JP4982323B2 - Receiving apparatus and wireless communication system - Google Patents

Receiving apparatus and wireless communication system Download PDF

Info

Publication number
JP4982323B2
JP4982323B2 JP2007271231A JP2007271231A JP4982323B2 JP 4982323 B2 JP4982323 B2 JP 4982323B2 JP 2007271231 A JP2007271231 A JP 2007271231A JP 2007271231 A JP2007271231 A JP 2007271231A JP 4982323 B2 JP4982323 B2 JP 4982323B2
Authority
JP
Japan
Prior art keywords
signal
frequency error
frequency
transmission
transmission signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007271231A
Other languages
Japanese (ja)
Other versions
JP2009100346A (en
Inventor
阿部  順一
史洋 山下
聖 小林
浩平 大幡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2007271231A priority Critical patent/JP4982323B2/en
Publication of JP2009100346A publication Critical patent/JP2009100346A/en
Application granted granted Critical
Publication of JP4982323B2 publication Critical patent/JP4982323B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Radio Transmission System (AREA)
  • Superheterodyne Receivers (AREA)

Description

本発明は、無線通信における周波数利用効率向上のため、同一周波数帯の複数の送信信号を使用する無線通信システム及び該無線通信システムの受信装置に関する。   The present invention relates to a radio communication system that uses a plurality of transmission signals in the same frequency band and an apparatus for receiving the radio communication system in order to improve frequency use efficiency in radio communication.

図5に示す様に、周波数利用効率向上のため、同一周波数帯の複数の送信信号を利用する無線通信システムが提案されている(例えば、非特許文献1参照。)。図5によると、無線通信システムは、送信装置と受信装置とを有し、送信装置は、変調回路71及び72と、周波数変換回路73及び74と、発振回路75及び76と、送信アンテナ77及び78を備え、受信装置は、受信アンテナ79及び80と、周波数変換回路81及び82と、発振回路83及び84と、周波数誤差検出回路85及び86と、周波数誤差補償回路87、88、89及び90と、ユニークワード(UW)マッチトフィルタ91、92、93及び94と、干渉補償回路95と、復調回路96及び97とを備えている。   As shown in FIG. 5, a radio communication system using a plurality of transmission signals in the same frequency band has been proposed to improve frequency utilization efficiency (see, for example, Non-Patent Document 1). According to FIG. 5, the wireless communication system includes a transmission device and a reception device, and the transmission device includes modulation circuits 71 and 72, frequency conversion circuits 73 and 74, oscillation circuits 75 and 76, transmission antenna 77, and 78, the receiving apparatus includes receiving antennas 79 and 80, frequency conversion circuits 81 and 82, oscillation circuits 83 and 84, frequency error detection circuits 85 and 86, and frequency error compensation circuits 87, 88, 89, and 90. And unique word (UW) matched filters 91, 92, 93 and 94, an interference compensation circuit 95, and demodulation circuits 96 and 97.

図5は、例えば、衛星通信システムにおいて、2つの偏波を同時に使用する偏波多重通信を行う場合の構成である。通常の衛星通信用の送信装置は、どちらか片方の偏波のみを使用する様に設計されているため、既存の送信装置を用いて偏波多重通信を行う場合、送信装置の発振回路75及び76は、一般的に非同期となる。これに対応させて、図5の構成においては、送信装置の発振回路75及び76は非同期としている。一方、受信装置の発振回路83及び84は、互いに同期しているものとする。   FIG. 5 shows a configuration in the case of performing polarization multiplexing communication using two polarizations simultaneously in a satellite communication system, for example. Since a normal satellite communication transmission device is designed to use only one of the polarized waves, when performing polarization multiplexing communication using an existing transmission device, an oscillation circuit 75 of the transmission device and 76 is generally asynchronous. Corresponding to this, in the configuration of FIG. 5, the oscillation circuits 75 and 76 of the transmission apparatus are asynchronous. On the other hand, it is assumed that the oscillation circuits 83 and 84 of the receiving device are synchronized with each other.

続いて、上記無線通信システムの信号の流れについて説明する。送信装置において、変調回路71で変調された第1の送信信号は、発振回路75が生成する信号に基づき周波数変換回路73で周波数変換され、送信アンテナ77から無線信号として出力される。同様に、変調回路72で変調された第2の送信信号は、発振回路76が生成する信号に基づき周波数変換回路74で周波数変換され、送信アンテナ78から無線信号として出力される。   Next, the signal flow of the wireless communication system will be described. In the transmission device, the first transmission signal modulated by the modulation circuit 71 is frequency-converted by the frequency conversion circuit 73 based on the signal generated by the oscillation circuit 75 and output from the transmission antenna 77 as a radio signal. Similarly, the second transmission signal modulated by the modulation circuit 72 is frequency-converted by the frequency conversion circuit 74 based on the signal generated by the oscillation circuit 76 and output from the transmission antenna 78 as a radio signal.

図2は、第1の送信信号及び第2の送信信号のフレーム構成を示す図である。図2によると、第1の送信信号は、第1の周波数同期信号と、第1のユニークワードと、送信するデータである第1のデータを含んでおり、第2の送信信号は、第2の周波数同期信号と、第2のユニークワードと、送信するデータである第2のデータを含んでいる。ここで、第1の周波数同期信号が送信されている間、第2の送信信号は無信号であり、第2の周波数同期信号が送信されている間、第1の送信信号は無信号となる様に、両信号は調整される。なお、第1の周波数同期信号と、第1のユニークワードと、第2の周波数同期信号と、第2のユニークワードは、受信装置において既知のパターンであり、第1のユニークワードと第2のユニークワードは異なるパターンである。   FIG. 2 is a diagram illustrating a frame configuration of the first transmission signal and the second transmission signal. According to FIG. 2, the first transmission signal includes a first frequency synchronization signal, a first unique word, and first data that is data to be transmitted. Frequency synchronization signal, a second unique word, and second data to be transmitted. Here, while the first frequency synchronization signal is being transmitted, the second transmission signal is no signal, and while the second frequency synchronization signal is being transmitted, the first transmission signal is no signal. Similarly, both signals are adjusted. Note that the first frequency synchronization signal, the first unique word, the second frequency synchronization signal, and the second unique word are known patterns in the receiving apparatus, and the first unique word and the second unique word Unique words are different patterns.

受信装置において、受信アンテナ79が受信する無線信号は、発振回路83が生成する信号に基づき周波数変換回路81で第1の中間信号に周波数変換される。同様に、受信アンテナ80が受信する無線信号は、発振回路84が生成する信号に基づき周波数変換回路82で第2の中間信号に周波数変換される。   In the receiving apparatus, the radio signal received by the receiving antenna 79 is frequency-converted into a first intermediate signal by the frequency converting circuit 81 based on the signal generated by the oscillation circuit 83. Similarly, the radio signal received by the receiving antenna 80 is frequency converted into a second intermediate signal by the frequency conversion circuit 82 based on the signal generated by the oscillation circuit 84.

ここで、受信アンテナ79が受信する無線信号と、受信アンテナ80が受信する無線信号は、それぞれ、第1の送信信号と第2の送信信号が混在したものである。つまり、発振回路75の周波数をft1、発振回路76の周波数をft2、発振回路83及び84の周波数をfとすると、第1の中間信号及び第2の中間信号は、それぞれ、Δf=ft1−fの周波数誤差を有する第1の送信信号成分と、Δf=ft2−fの周波数誤差を有する第2の送信信号成分の混在信号となる。しかしながら、図2に示す第1の送信信号及び第2の送信信号の関係から明らかな様に、第1の周波数同期信号と第2の周波数同期信号は、互いに他の信号からの影響を受けない。したがって、図6にそのフレーム構成を示す様に、第1の中間信号及び第2の中間信号は、第1の周波数同期信号の区間においては、Δfの周波数誤差を有する第1の送信信号成分のみを含み、第2の周波数同期信号の区間においては、Δfの周波数誤差を有する第2の送信信号成分のみを含んだものとなる。 Here, the radio signal received by the reception antenna 79 and the radio signal received by the reception antenna 80 are a mixture of the first transmission signal and the second transmission signal, respectively. That is, frequency f t1 of the oscillation circuit 75, the frequency f t2 of the oscillation circuit 76, when the frequency of the oscillation circuit 83 and 84 and f r, the first intermediate signal and the second intermediate signal, respectively, Delta] f 1 = a first transmission signal component having a frequency error of f t1 -f r, a second mixed signal of the transmission signal components having a frequency error Δf 2 = f t2 -f r. However, as is apparent from the relationship between the first transmission signal and the second transmission signal shown in FIG. 2, the first frequency synchronization signal and the second frequency synchronization signal are not affected by other signals. . Therefore, as shown in FIG. 6, the first intermediate signal and the second intermediate signal are the first transmission signal component having a frequency error of Δf 1 in the first frequency synchronization signal section. In the second frequency synchronization signal section, only the second transmission signal component having a frequency error of Δf 2 is included.

周波数誤差検出回路85は、第1の中間信号及び第2の中間信号の第1の周波数同期信号の区間から周波数誤差Δfを検出し、平滑化したものを周波数誤差補償回路87及び90に出力する。同様に、周波数誤差検出回路86は、第1の中間信号及び第2の中間信号の第2の周波数同期信号の区間から周波数誤差Δfを検出し、平滑化したものを周波数誤差補償回路88及び89に出力する。 The frequency error detection circuit 85 detects the frequency error Δf 1 from the section of the first frequency synchronization signal of the first intermediate signal and the second intermediate signal, and outputs the smoothed one to the frequency error compensation circuits 87 and 90. To do. Similarly, the frequency error detection circuit 86 detects the frequency error Δf 2 from the section of the second frequency synchronization signal of the first intermediate signal and the second intermediate signal, and smoothes the detected frequency error Δf 2. Output to 89.

周波数誤差補償回路87は、周波数誤差Δfに基づき第1の中間信号の周波数誤差の補償を行い、周波数誤差補償回路90は、周波数誤差Δfに基づき第2の中間信号の周波数誤差の補償を行う。よって、周波数誤差補償回路87及び90が出力する信号は、それぞれ、周波数誤差のない第1の送信信号成分と、周波数誤差が、Δf−Δfである第2の送信信号成分を含んだものとなる。 The frequency error compensation circuit 87 compensates the frequency error of the first intermediate signal based on the frequency error Δf 1 , and the frequency error compensation circuit 90 compensates the frequency error of the second intermediate signal based on the frequency error Δf 1. Do. Therefore, the signals output from the frequency error compensation circuits 87 and 90 each include a first transmission signal component having no frequency error and a second transmission signal component having a frequency error of Δf 2 −Δf 1 . It becomes.

同様に、周波数誤差補償回路88は、周波数誤差Δfに基づき第1の中間信号の周波数誤差の補償を行い、周波数誤差補償回路89は、周波数誤差Δfに基づき第2の中間信号の周波数誤差の補償を行う。よって周波数誤差補償回路88及び89が出力する信号は、それぞれ、周波数誤差がΔf−Δfである第1の送信信号成分と、周波数誤差のない第2の送信信号成分を含んだものとなる。 Similarly, the frequency error compensation circuit 88 compensates the frequency error of the first intermediate signal based on the frequency error Δf 2 , and the frequency error compensation circuit 89 performs the frequency error of the second intermediate signal based on the frequency error Δf 2. To compensate. Therefore, the signals output from the frequency error compensation circuits 88 and 89 each include a first transmission signal component having a frequency error of Δf 1 −Δf 2 and a second transmission signal component having no frequency error. .

UWマッチトフィルタ91は、周波数誤差補償回路87の出力信号のユニークワードのタイミングにおいて、当該出力信号と第1のユニークワードとの畳み込み演算を行い、第1の中間信号における第1の送信信号の割合である伝搬路行列成分h11を出力し、UWマッチトフィルタ94は、周波数誤差補償回路90の出力信号のユニークワードのタイミングにおいて、当該出力信号と第1のユニークワードとの畳み込み演算を行い、第2の中間信号における第1の送信信号の割合である伝搬路行列成分h21を出力する。ここで、周波数誤差補償回路87及び90の出力信号において、第1の送信信号成分については、周波数誤差が0であるため、伝搬路行列成分h11及びh21の推定は、周波数誤差の影響を受けない。 The UW matched filter 91 performs a convolution operation between the output signal and the first unique word at the timing of the unique word of the output signal of the frequency error compensation circuit 87, and performs the first transmission signal of the first intermediate signal. outputs channel matrix component h 11 is the proportion, UW matched filter 94 at the timing of the unique word of the output signal of the frequency error compensation circuit 90 performs a convolution operation between the output signal and the first unique word The propagation path matrix component h 21 which is the ratio of the first transmission signal in the second intermediate signal is output. Here, in the output signals of the frequency error compensation circuits 87 and 90, since the frequency error is zero for the first transmission signal component, the estimation of the propagation path matrix components h 11 and h 21 is influenced by the frequency error. I do not receive it.

同様に、UWマッチトフィルタ92は、周波数誤差補償回路88の出力信号のユニークワードのタイミングにおいて、当該出力信号と第2のユニークワードとの畳み込み演算を行い、第1の中間信号における第2の送信信号の割合である伝搬路行列成分h12を出力し、UWマッチトフィルタ93は、周波数誤差補償回路89の出力信号のユニークワードのタイミングにおいて、当該出力信号と第2のユニークワードとの畳み込み演算を行い、第2の中間信号における第2の送信信号の割合である伝搬路行列成分h22を出力する。ここで、周波数誤差補償回路88及び89の出力信号において、第2の送信信号成分については、周波数誤差が0であるため、伝搬路行列成分h12及びh22の推定は、周波数誤差の影響を受けない。 Similarly, the UW matched filter 92 performs a convolution operation between the output signal and the second unique word at the timing of the unique word of the output signal of the frequency error compensation circuit 88, and performs the second operation on the first intermediate signal. The propagation path matrix component h 12 that is the ratio of the transmission signal is output, and the UW matched filter 93 convolves the output signal with the second unique word at the timing of the unique word of the output signal of the frequency error compensation circuit 89. An operation is performed, and a propagation path matrix component h 22 that is a ratio of the second transmission signal in the second intermediate signal is output. Here, in the output signals of the frequency error compensation circuits 88 and 89, since the frequency error is zero for the second transmission signal component, the estimation of the propagation path matrix components h 12 and h 22 is influenced by the frequency error. I do not receive it.

干渉補償回路95は、伝搬路行列成分h11、h12、h21及びh22用い、第1の中間信号及び第2の中間信号から、第1の送信信号に対応する第1の受信信号と、第2の送信信号に対応する第2の受信信号を、それぞれ、取り出し、復調回路96は、第1の受信信号を復調し、復調回路97は、第2の受信信号を復調する。 The interference compensation circuit 95 uses the propagation path matrix components h 11 , h 12 , h 21 and h 22 , and from the first intermediate signal and the second intermediate signal, the first received signal corresponding to the first transmission signal and The second reception signal corresponding to the second transmission signal is extracted, the demodulation circuit 96 demodulates the first reception signal, and the demodulation circuit 97 demodulates the second reception signal.

Fumihiro Yamashita、et al、“Variable Polarization Frequency Division Multiplexing (VPFDM) for satellite communications”、AIAA ICSSC AIAA-2007−3244、2007年4月Fumihiro Yamashita, et al, “Variable Polarization Frequency Multiplexing (VPFDM) for satellite communication”, AAAA ICSSC AIAA-2007-44.

図5に示す構成は、受信装置の発振回路83と84が互いに同期していることを前提としている。しかしながら、図5の構成をより一般化し、発振回路83と84が非同期であり、発振回路83の発振周波数がfr1、発振回路84の発振周波数がfr2である場合を想定する。この場合、第1の中間信号は、周波数誤差がΔf11=ft1−fr1である第1の送信信号成分と、周波数誤差がΔf12=ft2−fr1である第2の送信信号成分の混在信号となり、第2の中間信号は、周波数誤差がΔf21=ft1−fr2である第1の送信信号成分と、周波数誤差がΔf22=ft2−fr2である第2の送信信号成分の混在信号となる。 The configuration shown in FIG. 5 is based on the premise that the oscillation circuits 83 and 84 of the receiving apparatus are synchronized with each other. However, it is assumed that the configuration of FIG. 5 is more generalized, and the oscillation circuits 83 and 84 are asynchronous, the oscillation frequency of the oscillation circuit 83 is f r1 , and the oscillation frequency of the oscillation circuit 84 is f r2 . In this case, the first intermediate signal includes a first transmission signal component whose frequency error is Δf 11 = f t1 −f r1 and a second transmission signal component whose frequency error is Δf 12 = f t2 −f r1. The second intermediate signal includes a first transmission signal component having a frequency error of Δf 21 = f t1 −f r2 and a second transmission having a frequency error of Δf 22 = f t2 −f r2. It becomes a mixed signal of signal components.

周波数誤差検出回路85は、第1の中間信号及び第2の中間信号からΔf11とΔf12の平均周波数誤差Δfを検出して、周波数誤差補償回路87及び90に出力し、周波数誤差検出回路86は、第1の中間信号及び第2の中間信号からΔf21とΔf22の平均周波数誤差Δfを検出して、周波数誤差補償回路88及び89に出力する。 The frequency error detection circuit 85 detects the average frequency error Δf 3 of Δf 11 and Δf 12 from the first intermediate signal and the second intermediate signal, and outputs the average frequency error Δf 3 to the frequency error compensation circuits 87 and 90, so that the frequency error detection circuit 86 detects the average frequency error Δf 4 of Δf 21 and Δf 22 from the first intermediate signal and the second intermediate signal, and outputs them to the frequency error compensation circuits 88 and 89.

周波数誤差補償回路87は、第1の中間信号に対してΔfの周波数補償を行い出力するが、ΔfとΔf11は異なる値であるため、周波数誤差補償回路87が出力する信号は、Δf11−Δfと、Δf12−Δfの、2つの周波数誤差を有する信号の混在となる。同様に、周波数誤差補償回路90が出力する信号は、Δf21−Δfと、Δf22−Δfの、2つの周波数誤差を有する信号の混在となり、周波数誤差補償回路88が出力する信号は、Δf11−Δfと、Δf12−Δfの、2つの周波数誤差を有する信号の混在となり、周波数誤差補償回路89が出力する信号は、Δf21−Δfと、Δf22−Δfの、2つの周波数誤差を有する信号の混在となる。 The frequency error compensation circuit 87 performs frequency compensation of Δf 3 on the first intermediate signal and outputs it. However, since Δf 3 and Δf 11 are different values, the signal output by the frequency error compensation circuit 87 is Δf A signal having two frequency errors, 11 −Δf 3 and Δf 12 −Δf 3 , is mixed. Similarly, the signal output from the frequency error compensation circuit 90 is a mixture of signals having two frequency errors, Δf 21 −Δf 3 and Δf 22 −Δf 3 , and the signal output from the frequency error compensation circuit 88 is A signal having two frequency errors, Δf 11 −Δf 4 and Δf 12 −Δf 4 , is mixed, and signals output from the frequency error compensation circuit 89 are Δf 21 −Δf 4 and Δf 22 −Δf 4 . A signal having two frequency errors is mixed.

つまり、UWマッチトフィルタ91、92、93及び94は、周波数誤差を有するユニークワードとの相関を検出することとなり、伝搬路行列の推定精度が劣化し、これにより、干渉補償回路95での補償精度も劣化するという問題がある。   That is, the UW matched filters 91, 92, 93 and 94 detect the correlation with the unique word having the frequency error, and the estimation accuracy of the propagation path matrix is deteriorated. There is a problem that accuracy also deteriorates.

したがって、本発明は、同一周波数帯の複数の信号を使用する無線システム、つまり空間多重無線通信システムにおいて、送信装置及び受信装置の発振回路が、それぞれ、非同期であっても、品質劣化を生じさせない受信装置及び無線通信システムを提供することを目的とする。   Therefore, the present invention does not cause quality degradation in a wireless system using a plurality of signals in the same frequency band, that is, in a spatial multiplexing wireless communication system, even if the oscillation circuits of the transmission device and the reception device are each asynchronous. An object is to provide a receiving apparatus and a wireless communication system.

本発明における受信装置によれば、
空間多重された第1の送信信号及び第2の送信信号を受信する受信装置であって、第1の受信アンテナと、第2の受信アンテナと、第1の受信アンテナが受信する信号を周波数変換し、第1の中間信号を出力する第1の受信周波数変換手段と、第2の受信アンテナが受信する信号を、第1の受信周波数変換手段とは異なる発振手段を用いて周波数変換し、第2の中間信号を出力する第2の受信周波数変換手段と、第1の中間信号の周波数補償を行う第1の周波数誤差補償手段と、第2の中間信号の周波数補償を行う第2の周波数誤差補償手段と、第1の中間信号及び第2の中間信号の周波数補償を行って伝搬路行列を算出する手段と、伝搬路行列に基づき第1の周波数誤差補償手段の出力信号と、第2の周波数誤差補償手段の出力信号から第1の送信信号に対応する第1の受信信号と、第2の送信信号に対応する第2の受信信号を生成する干渉補償手段とを備えている。
According to the receiving device of the present invention,
A receiving device that receives a first transmission signal and a second transmission signal that are spatially multiplexed, and frequency-converts signals received by the first reception antenna, the second reception antenna, and the first reception antenna. Then, the first receiving frequency converting means for outputting the first intermediate signal and the signal received by the second receiving antenna are frequency-converted using an oscillating means different from the first receiving frequency converting means, A second reception frequency converting means for outputting the intermediate signal of the second, a first frequency error compensating means for compensating the frequency of the first intermediate signal, and a second frequency error for compensating the frequency of the second intermediate signal. Compensation means; means for performing frequency compensation of the first intermediate signal and the second intermediate signal to calculate a propagation path matrix; an output signal of the first frequency error compensation means based on the propagation path matrix; From the output signal of the frequency error compensation means And it includes a first reception signal corresponding to the transmission signal, and the interference compensation unit for generating a second received signal corresponding to the second transmission signal.

本発明の受信装置における他の実施形態よれば、
第1の中間信号に含まれる第1の送信信号成分が受けた第1の周波数誤差、第1の中間信号に含まれる第2の送信信号成分が受けた第2の周波数誤差、第2の中間信号に含まれる第1の送信信号成分が受けた第3の周波数誤差、及び、第2の中間信号に含まれる第2の送信信号成分が受けた第4の周波数誤差を検出する周波数誤差検出手段を、更に、備えており、第1の周波数誤差補償手段は、第1の周波数誤差と第2の周波数誤差の和に基づき第1の中間信号の周波数補償を行い、第2の周波数誤差補償手段は、第3の周波数誤差と第4の周波数誤差の和に基づき第2の中間信号の周波数補償を行うことも好ましい。
According to another embodiment of the receiving device of the present invention,
The first frequency error received by the first transmission signal component included in the first intermediate signal, the second frequency error received by the second transmission signal component included in the first intermediate signal, and the second intermediate Frequency error detection means for detecting a third frequency error received by the first transmission signal component included in the signal and a fourth frequency error received by the second transmission signal component included in the second intermediate signal The first frequency error compensating means performs frequency compensation of the first intermediate signal based on the sum of the first frequency error and the second frequency error, and the second frequency error compensating means. It is also preferable to perform frequency compensation of the second intermediate signal based on the sum of the third frequency error and the fourth frequency error.

本発明の受信装置における他の実施形態よれば、
伝搬路行列を算出する手段は、第1の周波数誤差に基づき第1の中間信号の周波数補償を行う第3の周波数誤差補償手段と、第2の周波数誤差に基づき第1の中間信号の周波数補償を行う第4の周波数誤差補償手段と、第3の周波数誤差に基づき第2の中間信号の周波数補償を行う第5の周波数誤差補償手段と、第4の周波数誤差に基づき第2の中間信号の周波数補償を行う第6の周波数誤差補償手段と、第3、第4、第5及び第6の周波数誤差補償手段の出力信号から伝搬路行列成分を出力する手段とを備えていることも好ましい。
According to another embodiment of the receiving device of the present invention,
The means for calculating the propagation path matrix includes third frequency error compensation means for performing frequency compensation of the first intermediate signal based on the first frequency error, and frequency compensation for the first intermediate signal based on the second frequency error. A fourth frequency error compensating means for performing the second frequency error compensating means for compensating the frequency of the second intermediate signal based on the third frequency error, and a second frequency error compensating means for performing the frequency compensation of the second intermediate signal based on the fourth frequency error. It is also preferable to include sixth frequency error compensating means for performing frequency compensation and means for outputting a propagation path matrix component from the output signals of the third, fourth, fifth and sixth frequency error compensating means.

更に、本発明の無線受信装置における他の実施形態よれば、
第1の送信信号は、第1の特定パターンを含み、第2の送信信号は、第2の特定パターンを含み、伝搬路行例は、第3の周波数誤差補償手段の出力信号と第1の特定パターンとの相関と、第4の周波数誤差補償手段の出力信号と第2の特定パターンとの相関と、第5の周波数誤差補償手段の出力信号と第1の特定パターンとの相関と、第6の周波数誤差補償手段の出力信号と第2の特定パターンとの相関とにより算出することも好ましい。
Furthermore, according to another embodiment of the wireless receiver of the present invention,
The first transmission signal includes the first specific pattern, the second transmission signal includes the second specific pattern, and the propagation path example includes the output signal of the third frequency error compensating means and the first A correlation between the specific pattern, a correlation between the output signal of the fourth frequency error compensation means and the second specific pattern, a correlation between the output signal of the fifth frequency error compensation means and the first specific pattern, It is also preferable to calculate based on the correlation between the output signal of the frequency error compensating means 6 and the second specific pattern.

更に、本発明の無線受信装置における他の実施形態よれば、
第5の周波数誤差に基づき、第1の受信信号の周波数補償を行う第7の周波数誤差補償手段と、第5の周波数誤差とは絶対値が同一で、その符号が反転する第6の周波数誤差に基づき、第2の受信信号の周波数補償を行う第8の周波数誤差補償手段とを備えており、第5の周波数誤差は、第1の周波数誤差と第2の周波数誤差の差、又は、第3の周波数誤差と第4の周波数誤差の差に基づき算出されることも好ましい。
Furthermore, according to another embodiment of the wireless receiver of the present invention,
The seventh frequency error compensation means for compensating the frequency of the first received signal based on the fifth frequency error, and the fifth frequency error have the same absolute value and the sixth frequency error whose sign is inverted. And an eighth frequency error compensation means for performing frequency compensation of the second received signal, and the fifth frequency error is the difference between the first frequency error and the second frequency error, or It is also preferable to calculate based on the difference between the frequency error 3 and the fourth frequency error.

更に、本発明の無線受信装置における他の実施形態よれば、
第1の送信信号及び第2の送信信号は、それぞれ、無信号である区間を含み、第1の周波数誤差は、第1の送信信号が無信号ではなく、かつ、第2の送信信号が無信号である区間における第1の中間信号から検出し、第2の周波数誤差は、第1の送信信号が無信号であり、かつ、第2の送信信号が無信号でない区間における第1の中間信号から検出し、第3の周波数誤差は、第1の送信信号が無信号ではなく、かつ、第2の送信信号が無信号である区間における第2の中間信号から検出し、第4の周波数誤差は、第1の送信信号が無信号であり、かつ、第2の送信信号が無信号でない区間における第2の中間信号から検出することも好ましい。
Furthermore, according to another embodiment of the wireless receiver of the present invention,
Each of the first transmission signal and the second transmission signal includes a section in which there is no signal, and the first frequency error is that the first transmission signal is not a signal and the second transmission signal is not a signal. The second frequency error detected from the first intermediate signal in a section that is a signal is the first intermediate signal in a section in which the first transmission signal is no signal and the second transmission signal is not a signal. And the third frequency error is detected from the second intermediate signal in a section where the first transmission signal is not a no-signal and the second transmission signal is a no-signal. It is also preferable to detect from the second intermediate signal in a section where the first transmission signal is no signal and the second transmission signal is not a signal.

本発明における無線通信システムによれば、
前記受信装置と、送信装置とを有する無線通信システムであって、送信装置は、第1の送信信号を周波数変換する第1の送信周波数変換手段と、第2の送信信号を、第1の送信周波数変換手段とは異なる発振手段を用いて周波数変換する第2の送信周波数変換手段とを備えている。
According to the wireless communication system of the present invention,
A wireless communication system including the reception device and a transmission device, wherein the transmission device converts a first transmission signal to a first transmission frequency and a second transmission signal to the first transmission. And a second transmission frequency converting means for performing frequency conversion using an oscillating means different from the frequency converting means.

本発明による受信装置は、空間的に多重された第1の送信信号及び第2の送信信号から、伝搬経路毎に周波数誤差を個別推定し、推定した周波数誤差を用いて第1の中間信号及び第2の中間信号に混在している各周波数誤差を個別に補償することで、周波数誤差の影響を受けずに伝搬路行列の推定を行う。これにより、信号間干渉を精度良く補償し、よって、復調後の信号品質の劣化を抑えることができる。本発明を用いることで、RF装置の選択に柔軟性が増し、装置コストを低減することができる。   The receiving apparatus according to the present invention individually estimates the frequency error for each propagation path from the first transmission signal and the second transmission signal that are spatially multiplexed, and uses the estimated frequency error to generate the first intermediate signal and By individually compensating each frequency error mixed in the second intermediate signal, the propagation path matrix is estimated without being affected by the frequency error. As a result, inter-signal interference can be compensated with high accuracy, and degradation of signal quality after demodulation can be suppressed. By using the present invention, flexibility in selecting an RF device can be increased, and the device cost can be reduced.

本発明を実施するための最良の実施形態について、以下では図面を用いて詳細に説明する。   The best mode for carrying out the present invention will be described in detail below with reference to the drawings.

図1は、本発明による無線通信システムの構成図であり、無線通信システムは、送信装置と受信装置を含んでいる。図1によると、送信装置は、変調回路11及び12と、周波数変換回路13及び14と、発振回路15及び16と、送信アンテナ17及び18とを備えている。   FIG. 1 is a configuration diagram of a wireless communication system according to the present invention, and the wireless communication system includes a transmission device and a reception device. According to FIG. 1, the transmission apparatus includes modulation circuits 11 and 12, frequency conversion circuits 13 and 14, oscillation circuits 15 and 16, and transmission antennas 17 and 18.

周波数変換回路13は、変調回路11で変調された第1の送信信号を発振回路15が出力する周波数ft1の信号に基づき周波数変換し、送信アンテナ17は、周波数変換された第1の送信信号を無線信号として出力する。同様に、周波数変換回路14は、変調回路12で変調された第2の送信信号を発振回路16が出力する周波数ft2の信号に基づき周波数変換し、送信アンテナ18は、周波数変換された第2の送信信号を無線信号として出力する。本発明において、発振回路15と、発振回路16とは異なるもの、つまり、非同期であり、よって、周波数変換回路13の出力信号の周波数と、周波数変換回路14の出力信号の周波数は、一般的には一致せず、ずれが生ずることになる。 The frequency conversion circuit 13 converts the frequency of the first transmission signal modulated by the modulation circuit 11 based on the signal of the frequency f t1 output from the oscillation circuit 15, and the transmission antenna 17 converts the frequency-converted first transmission signal. Is output as a radio signal. Similarly, the frequency conversion circuit 14 converts the frequency of the second transmission signal modulated by the modulation circuit 12 based on the signal of the frequency ft2 output from the oscillation circuit 16, and the transmission antenna 18 converts the frequency-converted second transmission signal. Are transmitted as radio signals. In the present invention, the oscillating circuit 15 and the oscillating circuit 16 are different, that is, asynchronous. Therefore, the frequency of the output signal of the frequency converting circuit 13 and the frequency of the output signal of the frequency converting circuit 14 are generally Will not match, and a shift will occur.

図2は、第1の送信信号及び第2の送信信号のフレーム構成を示す図である。図2によると、第1の送信信号は、第1の周波数同期信号と、第1のユニークワードと、送信するデータである第1のデータを含んでおり、第2の送信信号は、第2の周波数同期信号と、第2のユニークワードと、送信するデータである第2のデータを含んでいる。ここで、第1の周波数同期信号が送信されている間、第2の送信信号は無信号であり、第2の周波数同期信号が送信されている間、第1の送信信号は無信号となる様に、両信号は調整される。なお、第1の周波数同期信号と、第1のユニークワードと、第2の周波数同期信号と、第2のユニークワードは、受信装置において既知の特定パターンであり、第1のユニークワードと第2のユニークワードは、異なるパターンである。   FIG. 2 is a diagram illustrating a frame configuration of the first transmission signal and the second transmission signal. According to FIG. 2, the first transmission signal includes a first frequency synchronization signal, a first unique word, and first data that is data to be transmitted. Frequency synchronization signal, a second unique word, and second data to be transmitted. Here, while the first frequency synchronization signal is being transmitted, the second transmission signal is no signal, and while the second frequency synchronization signal is being transmitted, the first transmission signal is no signal. Similarly, both signals are adjusted. The first frequency synchronization signal, the first unique word, the second frequency synchronization signal, and the second unique word are known specific patterns in the receiving device, and the first unique word and the second unique word The unique word is a different pattern.

また、図1によると、本発明による受信装置は、受信アンテナ19及び20と、周波数変換回路21及び22と、発振回路23及び24と、周波数誤差検出回路25、26、27及び28と、周波数誤差補償値制御回路29と、周波数誤差補償回路30、31、32、33、38、39、41及び42と、UWマッチトフィルタ34、35、36及び37と、干渉補償回路40と、復調回路43及び44とを備えている。   Further, according to FIG. 1, the receiving apparatus according to the present invention includes receiving antennas 19 and 20, frequency conversion circuits 21 and 22, oscillation circuits 23 and 24, frequency error detection circuits 25, 26, 27 and 28, frequency Error compensation value control circuit 29, frequency error compensation circuits 30, 31, 32, 33, 38, 39, 41 and 42, UW matched filters 34, 35, 36 and 37, interference compensation circuit 40, and demodulation circuit 43 and 44.

周波数変換回路21は、受信アンテナ19が受信した無線信号を、発振回路23が出力する周波数fr1の信号に基づき周波数変換して第1の中間信号を出力し、周波数変換回路22は、受信アンテナ20が受信した無線信号を、発振回路24が出力する周波数fr2の信号に基づき周波数変換して第2の中間信号を出力する。送信装置と同様、本発明において、発振回路23と、発振回路24は、それぞれ独立して発振、つまり、非同期である。 The frequency conversion circuit 21 converts the radio signal received by the receiving antenna 19 based on the signal of the frequency fr1 output from the oscillation circuit 23 and outputs a first intermediate signal. The frequency conversion circuit 22 The radio signal received by the frequency converter 20 is frequency-converted based on the signal of the frequency fr2 output from the oscillation circuit 24, and a second intermediate signal is output. Similar to the transmission device, in the present invention, the oscillation circuit 23 and the oscillation circuit 24 are independently oscillated, that is, asynchronous.

ここで、受信アンテナ19が受信する無線信号と、受信アンテナ20が受信する無線信号は、それぞれ、第1の送信信号成分と第2の送信信号成分が混在したものであり、そのフレーム構成を図3に示す。図2に示す第1の送信信号及び第2の送信信号の関係から明らかな様に、第1の中間信号及び第2の中間信号それぞれにおいて、第1の周波数同期信号と第2の周波数同期信号は、他の信号から影響を受けない。したがって、図3に示す様に、第1の中間信号の、第1の周波数同期信号の区間は、周波数誤差Δf11=Δft1−Δfr1である第1の送信信号成分のみであり、第2の周波数同期信号の区間は、周波数誤差Δf12=Δft2−Δfr1である第2の送信信号成分のみであり、その他の区間は、周波数誤差Δf11である第1の送信信号成分と、周波数誤差Δf12である第2の送信信号成分の混在信号である。同様に、第2の中間信号の、第1の周波数同期信号の区間は、周波数誤差Δf21=Δft1−Δfr2である第1の送信信号成分のみであり、第2の周波数同期信号の区間は、周波数誤差Δf22=Δft2−Δfr2である第2の送信信号成分のみであり、その他の区間は、周波数誤差Δf21である第1の送信信号成分と、周波数誤差Δf22である第2の送信信号成分の混在信号である。 Here, the radio signal received by the receiving antenna 19 and the radio signal received by the receiving antenna 20 are each a mixture of the first transmission signal component and the second transmission signal component, and the frame configuration thereof is illustrated. 3 shows. As is apparent from the relationship between the first transmission signal and the second transmission signal shown in FIG. 2, the first frequency synchronization signal and the second frequency synchronization signal in each of the first intermediate signal and the second intermediate signal. Is not affected by other signals. Therefore, as shown in FIG. 3, the section of the first frequency synchronization signal of the first intermediate signal is only the first transmission signal component having the frequency error Δf 11 = Δf t1 −Δf r1 , The interval of the frequency synchronization signal is only the second transmission signal component having the frequency error Δf 12 = Δf t2 −Δf r1 , and the other interval is the first transmission signal component having the frequency error Δf 11 and the frequency a second mixed signal of the transmission signal component of the error Delta] f 12. Similarly, the section of the first frequency synchronization signal of the second intermediate signal is only the first transmission signal component having the frequency error Δf 21 = Δf t1 −Δf r2 , and the section of the second frequency synchronization signal. Is only the second transmission signal component with frequency error Δf 22 = Δf t2 −Δf r2 , and the other interval is the first transmission signal component with frequency error Δf 21 and the first error with frequency error Δf 22 . 2 is a mixed signal of two transmission signal components.

周波数誤差検出回路25は、第1の中間信号における第1の周波数同期信号の区間から周波数誤差Δf11を検出し、周波数誤差検出回路26は、第1の中間信号における第2の周波数同期信号の区間から周波数誤差Δf12を検出し、周波数誤差検出回路27は、第2の中間信号における第1の周波数同期信号の区間から周波数誤差Δf21を検出し、周波数誤差検出回路28は、第2の中間信号における第2の周波数同期信号の区間から周波数誤差Δf22を検出し、それぞれ、周波数誤差補償値制御回路29に出力する。 The frequency error detection circuit 25 detects the frequency error Δf 11 from the section of the first frequency synchronization signal in the first intermediate signal, and the frequency error detection circuit 26 detects the second frequency synchronization signal in the first intermediate signal. The frequency error Δf 12 is detected from the section, the frequency error detection circuit 27 detects the frequency error Δf 21 from the section of the first frequency synchronization signal in the second intermediate signal, and the frequency error detection circuit 28 The frequency error Δf 22 is detected from the section of the second frequency synchronization signal in the intermediate signal and output to the frequency error compensation value control circuit 29, respectively.

周波数誤差補償値制御回路29は、Δf11、Δf12、Δf21、Δf22から、以下の式に基づきΔfh1、Δfh2、Δf、Δfを算出し、Δf11を周波数誤差補償回路30に、Δf12を周波数誤差補償回路31に、Δf21を周波数誤差補償回路32に、Δf22を周波数誤差補償回路33に、Δfh1を周波数誤差補償回路38に、Δfh2を周波数誤差補償回路39に、Δfを周波数誤差補償回路41に、Δfを周波数誤差補償回路42に出力する。
Δfh1=(Δf11+Δf12)/2=(ft1+ft2)/2−fr1
Δfh2=(Δf21+Δf22)/2=(ft1+ft2)/2−fr2
Δf=(Δf11−Δf12)/2=(Δf21−Δf22)/2=(ft1−ft2)/2
Δf=(Δf12−Δf11)/2=(Δf22−Δf12)/2=(ft2−ft1)/2
The frequency error compensation value control circuit 29 calculates Δf h1 , Δf h2 , Δf a , and Δf b from Δf 11 , Δf 12 , Δf 21 , and Δf 22 based on the following expressions, and Δf 11 is used as the frequency error compensation circuit 30. Δf 12 is the frequency error compensation circuit 31, Δf 21 is the frequency error compensation circuit 32, Δf 22 is the frequency error compensation circuit 33, Δf h1 is the frequency error compensation circuit 38, and Δf h2 is the frequency error compensation circuit 39. In addition, Δf a is output to the frequency error compensation circuit 41, and Δf b is output to the frequency error compensation circuit 42.
Δf h1 = (Δf 11 + Δf 12 ) / 2 = (f t1 + f t2 ) / 2−f r1
Δf h2 = (Δf 21 + Δf 22 ) / 2 = (f t1 + f t2 ) / 2−f r2
Δf a = (Δf 11 −Δf 12 ) / 2 = (Δf 21 −Δf 22 ) / 2 = (f t1 −f t2 ) / 2
Δf b = (Δf 12 −Δf 11 ) / 2 = (Δf 22 −Δf 12 ) / 2 = (f t2 −f t1 ) / 2

周波数誤差補償回路38は、Δfh1を用いて第1の中間信号の周波数誤差補償を行う。したがって、周波数誤差補償回路38が出力する信号は、周波数誤差Δfe1である第1の送信信号成分と、周波数誤差Δfe2である第2の送信信号成分の混在信号となる。なお、Δfe1及びΔfe2は、
Δfe1=Δf11−Δfh1=ft1−fr1−{(ft1+ft2)/2−fr1}
=(ft1−ft2)/2=Δf=−Δf
Δfe2=Δf12−Δfh1=ft2−fr1−{(ft1+ft2)/2−fr1}
=(ft2−ft1)/2=Δf=−Δf
である。
The frequency error compensation circuit 38 performs frequency error compensation of the first intermediate signal using Δf h1 . Therefore, the signal output from the frequency error compensation circuit 38 is a mixed signal of the first transmission signal component having the frequency error Δf e1 and the second transmission signal component having the frequency error Δf e2 . Δf e1 and Δf e2 are
Δf e1 = Δf 11 −Δf h1 = f t1 −f r1 − {(f t1 + f t2 ) / 2−f r1 }
= (F t1 −f t2 ) / 2 = Δf a = −Δf b
Δf e2 = Δf 12 −Δf h1 = f t2 −f r1 − {(f t1 + f t2 ) / 2−f r1 }
= (F t2 −f t1 ) / 2 = Δf b = −Δf a
It is.

周波数誤差補償回路39は、Δfh2を用いて第2の中間信号の周波数誤差補償を行う。したがって、周波数誤差補償回路39が出力する信号は、周波数誤差Δfe3である第1の送信信号成分と、周波数誤差Δfe4である第2の送信信号成分の混在信号となる。なお、Δfe3及びΔfe4は、
Δfe3=Δf21−Δfh2=ft1−fr2−{(ft1+ft2)/2−fr2}
=(ft1−ft2)/2=Δf
Δfe4=Δf22−Δfh2=ft2−fr2−{(ft1+ft2)/2−fr2}
=(ft2−ft1)/2=Δf
である。
The frequency error compensation circuit 39 performs frequency error compensation of the second intermediate signal using Δf h2 . Therefore, the signal output from the frequency error compensation circuit 39 is a mixed signal of the first transmission signal component having the frequency error Δf e3 and the second transmission signal component having the frequency error Δf e4 . Δf e3 and Δf e4 are
Δf e3 = Δf 21 −Δf h2 = f t1 −f r2 − {(f t1 + f t2 ) / 2−f r2 }
= (F t1 -f t2 ) / 2 = Δf a
Δf e4 = Δf 22 −Δf h2 = f t2 −f r2 − {(f t1 + f t2 ) / 2−f r2 }
= (F t2 -f t1 ) / 2 = Δf b
It is.

周波数誤差補償回路30は、Δf11を用いて第1の中間信号の周波数誤差補償を行う。したがって、周波数誤差補償回路30が出力する信号は、周波数誤差のない第1の送信信号成分と周波数誤差Δfe5である第2の送信信号成分の混在信号となる。なお、Δfe5は、
Δfe5=Δf12−Δf11=ft2−fr1−(ft1−fr1)=ft2−ft1
である。なお、周波数誤差検出回路25が、周波数誤差補償回路30にΔf11を通知する構成であっても良い。
The frequency error compensation circuit 30 performs frequency error compensation of the first intermediate signal using Δf 11 . Therefore, the signal output from the frequency error compensation circuit 30 is a mixed signal of the first transmission signal component having no frequency error and the second transmission signal component having the frequency error Δf e5 . Δf e5 is
Δf e5 = Δf 12 -Δf 11 = f t2 -f r1 - (f t1 -f r1) = f t2 -f t1
It is. Note that the frequency error detection circuit 25 may notify Δf 11 to the frequency error compensation circuit 30.

周波数誤差補償回路31は、Δf12を用いて第1の中間信号の周波数誤差補償を行う。したがって、周波数誤差補償回路31が出力する信号は、周波数誤差Δfe6である第1の送信信号成分と周波数誤差のない第2の送信信号成分の混在信号となる。なお、Δfe6は、
Δfe6=Δf11−Δf12=ft1−fr1−(ft2−fr1)=ft1−ft2
である。なお、周波数誤差検出回路26が、周波数誤差補償回路31にΔf12を通知する構成であっても良い。
The frequency error compensation circuit 31 performs frequency error compensation of the first intermediate signal using Δf 12 . Therefore, the signal output from the frequency error compensation circuit 31 is a mixed signal of the first transmission signal component having the frequency error Δf e6 and the second transmission signal component having no frequency error. Δf e6 is
Δf e6 = Δf 11 -Δf 12 = f t1 -f r1 - (f t2 -f r1) = f t1 -f t2
It is. Note that the frequency error detection circuit 26 may notify the frequency error compensation circuit 31 of Δf 12 .

周波数誤差補償回路32は、Δf21を用いて第2の中間信号の周波数誤差補償を行う。したがって、周波数誤差補償回路32が出力する信号は、周波数誤差のない第1の送信信号成分と周波数誤差Δfe7である第2の送信信号成分の混在信号となる。なお、Δfe7は、
Δfe7=Δf22−Δf21=ft2−fr2−(ft1−fr2)=ft2−ft1
である。なお、周波数誤差検出回路27が、周波数誤差補償回路32にΔf21を通知する構成であっても良い。
The frequency error compensation circuit 32 performs frequency error compensation of the second intermediate signal using Δf 21 . Therefore, the signal output from the frequency error compensation circuit 32 is a mixed signal of the first transmission signal component having no frequency error and the second transmission signal component having the frequency error Δf e7 . Δf e7 is
Δf e7 = Δf 22 -Δf 21 = f t2 -f r2 - (f t1 -f r2) = f t2 -f t1
It is. Note that the frequency error detection circuit 27 may notify the frequency error compensation circuit 32 of Δf 21 .

周波数誤差補償回路33は、Δf22を用いて第2の中間信号の周波数誤差補償を行う。したがって、周波数誤差補償回路33が出力する信号は、周波数誤差Δfe8である第1の送信信号成分と周波数誤差のない第2の送信信号成分の混在信号となる。なお、Δfe8は、
Δfe8=Δf21−Δf22=ft1−fr2−(ft2−fr2)=ft1−ft2
である。なお、周波数誤差検出回路28が、周波数誤差補償回路33にΔf22を通知する構成であっても良い。
The frequency error compensation circuit 33 performs frequency error compensation of the second intermediate signal using Δf 22 . Therefore, the signal output from the frequency error compensation circuit 33 is a mixed signal of the first transmission signal component having the frequency error Δf e8 and the second transmission signal component having no frequency error. Δf e8 is
Δf e8 = Δf 21 -Δf 22 = f t1 -f r2 - (f t2 -f r2) = f t1 -f t2
It is. The frequency error detection circuit 28 may notify Δf 22 to the frequency error compensation circuit 33.

UWマッチトフィルタ34は、周波数誤差補償回路30の出力信号のユニークワードのタイミングにおいて、周波数誤差補償回路30の出力信号と第1のユニークワードの相関をとり、より具体的には畳み込み演算を行い、第1の中間信号における第1の送信信号の割合である伝搬路行列成分h11を干渉補償回路40に出力し、UWマッチトフィルタ35は、周波数誤差補償回路31の出力信号のユニークワードのタイミングにおいて、周波数誤差補償回路31の出力信号と第2のユニークワードの畳み込み演算を行い、第1の中間信号における第2の送信信号の割合である伝搬路行列成分h12を干渉補償回路40に出力し、UWマッチトフィルタ36は、周波数誤差補償回路32の出力信号のユニークワードのタイミングにおいて、周波数誤差補償回路32の出力信号と第1のユニークワードの畳み込み演算を行い、第2の中間信号における第1の送信信号の割合である伝搬路行列成分h21を干渉補償回路40に出力し、UWマッチトフィルタ37は、周波数誤差補償回路33の出力信号のユニークワードのタイミングにおいて、周波数誤差補償回路33の出力信号と第2のユニークワードの畳み込み演算を行い、第2の中間信号における第2の送信信号の割合である伝搬路行列成分h22を干渉補償回路40に出力する。 The UW matched filter 34 correlates the output signal of the frequency error compensation circuit 30 and the first unique word at the timing of the unique word of the output signal of the frequency error compensation circuit 30, and more specifically performs a convolution operation. , The propagation path matrix component h 11 that is the ratio of the first transmission signal in the first intermediate signal is output to the interference compensation circuit 40, and the UW matched filter 35 outputs the unique word of the output signal of the frequency error compensation circuit 31. in timing, it performs an output signal and convolving the second unique word frequency error compensation circuit 31, the channel matrix component h 12 is the ratio of the second transmission signal in the first intermediate signal to interference compensating circuit 40 The UW matched filter 36 outputs, at the timing of the unique word of the output signal of the frequency error compensation circuit 32, It performs convolution of the unique word output signal and the first wavenumber error compensation circuit 32, and outputs the first transmission signal is the ratio of the channel matrix component h 21 of the second intermediate signal to the interference compensation circuit 40, The UW matched filter 37 performs a convolution operation between the output signal of the frequency error compensation circuit 33 and the second unique word at the timing of the unique word of the output signal of the frequency error compensation circuit 33, and performs the second calculation on the second intermediate signal. The propagation path matrix component h 22 , which is the ratio of the transmitted signal, is output to the interference compensation circuit 40.

干渉補償回路40は、伝搬路行列成分h11、h12、h21及びh22を用いて、周波数誤差補償回路38及び39の出力信号から、それぞれ、第1の送信信号成分と第2の送信信号成分を分離合成することで、第1の送信信号に対応する第1の受信信号と、第2の送信信号に対応する第2の受信信号を得て、第1の受信信号を周波数誤差補償回路41に、第2の受信信号を周波数誤差補償回路42に出力する。 The interference compensation circuit 40 uses the propagation path matrix components h 11 , h 12 , h 21, and h 22 to output the first transmission signal component and the second transmission from the output signals of the frequency error compensation circuits 38 and 39, respectively. By separating and synthesizing the signal components, a first reception signal corresponding to the first transmission signal and a second reception signal corresponding to the second transmission signal are obtained, and frequency error compensation is performed on the first reception signal. The second reception signal is output to the circuit 41 to the frequency error compensation circuit 42.

上述した様に、周波数誤差補償回路38及び39が出力する信号に含まれる第1の送信信号成分は周波数誤差がΔfであるため、周波数誤差補償回路41は、Δfだけ第1の受信信号の周波数誤差補償を行い復調回路43に出力する。同様に、周波数誤差補償回路38及び39が出力する信号に含まれる第2の送信信号成分は周波数誤差がΔfであるため、周波数誤差補償回路42は、Δfだけ第2の受信信号の周波数誤差補償を行い復調回路44に出力する。 As described above, since the first transmission signal component contained in the signal frequency error compensation circuit 38 and 39 outputs the frequency error is Delta] f a, the frequency error compensation circuit 41, Delta] f a only first received signal Is output to the demodulation circuit 43. Similarly, since the frequency error of the second transmission signal component included in the signals output from the frequency error compensation circuits 38 and 39 is Δf b , the frequency error compensation circuit 42 has the frequency of the second received signal by Δf b . Error compensation is performed and output to the demodulation circuit 44.

以上、本発明による受信装置は、発振回路23と24が非同期であるにもかかわらず、周波数誤差の影響を受けずに伝搬路行列成分の推定を行い、かつ、復元した第1の送信信号及び第2の送信信号に残留する周波数誤差を除去する。よって、発振回路23と24を非同期としたことによる信号品質の劣化を抑えるという効果がある。   As described above, the receiving apparatus according to the present invention estimates the propagation path matrix component without being affected by the frequency error, and the restored first transmission signal and the oscillation circuit 23 and 24 are not affected by the frequency error. The frequency error remaining in the second transmission signal is removed. Therefore, there is an effect of suppressing deterioration in signal quality caused by making the oscillation circuits 23 and 24 asynchronous.

続いて、本発明の無線通信システムの他の実施形態について説明する。本実施形態における送信装置は、図1に示す構成と同じであり説明は省略する。図4は、本実施形態による受信装置のブロック図であり、図1と同じ機能であるブロックについては、同じ参照符号を使用して説明を省略する。図4によると、受信装置は、受信アンテナ19及び20と、周波数変換回路21及び22と、発振回路23及び24と、周波数誤差検出回路25、26、27及び28と、周波数誤差補償値制御回路45と、周波数誤差補償回路46、47、48、49、50、51、41及び42と、UWマッチトフィルタ34、35、36及び37と、干渉補償回路40と、復調回路43及び44とを備えている。   Next, another embodiment of the wireless communication system of the present invention will be described. The transmission apparatus in the present embodiment has the same configuration as that shown in FIG. FIG. 4 is a block diagram of the receiving apparatus according to the present embodiment, and the blocks having the same functions as those in FIG. According to FIG. 4, the receiving apparatus includes receiving antennas 19 and 20, frequency conversion circuits 21 and 22, oscillation circuits 23 and 24, frequency error detection circuits 25, 26, 27, and 28, and a frequency error compensation value control circuit. 45, frequency error compensation circuits 46, 47, 48, 49, 50, 51, 41 and 42, UW matched filters 34, 35, 36 and 37, interference compensation circuit 40, and demodulation circuits 43 and 44. I have.

図1と同様、周波数誤差検出回路25、26、27及び28は、それぞれ、周波数誤差Δf11、Δf12、Δf21及びΔf22を周波数誤差補償値制御回路45に出力し、図1の構成と同様、周波数誤差補償値制御回路45は、Δf11、Δf12、Δf21、Δf22からΔfh1、Δfh2、Δf、Δfを算出し、Δfh1を周波数誤差補償回路50に、Δfh2を周波数誤差補償回路51に、Δfを周波数誤差補償回路46、48及び41に、Δfを周波数誤差補償回路47、49及び42に出力する。 As in FIG. 1, the frequency error detection circuits 25, 26, 27, and 28 output the frequency errors Δf 11 , Δf 12 , Δf 21, and Δf 22 to the frequency error compensation value control circuit 45, respectively. Similarly, the frequency error compensation value control circuit 45 calculates Δf h1 , Δf h2 , Δf a , Δf b from Δf 11 , Δf 12 , Δf 21 , Δf 22 , and Δf h1 to the frequency error compensation circuit 50, and Δf h2 Are output to the frequency error compensation circuit 51, Δf a is output to the frequency error compensation circuits 46, 48 and 41, and Δf b is output to the frequency error compensation circuits 47, 49 and 42.

周波数誤差補償回路50は、Δfh1を用いて第1の中間信号の周波数誤差補償を行い、周波数誤差補償後の信号を、周波数誤差補償回路46及び47と、干渉補償回路40に出力する。図1の実施形態にて説明した様に、周波数誤差補償回路50が出力する信号は、周波数誤差Δfe1=Δfである第1の送信信号成分と、周波数誤差Δfe2=Δfである第2の送信信号成分の混在信号となる。 The frequency error compensation circuit 50 performs frequency error compensation of the first intermediate signal using Δf h1, and outputs the frequency error compensated signal to the frequency error compensation circuits 46 and 47 and the interference compensation circuit 40. As described in the embodiment of FIG. 1, the signal output from the frequency error compensation circuit 50 is the first transmission signal component having the frequency error Δf e1 = Δf a and the first signal having the frequency error Δf e2 = Δf b . It becomes a mixed signal of two transmission signal components.

同様に、周波数誤差補償回路51は、Δfh2を用いて第2の中間信号の周波数誤差補償を行い、周波数誤差補償後の信号を、周波数誤差補償回路48及び49と、干渉補償回路40に出力する。図1の実施形態にて説明した様に、周波数誤差補償回路51が出力する信号は、周波数誤差Δfe3=Δfである第1の送信信号成分と、周波数誤差Δfe4=Δfである第2の送信信号成分の混在信号となる。 Similarly, the frequency error compensation circuit 51 performs frequency error compensation of the second intermediate signal using Δf h2, and outputs the frequency error compensated signal to the frequency error compensation circuits 48 and 49 and the interference compensation circuit 40. To do. As described in Embodiment 1, the signal frequency error compensation circuit 51 is output is a first transmission signal component is a frequency error Δf e3 = Δf a, the frequency error Δf e4 = Δf b It becomes a mixed signal of two transmission signal components.

周波数誤差補償回路46は、Δfを用いて周波数誤差補償回路50による周波数補償後の第1の中間信号の周波数誤差補償を行う。したがって、周波数誤差補償回路46が出力する信号は、周波数誤差のない第1の送信信号成分と、周波数誤差Δfe5である第2の送信信号成分の混在信号となる。 Frequency error compensation circuit 46 performs the frequency error compensation of the first intermediate signal after frequency compensation by the frequency error compensation circuit 50 using a Delta] f a. Therefore, the signal output from the frequency error compensation circuit 46 is a mixed signal of the first transmission signal component having no frequency error and the second transmission signal component having the frequency error Δf e5 .

周波数誤差補償回路47は、Δfを用いて周波数誤差補償回路50による周波数補償後の第1の中間信号の周波数誤差補償を行う。したがって、周波数誤差補償回路31が出力する信号は、周波数誤差Δfe6である第1の送信信号成分と、周波数誤差のない第2の送信信号成分の混在信号となる。 Frequency error compensation circuit 47 performs frequency error compensation of the first intermediate signal after frequency compensation by the frequency error compensation circuit 50 using a Delta] f b. Therefore, the signal output from the frequency error compensation circuit 31 is a mixed signal of the first transmission signal component having the frequency error Δf e6 and the second transmission signal component having no frequency error.

周波数誤差補償回路48は、Δfを用いて周波数誤差補償回路51による周波数補償後の第2の中間信号の周波数誤差補償を行う。したがって、周波数誤差補償回路48が出力する信号は、周波数誤差のない第1の送信信号成分と、周波数誤差Δfe7である第2の送信信号成分の混在信号となる。 Frequency error compensation circuit 48 performs the frequency error compensation of the second intermediate signal after frequency compensation by frequency error compensation circuit 51 using a Delta] f a. Therefore, the signal output from the frequency error compensation circuit 48 is a mixed signal of the first transmission signal component having no frequency error and the second transmission signal component having the frequency error Δf e7 .

周波数誤差補償回路49は、Δfを用いて周波数誤差補償回路51による周波数補償後の第2の中間信号の周波数誤差補償を行う。したがって、周波数誤差補償回路49が出力する信号は、周波数誤差Δfe8である第1の送信信号成分と、周波数誤差のない第2の送信信号成分の混在信号となる。 Frequency error compensation circuit 49 performs frequency error compensation of the second intermediate signal after frequency compensation by frequency error compensation circuit 51 using a Delta] f b. Therefore, the signal output from the frequency error compensation circuit 49 is a mixed signal of the first transmission signal component having the frequency error Δf e8 and the second transmission signal component having no frequency error.

周波数誤差補償回路46、47、48、49、50及び51が出力する信号は、それぞれ、図1における周波数誤差補償回路30、31、32、33、38及び39と同じであり、よって、既に説明したのと同じ処理により第1の中間信号及び第2の中間信号から第1の送信信号に対応する第1の受信信号と、第2の送信信号に対応する第2の受信信号が生成されて復調される。   The signals output by the frequency error compensation circuits 46, 47, 48, 49, 50 and 51 are the same as the frequency error compensation circuits 30, 31, 32, 33, 38 and 39 in FIG. 1, respectively. From the first intermediate signal and the second intermediate signal, a first reception signal corresponding to the first transmission signal and a second reception signal corresponding to the second transmission signal are generated by the same processing as described above. Demodulated.

本発明による無線通信システムのブロック図である。1 is a block diagram of a wireless communication system according to the present invention. 第1の送信信号及び第2の送信信号のフレーム構成を示す図である。It is a figure which shows the frame structure of a 1st transmission signal and a 2nd transmission signal. 本発明による第1の中間信号及び第2の中間信号のフレーム構成を示す図である。It is a figure which shows the frame structure of the 1st intermediate signal and 2nd intermediate signal by this invention. 本実施形態による受信装置のブロック図である。It is a block diagram of the receiver by this embodiment. 従来技術による無線通信システムのブロック図である。1 is a block diagram of a wireless communication system according to the prior art. 従来技術による第1の中間信号及び第2の中間信号のフレーム構成を示す図である。It is a figure which shows the frame structure of the 1st intermediate signal and 2nd intermediate signal by a prior art.

符号の説明Explanation of symbols

11、12、71、72 変調回路
13、14、21、22、73、74、81、82 周波数変換回路
15、16、23、24、75、76、83、84 発振回路
17、18、77、78 送信アンテナ
19、20、79、80 受信アンテナ
25、26、27、28、85、86 周波数誤差検出回路
29、45 周波数誤差補償値制御回路
30、31、32、33、38、39、41、42、46 周波数誤差補償回路
47、48、49、50、51、87、88、89、90 周波数誤差補償回路
34、35、36、37、91、92、93、94 ユニークワードマッチトフィルタ
40、95 干渉補償回路
43、44、96、97 復調回路
11, 12, 71, 72 Modulation circuit 13, 14, 21, 22, 73, 74, 81, 82 Frequency conversion circuit 15, 16, 23, 24, 75, 76, 83, 84 Oscillation circuit 17, 18, 77, 78 Transmitting antenna 19, 20, 79, 80 Receiving antenna 25, 26, 27, 28, 85, 86 Frequency error detection circuit 29, 45 Frequency error compensation value control circuit 30, 31, 32, 33, 38, 39, 41, 42, 46 Frequency error compensation circuit 47, 48, 49, 50, 51, 87, 88, 89, 90 Frequency error compensation circuit 34, 35, 36, 37, 91, 92, 93, 94 Unique word matched filter 40, 95 Interference compensation circuit 43, 44, 96, 97 Demodulation circuit

Claims (7)

空間多重された第1の送信信号及び第2の送信信号を受信する受信装置であって、
第1の受信アンテナと、
第2の受信アンテナと、
第1の受信アンテナが受信する信号を周波数変換し、第1の中間信号を出力する第1の受信周波数変換手段と、
第2の受信アンテナが受信する信号を、第1の受信周波数変換手段とは異なる発振手段を用いて周波数変換し、第2の中間信号を出力する第2の受信周波数変換手段と、
第1の中間信号の周波数補償を行う第1の周波数誤差補償手段と、
第2の中間信号の周波数補償を行う第2の周波数誤差補償手段と、
第1の中間信号及び第2の中間信号の周波数補償を行って伝搬路行列を算出する手段と、
伝搬路行列に基づき第1の周波数誤差補償手段の出力信号と、第2の周波数誤差補償手段の出力信号から第1の送信信号に対応する第1の受信信号と、第2の送信信号に対応する第2の受信信号を生成する干渉補償手段と、
を備えている受信装置。
A receiving apparatus that receives a first transmission signal and a second transmission signal that are spatially multiplexed,
A first receiving antenna;
A second receiving antenna;
First receiving frequency converting means for converting the frequency of a signal received by the first receiving antenna and outputting a first intermediate signal;
A second reception frequency converting means for frequency-converting a signal received by the second receiving antenna using an oscillating means different from the first receiving frequency converting means, and outputting a second intermediate signal;
First frequency error compensation means for performing frequency compensation of the first intermediate signal;
Second frequency error compensation means for performing frequency compensation of the second intermediate signal;
Means for calculating a channel matrix by performing frequency compensation of the first intermediate signal and the second intermediate signal;
Corresponding to the output signal of the first frequency error compensation means based on the propagation path matrix, the first reception signal corresponding to the first transmission signal from the output signal of the second frequency error compensation means, and the second transmission signal Interference compensation means for generating a second received signal,
A receiving device.
第1の中間信号に含まれる第1の送信信号成分が受けた第1の周波数誤差、第1の中間信号に含まれる第2の送信信号成分が受けた第2の周波数誤差、第2の中間信号に含まれる第1の送信信号成分が受けた第3の周波数誤差、及び、第2の中間信号に含まれる第2の送信信号成分が受けた第4の周波数誤差を検出する周波数誤差検出手段を、更に、備えており、
第1の周波数誤差補償手段は、第1の周波数誤差と第2の周波数誤差の和に基づき第1の中間信号の周波数補償を行い、
第2の周波数誤差補償手段は、第3の周波数誤差と第4の周波数誤差の和に基づき第2の中間信号の周波数補償を行う、
請求項1に記載の受信装置。
The first frequency error received by the first transmission signal component included in the first intermediate signal, the second frequency error received by the second transmission signal component included in the first intermediate signal, and the second intermediate Frequency error detection means for detecting a third frequency error received by the first transmission signal component included in the signal and a fourth frequency error received by the second transmission signal component included in the second intermediate signal In addition,
The first frequency error compensation means performs frequency compensation of the first intermediate signal based on the sum of the first frequency error and the second frequency error,
The second frequency error compensation means performs frequency compensation of the second intermediate signal based on the sum of the third frequency error and the fourth frequency error.
The receiving device according to claim 1.
伝搬路行列を算出する手段は、
第1の周波数誤差に基づき第1の中間信号の周波数補償を行う第3の周波数誤差補償手段と、
第2の周波数誤差に基づき第1の中間信号の周波数補償を行う第4の周波数誤差補償手段と、
第3の周波数誤差に基づき第2の中間信号の周波数補償を行う第5の周波数誤差補償手段と、
第4の周波数誤差に基づき第2の中間信号の周波数補償を行う第6の周波数誤差補償手段と、
第3、第4、第5及び第6の周波数誤差補償手段の出力信号から伝搬路行列成分を出力する手段と、
を備えている請求項2に記載の受信装置。
The means for calculating the propagation path matrix is:
Third frequency error compensation means for performing frequency compensation of the first intermediate signal based on the first frequency error;
Fourth frequency error compensation means for performing frequency compensation of the first intermediate signal based on the second frequency error;
Fifth frequency error compensation means for performing frequency compensation of the second intermediate signal based on the third frequency error;
Sixth frequency error compensation means for performing frequency compensation of the second intermediate signal based on the fourth frequency error;
Means for outputting a propagation path matrix component from the output signals of the third, fourth, fifth and sixth frequency error compensating means;
The receiving device according to claim 2.
第1の送信信号は、第1の特定パターンを含み、
第2の送信信号は、第2の特定パターンを含み、
伝搬路行例は、
第3の周波数誤差補償手段の出力信号と第1の特定パターンとの相関と、
第4の周波数誤差補償手段の出力信号と第2の特定パターンとの相関と、
第5の周波数誤差補償手段の出力信号と第1の特定パターンとの相関と、
第6の周波数誤差補償手段の出力信号と第2の特定パターンとの相関と、
により算出する、
請求項3に記載の受信装置。
The first transmission signal includes a first specific pattern,
The second transmission signal includes a second specific pattern,
An example of propagation path is
A correlation between the output signal of the third frequency error compensation means and the first specific pattern;
A correlation between the output signal of the fourth frequency error compensation means and the second specific pattern;
A correlation between the output signal of the fifth frequency error compensation means and the first specific pattern;
A correlation between the output signal of the sixth frequency error compensating means and the second specific pattern;
Calculated by
The receiving device according to claim 3 .
第5の周波数誤差に基づき、第1の受信信号の周波数補償を行う第7の周波数誤差補償手段と、
第5の周波数誤差とは絶対値が同一で、その符号が反転する第6の周波数誤差に基づき、第2の受信信号の周波数補償を行う第8の周波数誤差補償手段と、
を備えており、
第5の周波数誤差は、第1の周波数誤差と第2の周波数誤差の差、又は、第3の周波数誤差と第4の周波数誤差の差に基づき算出される、
請求項2からのいずれか1項に記載の受信装置。
Seventh frequency error compensation means for performing frequency compensation of the first received signal based on the fifth frequency error;
An eighth frequency error compensating means for performing frequency compensation of the second received signal based on a sixth frequency error having the same absolute value as that of the fifth frequency error and whose sign is inverted;
With
The fifth frequency error is calculated based on the difference between the first frequency error and the second frequency error, or the difference between the third frequency error and the fourth frequency error.
The receiving device according to any one of claims 2 to 4 .
第1の送信信号及び第2の送信信号は、それぞれ、無信号である区間を含み、
第1の周波数誤差は、第1の送信信号が無信号ではなく、かつ、第2の送信信号が無信号である区間における第1の中間信号から検出し、
第2の周波数誤差は、第1の送信信号が無信号であり、かつ、第2の送信信号が無信号でない区間における第1の中間信号から検出し、
第3の周波数誤差は、第1の送信信号が無信号ではなく、かつ、第2の送信信号が無信号である区間における第2の中間信号から検出し、
第4の周波数誤差は、第1の送信信号が無信号であり、かつ、第2の送信信号が無信号でない区間における第2の中間信号から検出する、
請求項2からのいずれか1項に記載の受信装置。
Each of the first transmission signal and the second transmission signal includes a section where there is no signal,
The first frequency error is detected from the first intermediate signal in a section where the first transmission signal is not a no-signal and the second transmission signal is a no-signal,
The second frequency error is detected from the first intermediate signal in a section where the first transmission signal is no signal and the second transmission signal is not a signal,
The third frequency error is detected from the second intermediate signal in a section where the first transmission signal is not a no-signal and the second transmission signal is a no-signal,
The fourth frequency error is detected from a second intermediate signal in a section where the first transmission signal is no signal and the second transmission signal is not a signal.
The receiving device according to any one of claims 2 to 5 .
請求項1からのいずれか1項に記載の受信装置と、送信装置とを有する無線通信システムであって、
送信装置は、
第1の送信信号を周波数変換する第1の送信周波数変換手段と、
第2の送信信号を、第1の送信周波数変換手段とは異なる発振手段を用いて周波数変換する第2の送信周波数変換手段と、
を備えている無線通信システム。
A wireless communication system comprising the receiving device according to any one of claims 1 to 6 and a transmitting device,
The transmitter is
First transmission frequency converting means for converting the frequency of the first transmission signal;
Second transmission frequency conversion means for converting the frequency of the second transmission signal using oscillation means different from the first transmission frequency conversion means;
A wireless communication system comprising:
JP2007271231A 2007-10-18 2007-10-18 Receiving apparatus and wireless communication system Expired - Fee Related JP4982323B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007271231A JP4982323B2 (en) 2007-10-18 2007-10-18 Receiving apparatus and wireless communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007271231A JP4982323B2 (en) 2007-10-18 2007-10-18 Receiving apparatus and wireless communication system

Publications (2)

Publication Number Publication Date
JP2009100346A JP2009100346A (en) 2009-05-07
JP4982323B2 true JP4982323B2 (en) 2012-07-25

Family

ID=40702905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007271231A Expired - Fee Related JP4982323B2 (en) 2007-10-18 2007-10-18 Receiving apparatus and wireless communication system

Country Status (1)

Country Link
JP (1) JP4982323B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9432177B2 (en) * 2013-04-12 2016-08-30 Mitsubishi Electric Corporation Communication apparatus and reception method
US20230082303A1 (en) * 2020-02-27 2023-03-16 Nippon Telegraph And Telephone Corporation Receiving method, wireless communication method, receiving station, wireless communication system, and receiving program

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6862440B2 (en) * 2002-05-29 2005-03-01 Intel Corporation Method and system for multiple channel wireless transmitter and receiver phase and amplitude calibration
JP4190406B2 (en) * 2003-12-25 2008-12-03 三洋電機株式会社 Frequency offset estimation method and frequency offset correction apparatus using the same
CN1898890B (en) * 2004-03-11 2011-06-15 松下电器产业株式会社 Data transmission method and data reception method
JP4958565B2 (en) * 2006-01-06 2012-06-20 パナソニック株式会社 Wireless communication device

Also Published As

Publication number Publication date
JP2009100346A (en) 2009-05-07

Similar Documents

Publication Publication Date Title
US7627047B2 (en) Orthogonal frequency division multiplexing (OFDM) receiver
CN101940037A (en) Mobile station, mobile radio communication system, mobile radio communication method, and mobile radio communication program
US8284853B2 (en) Apparatus and method for spatial multiplexing with backward compatibility in a multiple input multiple output wireless communication system
CN108605304B (en) Downlink time tracking in NB-IoT devices with reduced sampling rates
US7961811B2 (en) Radio transmitting apparatus and radio transmitting method
US7379514B2 (en) Phase advance compensation for MIMO time-switch preamble modes
WO2006106920A1 (en) Receiving apparatus, signal processing circuit, and receiving system
RU2439826C2 (en) Radio transmission system and method for compensating for cross-talk
EP1109331A2 (en) Apparatus and method for transmit diversity
CN103828260B (en) Method for calculating estimation of differential phase and diversity receiver
US20060007040A1 (en) Radio frequency signal receiving apparatus, a radio frequency signal transmitting apparatus, and a calibration method
US9049091B2 (en) System and method for in-phase/quadrature-phase (I/Q) time delay measurement and compensation
JP4982323B2 (en) Receiving apparatus and wireless communication system
JP2007228057A (en) Satellite communication system, and transmission station for satellite communication
JP6216511B2 (en) Receiving device, semiconductor device, and receiving method
JP2006180502A (en) Multi-transceiver system
JP4329793B2 (en) Radio receiving apparatus and radio communication system
JP2007089067A (en) Radio communication method and radio communication apparatus
JP5885623B2 (en) COMMUNICATION SYSTEM, TRANSMISSION DEVICE, AND RECEPTION DEVICE
JP6845044B2 (en) Wireless communication device and frequency offset compensation method
JP2007189694A (en) Apparatus and method for improving carrier to noise ratio in receiver provided with diversity
JP2006325077A (en) Sampling clock control method of diversity receiver and diversity receiver
JP4760535B2 (en) Space diversity receiver
JP5541551B1 (en) Signal separating apparatus and signal separating method used therefor
JP5628237B2 (en) Radio receiving apparatus and interference suppressing method for portable radio communication system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100121

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100831

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20100929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120417

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120423

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150427

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees