JP4983213B2 - Electroformed brick with metal coating and method for producing the same - Google Patents

Electroformed brick with metal coating and method for producing the same Download PDF

Info

Publication number
JP4983213B2
JP4983213B2 JP2006307000A JP2006307000A JP4983213B2 JP 4983213 B2 JP4983213 B2 JP 4983213B2 JP 2006307000 A JP2006307000 A JP 2006307000A JP 2006307000 A JP2006307000 A JP 2006307000A JP 4983213 B2 JP4983213 B2 JP 4983213B2
Authority
JP
Japan
Prior art keywords
brick
metal
metal coating
coating
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006307000A
Other languages
Japanese (ja)
Other versions
JP2008121073A (en
Inventor
和雄 浜島
泰成 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2006307000A priority Critical patent/JP4983213B2/en
Priority to KR1020070113727A priority patent/KR101441128B1/en
Priority to TW096142705A priority patent/TW200846495A/en
Publication of JP2008121073A publication Critical patent/JP2008121073A/en
Application granted granted Critical
Publication of JP4983213B2 publication Critical patent/JP4983213B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/42Details of construction of furnace walls, e.g. to prevent corrosion; Use of materials for furnace walls
    • C03B5/43Use of materials for furnace walls, e.g. fire-bricks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material

Description

本発明は、金属被膜で電鋳煉瓦の表面を被覆した金属被膜付き電鋳煉瓦及びその製造方法に関し、特に、ガラス製造設備において溶融ガラスと接触する部分等のような耐熱性及び耐久性が必要とされる構造部分を構成する部材として使用可能な金属被膜付き電鋳煉瓦及びその製造方法に関する。   The present invention relates to an electroformed brick with a metal coating in which the surface of the electroformed brick is coated with a metal coating and a method for producing the same, and in particular, heat resistance and durability such as a portion that contacts molten glass in a glass production facility The present invention relates to an electroformed brick with a metal coating that can be used as a member constituting a structural part, and a method for manufacturing the same.

金属被膜で基材を被覆する方法として、プラズマ溶射、酸水素炎溶射等の溶射法がある(例えば、下記特許文献1参照)。これは、溶融金属を粒子状に噴射して基材に吹き付ける薄膜形成方法であり、導電性材料及び絶縁性材料の何れにも適用可能である。   As a method of coating a base material with a metal coating, there are spraying methods such as plasma spraying and oxyhydrogen flame spraying (for example, see Patent Document 1 below). This is a thin film formation method in which molten metal is sprayed onto a base material in the form of particles, and can be applied to both conductive materials and insulating materials.

金属溶射被膜で金属基材を被覆する際には、一般的に、金属基材と溶射被膜との定着性を向上させるために、金属基材表面にブラスト処理等の前処理が施される。詳細には、硬質セラミックス粒子を噴出して金属基材表面に衝突させることによって、適切な粗さの凹凸を金属基材表面に形成する。このような凹凸を形成することによって、溶射した金属粒子が凹部へ侵入するので、凹部で固化した金属がアンカー効果を発揮して金属基材と溶射金属被膜との接合が実現される。   When a metal substrate is coated with a metal spray coating, generally, a pretreatment such as a blast treatment is performed on the surface of the metal substrate in order to improve fixability between the metal substrate and the spray coating. Specifically, the hard ceramic particles are ejected and collided with the surface of the metal substrate, thereby forming irregularities with appropriate roughness on the surface of the metal substrate. By forming such concavities and convexities, the sprayed metal particles enter the recesses, so that the metal solidified in the recesses exhibits an anchor effect, and the joining of the metal substrate and the sprayed metal coating is realized.

上記の方法は、金属基材の柔らかさ及び塑性変形性の高さを利用しているが、煉瓦などのような金属製でない基材の場合は、基材の硬さや脆さ、塑性変形性の低さから、ブラスト処理の適用は困難である。   The above method uses the softness and plastic deformation of the metal substrate, but in the case of a non-metal substrate such as brick, the hardness and brittleness of the substrate, plastic deformation Therefore, it is difficult to apply blasting.

このため、煉瓦を溶射被膜で被覆する場合は、ゾル・ゲル法等によってセラミックの中間層を煉瓦表面に設け、これを介することによって、煉瓦基材及び金属溶射被膜との接着性の向上を図っている。この中間層は、セラミックと煉瓦中のガラス(シリカ)相との化学結合によって強固な接合を形成し、セラミック中間層に溶射金属粒子が食い込むことによって溶射被膜が固着している。   For this reason, when the brick is coated with a thermal spray coating, an intermediate layer of ceramic is provided on the brick surface by a sol-gel method or the like, and through this, the adhesion between the brick substrate and the metal thermal spray coating is improved. ing. This intermediate layer forms a strong bond by a chemical bond between the ceramic and the glass (silica) phase in the brick, and the sprayed coating adheres to the ceramic intermediate layer as the sprayed metal particles bite into the ceramic intermediate layer.

又、素材の多孔性を利用して、耐火物基材表面に存在する気孔に白金微粒子と無機質材料との混合物を充填して加熱焼成した後に、表面を研削して白金微粒子の一部を露出させて溶射被膜を形成する方法等が提案されている(下記特許文献2)
英国特許1242996号公報 特開平10−195623号公報
In addition, by utilizing the porosity of the material, pores existing on the surface of the refractory substrate are filled with a mixture of platinum fine particles and an inorganic material, heated and fired, and then the surface is ground to expose a part of the platinum fine particles. And a method of forming a sprayed coating by the method (Patent Document 2 below) has been proposed.
British Patent No. 1242996 JP-A-10-195623

しかし、上述のセラミック中間層を用いた方法は、ガラス相を含まない基材に対しては、化学結合による固着を見込めないので有効ではない。従って、ガラス相の少ない電鋳煉瓦を溶射被膜で被覆する場合には不向きである。   However, the above-described method using the ceramic intermediate layer is not effective because it cannot be fixed by a chemical bond to a substrate that does not contain a glass phase. Therefore, it is not suitable for coating an electroformed brick with a small glass phase with a sprayed coating.

又、上記特許文献2の方法は、多孔性の材料にのみ適用可能であるため、一般的に気孔率が低い電鋳煉瓦については適用が困難である。   Moreover, since the method of the said patent document 2 is applicable only to a porous material, generally it is difficult to apply to the electrocast brick with a low porosity.

このような状況から、ガラス相が少なく緻密性の高い電鋳煉瓦に対して、溶射によって金属被膜を形成することは困難であり、溶射した金属は、溶射中又は溶射後の冷却中に電鋳煉瓦から容易に剥離する。   Under such circumstances, it is difficult to form a metal coating by thermal spraying on a highly dense electroformed brick with a small glass phase, and the sprayed metal is electroformed during thermal spraying or during cooling after thermal spraying. Easily peels from the brick.

本発明は、ガラス相が少なく緻密性の高いセラミック基材にしっかり固着し剥離し難い金属被膜を形成可能な金属被覆技術を開発し、耐久性が高く耐熱構造材として有用な金属被膜付き電鋳煉瓦を提供することを課題とする。   The present invention has developed a metal coating technology capable of forming a metal coating that can be firmly fixed to a highly dense ceramic substrate with little glass phase and difficult to peel off, and is highly durable and useful as a heat-resistant structural material. The challenge is to provide brick.

又、本発明は、被覆する金属被膜が応力によって剥離せず、耐熱構造材として利用できる金属被膜付き電鋳煉瓦を簡易且つ安定的に提供できる金属被膜付き電鋳煉瓦の製造方法を提供することを課題とする。   In addition, the present invention provides a method for producing an electroformed brick with a metal coating, which can easily and stably provide an electrocast brick with a metal coating that can be used as a heat-resistant structural material because the metal coating to be coated does not peel off due to stress. Is an issue.

上記課題を解決するために、本発明者らは鋭意研究を重ねた結果、電鋳煉瓦の表面に形成する凹凸を工夫することによって、金属と煉瓦との熱収縮量の差による熱応力が適切に分散され、アンカー効果が好適に発揮される金属被膜を電鋳煉瓦の表面に設けることが可能であることを見出し、本発明を完成するに至った。   In order to solve the above problems, the present inventors have conducted intensive research, and as a result, by devising the unevenness formed on the surface of the electroformed brick, the thermal stress due to the difference in heat shrinkage between the metal and the brick is adequate. The present inventors have found that a metal coating that is dispersed in the surface of the electrocast brick and that exhibits an anchoring effect can be provided on the surface of the electroformed brick, thereby completing the present invention.

本発明の一態様によれば、金属被膜付き電鋳煉瓦は、規則的なアンカー用凹部が表面に形成される電鋳煉瓦と、前記電鋳煉瓦の表面を被覆し前記アンカー用凹部を埋込むように設けられた金属被膜とを有し、前記金属被膜は白金族金属を含有する溶射被膜であって熱膨張係数が8×10 −6 〜15×10 −6 (20℃)であり、前記電鋳煉瓦は、気孔率が5容積%以下でガラス相の割合が15質量%以下であって熱膨張係数が6×10 −6 〜8×10 −6 (20℃−800℃における平均熱膨張率)であり、前記アンカー用凹部は、溝ピッチが800μm〜2.5mmの複数の溝で構成され、前記複数の溝の深さは、150〜250μmであって前記金属被膜の膜厚の1/2〜3/4倍であることを要旨とする。 According to one aspect of the present invention, an electroformed brick with a metal coating includes an electroformed brick having a regular anchor recess formed on the surface thereof, and covers the surface of the electroformed brick to embed the anchor recess. The metal coating is a thermal spray coating containing a platinum group metal and has a thermal expansion coefficient of 8 × 10 −6 to 15 × 10 −6 (20 ° C.), electroforming brick, porosity 5 volume% or less of thermal expansion coefficient of 6 × 10 -6 ~8 × 10 -6 proportion of glass phase I der than 15 wt% at (20 ° C. -800 average at ° C. heat The anchor recess is composed of a plurality of grooves having a groove pitch of 800 μm to 2.5 mm, and the depth of the plurality of grooves is 150 to 250 μm, and the thickness of the metal coating is and 1 / 2-3 / 4 Baidea Rukoto the gist.

又、本発明の一態様によれば、金属被膜付き電鋳煉瓦の製造方法は、気孔率が5容積%以下でガラス相の割合が15質量%以下である電鋳煉瓦の表面に規則的なアンカー用凹部を形成し、白金族金属を含有する金属を前記電鋳煉瓦に溶射して、前記アンカー用凹部を満たし且つ前記電鋳煉瓦の表面を被覆する金属被膜を形成する金属被膜付き電鋳煉瓦の製造方法であって、前記アンカー用凹部は、溝ピッチが800μm〜2.5mmの複数の溝で構成され、前記複数の溝の深さは、150〜250μmであって前記金属被膜の膜厚の1/2〜3/4倍であることを要旨とする。 Moreover, according to one aspect of the present invention, the method for producing an electroformed brick with a metal coating is regular on the surface of the electroformed brick having a porosity of 5% by volume or less and a glass phase ratio of 15% by mass or less. An electroforming with a metal coating that forms a recess for anchor and sprays a metal containing a platinum group metal onto the electrocast brick to form a metal coating that fills the recess for anchor and covers the surface of the electrocast brick A method for manufacturing a brick, wherein the recess for anchor is composed of a plurality of grooves having a groove pitch of 800 μm to 2.5 mm, and the depth of the plurality of grooves is 150 to 250 μm, and the film of the metal film The gist is that it is 1/2 to 3/4 times the thickness .

本発明によれば、電鋳煉瓦の表面に形成された規則的な凹凸において、金属被膜と電鋳煉瓦との間で生じる応力が適切に分散されて作用し、凸部の破断や金属被膜の歪みを生じることなくアンカー効果が好適に発揮される。従って、耐熱性及び耐久性が高く、温度変化による金属被膜の剥離が抑制された金属被膜付き電鋳煉瓦が提供され、耐熱構造材として有効に利用できる。   According to the present invention, in the regular unevenness formed on the surface of the electroformed brick, the stress generated between the metal coating and the electroformed brick is appropriately dispersed and acts to break the convex portion or the metal coating. The anchor effect is preferably exhibited without causing distortion. Therefore, an electroformed brick with a metal coating that has high heat resistance and durability and that suppresses peeling of the metal coating due to a temperature change is provided and can be effectively used as a heat-resistant structural material.

高温に加熱されるガラス窯用の耐熱構造材には耐火煉瓦が用いられており、中でも、耐久性を要するスロート部では、白金又は白金合金の溶射被膜で被覆した耐火煉瓦が使用されている。近年の技術の進歩によって強度が高い電鋳煉瓦の製造が確立したことから、ガラス窯用耐火物については、耐火煉瓦に代えて電鋳煉瓦の使用が定着している。   A refractory brick is used as a heat-resistant structural material for a glass kiln heated to a high temperature, and in particular, a refractory brick covered with a sprayed coating of platinum or a platinum alloy is used in a throat portion that requires durability. Since the manufacture of electrocast bricks with high strength has been established due to recent technological advances, the use of electroformed bricks has become established for refractories for glass kilns instead of refractory bricks.

電鋳煉瓦は、耐火原料をエルー式アーク炉等で1900〜2500℃に加熱し、完全に溶融した耐火原料を所定形状の鋳型で鋳造及び徐冷固化することで得られる耐火物であり、高密度で、一般的な焼成煉瓦より強度及び耐久性が高い。しかし、電鋳煉瓦は、概してガラス相の割合が少ないので、金属被膜との接着性を高める手法として前述のセラミック中間層を用いるのは有効ではない。又、気孔も少なく、気孔率は概して5%以下のものが多いので、前述の特許文献2のような金属含有ペーストの気孔への充填を利用することも難しい。また、気孔は、炉材の製造方法を考慮すると、炉材の中に周期的に存在しているのではなく、まばらに存在している。従って、気孔へ金属含有ペーストを充填させた場合、その充填ペーストがアンカー効果を有するにしても、そのアンカー効果は当然まばらに存在することになる。この結果、アンカー効果のある部分と無い部分とで金属被膜と炉材との接着性が異なる部分が生じ、被膜全体に渡って安定的に接着した金属被膜を形成することは困難である。このため、金属被膜との接着性を向上させるには、金属基板の場合と同様にブラスト処理を施すことが考えられるが、実際には、ブラスト処理した電鋳煉瓦に白金溶射を施すと、溶射中又は直後に白金被膜が剥離し、白金被膜を固着させることは難しい。白金被膜の剥離は、ブラスト処理で形成された煉瓦表面の凸部が応力によって破断する状態で起こることから、原因は、溶射時の金属と電柱煉瓦との温度差によって熱収縮量に大きい差が生じるために多大な応力が発生すること、及び、ブラスト処理では有効なアンカー効果を発揮する凹凸を形成できないことにある。   An electrocast brick is a refractory material obtained by heating a refractory raw material to 1900-2500 ° C. with an elu type arc furnace or the like, and casting and slowly cooling and solidifying a completely molten refractory raw material with a mold having a predetermined shape. Density is higher in strength and durability than common fired bricks. However, since electrocast bricks generally have a small proportion of glass phase, it is not effective to use the above-mentioned ceramic intermediate layer as a method for improving the adhesion to the metal coating. In addition, since there are few pores and the porosity is generally 5% or less, it is difficult to utilize filling of the pores with the metal-containing paste as in Patent Document 2 described above. In addition, considering the method for manufacturing the furnace material, the pores are not periodically present in the furnace material, but are present sparsely. Therefore, when the pores are filled with the metal-containing paste, even if the filled paste has an anchor effect, the anchor effect naturally exists sparsely. As a result, there are portions where the adhesion between the metal coating and the furnace material differs between the portion with the anchor effect and the portion without the anchor effect, and it is difficult to form a metal coating that is stably bonded over the entire coating. For this reason, in order to improve the adhesion to the metal coating, it is conceivable to perform blasting as in the case of the metal substrate. In practice, however, when platinum spraying is applied to the blasted electroformed brick, It is difficult to fix the platinum film by peeling off the platinum film during or immediately after. Peeling of the platinum coating occurs in the state where the convex part of the brick surface formed by blasting breaks due to stress, so the cause is that there is a large difference in the amount of heat shrinkage due to the temperature difference between the metal and the electric pole brick during spraying. Therefore, a great deal of stress is generated, and the blasting process cannot form an unevenness that exhibits an effective anchor effect.

このようなことから、電鋳煉瓦表面の凸部の破断を抑制するためには、金属被膜から加わる引っ張り応力を可能な限り均一に分散させ、且つ、アンカー効果が電鋳煉瓦表面に効果的に作用するような凹凸加工を電鋳煉瓦表面に施すことが肝要である。本発明では、電鋳煉瓦の表面にアンカー用凹部として規則的な凹凸を設け、この凹部を埋込んで表面を被覆するように煉瓦表面に金属を溶射する。以下、本発明について詳細に説明する。   For this reason, in order to suppress the breakage of the convex portion on the surface of the electroformed brick, the tensile stress applied from the metal film is dispersed as uniformly as possible, and the anchor effect is effectively applied to the surface of the electroformed brick. It is important that the surface of the electroformed brick is subjected to an uneven process that acts. In the present invention, regular irregularities are provided as anchor concave portions on the surface of the electroformed brick, and metal is sprayed onto the brick surface so as to fill the concave portions and cover the surface. Hereinafter, the present invention will be described in detail.

金属溶射は、導電性基材だけでなく絶縁性基材に対しても金属被膜を形成可能な被覆方法であり、様々な金属の溶融粒子を射出可能であり、一般的には亜鉛、アルミニウム、錫、銅、真鍮、鋼等の金属が用いられるが、ガラス製造炉の構造材として使用可能な耐熱・耐久性金属溶射煉瓦を構成するには、融点が高いPt,Ir,Ru,Rh等の白金族金属、又は、白金族金属を1種以上含有する合金が用いられる。合金としては、例えば、Pt−5%Au、Pt−10%Ir、Pt−10%Rh等の白金合金などが挙げられる。これらの白金族金属及びその合金の熱膨張係数は概して8×10−6〜15×10−6(20℃)程度である。溶射法によって射出された金属粒子は、電鋳煉瓦の凹部を充填し表面上に堆積して被膜を形成する。金属溶射被膜の厚さは、溶射量によって適宜調整できる。過剰に厚い被膜は、引っ張り応力による歪みに耐えられない可能性があるので、被膜の厚さ(凹部を除く煉瓦表面上を被覆する厚さ)は100〜400μm程度が好ましく、より好ましい範囲は200〜350μmである。 Metal spraying is a coating method that can form a metal film not only on an electrically conductive substrate but also on an insulating substrate, and can inject molten particles of various metals, generally zinc, aluminum, Metals such as tin, copper, brass, and steel are used. To construct a heat-resistant and durable metal-sprayed brick that can be used as a structural material for a glass manufacturing furnace, such as Pt, Ir, Ru, and Rh with a high melting point. A platinum group metal or an alloy containing at least one platinum group metal is used. Examples of the alloy include platinum alloys such as Pt-5% Au, Pt-10% Ir, and Pt-10% Rh. The thermal expansion coefficient of these platinum group metals and alloys thereof is generally about 8 × 10 −6 to 15 × 10 −6 (20 ° C.). The metal particles injected by the thermal spraying method fill the concave portions of the electroformed brick and deposit on the surface to form a film. The thickness of the metal spray coating can be appropriately adjusted depending on the amount of spraying. Since an excessively thick film may not be able to withstand strain due to tensile stress, the thickness of the film (thickness covering the brick surface excluding the recesses) is preferably about 100 to 400 μm, and a more preferable range is 200. ˜350 μm.

煉瓦は、アルミナ、珪酸アルミナ、ジルコン−ムライト、シリカ又はチタニア等を構成成分とするセラミックで、粘土等の原料を固めて焼成することによって得られるのが焼成煉瓦であり、熱処理を行わずに化学結合材によって結合及び成形するのが耐火物煉瓦であるのに対し、電鋳煉瓦は、原料を電気炉で完全に溶解して鋳造する煉瓦である。電鋳煉瓦としては、AZS(Al−SiO−ZrO)煉瓦、αアルミナ質煉瓦、βアルミナ質煉瓦、αβアルミナ質煉瓦、アルミナ・クロム煉瓦等がある。電鋳煉瓦には、用途に応じて更に改良された煉瓦が存在し、例えば、ジルコニアの含有量を高めた高ジルコニア質煉瓦、気孔率を下げたボイドフリー(VF)煉瓦等が含まれ、各々、耐食性、緻密性等が向上している。 Brick is a ceramic that contains alumina, silicate alumina, zircon mullite, silica, titania, etc., and is obtained by solidifying and firing clay and other raw materials. While refractory bricks are bonded and formed by a binder, electrocast bricks are bricks in which raw materials are completely melted and cast in an electric furnace. Examples of the electrocast brick include AZS (Al 2 O 3 —SiO 2 —ZrO 2 ) brick, α-alumina brick, β-alumina brick, αβ-alumina brick, and alumina / chromium brick. Electrocast bricks include bricks that have been further improved according to the application, such as high zirconia bricks with increased zirconia content, void-free (VF) bricks with reduced porosity, etc. Corrosion resistance, denseness, etc. are improved.

本発明において、電鋳煉瓦は、ガラス製造炉の構造材として利用した際の煉瓦の強度や生産される硝子の品質等の観点から、気孔率が5容積%以下、特に3容積%以下、ガラス相の割合が15容積%以下、特に10容積%以下であることが好ましい。ガラス相の割合が高いと、ガラス製造炉の構造材として使用したときに電鋳煉瓦中のガラス相成分が溶融ガラスに溶出して生産されるガラスの組成に悪影響を及ぼすおそれがあり、電鋳煉瓦自体の強度が低下する可能性もある。又、電鋳煉瓦の酸化珪素成分の割合も、組成によって異なるものの8質量%程度以下であることが好ましい。電鋳煉瓦の密度は、3.5〜5.5g/cmであることが好ましい。尚、AZS煉瓦はほとんどの場合、ガラス相の割合が15容積%超と高く、本発明では好ましく用いられない。 In the present invention, the electrocast brick has a porosity of 5% by volume or less, particularly 3% by volume or less, from the viewpoint of the strength of the brick when used as a structural material of a glass manufacturing furnace, the quality of the produced glass, etc. The proportion of the phase is preferably 15% by volume or less, particularly preferably 10% by volume or less. When the ratio of the glass phase is high, the glass phase component in the electroformed brick may elute into the molten glass when used as a structural material for a glass manufacturing furnace, which may adversely affect the composition of the produced glass. There is also a possibility that the strength of the brick itself is lowered. Moreover, it is preferable that the ratio of the silicon oxide component of an electrocast brick is about 8 mass% or less although it changes with compositions. The density of the electrocast brick is preferably 3.5 to 5.5 g / cm 2 . In most cases, AZS bricks have a high glass phase ratio of more than 15% by volume and are not preferably used in the present invention.

上述のような電鋳煉瓦は、セラミック中間層を介する溶射や金属含有ペーストを用いたアンカー接合は実施し難いが、本発明は、このような高密度、低ガラス相の硬質な電鋳煉瓦に適用可能である。   Electrocast bricks as described above are difficult to perform thermal spraying through a ceramic intermediate layer or anchor joining using a metal-containing paste, but the present invention is applied to such a high-density, low glass phase rigid electroformed brick. Applicable.

電鋳煉瓦は、概して、熱膨張係数が6×10−6程度〜8×10−6程度(20−800℃における平均熱膨張率)、曲げ強度は80〜120kg/cm程度であり、圧縮強度は200kg/cmを超え、高ジルコニア質電鋳煉瓦では2500kg/cmを超える高い圧縮強度を示す。しかし、金属被膜から受ける応力によって破断することなく金属被膜を定着させるためには、電鋳煉瓦表面に形成するアンカー用凹部の形態に工夫が必要である。 Electrocast bricks generally have a thermal expansion coefficient of about 6 × 10 −6 to about 8 × 10 −6 (average thermal expansion coefficient at 20 to 800 ° C.), a bending strength of about 80 to 120 kg / cm 2 , and compression. The strength exceeds 200 kg / cm 2 , and the high zirconia electrocast brick shows a high compressive strength exceeding 2500 kg / cm 2 . However, in order to fix the metal film without breaking due to the stress received from the metal film, it is necessary to devise the form of the anchor recess formed on the surface of the electroformed brick.

金属被膜から電鋳煉瓦に負荷される引っ張り応力を均一に分散させるには、アンカー用凹部は、電鋳煉瓦表面に凹部が規則的に細かく分散して配置するように形成する必要がある。アンカー用凹部の規則的な配列形態として、例えば、複数の溝を平行に配列する形態があり、更に等方性を考慮した配列形態として、複数の溝(線状の窪み)が交差する格子形状や、複数の円柱形又は多角柱形の凹部が均一に分散した斑状がある。凸部(凹部間の隔たり部分)の強度の点からは円形凹部による斑状形態が好ましく、一方、加工の容易さでは格子形状の溝が好ましく、実用的に格子形状が採用し易い。格子形状には、直交格子、菱目格子、かごめ格子、三角格子等があり、応力に対する凸部の強度の点では、図1(a)のような正方形直交格子(碁盤目)が好ましい。   In order to uniformly disperse the tensile stress applied to the electrocast brick from the metal coating, it is necessary to form the anchor recess so that the recess is regularly finely dispersed on the surface of the electroformed brick. As a regular arrangement form of the anchor recesses, for example, there is a form in which a plurality of grooves are arranged in parallel, and as an arrangement form in consideration of isotropicity, a lattice shape in which a plurality of grooves (linear depressions) intersect In addition, there are spots in which a plurality of cylindrical or polygonal concave portions are uniformly dispersed. From the viewpoint of the strength of the convex portion (the space between the concave portions), a patch-like shape by a circular concave portion is preferable. On the other hand, a lattice-shaped groove is preferable for ease of processing, and the lattice shape is practically easy to adopt. The lattice shape includes an orthogonal lattice, a rhombus lattice, a kagome lattice, a triangular lattice, and the like. From the viewpoint of the strength of the convex portion with respect to stress, a square orthogonal lattice (grid) as shown in FIG.

次に、アンカー用凹部の断面(煉瓦表面に垂直な断面)の形状について考える。図1は、電鋳煉瓦1にアンカー用凹部3として断面形状が長方形である複数の直線溝gからなる格子状溝を設けた実施形態を示し、この形態では、各溝gの側面が煉瓦表面に垂直で溝幅wは一定である。この実施形態とは異なり、凹部の深部に向かって溝幅が狭くなるように側面が傾斜する場合では、金属被膜の収縮による引っ張り応力が側面に対して剪断応力として作用して剥離を引き起こし易い。逆に、凹部の深部に向かって溝幅が拡がるように側面が傾斜する場合では、側面にかかる応力が深部(凸部の根本)に集中して凸部が破断し易くなる。従って、側面への応力作用の観点から、図1のような断面が長方形の溝gでアンカー用凹部3を構成する形態は好適であり、応力は、煉瓦表面に垂直な溝の側面へ適切に作用し、側面に垂直な応力成分がアンカー効果として作用する。   Next, the shape of the cross section of the anchor recess (cross section perpendicular to the brick surface) will be considered. FIG. 1 shows an embodiment in which a grid-like groove comprising a plurality of linear grooves g having a rectangular cross section is provided as an anchor recess 3 in an electroformed brick 1. In this embodiment, the side surface of each groove g is the brick surface. Is perpendicular to the groove width w. Unlike this embodiment, when the side surface is inclined so that the groove width becomes narrower toward the deep part of the recess, the tensile stress due to the shrinkage of the metal film acts as a shearing stress on the side surface and is likely to cause peeling. On the contrary, when the side surface is inclined so that the groove width is expanded toward the deep part of the concave part, the stress applied to the side surface is concentrated on the deep part (the root of the convex part), and the convex part is easily broken. Therefore, from the viewpoint of the stress action on the side surface, the form in which the anchor recess 3 is constituted by the groove g having a rectangular cross section as shown in FIG. 1 is suitable, and the stress is appropriately applied to the side surface of the groove perpendicular to the brick surface. The stress component perpendicular to the side surface acts as an anchor effect.

以下に、図2を参照して、断面形状が長方形である格子状溝と金属被膜との関係について詳細に説明する。尚、図2は、図1の電鋳煉瓦1に金属を溶射して金属被膜5を形成した一例を示す。   Below, with reference to FIG. 2, the relationship between the lattice-shaped groove | channel whose cross-sectional shape is a rectangle and a metal film is demonstrated in detail. 2 shows an example in which a metal coating 5 is formed by spraying metal on the electroformed brick 1 of FIG.

アンカー効果が効果的に得られるには、アンカー用凹部3を構成する溝にはある程度の深さが必要であるが、過度に深い溝は、電鋳煉瓦1の表面部分の全体としての強度を低下させ、加工も難しい。従って、これらの点で好適な範囲を求めると、溝の深さは、50〜350μm程度が好ましく、より好ましくは150〜250μm程度となる。これは、前述の好適な金属被膜5の厚さの1/2〜5/4に相当し、金属被膜の厚さをm、溝の深さをdとして比率d/mを求めると、好ましいd/mは1/2〜1となり、より好ましくは1/2〜3/4となる。   In order for the anchor effect to be obtained effectively, the groove constituting the anchor recess 3 needs a certain depth, but the excessively deep groove increases the strength of the entire surface portion of the electroformed brick 1. Reduced and difficult to process. Accordingly, when a preferable range is obtained in these respects, the depth of the groove is preferably about 50 to 350 μm, more preferably about 150 to 250 μm. This corresponds to ½ to 5/4 of the thickness of the above-described suitable metal coating 5, and when the ratio d / m is obtained, where the thickness of the metal coating is m and the depth of the groove is d, the preferable d / M is 1/2 to 1, more preferably 1/2 to 3/4.

一方、金属被膜5と電鋳煉瓦1との間で発生する応力の分散度は、溝ピッチpによって変わり、応力を分散して一箇所にかかる応力を小さくするには溝ピッチpを小さくする必要がある。この点に関して金属被膜5の応力耐久性及び電鋳煉瓦1の強度を勘案すると、溝ピッチpは、2.5mm程度以下が好ましく、より好ましくは1.5mm程度以下となる。同じ理由により、溝幅wも狭い方が好ましく、又、電鋳煉瓦1の表面部分の強度を保持する点でも溝幅wは狭い方が好ましい。但し、溶射される金属粒子の粒径より溝幅wが狭いと、溶射粒子で溝を充填できないので、溝幅wは、溶射粒子の寸法によって制限される。通常、溶射粒子の粒径は100μm程度以上であるので、溝幅wも100μm程度以上、好ましくは150μm程度以上となる(溶射法によっては40μm程度まで減少可能である)。また、凸部が応力に抗して破断しない強度を保有するためには、応力に応じた凸部幅x(=溝間間隔、溝ピッチpと溝幅wとの差)を確保する必要がある。金属被膜5から加わる引っ張り応力は、電鋳煉瓦1上に形成される金属被膜5の厚さmに伴って増加するので、金属被膜が厚いほど凸部に要する幅は増加する。この点で、凸部幅xは、金属被膜の厚さmの4倍程度以上であると好ましく、更に、溝ピッチpを小さくする点を考慮すると、好ましい凸部幅xは、膜の厚さmの2.5〜5倍程度となる。つまり、x/m比は4〜5程度である。前述の好適な金属被膜の厚さmに基づいて必要な凸部幅xを定めると、凸部幅xは、700μm〜2.2mm程度が好ましく、より好ましくは750μm〜1.3mm程度となる。この結果、好ましい溝ピッチpは800μm〜2.5mm程度、より好ましい溝ピッチpは1〜1.5mm程度となる。従って、上記凸部幅x及び溝ピッチpを考慮すると、溝幅wは300μm以下が好ましく、より好ましくは250μm以下となる。
On the other hand, the degree of dispersion of the stress generated between the metal coating 5 and electroforming brick 1 is changed by a groove pitch p, to reduce the groove pitch p to reduce the dispersed stress applied to one place stress There is a need. Considering the stress durability of the metal coating 5 and the strength of the electroformed brick 1 in this regard, the groove pitch p is preferably about 2.5 mm or less, and more preferably about 1.5 mm or less. For the same reason, it is preferable that the groove width w is narrow, and it is also preferable that the groove width w is narrow in terms of maintaining the strength of the surface portion of the electroformed brick 1. However, if the groove width w is narrower than the particle size of the metal particles to be sprayed, the grooves cannot be filled with the sprayed particles, so the groove width w is limited by the size of the sprayed particles. Usually, since the particle size of the sprayed particles is about 100 μm or more, the groove width w is also about 100 μm or more, preferably about 150 μm or more (it can be reduced to about 40 μm depending on the spraying method). Further, in order to maintain the strength that the convex portion does not break against the stress, it is necessary to ensure the convex portion width x (= inter-groove interval, difference between the groove pitch p and the groove width w) according to the stress. is there. Since the tensile stress applied from the metal film 5 increases with the thickness m of the metal film 5 formed on the electroformed brick 1, the thicker the metal film, the greater the width required for the convex portion. In this respect, the convex width x is preferably about 4 times or more the thickness m of the metal coating. Further, considering the fact that the groove pitch p is reduced, the preferable convex width x is the thickness of the film. It is about 2.5 to 5 times m. That is, the x / m ratio is about 4-5. When the necessary protrusion width x is determined based on the above-described preferred metal coating thickness m, the protrusion width x is preferably about 700 μm to 2.2 mm, more preferably about 750 μm to 1.3 mm. As a result, the preferable groove pitch p is about 800 μm to 2.5 mm, and the more preferable groove pitch p is about 1 to 1.5 mm. Accordingly, considering the convex portion width x and the groove pitch p, the groove width w is preferably 300 μm or less, more preferably 250 μm or less.

溝の側面にかかる応力は、溝が深い(側面が大きい)ほど側面全体に応力が分散し、凸部が破断し難くなる。従って、溝の深さdに対する溝ピッチpの割合:p/dが小さいほど、応力の分散性が高く、被覆の剥離を抑制し易くなる。前述の好適な溝ピッチp及び溝の深さdに基づいて応力が適切に分散されるp/d値を求めると、好ましくは3〜8程度となる。   As for the stress applied to the side surface of the groove, the deeper the groove (the larger the side surface), the more the stress is dispersed over the entire side surface, and the convex portion is less likely to break. Therefore, as the ratio of the groove pitch p to the groove depth d: p / d is smaller, the dispersibility of the stress is higher, and the peeling of the coating is more easily suppressed. When the p / d value at which stress is appropriately dispersed is determined based on the above-described preferable groove pitch p and groove depth d, it is preferably about 3 to 8.

上述の実施形態は、アンカー用凹部3を構成する溝gの両側面を各々1つの平面で規定して断面を長方形に構成したものであるが、実際の加工では、図3(a)〜(d)のように、溝の各側面が複数の平面又は曲面で規定されるような変更も可能である。これらのアンカー用凹部3a〜dでは、溝ga〜gdの側面が凹部に向かって僅かに突出又は凹むように、2つの平面11,13,21,23(図3(a)及び(c))又は曲面15,25(図3(b)及び(d))で構成したもので、溝ga〜gdは、電鋳煉瓦1a〜1dの表面から深部に向かって溝幅w’から溝幅wへ狭搾される。図3(a)及び(b)では、煉瓦表面付近において溝ga,gbのテーパー度が大きく、平面13及び深部の曲面15は煉瓦表面と垂直である。図3(c)及び(d)では、深部において溝gb、gdのテーパー度が大きく、平面21及び煉瓦表面付近の曲面25は煉瓦表面と垂直である。図3(a)及び(b)の形態は、凸部の耐久性を高める点で好ましい。但し、図3の実施形態においても、剪断応力による剥離を防止するためには実質的に長方形に近似可能な程度の変形であることが好ましいので、溝ga〜gdの狭搾率(煉瓦表面における溝幅w’に対する溝幅の減少量(w’−w)の百分率)が90%程度以下であるものが好適であり、狭搾度がこれを超える溝の割合は、アンカー用凹部を構成する溝全体の40%未満(割合は溝の長さに基づいて算出する)であることが好ましい。図1の断面が長方形の溝と、図3のような狭搾した溝とを組み合わせてアンカー用凹部を構成しても良い。この場合、アンカー用凹部を構成する溝全体のうち60%以上は、断面が長方形の溝g又は狭搾率が90%以下の溝ga〜gdであると好ましい。   In the above-described embodiment, both side surfaces of the groove g constituting the anchor recess 3 are each defined by one plane and the cross section is configured in a rectangular shape. However, in actual processing, in FIGS. As shown in d), it is possible to make a change in which each side surface of the groove is defined by a plurality of planes or curved surfaces. In these anchor recesses 3a to 3d, two flat surfaces 11, 13, 21, and 23 (FIGS. 3A and 3C) are formed so that the side surfaces of the grooves ga to gd slightly protrude or dent toward the recess. Or it is comprised by the curved surfaces 15 and 25 (FIG.3 (b) and (d)), and groove | channels ga-gd change from the groove width w 'to the groove width w toward the deep part from the surface of electroformed brick 1a-1d. Squeezed. 3 (a) and 3 (b), the taper degree of the grooves ga and gb is large in the vicinity of the brick surface, and the flat surface 13 and the deep curved surface 15 are perpendicular to the brick surface. 3 (c) and 3 (d), the grooves gb and gd are deeply tapered in the deep part, and the flat surface 21 and the curved surface 25 near the brick surface are perpendicular to the brick surface. The form shown in FIGS. 3A and 3B is preferable in terms of enhancing the durability of the convex portion. However, also in the embodiment of FIG. 3, in order to prevent peeling due to shear stress, it is preferable that the deformation is a degree that can be substantially approximated to a rectangle, so that the narrowing rate of the grooves ga to gd (on the brick surface) It is preferable that the groove width reduction amount (percentage of the groove width (w′−w) relative to the groove width w ′) is about 90% or less, and the ratio of the grooves whose squeezing degree exceeds this constitutes the anchor recess. It is preferably less than 40% of the entire groove (the ratio is calculated based on the length of the groove). The anchor recess may be configured by combining a groove having a rectangular cross section in FIG. 1 and a narrowed groove as in FIG. In this case, 60% or more of the entire grooves constituting the anchor recesses are preferably grooves g having a rectangular cross section or grooves ga to gd having a squeezing rate of 90% or less.

アンカー用凹部として、斑状の凹部を設ける場合、加工を考慮すると円柱形凹部が実用的であり、この場合も、凹部の寸法及び配置の好適範囲は、上記と同様に決定される。つまり、凹部の深さは前述の溝の深さとなり、凹部の径は前述の溝幅となり、凹部間の間隔は前述の溝間間隔となり、凹部のピッチが前述の溝ピッチとなるように配置すればよい。   In the case where a patch-like concave portion is provided as the anchor concave portion, a cylindrical concave portion is practical in consideration of processing, and also in this case, the preferred range of the size and arrangement of the concave portion is determined in the same manner as described above. That is, the depth of the recess is the depth of the groove, the diameter of the recess is the width of the groove, the interval between the recesses is the interval between the grooves, and the pitch of the recesses is the groove pitch described above. do it.

上述のようなアンカー用凹部を電鋳煉瓦表面に形成することによって、金属溶射被膜を安定に固着可能な電鋳煉瓦が得られる。溝の形成は、砥石、ダイヤモンドブレード等で構成される研削刃を装着した研削機を用いて機械的に行うことができる。或いは、レーザー等の高エネルギービームや高圧水流を用いて行っても良い。アンカー用凹部として斑状の凹部を形成する場合は、ピンドリル等の形態の研削具を用いればよい。アンカー用凹部を形成する前に、予め研削機による切り出し等によって電鋳煉瓦の表面を精度の高い平面に整えると、不測の凹凸に起因して金属溶射被膜が剥離するのを回避できる点で好ましい。   By forming the anchor concave portions as described above on the surface of the electroformed brick, an electroformed brick capable of stably fixing the metal spray coating can be obtained. The groove can be formed mechanically using a grinding machine equipped with a grinding blade composed of a grindstone, a diamond blade or the like. Or you may carry out using high energy beams, such as a laser, and a high voltage | pressure water flow. In the case where a spot-like recess is formed as the anchor recess, a grinding tool such as a pin drill may be used. Before forming the anchor recess, it is preferable that the surface of the electroformed brick is prepared in advance by cutting with a grinding machine or the like so that the metal sprayed coating can be prevented from peeling off due to unexpected unevenness. .

電鋳煉瓦は、ガラス相が少ないという他の煉瓦にはない特徴を有し、非常に強固で表面に凹凸加工を施すのは容易ではないので、通常、凹凸加工を行うことはない。しかし、幾つかの表面加工技術の試行錯誤を経て、漸くアンカー効果のある凹凸加工法と凸部破壊に至らない凹凸形状とを見出し、実現化が可能となっている。具体的には、被膜の突起部表面剥離の問題と被膜の応力による突起部破壊の問題とを試行錯誤により解決している。   Electrocast bricks have characteristics that other bricks have less glass phase, are very strong, and it is not easy to perform uneven processing on the surface, and therefore, uneven processing is usually not performed. However, after trial and error of several surface processing techniques, an irregularity processing method having an anchor effect and an irregular shape that does not lead to the destruction of the convex part are found and realized. Specifically, the problem of peeling of the protrusions on the surface of the film and the problem of destruction of the protrusions due to the stress of the film are solved by trial and error.

又、本発明はガラス溶解等に用いる電鋳煉瓦基材に適用するものであり、その基材は直方体などの単純な形状である場合が多い、従って、溶射を実施する表面は平面であることが殆どである。しかし、電鋳煉瓦の適用範囲が広がるに従って、用途によっては煉瓦を曲面形状等に機械加工して比較的複雑な形状として用いる要求も少なくない。このような場合には、金属を溶射により被覆すべき表面も必然的に曲面を有する3次元形状となる。一般に、硬質で緻密な電鋳煉瓦は典型的な難加工材料であり、本発明で提案する形状及び寸法が厳密に制御された溝を上記のような3次元形状のものに加工するためには、高度な加工技術が必要であり、これに要するコストも無視することはできない。   In addition, the present invention is applied to an electroformed brick base material used for glass melting or the like, and the base material often has a simple shape such as a rectangular parallelepiped, and therefore the surface to be sprayed is a flat surface. Is most. However, as the application range of electroformed bricks expands, there are not a few requests for using bricks as a relatively complicated shape by machining them into curved shapes depending on the application. In such a case, the surface to be coated with the metal by thermal spraying necessarily has a three-dimensional shape having a curved surface. Generally, a hard and dense electroformed brick is a typical difficult-to-process material. In order to process a groove whose shape and size are strictly controlled as proposed in the present invention into a three-dimensional shape as described above. Advanced processing technology is required, and the cost required for this is not negligible.

前述のような3次元形状の表面への被覆が要求される場合には、溝の代替として断続的な孔加工を選択することが可能であり、加工の難度及びコストの点で大幅に有利である。本発明の効果が得られる孔は、直交格子(碁盤目)の交差位置に形成されていることが好ましく、或いは、孔ピッチ距離が同一となるように千鳥状の位置に配置されていることが好ましい。孔ピッチの距離は0.7〜2.5mm程度が好ましく、より好ましくは1〜1.6mm程度とする。その孔直径は0.2〜0.5mm程度が好ましく、より好ましくは0.3〜0.4mm程度とする。孔の深さは0.05〜0.35mm程度が好ましく、より好ましくは0.15〜0.25mm程度とする。   When coating the surface of the three-dimensional shape as described above is required, intermittent drilling can be selected as an alternative to the groove, which is greatly advantageous in terms of processing difficulty and cost. is there. The holes that can achieve the effects of the present invention are preferably formed at the intersecting positions of the orthogonal lattice (cross grid), or arranged at staggered positions so that the hole pitch distances are the same. preferable. The distance of the hole pitch is preferably about 0.7 to 2.5 mm, more preferably about 1 to 1.6 mm. The hole diameter is preferably about 0.2 to 0.5 mm, more preferably about 0.3 to 0.4 mm. The depth of the hole is preferably about 0.05 to 0.35 mm, more preferably about 0.15 to 0.25 mm.

上述のようにアンカー用凹部を形成した電鋳煉瓦は、溶射法によって溶融金属粒子を射出して吹き付けた後、金属を冷却固化することによって金属溶射被膜が形成される。溶射法には、レーザー溶射法、ワイヤーフレーム溶射法、プラズマ溶射法、アーク溶射法、酸水素炎溶射法等があり、何れの方法でも良い。射出する金属粒子は細かい方が好ましく、溶射方法の種類によっては40μm程度まで減少可能であるが、概して、溶射法で射出される金属粒子は50〜150μm程度である。溶射金属粒子の温度は、概して、700〜1500℃程度であるので、溶射を施す際に電鋳煉瓦を加熱すると、溶射金属と電鋳煉瓦との温度差が減少し、煉瓦と溶射金属被膜との密着性が向上するので好ましく、電鋳煉瓦を加熱した状態で溶射した後に常温まで徐冷する。電鋳煉瓦の加熱温度は、溶射金属の温度程度以下、具体的には200〜500℃程度が好ましく、より好ましくは300〜400℃とする。徐冷時の降温速度はできる限り遅い方が良く、望ましくは10℃/分程度以下とする。金属溶射被膜は、粒子の堆積によって形成された被膜であるので、溶融金属の塗布等による固化膜などとは異なり、断面において粒状堆積構造が見られることによって区別される。このような構造では、相対的に密度比が低く、膨脹・収縮による応力が通常の金属膜に比べて緩和される。   As described above, the electroformed brick in which the anchor concave portion is formed has a metal spray coating formed by injecting and spraying molten metal particles by a spraying method and then cooling and solidifying the metal. As the thermal spraying method, there are a laser thermal spraying method, a wire frame thermal spraying method, a plasma thermal spraying method, an arc thermal spraying method, an oxyhydrogen flame thermal spraying method, etc. Any method may be used. The metal particles to be ejected are preferably finer and can be reduced to about 40 μm depending on the type of thermal spraying method. In general, the metal particles ejected by the thermal spraying method are about 50 to 150 μm. Since the temperature of the sprayed metal particles is generally about 700 to 1500 ° C., heating the electroformed brick during spraying reduces the temperature difference between the sprayed metal and the electroformed brick, It is preferable to improve the adhesion of the electroformed brick, and the electroformed brick is sprayed in a heated state and then slowly cooled to room temperature. The heating temperature of the electroformed brick is preferably about the temperature of the sprayed metal, specifically about 200 to 500 ° C, more preferably 300 to 400 ° C. The cooling rate during slow cooling should be as slow as possible, preferably about 10 ° C./min or less. Since the metal spray coating is a coating formed by depositing particles, it is distinguished by a granular deposition structure in the cross section unlike a solidified film by application of molten metal or the like. In such a structure, the density ratio is relatively low, and stress due to expansion / contraction is relaxed as compared with a normal metal film.

上述のようにして、一旦金属溶射被膜で電鋳煉瓦を被覆してしまえば、金属溶射被膜はしっかりと煉瓦表面に固着され、実用時の温度変化がよほど激しくない限り、金属のクリープ変形や降伏能力によって剥離は回避される。得られる金属被膜付き電鋳煉瓦は、高温下での耐久性に優れ、ガラス製造設備用の耐火・耐熱構造材だけでなく、ガス用反応触媒壁等にも利用できる。   As described above, once the electroformed brick is coated with the metal spray coating, the metal spray coating is firmly fixed to the brick surface, and unless the temperature change in practical use is very severe, the metal creep deformation and yield Separation is avoided by ability. The resulting electrocast brick with a metal coating is excellent in durability at high temperatures, and can be used not only for fire-resistant and heat-resistant structural materials for glass production equipment, but also for reaction catalyst walls for gases.

以下、実施例を参照して、本発明について具体的に説明する。   Hereinafter, the present invention will be specifically described with reference to examples.

以下の操作に従って、電鋳煉瓦に溝加工を施した後に金属溶射を行って金属被膜付き電鋳煉瓦の試料を作成し、その間、金属溶射被膜の状態を観察した。実施例1〜3における試料の形態及び溶射結果を表1に記載する。   According to the following operation, the electroformed brick was grooved and then metal sprayed to prepare a sample of the electrocast brick with a metal coating, and during that time, the state of the metal sprayed coating was observed. Table 1 shows the forms of the samples and the thermal spray results in Examples 1 to 3.

[実施例1]
(試料Z1)
高ジルコニア電鋳煉瓦(旭硝子社製:X950、密度5.45g/cm、酸化珪素4.5%、ZrO含量95質量%以上、圧縮強度400kg/cm、曲げ強度90kg/cm、引っ張り強度66.67kg/cm、熱膨張係数0.68、気孔率0.6容積%、ガラス相割合7容積%)を縦50mm×横50mm×高さ10mmの煉瓦片に切断し、この煉瓦片の50mm×50mmの一面を#100の砥石を装着した横軸研削機を用いて研削した。この研削面に、ダイヤモンドブレードを装着した加工機を用いて、溝幅w:0.2mm、溝の深さd:0.1mm、溝ピッチp:1mm、凸部幅x:0.8mmの直交格子形状の溝を形成した。
[Example 1]
(Sample Z1)
High zirconia electrocast brick (Asahi Glass Co., Ltd .: X950, density 5.45 g / cm 2 , silicon oxide 4.5%, ZrO 2 content 95 mass% or more, compressive strength 400 kg / cm 2 , bending strength 90 kg / cm 2 , tensile 66.67 kg / cm 2 , coefficient of thermal expansion 0.68, porosity 0.6 volume%, glass phase ratio 7 volume%) are cut into 50 mm long x 50 mm wide x 10 mm high brick pieces. One surface of 50 mm × 50 mm was ground using a horizontal axis grinder equipped with a # 100 grindstone. Using a processing machine equipped with a diamond blade on this grinding surface, groove width w: 0.2 mm, groove depth d: 0.1 mm, groove pitch p: 1 mm, convex width x: 0.8 mm orthogonal A lattice-shaped groove was formed.

上記電鋳煉瓦片を大気雰囲気中で300℃まで加熱し、溝を形成した面上にワイヤーフレーム溶射法を用いて白金の溶射を開始し(飛行溶射粒子径:100μm程度、温度約100℃)、白金被膜の膜厚が300μmになるまで溶射を続けた後に、煉瓦片を常温まで徐冷した。溶射中において、膜厚が200μmの時点で溶射被膜の剥離が観察された。なお、溶射被膜の剥離とは、被膜の一部が炉材から剥がれた場合であっても剥離と記載している。   The electrocast brick piece is heated to 300 ° C. in an air atmosphere, and platinum spraying is started on the surface on which the groove is formed by using a wire frame spraying method (flying spray particle diameter: about 100 μm, temperature about 100 ° C.) After the thermal spraying was continued until the film thickness of the platinum coating reached 300 μm, the brick piece was gradually cooled to room temperature. During spraying, peeling of the sprayed coating was observed when the film thickness was 200 μm. In addition, peeling of the thermal spray coating is described as peeling even when a part of the coating is peeled off from the furnace material.

(試料Z2)
溝の直交格子形状を、溝幅w:0.2mm、溝の深さd:0.2mm、溝ピッチp:0.4mm、凸部幅x:0.2mmとしたこと以外は試料Z1と同様にして、電鋳煉瓦片の研削面に溝を形成して白金の溶射を行った。この結果、溶射した被膜の膜厚が100μmとなった時点で溶射被膜の剥離が観察された。
(Sample Z2)
Similar to sample Z1, except that the orthogonal lattice shape of the grooves is groove width w: 0.2 mm, groove depth d: 0.2 mm, groove pitch p: 0.4 mm, and convex width x: 0.2 mm. Then, a groove was formed in the ground surface of the electroformed brick piece and platinum was sprayed. As a result, peeling of the sprayed coating was observed when the thickness of the sprayed coating reached 100 μm.

(試料Z3)
溝の直交格子形状を、溝幅w:0.2mm、溝の深さd:0.2mm、溝ピッチp:0.6mm、凸部幅x:0.4mmとしたこと以外は試料Z1と同様にして、電鋳煉瓦片の研削面に溝を形成して白金の溶射を行った。この結果、溶射した被膜の膜厚が100μmとなった時点で溶射被膜の剥離が観察された。
(Sample Z3)
Similar to the sample Z1, except that the orthogonal lattice shape of the grooves is groove width w: 0.2 mm, groove depth d: 0.2 mm, groove pitch p: 0.6 mm, and convex width x: 0.4 mm. Then, a groove was formed in the ground surface of the electroformed brick piece and platinum was sprayed. As a result, peeling of the sprayed coating was observed when the thickness of the sprayed coating reached 100 μm.

(試料Z4)
溝の直交格子形状を、溝幅w:0.2mm、溝の深さd:0.2mm、溝ピッチp:1mm、凸部幅x:0.8mmとしたこと以外は試料Z1と同様にして、電鋳煉瓦片の研削面に溝を形成して白金の溶射を行った。溶射中に溶射被膜の剥離は観察されず、冷却後も溶射被膜は電鋳煉瓦片に密着していた。溶射被膜の膜厚は300μmであった。また、被膜の耐久性も高く耐熱構造体としても有用である。
(Sample Z4)
The orthogonal lattice shape of the grooves was the same as that of the sample Z1, except that the groove width w was 0.2 mm, the groove depth d was 0.2 mm, the groove pitch p was 1 mm, and the convex width x was 0.8 mm. Then, a groove was formed on the ground surface of the electroformed brick piece and platinum was sprayed. During the thermal spraying, no peeling of the thermal spray coating was observed, and the thermal spray coating was in close contact with the electroformed brick piece even after cooling. The film thickness of the sprayed coating was 300 μm. Moreover, the durability of the coating is high and it is useful as a heat-resistant structure.

(試料Z5)
溝の直交格子形状を、溝幅w:0.2mm、溝の深さd:0.2mm、溝ピッチp:1.4mm、凸部幅x:1.2mmとしたこと以外は試料Z1と同様にして、電鋳煉瓦片の研削面に溝を形成して白金の溶射を行った。溶射中に溶射被膜の剥離は観察されず、冷却後も溶射被膜は電鋳煉瓦片に密着していた。溶射被膜の膜厚は300μmであった。また、被膜の耐久性も高く耐熱構造体としても有用である。
(Sample Z5)
Similar to the sample Z1, except that the orthogonal lattice shape of the grooves is groove width w: 0.2 mm, groove depth d: 0.2 mm, groove pitch p: 1.4 mm, and convex width x: 1.2 mm. Then, a groove was formed in the ground surface of the electroformed brick piece and platinum was sprayed. During the thermal spraying, no peeling of the thermal spray coating was observed, and the thermal spray coating was in close contact with the electroformed brick piece even after cooling. The film thickness of the sprayed coating was 300 μm. Moreover, the durability of the coating is high and it is useful as a heat-resistant structure.

(試料Z6)
溝の直交格子形状を、溝幅w:0.3mm、溝の深さd:0.3mm、溝ピッチp:0.6mm、凸部幅x:0.3mmとしたこと以外は試料Z1と同様にして、電鋳煉瓦片の研削面に溝を形成して白金の溶射を行った。この結果、溶射中には溶射被膜の剥離は観察されなかったが、徐冷の時点で被膜の剥離が見られた。溶射被膜の膜厚は300μmであった。
(Sample Z6)
Similar to sample Z1, except that the orthogonal lattice shape of the grooves is groove width w: 0.3 mm, groove depth d: 0.3 mm, groove pitch p: 0.6 mm, and convex width x: 0.3 mm. Then, a groove was formed in the ground surface of the electroformed brick piece and platinum was sprayed. As a result, no thermal spray coating peeling was observed during thermal spraying, but the coating peeling was observed at the time of slow cooling. The film thickness of the sprayed coating was 300 μm.

(試料Z7)
溝の直交格子形状を、溝幅w:0.3mm、溝の深さd:0.3mm、溝ピッチp:1.2mm、凸部幅x:0.9mmとしたこと以外は試料Z1と同様にして、電鋳煉瓦片の研削面に溝を形成して白金の溶射を行った。溶射中に溶射被膜の剥離は観察されず、冷却後も溶射被膜は電鋳煉瓦片に密着していた。溶射被膜の膜厚は300μmであった。また、被膜の耐久性も高く耐熱構造体としても有用である。
(Sample Z7)
Similar to the sample Z1, except that the orthogonal lattice shape of the grooves is groove width w: 0.3 mm, groove depth d: 0.3 mm, groove pitch p: 1.2 mm, and convex width x: 0.9 mm. Then, a groove was formed in the ground surface of the electroformed brick piece and platinum was sprayed. During the thermal spraying, no peeling of the thermal spray coating was observed, and the thermal spray coating was in close contact with the electroformed brick piece even after cooling. The film thickness of the sprayed coating was 300 μm. Moreover, the durability of the coating is high and it is useful as a heat-resistant structure.

[実施例2]
(試料A1)
アルミナ電鋳煉瓦(旭硝子社製:MB−A、密度3.9g/cm、酸化珪素1%、Al含量95質量%以上、圧縮強度250kg/cm、曲げ強度83kg/cm、引っ張り強度41.67kg/cm、熱膨張係数0.7、気孔率2.0容積%、ガラス相割合1容積%以下)を縦50mm×横50mm×高さ10mmの煉瓦片に切断し、この煉瓦片の50mm×50mmの一面を#100の砥石を装着した横軸研削機を用いて研削した。この研削面に、ダイヤモンドブレードを装着した加工機を用いて、溝幅w:0.2mm、溝の深さd:0.2mm、溝ピッチp:0.4mm、凸部幅x:0.2mmの直交格子形状の溝を形成した。
[Example 2]
(Sample A1)
Alumina electrocast brick (Asahi Glass Co., Ltd .: MB-A, density 3.9 g / cm 2 , silicon oxide 1%, Al 2 O 3 content 95 mass% or more, compressive strength 250 kg / cm 2 , bending strength 83 kg / cm 2 , A tensile strength of 41.67 kg / cm 2 , a coefficient of thermal expansion of 0.7, a porosity of 2.0 vol%, and a glass phase ratio of 1 vol% or less) are cut into brick pieces measuring 50 mm long × 50 mm wide × 10 mm high. One side of a 50 mm × 50 mm brick piece was ground using a horizontal axis grinder equipped with a # 100 grindstone. Using a processing machine equipped with a diamond blade on this grinding surface, groove width w: 0.2 mm, groove depth d: 0.2 mm, groove pitch p: 0.4 mm, convex width x: 0.2 mm The orthogonal lattice-shaped grooves were formed.

上記電鋳煉瓦片を大気雰囲気中で300℃まで加熱し、溝を形成した面上にワイヤーフレーム溶射法を用いて白金の溶射を開始し(飛行溶射粒子径:100μm程度、温度約1000℃)、白金被膜の膜厚が300μmになるまで溶射を続けた後に、煉瓦片を常温まで徐冷した。溶射中において、膜厚が100μmの時点で溶射被膜の剥離が観察された。   The electrocast brick piece is heated to 300 ° C. in an air atmosphere, and platinum spraying is started on the surface on which the groove is formed by using a wire frame spraying method (flying spray particle diameter: about 100 μm, temperature about 1000 ° C.) After the thermal spraying was continued until the film thickness of the platinum coating reached 300 μm, the brick piece was gradually cooled to room temperature. During spraying, peeling of the sprayed coating was observed when the film thickness was 100 μm.

(試料A2)
溝の直交格子形状を、溝幅w:0.2mm、溝の深さd:0.2mm、溝ピッチp:1.4mm、凸部幅x:1.2mmとしたこと以外は試料A1と同様にして、電鋳煉瓦片の研削面に溝を形成して白金の溶射を行った。溶射中に溶射被膜の剥離は観察されず、冷却後も溶射被膜は電鋳煉瓦片に密着していた。溶射被膜の膜厚は300μmであった。また、被膜の耐久性も高く耐熱構造体としても有用である。
(Sample A2)
Similar to Sample A1, except that the orthogonal lattice shape of the grooves was set to groove width w: 0.2 mm, groove depth d: 0.2 mm, groove pitch p: 1.4 mm, and convex width x: 1.2 mm. Then, a groove was formed in the ground surface of the electroformed brick piece and platinum was sprayed. During the thermal spraying, no peeling of the thermal spray coating was observed, and the thermal spray coating was in close contact with the electroformed brick piece even after cooling. The film thickness of the sprayed coating was 300 μm. Moreover, the durability of the coating is high and it is useful as a heat-resistant structure.

(試料A3)
溝の直交格子形状を、溝幅w:0.2mm、溝の深さd:0.2mm、溝ピッチp:5mm、凸部幅x:4.8mmとしたこと以外は試料A1と同様にして、電鋳煉瓦片の研削面に溝を形成して白金の溶射を行った。この結果、溶射中には溶射被膜の剥離は観察されなかったが、徐冷の時点で升目毎に被膜の剥離が見られた。溶射被膜の膜厚は300μmであった。
(Sample A3)
The orthogonal lattice shape of the grooves was the same as that of the sample A1, except that the groove width w was 0.2 mm, the groove depth d was 0.2 mm, the groove pitch p was 5 mm, and the protrusion width x was 4.8 mm. Then, a groove was formed on the ground surface of the electroformed brick piece and platinum was sprayed. As a result, no peeling of the sprayed coating was observed during the thermal spraying, but peeling of the coating was observed for each square at the time of slow cooling. The film thickness of the sprayed coating was 300 μm.

[実施例3]
(試料Z8)
溶射する金属を白金からPt−10%Rh合金に変更したこと以外は試料Z4と同様にして、研削面に溝を形成した電鋳煉瓦片に溶射を行った。溶射中に溶射被膜の剥離は観察されず、冷却後も溶射被膜は電鋳煉瓦片に密着していた。溶射被膜の膜厚は300μmであった。また、被膜の耐久性も高く耐熱構造体としても有用である。
[Example 3]
(Sample Z8)
Thermal spraying was performed on an electroformed brick piece having grooves formed on the ground surface in the same manner as Sample Z4, except that the metal to be sprayed was changed from platinum to a Pt-10% Rh alloy. During the thermal spraying, no peeling of the thermal spray coating was observed, and the thermal spray coating was in close contact with the electroformed brick piece even after cooling. The film thickness of the sprayed coating was 300 μm. Moreover, the durability of the coating is high and it is useful as a heat-resistant structure.

(試料A4)
溶射する金属を白金からPt−10%Rh合金に変更したこと以外は試料A2と同様にして、研削面に溝を形成した電鋳煉瓦片に溶射を行った。溶射中に溶射被膜の剥離は観察されず、冷却後も溶射被膜は電鋳煉瓦片に密着していた。溶射被膜の膜厚は300μmであった。また、被膜の耐久性も高く耐熱構造体としても有用である。
(Sample A4)
Thermal spraying was performed on an electroformed brick piece having grooves formed on the ground surface in the same manner as Sample A2, except that the metal to be sprayed was changed from platinum to a Pt-10% Rh alloy. During the thermal spraying, no peeling of the thermal spray coating was observed, and the thermal spray coating was in close contact with the electroformed brick piece even after cooling. The film thickness of the sprayed coating was 300 μm. Moreover, the durability of the coating is high and it is useful as a heat-resistant structure.

(表1)
溝の形態と金属被膜の剥離
試料 溶射 溝 (mm) 被膜の剥離
金属 溝幅w 深さd ピッチp 凸部幅x
Z1 Pt 0.2 0.1 1.0 0.8 200μmで剥離
Z2 Pt 0.2 0.2 0.4 0.2 100μmで剥離
Z3 Pt 0.2 0.2 0.6 0.4 200μmで剥離
Z4 Pt 0.2 0.2 1.0 0.8 剥離しない
Z5 Pt 0.2 0.2 1.4 1.2 剥離しない
Z6 Pt 0.3 0.3 0.6 0.3 徐冷中に剥離
Z7 Pt 0.3 0.3 1.2 0.9 剥離しない
Z8 Pt-Rh 0.2 0.2 1.0 0.8 剥離しない
A1 Pt 0.2 0.2 0.4 0.2 100μmで剥離
A2 Pt 0.2 0.2 1.4 1.2 剥離しない
A3 Pt 0.2 0.2 5.0 4.8 升目毎に剥離
A4 Pt-Rh 0.2 0.2 1.4 1.2 剥離しない
(Table 1)
Groove shape and metal film peeling
Sample Spray groove (mm)
Metal groove width w depth d pitch p convex width x
Z1 Pt 0.2 0.1 1.0 0.8 Separation at 200 μm Z2 Pt 0.2 0.2 0.4 0.2 0.2 Separation at 100 μm Z3 Pt 0.2 0.2 0.6 0.6 0.4 At 200 μm Peeling Z4 Pt 0.2 0.2 1.0 0.8 0.8 Z5 Pt 0.2 0.2 1.4 1.4 1.2 not peeling Z6 Pt 0.3 0.3 0.6 0.3 0.3 Peeling during slow cooling Z7 Pt 0.3 0.3 1.2 1.2 0.9 No peeling Z8 Pt-Rh 0.2 0.2 1.0 0.8 No peeling A1 Pt 0.2 0.2 0.4 0.4 0.2 At 100 μm Peeling A2 Pt 0.2 0.2 1.4 1.2 A3 Pt 0.2 0.2 5.0 5.0 4.8 No peeling Peel every square
A4 Pt-Rh 0.2 0.2 1.4 1.2 1.2 Does not peel

[実施例4]
アンカー用凹部として、直交格子形状の溝の代わりに、ピッチ:1.4mmの直交格子の交点位置に直径:0.4mm、深さ:0.2mmの円柱形凹部が配置された斑状凹部を採用したこと以外は試料Z1と同様にして、電鋳煉瓦片の研削面にアンカー用凹部を形成して白金の溶射を行った。溶射中に溶射被膜の剥離は観察されず、冷却後も溶射被膜は電鋳煉瓦片に密着していた。
[Example 4]
Instead of orthogonal grid-shaped grooves, spot-shaped recesses in which cylindrical recesses with a diameter of 0.4 mm and a depth of 0.2 mm are arranged at the intersections of orthogonal grids with a pitch of 1.4 mm are used as anchor recesses. Except that, the anchor recess was formed on the ground surface of the electroformed brick piece in the same manner as the sample Z1, and platinum was sprayed. During the thermal spraying, no peeling of the thermal spray coating was observed, and the thermal spray coating was in close contact with the electroformed brick piece even after cooling.

本発明における電鋳煉瓦の一実施形態を示す平面図(a)、及び、(a)の電鋳煉瓦のA−A線矢視断面図。The top view (a) which shows one Embodiment of the electrocast brick in this invention, and the AA arrow directional cross-sectional view of the electrocast brick of (a). 本発明の金属被膜付き電鋳煉瓦の一実施形態を示す断面図。Sectional drawing which shows one Embodiment of the electrocast brick with a metal film of this invention. 本発明における電鋳煉瓦の他の実施形態を示す断面図(a)〜(d)。Sectional drawing (a)-(d) which shows other embodiment of the electrocast brick in this invention.

符号の説明Explanation of symbols

1,1a〜1d:電鋳煉瓦、3,3a〜3d:アンカー用凹部、
5:金属被膜、g,ga〜gd:溝、
11,13,21,23:平面、15,25:曲面
d:溝の深さ、p:溝ピッチ、x:突起幅、w:溝幅
1, 1a-1d: Electroformed brick, 3, 3a-3d: Recessed anchor,
5: Metal coating, g, ga to gd: groove,
11, 13, 21, 23: plane, 15, 25: curved surface d: depth of groove, p: groove pitch, x: protrusion width, w: groove width

Claims (11)

規則的なアンカー用凹部が表面に形成される電鋳煉瓦と、前記電鋳煉瓦の表面を被覆し前記アンカー用凹部を埋込むように設けられた金属被膜とを有し、前記金属被膜は白金族金属を含有する溶射被膜であって熱膨張係数が8×10 −6 〜15×10 −6 (20℃)であり、前記電鋳煉瓦は、気孔率が5容積%以下でガラス相の割合が15質量%以下であって熱膨張係数が6×10 −6 〜8×10 −6 (20℃−800℃における平均熱膨張率)であり、前記アンカー用凹部は、溝ピッチが800μm〜2.5mmの複数の溝で構成され、前記複数の溝の深さは、150〜250μmであって前記金属被膜の膜厚の1/2〜3/4倍であることを特徴とする金属被膜付き電鋳煉瓦。 An electroformed brick having regular anchor recesses formed on the surface thereof, and a metal coating provided to cover the surface of the electroformed brick and bury the anchor recesses, the metal coating being platinum A thermal spray coating containing a group metal having a thermal expansion coefficient of 8 × 10 −6 to 15 × 10 −6 (20 ° C.), and the electrocast brick has a porosity of 5% by volume or less and a proportion of the glass phase There is a thermal expansion coefficient I der 15 wt% or less 6 × 10 -6 ~8 × 10 -6 ( average thermal expansion coefficient at 20 ° C. -800 ° C.), the recess for the anchor, the groove pitch 800μm~ is composed of a plurality of grooves of 2.5 mm, the depth of the plurality of grooves, a metal characterized by 1 / 2-3 / 4 Baidea Rukoto thickness of the metal coating a 150~250μm Electroformed brick with coating. 前記金族被膜の膜厚は、100〜400μmである請求項1記載の金属被膜付き電鋳煉瓦。 The electroformed brick with a metal coating according to claim 1, wherein the metal coating has a thickness of 100 to 400 μm. 前記アンカー用凹部の60%以上は、断面形状が長方形である請求項1又は2記載の金属被膜付き電鋳煉瓦。   The electrocast brick with a metal coating according to claim 1 or 2, wherein a cross-sectional shape of at least 60% of the anchor recesses is rectangular. 前記アンカー用凹部は、並行する規則的な複数の溝で構成され、前記複数の溝の溝間間隔は、前記金属被膜の膜厚の4〜5倍である請求項1〜3の何れかに記載の金属被膜付き電鋳煉瓦。   The said recessed part for anchors is comprised by the parallel several regular groove | channel, and the space | interval space | interval of these groove | channels is 4 to 5 times the film thickness of the said metal film. Electroformed brick with metal coating as described. 前記金属被膜は、白金又は白金合金で構成される溶射被膜である請求項1〜4の何れかに記載の金属被膜付き電鋳煉瓦。The electrocast brick with a metal coating according to any one of claims 1 to 4, wherein the metal coating is a thermal spray coating made of platinum or a platinum alloy. ガラス製造設備用構造材料として使用される請求項1〜5の何れかに記載の金属被膜付き電鋳煉瓦。The electrocast brick with a metal coating according to any one of claims 1 to 5, which is used as a structural material for glass production equipment. 前記電鋳煉瓦の酸化珪素含有量が10質量%以下である請求項1〜6の何れかに記載の金属被膜付き電鋳煉瓦。The electrocast brick with a metal coating according to any one of claims 1 to 6, wherein the silicon oxide content of the electrocast brick is 10% by mass or less. 気孔率が5容積%以下でガラス相の割合が15質量%以下である電鋳煉瓦の表面に規則的なアンカー用凹部を形成し、白金族金属を含有する金属を前記電鋳煉瓦に溶射して、前記アンカー用凹部を満たし且つ前記電鋳煉瓦の表面を被覆する金属被膜を形成する金属被膜付き電鋳煉瓦の製造方法であって、前記アンカー用凹部は、溝ピッチが800μm〜2.5mmの複数の溝で構成され、前記複数の溝の深さは、150〜250μmであって前記金属被膜の膜厚の1/2〜3/4倍であることを特徴とする金属被膜付き電鋳煉瓦の製造方法。Regular anchor recesses are formed on the surface of the electrocast brick having a porosity of 5% by volume or less and a glass phase ratio of 15% by mass or less, and a metal containing a platinum group metal is sprayed onto the electrocast brick. A method of manufacturing an electroformed brick with a metal coating that fills the recess for anchor and forms a metal coating for covering the surface of the electrocast brick, wherein the recess for anchor has a groove pitch of 800 μm to 2.5 mm. A plurality of grooves, wherein the depth of the plurality of grooves is 150 to 250 μm and is 1/2 to 3/4 times the film thickness of the metal film. Brick manufacturing method. 前記アンカー用凹部は、並行する規則的な複数の溝を有し、複数の溝の間隔は、前記金属被膜の膜厚の4〜5倍であり、溝の断面形状が長方形である請求項8記載の金属被膜付き電鋳煉瓦の製造方法。9. The anchor recess has a plurality of regular grooves in parallel, and the interval between the plurality of grooves is 4 to 5 times the film thickness of the metal coating, and the cross-sectional shape of the grooves is rectangular. The manufacturing method of the electrocast brick with a metal film of description. 前記金属被膜は白金又は白金合金で構成され、前記金属被膜の膜厚は100〜400μmであり、前記電鋳煉瓦は、酸化珪素含有量が10質量%以下である請求項8〜9の何れかに記載の金属被膜付き電鋳煉瓦の製造方法。The metal film is made of platinum or a platinum alloy, the film thickness of the metal film is 100 to 400 µm, and the electrocast brick has a silicon oxide content of 10% by mass or less. The manufacturing method of the electrocast brick with a metal film as described in 2. 前記金属の溶射に際して、前記電鋳煉瓦は300〜500℃に加熱される請求項8〜10の何れかに記載の金属被膜付き電鋳煉瓦の製造方法。The method for producing an electroformed brick with a metal coating according to any one of claims 8 to 10, wherein the electrocast brick is heated to 300 to 500 ° C during thermal spraying of the metal.
JP2006307000A 2006-11-13 2006-11-13 Electroformed brick with metal coating and method for producing the same Expired - Fee Related JP4983213B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006307000A JP4983213B2 (en) 2006-11-13 2006-11-13 Electroformed brick with metal coating and method for producing the same
KR1020070113727A KR101441128B1 (en) 2006-11-13 2007-11-08 Electrocast brick coated with metal film and method of manufacturing the same
TW096142705A TW200846495A (en) 2006-11-13 2007-11-12 Electrocast brick with metal film and production method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006307000A JP4983213B2 (en) 2006-11-13 2006-11-13 Electroformed brick with metal coating and method for producing the same

Publications (2)

Publication Number Publication Date
JP2008121073A JP2008121073A (en) 2008-05-29
JP4983213B2 true JP4983213B2 (en) 2012-07-25

Family

ID=39506150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006307000A Expired - Fee Related JP4983213B2 (en) 2006-11-13 2006-11-13 Electroformed brick with metal coating and method for producing the same

Country Status (3)

Country Link
JP (1) JP4983213B2 (en)
KR (1) KR101441128B1 (en)
TW (1) TW200846495A (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5193737B2 (en) * 2008-08-14 2013-05-08 日揮株式会社 Clay-based material compression molding apparatus, clay-based material compression molding method
JP5659529B2 (en) * 2010-03-30 2015-01-28 Jfeスチール株式会社 Hot metal holding furnace
CN101962261A (en) * 2010-09-19 2011-02-02 彩虹集团电子股份有限公司 Method for coating platinum in center joints of lip bricks
CN102153270A (en) * 2010-11-19 2011-08-17 河南安彩高科股份有限公司 Integrated lip brick for solar low-iron ultra-white rolled glass and manufacturing method of integrated lip brick
WO2012070508A1 (en) * 2010-11-25 2012-05-31 旭硝子株式会社 Ceramic member and method for producing same, device and method for producing molten glass, and device and method for producing glass article
US9511467B2 (en) 2013-06-10 2016-12-06 Ford Global Technologies, Llc Cylindrical surface profile cutting tool and process
US8726874B2 (en) * 2012-05-01 2014-05-20 Ford Global Technologies, Llc Cylinder bore with selective surface treatment and method of making the same
KR101536600B1 (en) * 2014-08-21 2015-07-14 농업회사법인 주식회사 화롯불 Fireproof brick for fireplace and method for manufacturing the same
US10220453B2 (en) 2015-10-30 2019-03-05 Ford Motor Company Milling tool with insert compensation
JP6986958B2 (en) * 2017-12-27 2021-12-22 AvanStrate株式会社 Glass substrate manufacturing equipment and glass substrate manufacturing method
JP7228357B2 (en) * 2018-10-04 2023-02-24 株式会社フルヤ金属 Volatilization suppression part and its manufacturing method
JP7151001B2 (en) * 2020-08-28 2022-10-11 日本碍子株式会社 ceramic material
CN115838280B (en) * 2022-12-09 2023-06-27 湖南旗滨医药材料科技有限公司 Platinum-rhodium alloy plated mullite rotary tube, preparation method and application thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2934911B2 (en) * 1990-11-29 1999-08-16 株式会社日立製作所 Thermal spray coating manufacturing method
JPH08169718A (en) * 1994-12-20 1996-07-02 Nippon Sheet Glass Co Ltd Glass melting furnace
JP3682888B2 (en) * 1995-06-20 2005-08-17 サンゴバン・ティーエム株式会社 High zirconia electroformed brick
JP4556352B2 (en) * 2001-06-27 2010-10-06 日本電気硝子株式会社 Platinum coated refractory
JP2003212598A (en) * 2001-11-13 2003-07-30 Tosoh Corp Quartz glass and ceramic part, and manufacturing method
JP4586471B2 (en) * 2004-09-17 2010-11-24 日産自動車株式会社 Thermal spraying pretreatment method and engine cylinder block

Also Published As

Publication number Publication date
TWI371503B (en) 2012-09-01
JP2008121073A (en) 2008-05-29
KR20080043230A (en) 2008-05-16
TW200846495A (en) 2008-12-01
KR101441128B1 (en) 2014-09-17

Similar Documents

Publication Publication Date Title
JP4983213B2 (en) Electroformed brick with metal coating and method for producing the same
EP2035350B1 (en) Refractory metallic oxide ceramic part having platinum group metal or platinum group metal alloy coating
EP0134770B1 (en) Carbonaceous articles having oxidation prohibitive coatings thereon
JP2011505319A (en) Fire resistant creep resistant multilayers used in glass manufacturing systems
KR102051934B1 (en) Ceramic Coat Composition having High Heat Resistance
EP0371098A1 (en) Clad precious metal bushing.
JP6343161B2 (en) Centrifugal spray powder manufacturing disc
CN102676972A (en) Treatment method for platinum rhodium bushing
CN102442836A (en) Electrocast brick with metal film and its manufacturing method
CN104310465B (en) A kind of corrosion-and high-temp-resistant body of heater for boiling chloridizing furnace and preparation method thereof
KR101768262B1 (en) Ceramic member and method for producing same, device and method for producing molten glass, and device and method for producing glass article
JP2934911B2 (en) Thermal spray coating manufacturing method
KR102150491B1 (en) Method of manufacturing recycled plate for sliding nozzle and recycled plate
JP2000072534A (en) Large scale fire brick, especially brick for bottom of tin bath, and its production
KR102198259B1 (en) Manufacturing method of recycled plate for sliding nozzle
JP6113100B2 (en) Graphite mold for aluminum casting
WO1999023050A1 (en) Fusion-cast refractory article for glass melting furnaces provided with a noble metal coating
JP2000297358A (en) Mold facing on metallic mold for centrifugal casting roll and method for applying mold facing
JP7201951B1 (en) Method for manufacturing refractory member and refractory member
JP4724863B2 (en) Cast stalk with little adhesion and method for producing the same
JP2003089582A (en) High zirconia fused refractory, and production method therefor
JP2009107012A (en) Enclosure heater for nozzle for continuous casting
RU2563531C1 (en) Method of obtaining of fire-resistant material for glass-melting furnaces
JPH08117984A (en) Sliding nozzle plate refractories
CZ300602B6 (en) Nanocrystalline composite material based on AI203 - ZrO2 - SiO2 and process for preparing thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120327

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120409

R151 Written notification of patent or utility model registration

Ref document number: 4983213

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees