JP4983393B2 - Motor drive device - Google Patents

Motor drive device Download PDF

Info

Publication number
JP4983393B2
JP4983393B2 JP2007132508A JP2007132508A JP4983393B2 JP 4983393 B2 JP4983393 B2 JP 4983393B2 JP 2007132508 A JP2007132508 A JP 2007132508A JP 2007132508 A JP2007132508 A JP 2007132508A JP 4983393 B2 JP4983393 B2 JP 4983393B2
Authority
JP
Japan
Prior art keywords
current
motor
voltage
frequency
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007132508A
Other languages
Japanese (ja)
Other versions
JP2008289292A (en
Inventor
光幸 木内
久 萩原
将大 鈴木
哲也 氷上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2007132508A priority Critical patent/JP4983393B2/en
Publication of JP2008289292A publication Critical patent/JP2008289292A/en
Application granted granted Critical
Publication of JP4983393B2 publication Critical patent/JP4983393B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Ac Motors In General (AREA)

Description

本発明はモータ駆動装置に関するもので、特に永久磁石モータのV/f制御によるモータ制御手段に関するものである。   The present invention relates to a motor drive device, and more particularly to a motor control means by V / f control of a permanent magnet motor.

従来、この種のモータ駆動装置は、インバータ回路出力電流を検出し、モータ電流をモータ印加電圧座標軸に座標変換し座標変換後のモータ電流が所定値となるようにV/f制御するようにしていた(例えば、特許文献1参照)。
特開2000−236694号公報
Conventionally, this type of motor drive device detects an inverter circuit output current, performs coordinate conversion of the motor current to a motor applied voltage coordinate axis, and performs V / f control so that the motor current after the coordinate conversion becomes a predetermined value. (For example, see Patent Document 1).
JP 2000-236694 A

しかし、従来のモータ駆動装置はモータ印加電圧位相に対応したモータ電流を瞬時に検出し、モータ印加電圧軸へ座標変換して直流成分に変換していたため、高速A/D変換手段、あるいは高速電流検知手段と高速座標変換手段が必要であり、インバータ回路を制御するマイクロコンピュータなどのプロセッサが高速高価格となる課題があった。さらに、座標変換後の有効電流ベクトルにより制御するため、無負荷、あるいは負荷が回転数に応じて変化するファン、あるいは、ポンプなどの制御において有効電流設定が複雑となる課題があった。   However, since the conventional motor drive device instantaneously detects the motor current corresponding to the motor applied voltage phase, and converts the coordinate to the motor applied voltage axis to convert it into a direct current component, the high speed A / D conversion means or the high speed current Detection means and high-speed coordinate conversion means are required, and there is a problem that a processor such as a microcomputer for controlling the inverter circuit is high-speed and high-priced. Further, since the control is performed by the effective current vector after the coordinate conversion, there is a problem that the effective current setting is complicated in the control of a fan or a pump in which no load or the load changes according to the rotation speed.

また、突極性モータ(IPMSM)の如き高速回転で進み角制御が必要となる場合において、進み角制御が困難となる課題があった。   Further, when the lead angle control is required at a high speed rotation such as a saliency motor (IPMSM), there is a problem that the lead angle control becomes difficult.

本発明は、上記従来の課題を解決するもので、基本的に座標変換せず、かつ安価な電流センサによりセンサレス正弦波駆動が可能であり、トルク変動の大きい負荷や、回転数に応じてトルクが変動する負荷や、進み角制御が必要な突極性モータでもV/f制御による正弦波駆動が可能となり、安価で低速のプロセッサと簡単な制御プログラムによりセンサレス正弦波駆動可能なモータ駆動装置を実現することを目的とするものである。   The present invention solves the above-described conventional problems, and is basically capable of sensorless sine wave drive with an inexpensive current sensor without coordinate conversion, and with a torque that varies depending on the load with large torque fluctuations and the rotational speed. Sine wave drive by V / f control is possible even for saliency motors that require variable lead and lead angle control, and a motor drive device that can drive sensorless sine waves with an inexpensive, low-speed processor and simple control program It is intended to do.

上記従来の課題を解決するために、本発明のモータ駆動装置は、直流電源と、前記直流電源の直流電力を交流電力に変換するインバータ回路と、前記インバータ回路により駆動される永久磁石同期モータと、前記モータにより駆動されるファンあるいはポンプ負荷と、前記インバータ回路直流電流のピーク値を検出する電流検出手段と、前記電流検出手段の出力信号により前記インバータ回路を制御して前記モータを正弦波駆動する制御手段よりなり、前記制御手段は、前記インバータ回路の出力周波数を設定する周波数設定手段と、前記周波数設定手段の出力信号により前記インバータ回路出力電圧を制御する電圧制御手段と、前記モータの電流ピーク値を設定する電流設定手段と、前記電流検出手段の出力信号と前記電流設定手段の出力信号を比較する電流比較手段と、前記電流比較手段の出力信号により前記出力周波数を補正する周波数補正手段と、周波数に応じてモータ電圧を制御するV/f制御手段よりなるものである。 In order to solve the above-described conventional problems, a motor driving device of the present invention includes a DC power supply, an inverter circuit that converts DC power of the DC power supply into AC power, a permanent magnet synchronous motor driven by the inverter circuit, A fan or pump load driven by the motor, current detection means for detecting a peak value of the inverter circuit DC current, and controlling the inverter circuit by an output signal of the current detection means to drive the motor in a sine wave The control means comprises: frequency setting means for setting an output frequency of the inverter circuit; voltage control means for controlling the inverter circuit output voltage according to an output signal of the frequency setting means; and current of the motor Current setting means for setting a peak value; output signal of the current detection means; and output of the current setting means A current comparing means for comparing the item, and the frequency correcting means for correcting the output frequency by the output signal of the current comparator means, those made of V / f control means for controlling the motor voltage in accordance with the frequency.

本発明のモータ駆動装置は、モータ電流のピーク値あるいは回転磁界に相当するモータ電流を検知して設定値となるようにインバータ回路出力周波数と電圧を制御するものであり、突極性あるいは非突極性モータに関わらず乱調せずに安定制御可能となり、さらに、進み角制御においても容易に安定制御可能となり、高速A/D変換手段や高速座標変換手段無しでも制御できるため、安価なプロセッサと簡単な制御プログラムでセンサレス正弦波駆動可能なモータ駆動装置を実現できる。また、簡単で安価な電流センサを使用でき、制御プログラムも簡単となるので安価で信頼性の高いモータ駆動装置を実現でき、さらに、プロセッサの負担が少ないので1つのプロセッサにより複数のモータを同時に制御でき、1プロセッサ複数モータ同時駆動システムを簡単に構成できる。   The motor driving device of the present invention detects the motor current corresponding to the peak value of the motor current or the rotating magnetic field, and controls the inverter circuit output frequency and voltage so as to be a set value. Regardless of the motor, stable control can be performed without turbulence, and also stable control can be easily performed in advance angle control, and control can be performed without high-speed A / D conversion means and high-speed coordinate conversion means. A motor drive device capable of sensorless sine wave drive can be realized by a control program. In addition, a simple and inexpensive current sensor can be used, and the control program can be simplified, so that an inexpensive and highly reliable motor drive device can be realized. Furthermore, since the processor is lightly loaded, a single processor can control multiple motors simultaneously. In addition, a single processor multiple motor simultaneous drive system can be easily configured.

第1の発明は、直流電源と、前記直流電源の直流電力を交流電力に変換するインバータ回路と、前記インバータ回路により駆動される永久磁石同期モータと、前記モータにより駆動されるファンあるいはポンプ負荷と、前記インバータ回路直流電流のピーク値を検出する電流検出手段と、前記電流検出手段の出力信号により前記インバータ回路を制御して前記モータを正弦波駆動する制御手段よりなり、前記制御手段は、前記インバータ回路の出力周波数を設定する周波数設定手段と、前記周波数設定手段の出力信号により前記インバータ回路出力電圧を制御する電圧制御手段と、前記モータの電流ピーク値を設定する電流設定手段と、前記電流検出手段の出力信号と前記電流設定手段の出力信号を比較する電流比較手段と、前記電流比較手段の出力信号により前記出力周波数を補正する周波数補正手段と、周波数に応じてモータ電圧を制御するV/f制御手段よりなるものであり、V/f制御における乱調を防止でき、最大負荷から無負荷まで動作可能で、かつ進み角制御可能であり、電流検知手段とモータ制御プログラムが簡単になり安価で信頼性の高いセンサレス正弦波モータ駆動装置を実現できる A first invention includes a DC power source, an inverter circuit that converts DC power of the DC power source into AC power, a permanent magnet synchronous motor driven by the inverter circuit, and a fan or pump load driven by the motor. The inverter circuit DC current is detected by a current detection means, and the inverter circuit is controlled by an output signal of the current detection means to control the inverter circuit to drive the motor in a sine wave. Frequency setting means for setting an output frequency of the inverter circuit, voltage control means for controlling the inverter circuit output voltage by an output signal of the frequency setting means, current setting means for setting a current peak value of the motor, and the current Current comparison means for comparing the output signal of the detection means and the output signal of the current setting means; and the current comparison means And frequency correction means for correcting the output frequency by the output signal of, which consists of V / f control means for controlling the motor voltage in accordance with the frequency, can be prevented hunting in V / f control, no load from maximum load The sensorless sine wave motor driving apparatus can be realized with a simple and simple current detection means and motor control program, and with a low cost and high reliability .

(実施の形態1)
図1は、本発明の実施の形態1におけるモータ駆動装置のブロック図である。
(Embodiment 1)
FIG. 1 is a block diagram of a motor drive device according to Embodiment 1 of the present invention.

図1において、交流電源1より整流回路よりなる直流電源回路に交流電力を加えて直流電源2を構成し、3相フルブリッジインバータ回路3により直流電力を3相交流電力に変換し、永久磁石モータ4を駆動する。直流電源2は、全波整流回路20の直流出力端子にコンデンサ21a、21bを直列接続し、コンデンサ21a、21bの接続点を交流電源入力の一方の端子に接続して倍電圧整流回路を構成し、インバータ回路3への印加電圧を高くし電流を減らしインバータ回路とモータ損失を減らす。モータ4は空調機の圧縮機や洗濯機の脱水ドラム、あるいはファン・ポンプなどのモータ負荷5を駆動する。インバータ回路3の負電圧側に電流検出手段6を接続し、インバータ回路3に流れる電流を検出することによりインバータ回路3の出力電流、すなわち、モータ4のピーク電流Ip、あるいは、回転磁界に相当する駆動電流を検出する。   In FIG. 1, a DC power source 2 is constructed by applying AC power from an AC power source 1 to a DC power source circuit composed of a rectifier circuit, and DC power is converted into three-phase AC power by a three-phase full-bridge inverter circuit 3. 4 is driven. In the DC power supply 2, capacitors 21a and 21b are connected in series to the DC output terminal of the full-wave rectifier circuit 20, and the connection point of the capacitors 21a and 21b is connected to one terminal of the AC power supply input to constitute a voltage doubler rectifier circuit. The voltage applied to the inverter circuit 3 is increased to reduce the current and reduce the inverter circuit and motor loss. The motor 4 drives a motor load 5 such as a compressor of an air conditioner, a dewatering drum of a washing machine, or a fan / pump. By connecting the current detection means 6 to the negative voltage side of the inverter circuit 3 and detecting the current flowing through the inverter circuit 3, it corresponds to the output current of the inverter circuit 3, that is, the peak current Ip of the motor 4 or the rotating magnetic field. Drive current is detected.

電流検出手段6は、いわゆる1シャント電流検知方式と呼ばれるもので、インバータ回路3の下アームトランジスタのエミッタ端子側に共通接続されたシャント抵抗60と、シャント抵抗60に流れる電流を検知する電流検知回路61より構成される。電流検知回路61は、マイクロコンピュータなどのプロセッサ内蔵のA/D変換回路により電流検出するための信号レベル増幅変換回路とピーク電流検出回路より構成することができる。ピーク電流検出回路はダイオードとコンデンサ、抵抗などのハードウェアより構成する場合と、A/D変換された入力信号をソフトウェアにより大小判定する構成などがあり、詳細は省略する。   The current detection means 6 is a so-called one-shunt current detection method, and is a shunt resistor 60 commonly connected to the emitter terminal side of the lower arm transistor of the inverter circuit 3 and a current detection circuit that detects a current flowing through the shunt resistor 60. 61. The current detection circuit 61 can be composed of a signal level amplification conversion circuit and a peak current detection circuit for detecting current by an A / D conversion circuit built in a processor such as a microcomputer. There are a case where the peak current detection circuit is constituted by hardware such as a diode, a capacitor, and a resistor, and a case where the magnitude of the A / D converted input signal is determined by software, and the details are omitted.

1シャント電流検知方式は、キャリヤ周波数が高い場合や、変調度が大きくなった場合には電流検出不可能領域が出現するので、各位相に対応した瞬時電流を検出する場合には3シャント電流検知方式の方が優れているが、本発明においてはモータ電流のピーク値を検出するので1シャント電流検知方式の方が回路構成が簡単となり、かつ電流検出が容易となる。さらに、インバータ回路のPWM制御を2相変調にするとピーク電流検出が容易となる。勿論、3シャント電流検知方式でも問題はない。   In the 1-shunt current detection method, when the carrier frequency is high or the modulation degree becomes large, a current undetectable region appears. Therefore, when detecting an instantaneous current corresponding to each phase, 3-shunt current detection Although the method is superior, in the present invention, since the peak value of the motor current is detected, the circuit configuration is simpler and the current detection is easier in the one-shunt current detection method. Further, when the inverter circuit PWM control is two-phase modulation, peak current detection is facilitated. Of course, there is no problem with the three-shunt current detection method.

制御手段7は、モータ4のピーク電流Ip、あるいは、回転磁界に相当する駆動電流が設定値となるようにインバータ回路3の出力周波数と出力電圧を制御するもので、インバータ回路出力周波数を設定する周波数設定手段70と、周波数設定手段70の出力信号ωに応じたインバータ出力電圧比を制御する電圧制御手段71と、モータ電流ピーク値Ipを設定する電流設定手段72と、電流設定手段72の出力設定信号ipsと電流検出手段6の出力信号ipを比較する電流比較手段73と、電流比較手段73の出力信号Δipに応じて周波数設定手段70の出力信号ωを補正、あるいはインバータ回路出力電圧位相を補正する周波数補正手段74と、電圧制御手段71の出力信号Vδに応じてインバータ回路3を正弦波状にPWM制御するインバータ制御手段75と、周波数補正手段74の出力角周波数信号ω1を積分して位相信号θを発生させインバータ制御手段75に位相信号θを加える位相信号生成手段76より構成される。   The control means 7 controls the output frequency and output voltage of the inverter circuit 3 so that the peak current Ip of the motor 4 or the drive current corresponding to the rotating magnetic field becomes a set value, and sets the inverter circuit output frequency. Frequency setting means 70, voltage control means 71 for controlling the inverter output voltage ratio according to the output signal ω of frequency setting means 70, current setting means 72 for setting the motor current peak value Ip, and output of the current setting means 72 The current comparison means 73 that compares the setting signal ips with the output signal ip of the current detection means 6, and the output signal ω of the frequency setting means 70 is corrected according to the output signal Δip of the current comparison means 73, or the inverter circuit output voltage phase is changed. The inverter circuit 3 is subjected to PWM control in a sine wave form in accordance with the frequency correction means 74 for correction and the output signal Vδ of the voltage control means 71. A converter control unit 75, and the phase signal generation means 76 for applying the inverter control unit 75 generates a phase signal theta integrates the output angular frequency signal ω1 frequency correction means 74 the phase signal theta.

さらに、電流誤差信号Δipは電圧補正手段77に加えられ、比例積分した後電圧補正信号ΔVδを電圧制御手段71に加え、モータ起動時に電圧制御し定電流制御する。インバータ制御手段75は電圧信号Vδとインバータ回路3の直流母線電圧に応じてインバータ回路3をPWM制御しモータ4に正弦波電圧を印加するもので、通常は2相変調が用いられる。2相変調にするとモータ相間電圧を3相変調よりも高くできるだけではなく、インバータ回路3のスイッチング損失を減らすことができ、さらに、モータ4のピーク電流検出精度を向上させることができる。インバータ回路駆動周波数ωに誘起電圧定数Keを乗じた電圧に補正電圧ΔVδと起動電圧Vsを加えた制御電圧Vδに応じた電圧がモータ4に印加するようにインバータ制御手段75を制御する。Vδは数式1より求められる。   Further, the current error signal Δip is applied to the voltage correction means 77, and after proportional integration, the voltage correction signal ΔVδ is added to the voltage control means 71, and the voltage is controlled and the constant current is controlled when the motor is started. The inverter control means 75 applies PWM control to the inverter circuit 3 in accordance with the voltage signal Vδ and the DC bus voltage of the inverter circuit 3 and applies a sinusoidal voltage to the motor 4, and usually uses two-phase modulation. When the two-phase modulation is used, the motor interphase voltage can be made higher than the three-phase modulation, the switching loss of the inverter circuit 3 can be reduced, and the peak current detection accuracy of the motor 4 can be improved. The inverter control means 75 is controlled so that a voltage corresponding to the control voltage Vδ obtained by adding the correction voltage ΔVδ and the starting voltage Vs to the voltage obtained by multiplying the inverter circuit drive frequency ω by the induced voltage constant Ke is applied to the motor 4. Vδ is obtained from Equation 1.

Figure 0004983393
Figure 0004983393

モータ各相電圧制御信号は電圧制御信号Vδと電気角θから数式2より求められる。   The motor phase control signal is obtained from Equation 2 from the voltage control signal Vδ and the electrical angle θ.

Figure 0004983393
Figure 0004983393

周波数補正手段74は、電流誤差信号Δipに比例してインバータ周波数を補正変更し安定化制御するもので乱調防止と進み角制御を行う。すなわち数式3に従い、モータ電流ipが設定値ipsよりも増加すると、Δipは負になるので、駆動周波数を低下させ、モータ電流ipが設定値ipsよりも低下すると、Δipは正になるので、逆に駆動周波数を増加させる。   The frequency correction means 74 corrects and changes the inverter frequency in proportion to the current error signal Δip to perform stabilization control, and performs turbulence prevention and advance angle control. That is, according to Equation 3, when the motor current ip increases from the set value ips, Δip becomes negative. Therefore, when the drive frequency is decreased and when the motor current ip decreases below the set value ips, Δip becomes positive. Increase the drive frequency.

Figure 0004983393
Figure 0004983393

周波数補正手段74は、後ほど詳細に説明する比例部74aと加算部74bよりなり、比例部74aは、電流誤差信号Δipと比例定数Kfの積を求め、加算部74bは、周波数設定手段70の出力信号ωに、比例部74aの出力信号を加算してインバータ駆動周波数ω1を求める。数式3に示すKfは、周波数設定手段70の出力信号ωと比例定数kの積(Kf=ω・k)から求める。すなわち、設定周波数ωに比例して周波数制御ゲインKfが大となることを意味し、低周波数では比例定数Kfを下げて周波数変化、あるいは位相変化を減らし、高周波数で比例定数Kfを大きくしてモータピーク電流が設定値Ipsとなるように制御する。   The frequency correcting unit 74 includes a proportional unit 74a and an adding unit 74b, which will be described in detail later. The proportional unit 74a calculates a product of the current error signal Δip and the proportionality constant Kf, and the adding unit 74b outputs the output of the frequency setting unit 70. The inverter ω1 is obtained by adding the output signal of the proportional section 74a to the signal ω. Kf shown in Equation 3 is obtained from the product (Kf = ω · k) of the output signal ω of the frequency setting means 70 and the proportionality constant k. That is, it means that the frequency control gain Kf increases in proportion to the set frequency ω. At a low frequency, the proportionality constant Kf is lowered to reduce frequency change or phase change, and at a high frequency, the proportionality constant Kf is increased. Control is performed so that the motor peak current becomes the set value Ips.

図2は、本発明を示す非突極性モータ(SPMSM)の制御ベクトル図であり、モータのロータ磁石軸座標(d−q座標)とモータ印加電圧軸座標(γ−δ座標)の関係を示している。モータ印加電圧軸座標(γ−δ座標)はd−q座標よりも負荷角δ進角し、モータ印加電圧(=インバータ回路出力電圧)Vaはδ軸電圧と等しく、δ軸のみ制御するため、Va=Vδ、Vγ=0となるので座標逆変換は不要で数式2より演算できる。モータ誘起電圧Emはq軸上となり、モータ電流Iのベクトルは、定格負荷でq軸電流Iqとほぼ等しく、あるいは多めとなるように設定する。モータ電流ベクトルIはq軸より位相β進んで表示し、モータ印加電圧Vaはモータ誘起電圧Vmとほぼ等しく設定する。位相φはモータ印加電圧Vaと電流Iの位相(力率角)を示している。負荷トルクが一定ならばIq一定となるので、モータコイル電圧ベクトルωLIは1点鎖線上となり、q軸と平行となるベクトル関係(I=Iq)で最大効率運転(β=0)となり、その時のモータ印加電圧をVa0とすると、モータ印加電圧VaがVa0よりも小さくなると進み角となり、モータ印加電圧VaがVa0よりも大きくなると遅れ角となる。   FIG. 2 is a control vector diagram of the non-saliency motor (SPMSM) showing the present invention, and shows the relationship between the rotor magnet axis coordinates (dq coordinates) of the motor and the motor applied voltage axis coordinates (γ-δ coordinates). ing. Since the motor applied voltage axis coordinate (γ-δ coordinate) is advanced by a load angle δ than the dq coordinate, the motor applied voltage (= inverter circuit output voltage) Va is equal to the δ axis voltage, and only the δ axis is controlled. Since Va = Vδ and Vγ = 0, the reverse coordinate transformation is unnecessary and the calculation can be performed from Equation 2. The motor induced voltage Em is on the q axis, and the vector of the motor current I is set to be approximately equal to or larger than the q axis current Iq at the rated load. The motor current vector I is displayed with a phase β advance from the q axis, and the motor applied voltage Va is set to be substantially equal to the motor induced voltage Vm. The phase φ indicates the phase (power factor angle) between the motor applied voltage Va and the current I. If the load torque is constant, Iq is constant, so the motor coil voltage vector ωLI is on the one-dot chain line, and the vector relationship (I = Iq) parallel to the q axis is the maximum efficiency operation (β = 0). Assuming that the motor applied voltage is Va0, a lead angle is obtained when the motor applied voltage Va is smaller than Va0, and a delay angle is produced when the motor applied voltage Va is larger than Va0.

本発明は、モータ電流Iのピーク値Ipが所定値となるように周波数を制御してモータ印加電圧座標(γ−δ座標)の角速度ω1を制御しq軸からの電流進み角βを制御するもので、結果的に負荷角δを制御することを意味する。また、回転磁界の磁束ΨはインダクタンスLと電流Iの積、すなわち、Ψ=L・Iなので、電流Iを制御することは回転磁束Ψを一定に制御することを意味する。また、モータ相電流Iu、Iv、Iwのピーク値を制御する方法に限らず、実効値を一定制御しても同じとなるこは明白である。 In the present invention, the frequency is controlled so that the peak value Ip of the motor current I becomes a predetermined value, the angular velocity ω1 of the motor applied voltage coordinate (γ-δ coordinate) is controlled, and the current advance angle β from the q axis is controlled. As a result, it means that the load angle δ is controlled. Further, since the magnetic flux Ψ of the rotating magnetic field is a product of the inductance L and the current I, that is, Ψ = L · I, controlling the current I means controlling the rotating magnetic flux Ψ constant. Further, not only the method of controlling the motor phase currents Iu, Iv, the peak value of Iw, is evident from the this to be also constant control the effective value same.

δ軸電流(有効電流)Iδを所定値に制御するIδ一定制御の場合、負荷変動によりδ軸電流Iδが変動するため負荷状態に応じてIδ設定値を変更する必要が生じるが、電流ベクトルIに応じたモータ電流(あるいは、モータピーク電流Ip)を一定に制御する場合には負荷角δと位相φが負荷に応じて自動的に変化するため電流値を変更する必要がない特長がある。   In the case of Iδ constant control in which the δ-axis current (effective current) Iδ is controlled to a predetermined value, the δ-axis current Iδ varies due to load fluctuations. Therefore, it is necessary to change the Iδ setting value according to the load state. When the motor current (or motor peak current Ip) is controlled to be constant, the load angle δ and the phase φ automatically change according to the load, so that there is a feature that it is not necessary to change the current value.

従来の有効電流Iδ一定制御、あるいは無効電流Iγ一定制御においては進み角制御が困難であったが、電流ベクトルI、あるいは電流ピーク値Ipを制御する本発明においては、トルク変動や負荷角変動の影響が電流ベクトルI、あるいはピーク電流Ipの変動として直接現れるため負荷変動の検出に優れており、負荷変動に対する安定化に優れる特長がある。特に、電流ベクトルIがq軸よりも進角する進角制御において、Iδ制御、Iγ制御よりI制御の方がトルク変動が顕著となり、かつ、座標変換が不要なので電流制御対象として有利となる。   In the conventional constant control of the effective current Iδ or the constant control of the reactive current Iγ, the lead angle control is difficult. However, in the present invention for controlling the current vector I or the current peak value Ip, the torque fluctuation and the load angle fluctuation are controlled. Since the influence directly appears as a fluctuation of the current vector I or the peak current Ip, it is excellent in detecting a load fluctuation, and has an advantage of being excellent in stabilization against the load fluctuation. In particular, in the advance angle control in which the current vector I is advanced from the q axis, the I control becomes more significant than the Iδ control and the Iγ control, and the torque fluctuation becomes more significant, and the coordinate conversion is unnecessary, which is advantageous as the current control target.

電流設定値ipsを負荷に応じて最適設定すると高効率運転できるので、負荷トルクと回転数に応じて変更するとよい。また、本発明によれば、起動時から電流設定手段72の設定値を一定にすると、起動トルクを大きくでき、さらに進角制御領域までモータ電流を一定に制御しても安定動作する特長がある。   If the current setting value ips is optimally set according to the load, high-efficiency operation can be performed. Therefore, the current setting value ips may be changed according to the load torque and the rotational speed. Further, according to the present invention, if the set value of the current setting means 72 is made constant from the time of start-up, the start-up torque can be increased, and further stable operation can be achieved even if the motor current is controlled constant up to the advance angle control region. .

周波数補正動作についてさらに説明を加えると、設定値ipsよりもモータ電流ipが増加すると誤差信号Δipは負の値となり周波数補正信号Δω(Δω=Kf×Δi)も負の値となるので、ω1=ω+Δωの制御より補正後の周波数ω1は低下し、γ−δ軸はd−q軸に近づき負荷角δが減少してモータ電流Iは減少するので電流一定制御動作となる。V/f制御はトルク変動があると乱調が発生するが、周波数制御を加えることにより乱調が抑制され回転数変動、あるいは負荷角変動が少なくなる特長があり、トルク変動に起因する乱調による脱調現象も抑制される。さらに、周波数補正ゲインは、設定周波数ωに比例して増加するので、周波数が高くなるほど定電流作用が大きくなり乱調が減少する。図2のベクトル図におけるモータコイル電圧ベクトルωLIは周波数に比例するため、本発明はモータコイル電圧ベクトルに比例してモータ駆動周波数を補正していると考えられる。言い換えれば、駆動周波数が高くなるほどモータコイル電圧ベクトルωLIが増加し、モータコイル電圧ベクトルωLIと負荷角δは相関関係にあるので、負荷角変動、すなわち、乱調現象もモータコイル電圧ベクトルωLIに比例する。よって、モータコイル電圧ベクトルωLIに比例して周波数を補正すれば乱調を減らせることがわかる。   To further explain the frequency correction operation, if the motor current ip increases from the set value ips, the error signal Δip becomes a negative value, and the frequency correction signal Δω (Δω = Kf × Δi) also becomes a negative value, so ω1 = The corrected frequency ω1 is lowered by the control of ω + Δω, the γ-δ axis approaches the dq axis, the load angle δ decreases, and the motor current I decreases, so that the constant current control operation is performed. V / f control causes irregularity when there is torque fluctuation, but by adding frequency control, the irregularity is suppressed and rotation speed fluctuation or load angle fluctuation is reduced. The phenomenon is also suppressed. Further, since the frequency correction gain increases in proportion to the set frequency ω, the higher the frequency, the larger the constant current action and the lower the turbulence. Since the motor coil voltage vector ωLI in the vector diagram of FIG. 2 is proportional to the frequency, it is considered that the present invention corrects the motor driving frequency in proportion to the motor coil voltage vector. In other words, the motor coil voltage vector ωLI increases as the drive frequency increases, and the motor coil voltage vector ωLI and the load angle δ are correlated, so that the load angle fluctuation, that is, the turbulence phenomenon is also proportional to the motor coil voltage vector ωLI. . Therefore, it can be seen that the turbulence can be reduced by correcting the frequency in proportion to the motor coil voltage vector ωLI.

図3は、モータ起動時のインバータ制御電圧、周波数、及び周波数補正ゲインの制御方法を示すグラフである。   FIG. 3 is a graph showing a method for controlling the inverter control voltage, frequency, and frequency correction gain when the motor is started.

起動開始してから目標回転数まで直線的に駆動周波数と周波数に応じた印加電圧を増加させる、いわゆるV/f制御を行い、周波数補正ゲインKfは駆動周波数に比例して増加させる。モータ電流設定値は一定にして電圧制御により起動制御させると起動が容易となる。ファン、あるいはポンプ負荷の場合には、駆動周波数に応じて電流設定値を変更させると高効率運転制御ができる。また、突極性モータはq軸よりも電流進角させるとリラクタンストルクが大となるので、進み角制御するためには設定電流ipsを周波数に比例して大きくするとよい。   A so-called V / f control is performed in which the drive frequency and the applied voltage corresponding to the frequency are linearly increased from the start to the target rotational speed, and the frequency correction gain Kf is increased in proportion to the drive frequency. If the motor current set value is kept constant and the starting control is performed by voltage control, the starting becomes easy. In the case of a fan or pump load, high-efficiency operation control can be performed by changing the current set value according to the drive frequency. Further, since the reluctance torque increases when the saliency motor advances the current more than the q axis, the set current ips may be increased in proportion to the frequency in order to control the advance angle.

また、目標回転数に達するまでの起動時間tsは、負荷の慣性モーメントに応じて変化させることにより乱調を減少させることができる。すなわち、慣性モーメントが大きいほど起動時間tsを長くすると乱調を低くすることができる。   Further, the startup time ts until the target rotational speed is reached can be reduced by changing the start time ts according to the moment of inertia of the load. That is, as the moment of inertia increases, the turbulence can be reduced by increasing the startup time ts.

駆動周波数に応じて周波数補正ゲインKfを変更することにより、起動低速時におけるモータ回転数変動を低下させることができるので、起動時には周波数制御ゲインをほぼ零に設定し、電圧補正手段77により定電流制御を行い、起動後電圧補正手段77の制御信号ΔVδを小さくし、周波数補正手段74により定電流制御することによりモータ電流を正弦波に近づけて起動を容易にすることができる。図3のKfaに示すように、時間に比例して直線的に周波数制御ゲインを上げず、起動初期の周波数制御ゲインはほぼ零に設定し、Kfbに示すように起動途中から制御ゲインを大きくしてもよい。なお、周波数比例制御ゲインを大きくすると発振し易くなり、かつ、ノイズに弱くなるので、電圧補正手段77と周波数補正手段74それぞれにローパスフィルタやリミッタを適宜設けるとよい。なお、周波数補正手段74に遅れ要素や積分要素を加えると乱調が抑制できず、逆に乱調が大きくなるので比例制御とフィルタおよびリミッタの組み合わせにする。   By changing the frequency correction gain Kf in accordance with the drive frequency, it is possible to reduce the motor rotational speed fluctuation at the low start-up speed. Therefore, at the start-up, the frequency control gain is set to almost zero, and the voltage correction means 77 makes the constant current constant. By performing control and reducing the control signal ΔVδ of the voltage correction means 77 after startup and performing constant current control by the frequency correction means 74, the motor current can be made close to a sine wave to facilitate startup. As shown in Kfa of FIG. 3, the frequency control gain is not increased linearly in proportion to the time, the frequency control gain at the start of startup is set to almost zero, and the control gain is increased during the startup as shown in Kfb. May be. It should be noted that if the frequency proportional control gain is increased, oscillation tends to occur and noise is weakened. Therefore, a low-pass filter and a limiter may be appropriately provided in each of the voltage correction unit 77 and the frequency correction unit 74. If a delay element or an integral element is added to the frequency correction means 74, the turbulence cannot be suppressed, and conversely, the turbulence increases. Therefore, a combination of proportional control, a filter and a limiter is used.

図4は、突極性モータ(IPMSM)のベクトル図である。   FIG. 4 is a vector diagram of a saliency motor (IPMSM).

突極性モータは、リラクタンストルクを利用するため進み角制御する必要があり、一般的にq軸よりも電流位相を30度進角させると最大効率運転になるとされている。進み角βを大きくするために負荷角δ(δ=φ+β)を大きくする必要があり、本発明による出力電流一定方式は、インバータ出力電圧を誘起電圧とほぼ同等、あるいは誘起電圧よりも小さく設定し、電流Iを大きく設定することにより負荷角δを大きくすることができる。   Since the saliency motor uses reluctance torque, it is necessary to control the advance angle. Generally, when the current phase is advanced by 30 degrees with respect to the q axis, the maximum efficiency operation is assumed. In order to increase the lead angle β, it is necessary to increase the load angle δ (δ = φ + β). In the constant output current method according to the present invention, the inverter output voltage is set substantially equal to or less than the induced voltage. The load angle δ can be increased by setting the current I large.

非突極性モータ(SPMSM)の場合、インバータ出力電圧Vaとモータ誘起電圧Emをほぼ等しくした場合、余弦定理よりモータ電流Iと負荷角δの関係は数式4より与えられる。   In the case of a non-saliency motor (SPMSM), when the inverter output voltage Va and the motor induced voltage Em are substantially equal, the relationship between the motor current I and the load angle δ is given by Equation 4 from the cosine theorem.

Figure 0004983393
Figure 0004983393

ここで、kLは誘起電圧定数KeとインダクタンスLの比で、kL=Ke/Lで与えられる。モータ電流Iは駆動周波数ω1とは無関係となり負荷角δで決定され、モータ電流Iを制御することにより逆に負荷角δを制御でき、電流進み角βが制御できる。IPMSMの場合もほぼ同様で、モータ誘起電圧Emとインバータ出力電圧Vaがほぼ等しくなるように電圧制御手段71の周波数に対する出力電圧比率を設定し、電流設定手段72によりモータピーク電流を設定することにより負荷角δ、あるいは、電流進み角βを制御できる。   Here, kL is a ratio of the induced voltage constant Ke and the inductance L, and is given by kL = Ke / L. The motor current I is independent of the drive frequency ω1 and is determined by the load angle δ. By controlling the motor current I, the load angle δ can be controlled conversely, and the current advance angle β can be controlled. In the case of IPMSM, the output voltage ratio with respect to the frequency of the voltage control means 71 is set so that the motor induced voltage Em and the inverter output voltage Va are substantially equal, and the motor peak current is set by the current setting means 72. The load angle δ or the current advance angle β can be controlled.

高速運転になるほど誘起電圧Emは大きくなるので、直流母線電圧Vpよりも誘起電圧Emが高くなる電圧飽和となる場合があるので、モータ印加電圧Vaが電圧飽和するとさらに電流進角させる必要があり、そのためには電流設定値ipsを大きくするとよい。周波数が高くなるに従い設定電流値ipsを大きくしてもよいが、電圧飽和を検知してから電流設定値が大きくなるように変更させるとモータ効率を改善できる。電圧飽和の検知(Em>Va)は、モータ誘起電圧Emが駆動周波数ωに比例し(Em=Ke×ω)、モータ印加電圧ピーク値Vapは直流母線電圧Vpと変調度mより求まる(Vap=m×Vp)ので、駆動周波数と直流母線電圧Vp、および変調度を比較するだけで電圧飽和判定できる。   Since the induced voltage Em increases as the driving speed increases, voltage saturation may occur where the induced voltage Em becomes higher than the DC bus voltage Vp. Therefore, when the motor applied voltage Va is saturated, it is necessary to further advance the current. For this purpose, the current set value ips is preferably increased. The set current value ips may be increased as the frequency increases, but the motor efficiency can be improved by changing the current set value to be increased after detecting voltage saturation. In the detection of voltage saturation (Em> Va), the motor induced voltage Em is proportional to the drive frequency ω (Em = Ke × ω), and the motor applied voltage peak value Vap is obtained from the DC bus voltage Vp and the modulation factor m (Vap = m × Vp), voltage saturation determination can be made only by comparing the drive frequency, the DC bus voltage Vp, and the modulation degree.

図5は、2相変調時のPWM信号とシャント抵抗電圧波形と電流検知タイミングを示す図である。   FIG. 5 is a diagram illustrating a PWM signal, a shunt resistance voltage waveform, and a current detection timing during two-phase modulation.

図5において、vcは三角波キャリヤ信号、vu、vvはそれぞれu相、v相の変調信号、up、vp、wpはUVW各相の上アーム制御信号、Vshはシャント抵抗電圧波形を示す。w相下アームトランジスタは強制的に導通させるので、w相変調信号は示していない。   In FIG. 5, vc is a triangular wave carrier signal, vu and vv are u-phase and v-phase modulation signals, up, vp and wp are upper arm control signals for each phase of UVW, and Vsh is a shunt resistance voltage waveform. Since the w-phase lower arm transistor is forced to conduct, the w-phase modulation signal is not shown.

2相変調においてモータピーク電流が現れるパターンは、図5に示すように、1相の上アームのみオンしている区間(t0〜t2、t4〜t5)、あるいは2相の上アームがオンしている区間(t5〜t7)に現れる。2相変調は3相変調と異なり2相のみPWM制御されるのでピーク電流が現れる区間が広くなるのでピーク電流検出が容易となる。   As shown in FIG. 5, the pattern in which the motor peak current appears in the two-phase modulation is a section in which only the upper arm of one phase is turned on (t0 to t2, t4 to t5), or the upper arm of the two phases is turned on. Appear in a certain section (t5 to t7). Unlike the three-phase modulation, the two-phase modulation is PWM-controlled only for the two phases, so that the section where the peak current appears is widened, so that the peak current can be easily detected.

図6は、2相変調時の電流検知タイミング図であり、UVW各相の2変調信号波形と各相電流がシャント抵抗に現れる位相を示している。0から1/3πまでの区間はW相電流IwとV相電流Iv、1/3πから2/3πまでの区間はU相電流IuとV相電流Iv、2/3πからπまでの区間はU相電流IuとW相電流Iwと、順次各相電流が現れる。電流ピーク値が現れる区間は図の矢印で示しているように、各相の中性点からの電圧がピークとなる位相から30度遅れるので、2相変調の2つのピーク近傍で正と負の各相電流のピーク値が出現する。すなわち、区間0から1/3πはIwのピーク値、区間1/3πから2/3πはIvのピーク値、区間2/3πからπまではIuのピーク値と、1周期で計6回ピーク値が出現する。電流位相が電圧位相よりも30度遅れた場合にはピーク電流の検出は容易であるが、60度遅れるとパルス幅が狭くなって電流検出が困難となることを示している。しかしながら、IPMSMの場合には、電圧位相と電流位相の力率角φは小さくなるので、電流ピーク値の検出は容易であり、SPMSMの場合は進角の程度はわずかに設定するので力率角φが大きくなる場合は非常にまれであり、実用上ほとんど問題は発生しない。   FIG. 6 is a current detection timing chart during two-phase modulation, and shows the two modulation signal waveforms of each phase of UVW and the phase at which each phase current appears in the shunt resistor. The interval from 0 to 1 / 3π is the W phase current Iw and the V phase current Iv, the interval from 1 / 3π to 2 / 3π is the U phase current Iu and the V phase current Iv, and the interval from 2 / 3π to π is the U phase. A phase current Iu, a W-phase current Iw, and each phase current appear sequentially. As shown by the arrows in the figure, the section where the current peak value appears is delayed by 30 degrees from the phase at which the voltage from the neutral point of each phase reaches its peak. The peak value of each phase current appears. That is, the interval 0 to 1 / 3π is the peak value of Iw, the interval 1 / 3π to 2 / 3π is the peak value of Iv, the interval 2 / 3π to π is the peak value of Iu, and the peak value is 6 times in one period. Appears. When the current phase is delayed by 30 degrees from the voltage phase, it is easy to detect the peak current. However, when the current phase is delayed by 60 degrees, the pulse width is narrowed, indicating that current detection becomes difficult. However, in the case of IPMSM, the power factor angle φ of the voltage phase and the current phase becomes small, so that the detection of the current peak value is easy, and in the case of SPMSM, the degree of advance is set slightly, so the power factor angle When φ becomes large, it is very rare and practically no problem occurs.

1シャント電流検知方式で、かつ、電圧増幅器とピークホールド回路より構成する方式は、ハードウェア構成が簡単なだけではなくプロセッサのソフトウェアにも負担が少なく簡単となる特長がある。また、電流検出するA/D変換タイミングは、インバータ回路のスイッチングトランジスタが全てオン又はオフしているキャリヤ信号の谷、あるいはピーク(図5のt0、t3、t6)でよく、電流検出が簡単で、かつ、ノイズにも強い特長がある。   The one-shunt current detection method and the method constituted by the voltage amplifier and the peak hold circuit have the feature that not only the hardware configuration is simple, but also the processor software is light and simple. Further, the A / D conversion timing for detecting the current may be the valley or peak (t0, t3, t6 in FIG. 5) of the carrier signal in which all the switching transistors of the inverter circuit are turned on or off, and the current detection is simple. In addition, it has a strong feature against noise.

以上述べたように、本発明は、永久磁石モータをV/f制御によりセンサレス正弦波駆動するために、モータピーク電流、あるいは回転磁束に応じたモータ電流を所定値に制御するもので、モータ電流設定値との誤差信号によりモータ駆動周波数を制御することにより定出力電流制御し、ロータ磁石軸座標(d−q座標)と印加電圧軸座標(γ−δ座標)の位相関係を一定の負荷角δに制御するもので、V/f制御における乱調をほとんどなくすことができ、進角制御しても安定動作させることができる。本発明によれば、突極性モータ、非突極性モータに関わらず安定化制御可能であり、特に、インバータ出力電圧とモータ誘起電圧をほぼ一定にして定出力電流することにより容易に進角制御できる特長がある。さらに、1シャント方式にして2相変調するとピーク電流が現れるパルス幅が広くなるので、ピーク電流検出が容易となり電圧増幅器とピークホールド回路により簡単なピーク電流検出手段を構成でき、プロセッサのソフトウェアとハードウェアを簡単にすることができる。   As described above, the present invention controls the motor peak current or the motor current corresponding to the rotating magnetic flux to a predetermined value in order to drive the permanent magnet motor by sensorless sine wave by V / f control. Constant output current control is performed by controlling the motor drive frequency based on an error signal from the set value, and the phase relationship between the rotor magnet axis coordinates (dq coordinates) and the applied voltage axis coordinates (γ-δ coordinates) is a constant load angle. Since it is controlled to δ, the turbulence in the V / f control can be almost eliminated, and the stable operation can be achieved even with the advance control. According to the present invention, stabilization control is possible regardless of a saliency motor or a non-saliency motor, and in particular, the advance angle control can be easily performed by making the inverter output voltage and the motor induced voltage substantially constant and constant output current. There are features. Furthermore, since the pulse width in which the peak current appears is widened when two-phase modulation is performed using the one-shunt method, the peak current can be easily detected, and a simple peak current detection means can be configured by the voltage amplifier and the peak hold circuit. Wear can be simplified.

なお、実施の形態1においてモータ電圧は周波数補正前の信号ωによりV/f制御したが、補正後の信号ω1によりV/f制御しても効果は同様である。   Although the motor voltage is V / f controlled by the signal ω before frequency correction in the first embodiment, the effect is the same even if the V / f control is performed by the signal ω1 after correction.

(実施の形態2)
以下、本発明の第2の実施の形態について図7を用いて説明する。
(Embodiment 2)
Hereinafter, a second embodiment of the present invention will be described with reference to FIG.

図7は、本発明の実施の形態2におけるモータ駆動装置の制御手段のブロック図である。   FIG. 7 is a block diagram of the control means of the motor drive device according to Embodiment 2 of the present invention.

図7に示す制御手段のブロック図は、図1に示す制御手段7から一部変更、あるいは細部ブロックを追加したものであり、以下、変更追加部のみ説明する。   The block diagram of the control means shown in FIG. 7 is obtained by partially changing the control means 7 shown in FIG. 1 or adding a detailed block. Only the change addition unit will be described below.

電圧制御手段71はV/f制御部71aと電圧加算部71bより構成され、V/f制御部71aは周波数設定手段70の出力信号ωに比例した電圧、すなわち、ωに誘起電圧定数Keを掛けた電圧Vfを出力し駆動周波数に対するインバータ回路出力電圧比を一定にする。電圧加算部71bは電圧Vfに補正電圧ΔVδと起動電圧Vs(図示せず)を加算して電圧Vδを出力し、インバータ制御手段75に電圧信号Vδを加える。電流検出手段6と電流設定手段72のそれぞれの出力信号ip、ipsを電流比較手段73により比較して誤差信号Δipを電圧補正手段77に加える。電圧補正手段77は比例積分制御部77aにより誤差信号Δipを比例積分し、比例積分した信号を電圧制限部77bを介して制御電圧を制限し、電圧制御手段71に加算信号ΔVδを加える。加算信号ΔVδは電圧制限部77bにより制限されるため、周波数の低い起動時のみ有効となり、定常回転時には電圧Vδはモータ誘起電圧Vmにほぼ等しい電圧がモータに加えられる。   The voltage control means 71 comprises a V / f control section 71a and a voltage addition section 71b. The V / f control section 71a multiplies the voltage proportional to the output signal ω of the frequency setting means 70, that is, ω by an induced voltage constant Ke. The voltage Vf is output to make the inverter circuit output voltage ratio to the drive frequency constant. The voltage adder 71 b adds the correction voltage ΔVδ and the starting voltage Vs (not shown) to the voltage Vf to output the voltage Vδ, and adds the voltage signal Vδ to the inverter control means 75. The output signals ip and ips of the current detection means 6 and the current setting means 72 are compared by the current comparison means 73, and the error signal Δip is added to the voltage correction means 77. The voltage correction unit 77 proportionally integrates the error signal Δip by the proportional integration control unit 77 a, limits the control voltage of the proportionally integrated signal via the voltage limiting unit 77 b, and adds the addition signal ΔVδ to the voltage control unit 71. Since the addition signal ΔVδ is limited by the voltage limiting unit 77b, the addition signal ΔVδ is effective only at the time of low-frequency startup, and a voltage approximately equal to the motor induced voltage Vm is applied to the motor during steady rotation.

周波数設定手段70の出力信号ωと電流比較手段73の出力信号Δipは周波数補正手段74に加えられる。周波数補正手段74は、誤差信号Δipに比例した信号を演算する比例部74aと、周波数設定信号ωの加算部74b、周波数設定信号ωの周波数比例演算部74c、比例部74aの出力信号(Kf・Δip)と周波数比例演算部74cの出力信号(K・ω)の積を演算する掛け算部74dからの信号Δω0を周波数制限部74eを介して加算部74bに加える。比例部74aの比例定数Kfは1〜10程度に設定し、周波数比例演算部74cの比例定数Kは、起動時に掛け算部74dからの出力信号Δω0がほとんど零となり、定常時にKf・Δipとなる1よりも小さな値を選ぶ。周波数補正手段74の出力信号ω1は位相信号生成手段76に加えられ、位相信号θはインバータ制御手段75の正弦波生成部75aに加え3相正弦波信号vu、vv、vwを生成し、PWM制御手段75bを介して3相PWM信号up、un、vp、vn、wp、wnを発生させる。PWM制御手段75bは、図5に示したようにキャリヤ信号発生部、信号比較部、デッドタイム挿入部(いずれも図示せず)等より構成されるが詳細は省略する。   The output signal ω of the frequency setting means 70 and the output signal Δip of the current comparison means 73 are applied to the frequency correction means 74. The frequency correction means 74 includes a proportional section 74a for calculating a signal proportional to the error signal Δip, an adder section 74b for the frequency setting signal ω, a frequency proportional calculation section 74c for the frequency setting signal ω, and an output signal (Kf · The signal Δω0 from the multiplying unit 74d that calculates the product of Δip) and the output signal (K · ω) of the frequency proportional calculating unit 74c is added to the adding unit 74b via the frequency limiting unit 74e. The proportional constant Kf of the proportional unit 74a is set to about 1 to 10, and the proportional constant K of the frequency proportional calculation unit 74c is 1 in which the output signal Δω0 from the multiplication unit 74d is almost zero at start-up and becomes Kf · Δip at the steady state. Choose a smaller value. The output signal ω1 of the frequency correction unit 74 is applied to the phase signal generation unit 76, and the phase signal θ generates the three-phase sine wave signals vu, vv, vw in addition to the sine wave generation unit 75a of the inverter control unit 75, and PWM control. Three-phase PWM signals up, un, vp, vn, wp, wn are generated via means 75b. As shown in FIG. 5, the PWM control means 75b includes a carrier signal generation unit, a signal comparison unit, a dead time insertion unit (none of which are shown), and the details are omitted.

以上、実施の形態2に述べたように、電圧制御手段71に電圧制限部を設け、周波数補正手段74に周波数比例演算部74cを設けることにより、モータ起動時等の低速回転時には電圧制御によりモータ電流Ipが制御され、高速回転時には周波数制御によりモータ電流Ipが制御されるので、高速回転時にはインバータ回路出力電圧とモータ誘起電圧がほぼ等しくなるので進み角制御となり、高速回転時の弱め界磁制御が可能となる。   As described above in the second embodiment, the voltage control unit 71 is provided with the voltage limiting unit, and the frequency correction unit 74 is provided with the frequency proportional calculation unit 74c. Since the current Ip is controlled and the motor current Ip is controlled by frequency control during high-speed rotation, the inverter circuit output voltage and the motor-induced voltage are almost equal during high-speed rotation, leading to lead angle control and field-weakening control during high-speed rotation is possible. It becomes.

以上述べたように、本発明によれば、モータピーク電流Ip、あるいはモータ回転磁界に応じたモータ駆動電流Iが設定値となるようにインバータ回路駆動周波数を制御するようにしたので、γ−δ軸とd−q軸の位相関係が負荷に応じた設定値となり、回転磁界とロータ磁束の位相関係を一定に保持できるのでセンサレス正弦波駆動が可能となる。特に、無負荷から定格負荷までモータ負荷が大きく変動しても、電流一定制御により動作可能なので制御が非常にシンプルとなる特長がある。また、電流誤差信号により駆動周波数を補正する周波数補正手段のゲインを駆動周波数に応じて変更することにより高速領域の乱調が抑制され、さらにインバータ出力電圧とモータ誘起電圧がほぼ等しくなるように駆動周波数に応じて電圧制御することにより弱め界磁制御が可能となる。また、モータ電流を座標変換、あるいはベクトル分解する必要がないので、演算をほとんど必要とせず制御プログラムが簡単となり8bit、あるいは16bitマイクロコンピュータでも容易にモータ制御できる特長がある。   As described above, according to the present invention, the inverter circuit drive frequency is controlled so that the motor peak current Ip or the motor drive current I corresponding to the motor rotating magnetic field becomes a set value. The phase relationship between the axis and the dq axis becomes a set value corresponding to the load, and the phase relationship between the rotating magnetic field and the rotor magnetic flux can be kept constant, so that sensorless sine wave driving is possible. In particular, even if the motor load fluctuates greatly from no load to the rated load, it is possible to operate with constant current control, so the control is very simple. In addition, by changing the gain of the frequency correction means that corrects the drive frequency by the current error signal according to the drive frequency, the high frequency range of turbulence can be suppressed, and the inverter output voltage and the motor induced voltage can be made substantially equal. The field-weakening control can be performed by controlling the voltage according to the above. Further, since it is not necessary to perform coordinate conversion or vector decomposition of the motor current, the control program is simplified with little computation, and the motor can be easily controlled by an 8-bit or 16-bit microcomputer.

本発明は、ロータ位置推定しないV/f制御なのでモータパラメータをほとんど使用せず、さらに、回転数オープンループ制御なので回転数変動が非常に少なくなり、制御方式がシンプルで、かつ電流検知も簡単となり低騒音、低価格、高信頼性のモータ駆動装置を実現できる。特に、突極性モータと非突極性モータに関わらず制御でき、進み角制御も容易なので弱め界磁により回転数制御範囲を高速領域に広げることができ、モータ制御プログラムと電流検知が簡単となるのでプロセッサの負担が軽くなり、ヒートポンプ式洗濯乾燥機の如き圧縮機モータ、洗濯モータ、乾燥ファンモータ同時正弦波駆動方式に適用することができ、安価で信頼性の高い複数モータ同時駆動装置を実現できる。   Since the V / f control does not estimate the rotor position, the present invention uses almost no motor parameters. Further, since the rotation speed is open loop control, the fluctuation in the rotation speed is very small, the control method is simple, and the current detection is also easy. Low noise, low price, high reliability motor drive device can be realized. In particular, control is possible regardless of saliency motors and non-saliency motors, and lead angle control is easy, so the field control field can be expanded to a high speed range by field weakening, and the motor control program and current detection are simplified. The burden on the processor is lightened, and it can be applied to the compressor motor, washing motor, drying fan motor simultaneous sine wave drive system such as heat pump washer / dryer, and low-cost and highly reliable multi-motor simultaneous drive device can be realized .

以上のように、本発明のモータ駆動装置は、直流電力を交流電力に変換するインバータ回路により永久磁石モータをセンサレス正弦波駆動し、モータ電流のピーク値あるいは回転磁界に相当するモータ電流を検知して設定値となるようにインバータ回路出力電圧とモータ駆動周波数を制御するものであるから、永久磁石モータを駆動するほとんどのモータ駆動装置に適用可能であり、食器洗い機の洗浄ポンプ駆動装置や洗濯機のモータ駆動装置、掃除機のモータ駆動装置、換気扇や燃焼機等のファンモータ駆動装置、空気調和機や冷蔵庫の圧縮機モータ駆動装置に適用できる。さらに、ヒートポンプ式洗濯乾燥機や空気調和機の如き複数モータ同時駆動方式にも適用できる。   As described above, the motor drive device of the present invention detects the motor current corresponding to the peak value of the motor current or the rotating magnetic field by driving the permanent magnet motor with the inverter circuit that converts the DC power into the AC power. The inverter circuit output voltage and the motor drive frequency are controlled so as to be set to the set value, so that it can be applied to most motor drive devices that drive permanent magnet motors. The present invention can be applied to a motor driving device for a vacuum cleaner, a motor driving device for a vacuum cleaner, a fan motor driving device such as a ventilation fan or a combustor, and a compressor motor driving device for an air conditioner or a refrigerator. Furthermore, the present invention can also be applied to a multiple motor simultaneous drive system such as a heat pump washer / dryer or an air conditioner.

本発明の実施の形態1におけるモータ駆動装置のブロック図1 is a block diagram of a motor drive device according to Embodiment 1 of the present invention. 本発明の実施の形態1におけるモータ駆動装置のモータ制御ベクトル図Motor control vector diagram of motor drive device in Embodiment 1 of the present invention 本発明の実施の形態1におけるモータ駆動装置の起動制御方法を示すグラフThe graph which shows the starting control method of the motor drive unit in Embodiment 1 of this invention 本発明の実施の形態1における突極性モータの制御ベクトル図Control vector diagram of saliency motor in Embodiment 1 of the present invention 本発明の実施の形態1におけるシャント抵抗電圧波形と電流検知タイミング図Shunt resistance voltage waveform and current detection timing chart in Embodiment 1 of the present invention 本発明の実施の形態1における2相変調時の電流検知タイミング図Current detection timing chart during two-phase modulation in Embodiment 1 of the present invention 本発明の実施の形態2における制御手段のブロック図Block diagram of control means in embodiment 2 of the present invention

2 直流電源
3 インバータ回路
4 モータ
5 モータ負荷
6 電流検出手段
7 制御手段
70 周波数設定手段
71 電圧制御手段
72 電流設定手段
73 電流比較手段
74 周波数補正手段
2 DC power supply 3 Inverter circuit 4 Motor 5 Motor load 6 Current detection means 7 Control means 70 Frequency setting means 71 Voltage control means 72 Current setting means 73 Current comparison means 74 Frequency correction means

Claims (1)

直流電源と、前記直流電源の直流電力を交流電力に変換するインバータ回路と、前記インバータ回路により駆動される永久磁石同期モータと、前記モータにより駆動されるファンあるいはポンプ負荷と、前記インバータ回路直流電流のピーク値を検出する電流検出手段と、前記電流検出手段の出力信号により前記インバータ回路を制御して前記モータを正弦波駆動する制御手段よりなり、前記制御手段は、前記インバータ回路の出力周波数を設定する周波数設定手段と、前記周波数設定手段の出力信号により前記インバータ回路出力電圧を制御する電圧制御手段と、前記モータの電流ピーク値を設定する電流設定手段と、前記電流検出手段の出力信号と前記電流設定手段の出力信号を比較する電流比較手段と、前記電流比較手段の出力信号により前記出力周波数を補正する周波数補正手段と、周波数に応じてモータ電圧を制御するV/f制御手段よりなるモータ駆動装置。 DC power supply, inverter circuit for converting DC power of the DC power supply to AC power, a permanent magnet synchronous motor driven by the inverter circuit , a fan or pump load driven by the motor, and the inverter circuit DC current Current detecting means for detecting the peak value of the current and control means for controlling the inverter circuit by the output signal of the current detecting means to drive the motor in a sine wave, the control means for controlling the output frequency of the inverter circuit. A frequency setting means for setting, a voltage control means for controlling the output voltage of the inverter circuit according to an output signal of the frequency setting means, a current setting means for setting a current peak value of the motor, and an output signal of the current detection means; The current comparison means for comparing the output signal of the current setting means and the output signal of the current comparison means Ri and frequency correction means for correcting the output frequency, the motor drive device having the V / f control means for controlling the motor voltage in accordance with the frequency.
JP2007132508A 2007-05-18 2007-05-18 Motor drive device Expired - Fee Related JP4983393B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007132508A JP4983393B2 (en) 2007-05-18 2007-05-18 Motor drive device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007132508A JP4983393B2 (en) 2007-05-18 2007-05-18 Motor drive device

Publications (2)

Publication Number Publication Date
JP2008289292A JP2008289292A (en) 2008-11-27
JP4983393B2 true JP4983393B2 (en) 2012-07-25

Family

ID=40148490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007132508A Expired - Fee Related JP4983393B2 (en) 2007-05-18 2007-05-18 Motor drive device

Country Status (1)

Country Link
JP (1) JP4983393B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4710963B2 (en) * 2008-11-28 2011-06-29 株式会社デンソー Rotating machine control device and control system
JP2012090494A (en) * 2010-10-22 2012-05-10 Daikin Ind Ltd Motor control method
JP5937880B2 (en) * 2012-04-27 2016-06-22 日立アプライアンス株式会社 Motor control device and refrigerator
JP6004991B2 (en) * 2013-06-03 2016-10-12 三菱電機株式会社 Electric motor drive
KR102500019B1 (en) * 2022-12-29 2023-02-16 주식회사 에스엠전자 Control system with improved operation power efficiency of motors connected to squared torque load

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3804264B2 (en) * 1998-03-31 2006-08-02 三菱電機株式会社 Inverter device
JP4604777B2 (en) * 2005-03-16 2011-01-05 パナソニック株式会社 Motor drive device

Also Published As

Publication number Publication date
JP2008289292A (en) 2008-11-27

Similar Documents

Publication Publication Date Title
US7504784B2 (en) Motor driving apparatus of washing and drying machine
JP3684203B2 (en) Motor control device
JP4604777B2 (en) Motor drive device
JP4983322B2 (en) Motor drive device
JP4735638B2 (en) Motor drive device
JP4983393B2 (en) Motor drive device
JP4771998B2 (en) Electric motor drive
JP6608031B2 (en) Power converter and air conditioner
JP5473289B2 (en) Control device and control method for permanent magnet type synchronous motor
US10270380B2 (en) Power converting apparatus and heat pump device
JP4983457B2 (en) Motor drive device
JP2004329604A (en) Controller for washing machine
JP2003199388A (en) Motor driver
JP4983358B2 (en) Motor drive device
JP5012288B2 (en) Motor drive device
JP7053955B2 (en) Rotating machine control device
JP4983331B2 (en) Motor drive device
JP6563135B2 (en) Motor control device
KR20030027840A (en) Motor drive unit
JP2005348569A (en) Motor driver
JP2018121421A (en) Control apparatus of synchronous motor
JP2013172550A (en) Motor controller and three-phase voltage command generating method of motor
JP4798066B2 (en) Motor drive device
JP5012229B2 (en) Motor drive device
JP6354523B2 (en) Electric motor control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081008

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120327

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120409

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees