引き出し部22aの幅)と、本体部の幅とを等しくした場合には、剥離の発生率は0.08〜0.16%であった。以上より、引き出し部22a,22b,32a,32bの幅を、該引き出し部22a,22b,32a,32bが接続された本体部20,30の辺の長さよりも短くすることにより、絶縁層13,15間における剥離を防止できることが理解できる。   According to the graph of FIG. 5, when the width of the internal electrode 14 at the point A (that is, the width of the lead portion 22a) is narrower than the width of the main body portion 20 (the width of the internal electrode 14 at the point A is 0.93 mm). And 0.85 mm), the occurrence rate of peeling was 0%. On the other hand, when the width of the internal electrode at point A (that is, the width of the lead portion 22a) and the width of the main body portion were made equal, the occurrence rate of peeling was 0.08 to 0.16%. As described above, by making the width of the lead portions 22a, 22b, 32a, 32b shorter than the length of the sides of the main body portions 20, 30 to which the lead portions 22a, 22b, 32a, 32b are connected, It can be understood that the peeling between 15 can be prevented.

また、引き出し部22a,22b,32a,32bの幅が、該引き出し部22a,22b,32a,32bが接続された本体部20,30の辺の長さよりも短いので、引き出し部22a,22b,32a,32bと外部電極12a,12b,12c,12dとをより確実に接続することができる。以下に、図4を参照しながら説明する。図4は、図3(a)のA,B,C,Dの4箇所における内部電極14のy軸方向における幅と、内部電極14の厚みとの関係を示したグラフである。なお、縦軸は、内部電極14の厚みを示し、横軸は、内部電極14の幅を示す。   Further, since the widths of the lead portions 22a, 22b, 32a, 32b are shorter than the lengths of the sides of the main body portions 20, 30 to which the lead portions 22a, 22b, 32a, 32b are connected, the lead portions 22a, 22b, 32a. , 32b and the external electrodes 12a, 12b, 12c, 12d can be more reliably connected. This will be described below with reference to FIG. FIG. 4 is a graph showing the relationship between the width in the y-axis direction of the internal electrode 14 and the thickness of the internal electrode 14 at four locations A, B, C, and D in FIG. The vertical axis indicates the thickness of the internal electrode 14, and the horizontal axis indicates the width of the internal electrode 14.

前記のように、スキージゴムの圧力を一定にしてスクリーン印刷を行った場合、開口の幅が相対的に広いところでは導電性ペーストの塗布厚が相対的に薄くなり、開口の幅が相対的に狭いところでは導電性ペーストの塗布厚が相対的に厚くなる。例えば、図4に示すように、内部電極14のy軸方向の幅が600μmであるC地点及びD地点では、内部電極14の厚みは、1.0〜3.0μmに分布しているのに対して、内部電極14のy軸方向の幅が500μmであるB地点及び200μmであるA地点では、内部電極14の厚みはそれぞれ、1.3〜3.4μm及び1.5〜3.5μmとなっている。すなわち、内部電極14の引き出し部22a,22b(A地点、B地点)の厚みは、内部電極14の本体部20(C地点、D地点)よりも厚く形成されていることが理解できる。このように、内部電極14の引き出し部22a,22bが厚く形成されることにより、内部電極14と外部電極12a,12bとがより確実に接続されるようになる。   As described above, when screen printing is performed with the pressure of the squeegee rubber being constant, the coating thickness of the conductive paste is relatively thin and the opening width is relatively narrow where the opening width is relatively wide. By the way, the coating thickness of the conductive paste becomes relatively thick. For example, as shown in FIG. 4, the thickness of the internal electrode 14 is distributed in the range of 1.0 to 3.0 μm at the point C and the point D where the width in the y-axis direction of the internal electrode 14 is 600 μm. On the other hand, at the point B where the width of the internal electrode 14 in the y-axis direction is 500 μm and the point A where the width is 200 μm, the thickness of the internal electrode 14 is 1.3 to 3.4 μm and 1.5 to 3.5 μm, respectively. It has become. That is, it can be understood that the lead portions 22a and 22b (points A and B) of the internal electrode 14 are formed thicker than the main body portion 20 (points C and D) of the internal electrode 14. As described above, since the lead portions 22a and 22b of the internal electrode 14 are formed thick, the internal electrode 14 and the external electrodes 12a and 12b are more reliably connected.

また、貫通型三端子コンデンサ1では、本体部20,30の四隅が直線状に切り落とされているので、本体部20,30の四隅における厚さが、本体部20,30の他の部分の厚さと略等しくなる。すなわち、貫通型三端子コンデンサ1は、内部電極14,16間においてショートが発生しにくい構造をとっている。更に、貫通型三端子コンデンサ1では、直線状部L1と直線状部L2とが重ならないように、内部電極14と内部電極16とが配置されている。すなわち、貫通型三端子コンデンサ1では、内部電極14,16間でショートが発生しやすい部分を遠ざけている。その結果、隣り合う内部電極14,16間でショートが発生することがより確実に防止される。なお、本願発明者の実験によれば、従来の貫通型三端子コンデンサでは、内部電極間でのショートの発生率は、2.5%であったのに対して、貫通型三端子コンデンサ1では、内部電極14,16間でのショートの発生率は、0.6%であった。なお、従来の貫通型三端子コンデンサとして、本体部20,30の四隅が直線状に切り落とされていない貫通型三端子コンデンサを用いた。 Further, in the feedthrough three-terminal capacitor 1, the four corners of the main body portions 20, 30 are cut off in a straight line. Is almost equal. That is, the feedthrough three-terminal capacitor 1 has a structure in which a short circuit is unlikely to occur between the internal electrodes 14 and 16. Further, in the feedthrough three-terminal capacitor 1, the internal electrode 14 and the internal electrode 16 are disposed so that the linear portion L1 and the linear portion L2 do not overlap. That is, in the feedthrough three-terminal capacitor 1, a portion where a short circuit is likely to occur between the internal electrodes 14 and 16 is kept away. As a result, the occurrence of a short circuit between the adjacent internal electrodes 14 and 16 is more reliably prevented. According to the experiments by the inventors of the present application, in the conventional feedthrough three-terminal capacitor , the occurrence rate of the short circuit between the internal electrodes was 2.5%, whereas in the feedthrough three-terminal capacitor 1 The occurrence rate of short circuit between the internal electrodes 14 and 16 was 0.6%. As conventional through-type three-terminal capacitor, using the through-type three-terminal capacitor four corners of the main body portion 20 and 30 is not cut off in a straight line.

更に、貫通型三端子コンデンサ1では、引き出し部22a,22bは、図3(a)に示すように、一定の幅を有している。そのため、貫通型三端子コンデンサ1のカット時にx軸方向にズレが生じたとしても、引き出し部22a,22bの幅は変化しない。そのため、内部電極14の抵抗値(RDC(信号間直流抵抗))が変動しにくい。 Furthermore, in the feedthrough three-terminal capacitor 1, the lead portions 22a and 22b have a certain width as shown in FIG. Therefore, even if a deviation occurs in the x-axis direction when the feedthrough three-terminal capacitor 1 is cut, the widths of the lead portions 22a and 22b do not change. Therefore, the resistance value (RDC (DC resistance between signals)) of the internal electrode 14 is not easily changed.

また、図3に示すように、引き出し部22a,22bが形成されている領域には、積層方向から見たときに、本体部30が形成されていない。更に、引き出し部32a,32bが形成されている領域には、積層方向から見たときに、本体部20が形成されていない。そのため、引き出し部22a,22b,32a,32bが厚く形成されたとしても、圧着時に、本体部20,30により該引き出し部22a,22b,32a,32bが圧迫されて、押しつぶされてしまうおそれがない。その結果、引き出し部22a,22b,32a,32bと外部電極12a,12b,12c,12dとが接続されるようになる。   Further, as shown in FIG. 3, the main body 30 is not formed in the region where the lead portions 22a and 22b are formed when viewed from the stacking direction. Further, the main body 20 is not formed in the region where the lead portions 32a and 32b are formed when viewed from the stacking direction. Therefore, even if the drawer portions 22a, 22b, 32a, and 32b are formed thick, there is no possibility that the drawer portions 22a, 22b, 32a, and 32b are pressed and crushed by the main body portions 20 and 30 during crimping. . As a result, the lead portions 22a, 22b, 32a, 32b and the external electrodes 12a, 12b, 12c, 12d are connected.

(変形例)
以下に、本実施形態に係る貫通型三端子コンデンサ1の変形例について図6ないし図8を参照しながら説明する。図6は、第1の変形例に係る貫通型三端子コンデンサ1の内部電極14,16の重なりの様子を示した図である。図7は、第2の変形例に係る貫通型三端子コンデンサ1の内部電極14,16の重なりの様子を示した図である。図8は、第3の変形例に係る貫通型三端子コンデンサ1の内部電極14,16の重なりの様子を示した図である。なお、図6ないし図8では、内部電極16は点線で示してある。
(Modification)
Hereinafter, modified examples of the feedthrough three-terminal capacitor 1 according to the present embodiment will be described with reference to FIGS. FIG. 6 is a diagram illustrating a state in which the internal electrodes 14 and 16 of the feedthrough three-terminal capacitor 1 according to the first modification are overlapped. FIG. 7 is a diagram illustrating a state in which the internal electrodes 14 and 16 of the feedthrough three-terminal capacitor 1 according to the second modification are overlapped. FIG. 8 is a diagram showing an overlapping state of the internal electrodes 14 and 16 of the feedthrough three-terminal capacitor 1 according to the third modification. 6 to 8, the internal electrode 16 is indicated by a dotted line.

図6に示すように、z軸方向(積層方向)から見たときに、直線状部L2は、直線状部L1よりも、絶縁層13の中心(対角線の交点)から遠くに位置していてもよい。なお、かかる構造を内部電極16の形状を変更せずに実現する場合には、引き出し部22a,22bのy軸方向の幅を、図3の引き出し部22a,22bのy軸方向の幅よりも狭くすればよい。   As shown in FIG. 6, when viewed from the z-axis direction (stacking direction), the linear portion L2 is located farther from the center (intersection of diagonal lines) of the insulating layer 13 than the linear portion L1. Also good. In the case where such a structure is realized without changing the shape of the internal electrode 16, the width in the y-axis direction of the lead portions 22a and 22b is made larger than the width in the y-axis direction of the lead portions 22a and 22b in FIG. Narrow it.

図7に示すように、内部電極14のx軸方向に延びる辺が内部電極16のx軸方向に延びる辺よりも、絶縁層13の中心(対角線の交点)の近くに位置し、内部電極16のy軸方向に延びる辺が内部電極14のy軸方向に延びる辺よりも、絶縁層15の中心の近くに位置してもよい。また、図8に示すように、内部電極14のx軸方向に延びる辺が内部電極16のx軸方向に延びる辺よりも、絶縁層13の中心(対角線の交点)の遠くに位置し、内部電極16のy軸方向に延びる辺が内部電極14のy軸方向に延びる辺よりも、絶縁層15の中心の遠くに位置してもよい。   As shown in FIG. 7, the side extending in the x-axis direction of the internal electrode 14 is located closer to the center (intersection of diagonal lines) of the insulating layer 13 than the side extending in the x-axis direction of the internal electrode 16. The side extending in the y-axis direction may be located closer to the center of the insulating layer 15 than the side extending in the y-axis direction of the internal electrode 14. Further, as shown in FIG. 8, the side extending in the x-axis direction of the internal electrode 14 is located farther from the center (intersection of diagonal lines) of the insulating layer 13 than the side extending in the x-axis direction of the internal electrode 16. The side extending in the y-axis direction of the electrode 16 may be located farther from the center of the insulating layer 15 than the side extending in the y-axis direction of the internal electrode 14.

本発明の一実施形態に係る貫通型三端子コンデンサの外観斜視図である。1 is an external perspective view of a feedthrough three-terminal capacitor according to an embodiment of the present invention. 図2(a)は、前記貫通型三端子コンデンサのxz平面における断面構造図であり、図2(b)は、前記貫通型三端子コンデンサのyz平面における断面構造図である。2A is a cross-sectional structure diagram of the feedthrough three-terminal capacitor in the xz plane, and FIG. 2B is a cross-sectional structure diagram of the feedthrough three-terminal capacitor in the yz plane. 図3(a)は、内部電極が形成された絶縁層の構成を示した図である。図3(b)は、内部電極が形成された絶縁層の構成を示した図である。FIG. 3A is a diagram showing a configuration of an insulating layer on which internal electrodes are formed. FIG. 3B is a diagram showing the configuration of the insulating layer on which the internal electrode is formed. 図3(a)のA,B,C,Dの4箇所における内部電極のy軸方向における幅と、内部電極の厚みとの関係を示したグラフである。4 is a graph showing the relationship between the width in the y-axis direction of the internal electrode at four locations A, B, C, and D in FIG. 3A and the thickness of the internal electrode. 貫通型三端子コンデンサにおける、絶縁層の剥離の発生率を示したグラフである。It is the graph which showed the incidence rate of exfoliation of an insulating layer in a penetration type three terminal capacitor . 第1の変形例に係る貫通型三端子コンデンサの内部電極の重なりの様子を示した図であるIt is the figure which showed the mode of the overlap of the internal electrode of the penetration type | mold three terminal capacitor which concerns on a 1st modification. 第2の変形例に係る貫通型三端子コンデンサの内部電極の重なりの様子を示した図である。It is the figure which showed the mode of the overlap of the internal electrode of the penetration type | mold three terminal capacitor which concerns on a 2nd modification. 第3の変形例に係る貫通型三端子コンデンサの内部電極の重なりの様子を示した図である。It is the figure which showed the mode of the overlap of the internal electrode of the penetration type | mold three terminal capacitor which concerns on a 3rd modification. 従来の貫通型三端子電子部品の分解図である。It is an exploded view of the conventional penetration type 3 terminal electronic parts.

貫通型三端子コンデンサ
10 積層体
12a,12b,12c,12d 外部電極
13,15 絶縁層
14,16 内部電極
20,30 本体部
22a,22b,32a,32b 引き出し部
L1,L2 直線状部
1 through-type three-terminal capacitor 10 laminated body 12a, 12b, 12c, 12d external electrode 13, 15 insulating layer 14, 16 internal electrode 20, 30 body 22a, 22b, 32a, 32b lead-out part L1, L2 linear part

Claims (2)

複数の絶縁層が積層されて構成された積層体と、
前記複数の絶縁層と共に積層された複数の内部電極と、
前記積層体の側面に形成された複数の外部電極と、
を備え、
前記複数の内部電極は、
四角形の四隅が直線状に切り落とされた形状を有する本体部と、
前記本体部と前記外部電極とを接続している引き出し部と、
を含み、
前記引き出し部の幅は、該引き出し部が接続された前記本体部の辺の長さよりも短く、
前記本体部の四隅に形成された直線状部は、隣り合う本体部の直線状部と、積層方向から見たときに重なっていないこと、
前記複数の内部電極は、第1の内部電極と第2の内部電極とを含んでおり、かつ、コンデンサを構成しており、
前記第1の内部電極は、互いに対向する前記積層体の第1の側面と第2の側面とに形成されている前記外部電極に接続された2つの引き出し部を含み、
前記第2の内部電極は、互いに対向する前記積層体の第3の側面と第4の側面とに形成されている前記外部電極に接続された2つの引き出し部を含み、
前記第1の内部電極の全ての前記直線状部は、積層方向から平面視したときに前記第2の内部電極と重なっておらず、
前記第1の側面及び前記第2の側面に形成された前記外部電極には信号電位が接続され、
前記第3の側面及び前記第4の側面に形成された前記外部電極には接地電位が接続されること、
を特徴とする貫通型三端子コンデンサ
A laminated body constituted by laminating a plurality of insulating layers;
A plurality of internal electrodes laminated together with the plurality of insulating layers;
A plurality of external electrodes formed on a side surface of the laminate;
With
The plurality of internal electrodes are:
A main body having a shape in which four corners of a quadrangle are cut off in a straight line;
A lead portion connecting the main body portion and the external electrode;
Including
The width of the drawer part is shorter than the length of the side of the main body part to which the drawer part is connected,
The linear portions formed at the four corners of the main body portion do not overlap with the linear portions of the adjacent main body portions when viewed from the stacking direction,
The plurality of internal electrodes include a first internal electrode and a second internal electrode, and constitute a capacitor,
The first internal electrode includes two lead portions connected to the external electrode formed on the first side surface and the second side surface of the stacked body facing each other,
The second internal electrode includes two lead portions connected to the external electrode formed on a third side surface and a fourth side surface of the stacked body facing each other,
All of the linear portions of the first internal electrode do not overlap the second internal electrode when viewed in plan from the stacking direction,
A signal potential is connected to the external electrodes formed on the first side surface and the second side surface,
A ground potential is connected to the external electrodes formed on the third side surface and the fourth side surface;
Feedthrough type three-terminal capacitor .
前記引き出し部が形成されている領域には、積層方向から見たときに、前記本体部が形成されていないこと、
を特徴とする請求項1に記載の貫通型三端子コンデンサ
In the region where the lead portion is formed, the main body portion is not formed when viewed from the stacking direction,
The feedthrough three-terminal capacitor according to claim 1.
JP2007139426A 2007-05-25 2007-05-25 Feed-through three-terminal capacitor Active JP4983400B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007139426A JP4983400B2 (en) 2007-05-25 2007-05-25 Feed-through three-terminal capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007139426A JP4983400B2 (en) 2007-05-25 2007-05-25 Feed-through three-terminal capacitor

Publications (2)

Publication Number Publication Date
JP2008294298A JP2008294298A (en) 2008-12-04
JP4983400B2 true JP4983400B2 (en) 2012-07-25

Family

ID=40168695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007139426A Active JP4983400B2 (en) 2007-05-25 2007-05-25 Feed-through three-terminal capacitor

Country Status (1)

Country Link
JP (1) JP4983400B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI581284B (en) * 2014-12-26 2017-05-01 Taiyo Yuden Kk Through type laminated ceramic capacitors

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5035318B2 (en) * 2009-10-23 2012-09-26 Tdk株式会社 Multilayer capacitor
KR101197787B1 (en) * 2010-10-29 2012-11-05 삼성전기주식회사 A Multi-Layered Ceramic Capacitor and a manufacturing method thereof
JP2012156315A (en) * 2011-01-26 2012-08-16 Murata Mfg Co Ltd Multilayer ceramic electronic component
KR101832490B1 (en) * 2011-05-31 2018-02-27 삼성전기주식회사 Multilayer ceramic capacitor
KR101922863B1 (en) * 2011-05-31 2018-11-28 삼성전기 주식회사 Laminated ceramic electronic component and manufacturing method threreof
JP5811152B2 (en) 2012-11-05 2015-11-11 株式会社村田製作所 MULTILAYER CERAMIC ELECTRONIC COMPONENT, METHOD FOR MANUFACTURING THE SAME, TAPING ELECTRONIC COMPONENT RANGE, METHOD FOR MANUFACTURING THE SAME, AND METHOD FOR DIRECTION IDENTIFICATION
US9922770B2 (en) 2014-12-26 2018-03-20 Taiyo Yuden Co., Ltd. Through-type multilayer ceramic capacitor
JP6848399B2 (en) * 2016-12-02 2021-03-24 株式会社村田製作所 Manufacturing method of laminated electronic components
WO2023223730A1 (en) * 2022-05-20 2023-11-23 株式会社村田製作所 Multilayer ceramic capacitor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3812377B2 (en) * 2001-07-10 2006-08-23 株式会社村田製作所 Through-type three-terminal electronic components
JP3879605B2 (en) * 2002-07-09 2007-02-14 株式会社村田製作所 Multilayer ceramic capacitor and manufacturing method thereof
JP4753275B2 (en) * 2003-01-27 2011-08-24 株式会社村田製作所 Multilayer ceramic electronic components
JP4501437B2 (en) * 2004-01-27 2010-07-14 株式会社村田製作所 Multilayer ceramic capacitor and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI581284B (en) * 2014-12-26 2017-05-01 Taiyo Yuden Kk Through type laminated ceramic capacitors

Also Published As

Publication number Publication date
JP2008294298A (en) 2008-12-04

Similar Documents

Publication Publication Date Title
JP4983400B2 (en) Feed-through three-terminal capacitor
US8508912B2 (en) Capacitor and method for manufacturing the same
US8654504B2 (en) Monolithic ceramic electronic component
JP5810706B2 (en) Electronic components
KR101983129B1 (en) Multi-layered ceramic electronic parts and method of manufacturing the same
KR102004776B1 (en) Multi-layered ceramic electronic parts and board having the same mounted thereon
JP5777179B2 (en) Multilayer ceramic electronic component for built-in substrate and printed circuit board with built-in multilayer ceramic electronic component
JP2010092896A (en) Multilayer ceramic electronic component and method of manufacturing the same
US10984939B2 (en) Multilayer coil component
CN110739151A (en) Multilayer capacitor
JP2020057738A (en) Electronic component, circuit board, and mounting method of electronic component onto circuit board
JP6540069B2 (en) Multilayer feedthrough capacitor
US20180233287A1 (en) Capacitor component
JP2014022713A (en) Multilayer ceramic electronic component and method of manufacturing the same
US11145464B2 (en) Multilayer ceramic capacitor and method of manufacturing the same
US11527358B2 (en) Multilayer ceramic capacitor
JP7103573B2 (en) Capacitors and their manufacturing methods
US11670456B2 (en) Multilayer ceramic capacitor and method of manufacturing the same
CN113035569A (en) Multilayer ceramic capacitor and method for manufacturing the same
KR20190116127A (en) Capacitor component
JP5769487B2 (en) Capacitor
US10388459B2 (en) Multilayer electronic component
US20230253156A1 (en) Multilayer electronic component
US20230260706A1 (en) Multilayer electronic component
JP5915800B2 (en) Electronic components

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100305

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120202

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120327

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120409

R150 Certificate of patent or registration of utility model

Ref document number: 4983400

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3