JP4981979B2 - LED component material having a highly reflective plating film and LED component - Google Patents

LED component material having a highly reflective plating film and LED component Download PDF

Info

Publication number
JP4981979B2
JP4981979B2 JP2011133716A JP2011133716A JP4981979B2 JP 4981979 B2 JP4981979 B2 JP 4981979B2 JP 2011133716 A JP2011133716 A JP 2011133716A JP 2011133716 A JP2011133716 A JP 2011133716A JP 4981979 B2 JP4981979 B2 JP 4981979B2
Authority
JP
Japan
Prior art keywords
surface roughness
led component
lead frame
reflectance
led
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011133716A
Other languages
Japanese (ja)
Other versions
JP2012023355A (en
Inventor
昭頼 橘
良聡 小林
伸 菊池
智 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP2011133716A priority Critical patent/JP4981979B2/en
Publication of JP2012023355A publication Critical patent/JP2012023355A/en
Application granted granted Critical
Publication of JP4981979B2 publication Critical patent/JP4981979B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Lead Frames For Integrated Circuits (AREA)
  • Led Device Packages (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lead frame which is sufficient in reflectance and superior in high luminance and heat dissipation when a chip emitting light to a near-ultraviolet region (wavelength of 340 to 400 nm), especially around wavelength of 375 nm in a lead frame for optical semiconductor device, which is used for an LED, a photocoupler and a photointerrupter, and to provide a manufacturing method of the lead frame and an LED component using the lead frame for optical semiconductor device. <P>SOLUTION: An LED component material is obtained by depositing a plating film through electrocrystallization on, partially or entirely, at least one face or both faces of a metal base and smoothing a surface of the plating film. Reflectance and adhesion with a sealing material are improved by making surface roughness Ra in measurement by a stylus surface roughness meter to be 0.010 &mu;m or above and surface roughness Sa in measurement by an atomic force microscope to be 50 nm or below in the LED component material. <P>COPYRIGHT: (C)2012,JPO&amp;INPIT

Description

本発明は、高反射率化させためっき皮膜を有するLED用部品材料およびLED用部品に関する。   The present invention relates to an LED component material and an LED component having a plating film with high reflectivity.

光半導体装置用リードフレームは、例えばLED(Light Emitting Diode)素子等の光半導体素子である発光素子を光源に利用した各種表示用・照明用光源の構成部材として広く利用されている。その光半導体装置は、例えば基板にリードフレームを配し、そのリードフレーム上に発光素子を搭載した後、熱、湿気、酸化等の外部要因による発光素子やその周辺部位の劣化を防止するため、発光素子とその周囲を樹脂やセラミックなどで封止している(以下、封止材)。
リードフレームを用いたLEDの場合、銅条などの素材をプレスやエッチング加工により、抜き形状とした後に銀や金/パラジウムなどのめっきが施されて使用される。
2. Description of the Related Art Lead frames for optical semiconductor devices are widely used as constituent members of various display / illumination light sources that use light emitting elements, which are optical semiconductor elements such as LED (Light Emitting Diode) elements, as light sources. In the optical semiconductor device, for example, a lead frame is arranged on a substrate, and after the light emitting element is mounted on the lead frame, the deterioration of the light emitting element and its peripheral parts due to external factors such as heat, moisture, and oxidation are prevented. The light emitting element and its periphery are sealed with resin, ceramic, or the like (hereinafter referred to as a sealing material).
In the case of an LED using a lead frame, a material such as a copper strip is made into a punched shape by pressing or etching, and then plated with silver, gold / palladium or the like.

LED素子を照明用光源として用いる場合、リードフレームの反射材には可視光波長(400〜700nm)の全領域において反射率が高いこと(例えば硫酸バリウムや酸化アルミニウムなどの基準物質に対する反射率が80%以上)が求められる。さらに近年、紫外線を用いる測定・分析機器の光源としてもLED素子が用いられるようになり、その反射材には、近紫外域(波長340〜400nm)においても同様に反射率が高いことが求められてきている。照明用やバックライト向けにおいても、演色性の観点から、従来用いられていた青色LEDチップと黄色蛍光体に代えて、紫・近紫外・紫外LEDチップとRGB蛍光体(赤、緑、青)を用いることで解決する方法が開発されている。
また、封止材との密着性を向上させることでリードフレーム材の酸化等の腐食を抑制することが求められている。リードフレーム材が経時変化により反射率が劣化するとLEDの輝度が著しく低下する。これはLEDの寿命に直接関わるため、封止材との密着性に優れるリードフレーム材の研究が進められている。
When an LED element is used as an illumination light source, the reflective material of the lead frame has a high reflectance in the entire visible light wavelength range (400 to 700 nm) (for example, a reflectance of 80 for a reference material such as barium sulfate or aluminum oxide). % Or more) is required. In recent years, LED elements have also been used as light sources for measuring / analyzing instruments using ultraviolet rays, and the reflective material is required to have a high reflectance even in the near ultraviolet region (wavelength of 340 to 400 nm). It is coming. For lighting and backlighting, from the viewpoint of color rendering, instead of the blue LED chips and yellow phosphors used in the past, purple / near ultraviolet / ultraviolet LED chips and RGB phosphors (red, green, blue) A method for solving this problem has been developed.
Moreover, it is required to suppress corrosion such as oxidation of the lead frame material by improving the adhesion with the sealing material. If the reflectance of the lead frame material deteriorates with time, the brightness of the LED will be significantly reduced. Since this directly relates to the life of the LED, research on a lead frame material excellent in adhesion to the sealing material is underway.

白色光を放射するLEDを実現する手法としては、赤(R)、緑(G)、青(B)のすべての色を出すチップを3個並べる手法、青色LEDチップに黄色の蛍光体を分散した封止樹脂を用いる手法、さらには紫外から近紫外域の波長を発するLEDチップにそれぞれR、G、Bの蛍光体を分散した封止樹脂を用いる手法の、主に3つに大別される。従来は青色チップに黄色の蛍光体を分散した封止材を用いる手法が主流であったが、この方法では特に赤色系統の演色性が不十分であるなどの観点から、近年は発光波長帯に紫外域を含むLEDチップを用いる手法が注目を集めており、例えば波長375nm近辺のLED素子を使用し、RGB蛍光体を封止樹脂に混ぜて白色光を発光する手法が検討されている。
リードフレーム材が経時変化により反射率が劣化することを抑えるために、反射率が高い金属と耐候性に優れた金属との合金化などの手法が取られる事があるが、反射率の低下が避けられない。特に銀やアルミニウムなど元から反射率が高い金属においては合金化による反射率の低下は顕著である。そのため、封止材のガス透過性を低くしつつ、リードフレーム材と封止材の密着性を向上させることで、リードフレーム材の経時変化による反射率の劣化を抑制する手法が検討されている。
As a method of realizing an LED that emits white light, a method of arranging three chips emitting all colors of red (R), green (G), and blue (B), and a yellow phosphor dispersed in a blue LED chip. The method using the sealing resin, and the method using the sealing resin in which R, G, and B phosphors are dispersed in LED chips emitting wavelengths from the ultraviolet to the near-ultraviolet region, are roughly divided into three main groups. The Conventionally, a method using a sealing material in which a yellow phosphor is dispersed in a blue chip has been the mainstream. However, this method has recently been changed to a light emission wavelength band from the viewpoint that the color rendering property of the red system is particularly insufficient. A technique using an LED chip including an ultraviolet region has attracted attention. For example, a technique in which an LED element having a wavelength of around 375 nm is used and RGB light is mixed with a sealing resin to emit white light has been studied.
In order to suppress the deterioration of the reflectance of the lead frame material due to changes over time, a technique such as alloying a metal with a high reflectance and a metal with excellent weather resistance may be taken, but the reflectance is reduced. Inevitable. In particular, in metals with high reflectivity such as silver and aluminum, the decrease in reflectivity due to alloying is significant. Therefore, a technique for suppressing the deterioration of the reflectance due to the aging of the lead frame material by improving the adhesion between the lead frame material and the sealing material while reducing the gas permeability of the sealing material has been studied. .

このような要求に応じて、LED素子が実装されるリードフレーム上には、特に可視光域の光反射率(以下、反射率という)の向上を目的として、銀または銀合金からなる層(皮膜)が形成されているものが多い。銀の皮膜は、可視光域における反射率が高いことが知られており、具体的には、銀めっき層を反射面に形成すること(特許文献1)、銀または銀合金皮膜形成後に200℃以上で30秒以上の熱処理を施し、当該皮膜の結晶粒径を0.5μm〜30μmとすること(特許文献2)、銀合金反射膜において表面粗さRaを2.0nm以下にすること(特許文献3)等が知られている。   In response to such a demand, a layer (film) made of silver or a silver alloy is formed on the lead frame on which the LED element is mounted, particularly for the purpose of improving the light reflectance in the visible light region (hereinafter referred to as reflectance). ) Is often formed. It is known that the silver film has a high reflectance in the visible light region. Specifically, a silver plating layer is formed on the reflective surface (Patent Document 1), and 200 ° C. after the formation of the silver or silver alloy film. The heat treatment is performed for 30 seconds or more to make the crystal grain size of the film 0.5 μm to 30 μm (Patent Document 2), and the surface roughness Ra of the silver alloy reflective film is 2.0 nm or less (patent Document 3) is known.

特開昭61−148883号公報Japanese Patent Laid-Open No. 61-148883 特開2008−016674号公報JP 2008-016674 A 特開2005−29849号公報JP 2005-29849 A

従来使用されているリードフレームにおいても可視光域で良好な反射率を有しているが、LED全体としての発光効率は未だに20%程度である。リードフレーム材の反射率を向上させることで、LED一個辺りの輝度を向上させることが可能になる。反射効率増加による省電力化、照明辺りのLED使用個数減など、多くのメリットが見込める。
リードフレームと封止材との密着性が悪いと、発生した剥離部よりガスが浸透し、銀などのリードフレーム表面は変色し、反射率が低下してしまう。封止材の密着性を向上させたリードフレームが求められる。
しかしながら、特許文献1のように、銀またはその合金皮膜を単純に形成しただけの場合、特に近紫外域における反射率の低下が大きく、可視光域の約400nm付近から300nm付近の反射率低下が避けられないことが分かった。
特許文献2のように、銀または銀合金の皮膜の結晶粒径を0.5μm〜30μmとすると、可視光域の反射率は良好であり、全体的な反射率改善効果は認められる。しかし、特許文献2の図8および図9に見られるように、近紫外域、特に355nm付近に吸収ピークが見られており、375nmのLEDチップを使用するとわずかながら可視光領域よりも反射率が低い部分に相当することがわかる。
特許文献3では銀合金反射膜の表面粗さを2.0nm以下とすることで400〜450nmの波長領域の反射率の改善をしている。しかし近紫外域における吸収ピークに関しての記述が無い。また、合金化により加熱時の劣化を抑えているが、リードフレーム材として使用するために必要な封止材との密着性を向上させることには至っていない。
リードフレーム材の反射皮膜の合金化、結晶粒径といったものでは、反射率を十分に満足できず課題を解決できない。LEDの発光効率は年々改善されているものの未だに20%程度であるので、反射率が10%低いことは輝度の大幅な低下を意味する。近紫外域から可視光域(340〜800nm)の反射率改善が必要とされる。また、単に平滑にするだけでは、封止材との密着性が不十分であり課題を解決できない。高い反射率を長期に渡って保持するためにリードフレーム材と封止材との密着性を向上させる必要がある。
Conventionally used lead frames also have good reflectivity in the visible light region, but the luminous efficiency of the entire LED is still about 20%. By improving the reflectance of the lead frame material, it is possible to improve the luminance around one LED. Many benefits can be expected, such as power savings due to increased reflection efficiency, and a reduction in the number of LEDs used around lighting.
If the adhesion between the lead frame and the sealing material is poor, the gas permeates from the generated peeling portion, the lead frame surface such as silver is discolored, and the reflectance is lowered. There is a demand for a lead frame with improved sealing material adhesion.
However, as in Patent Document 1, when silver or an alloy film thereof is simply formed, the reflectance decreases particularly in the near ultraviolet region, and the reflectance decreases from about 400 nm to about 300 nm in the visible light region. I found it inevitable.
As in Patent Document 2, when the crystal grain size of the silver or silver alloy film is 0.5 μm to 30 μm, the reflectance in the visible light region is good, and the overall reflectance improvement effect is recognized. However, as shown in FIG. 8 and FIG. 9 of Patent Document 2, an absorption peak is observed in the near ultraviolet region, particularly in the vicinity of 355 nm. When a 375 nm LED chip is used, the reflectance is slightly smaller than the visible light region. It can be seen that it corresponds to the lower part.
In Patent Document 3, the reflectance in the wavelength region of 400 to 450 nm is improved by setting the surface roughness of the silver alloy reflective film to 2.0 nm or less. However, there is no description about the absorption peak in the near ultraviolet region. Moreover, although deterioration during heating is suppressed by alloying, it has not led to improvement in adhesion to a sealing material necessary for use as a lead frame material.
The alloying of the reflective film of the lead frame material, the crystal grain size, etc. cannot sufficiently satisfy the reflectance and cannot solve the problem. Although the luminous efficiency of the LED is improved year by year, it is still about 20%, so that the reflectance is low by 10% means a significant reduction in luminance. It is necessary to improve the reflectance from the near ultraviolet region to the visible light region (340 to 800 nm). In addition, simply smoothing does not provide sufficient adhesion to the sealing material and cannot solve the problem. In order to maintain high reflectivity over a long period of time, it is necessary to improve the adhesion between the lead frame material and the sealing material.

したがって、本発明は、LED・フォトカプラ・フォトインタラプタなどに使用される光半導体装置用リードフレームにおいて、近紫外域から可視光域における反射率が良好で、高輝度かつ封止材との密着性に優れたリードフレームを提供することを課題とする。またこの光半導体装置用リードフレームを用いたLED用部品を提供することを課題とする。   Therefore, the present invention is a lead frame for optical semiconductor devices used for LEDs, photocouplers, photointerrupters, etc., which has a good reflectivity in the near ultraviolet region to the visible light region, high luminance, and adhesion to a sealing material. It is an object to provide an excellent lead frame. Another object of the present invention is to provide an LED component using the lead frame for an optical semiconductor device.

本発明者らは上記問題に鑑み誠意検討を進めた結果、導電性基体上の最表面の反射層が電気めっき法で形成された光半導体装置用リードフレームにおいて、フレームの表面形状をマクロに、かつ、ミクロに制御することで、反射率を向上させ、かつ、樹脂密着性を高くできることを見いだした。ミクロな表面形状において、表面粗さを小さく、かつ、所定範囲に設定することで、近紫外域、特に355nm付近に吸収ピークが消滅することが明らかになった。同時に可視光域全域においても反射率を向上させることを見出した。一方、マクロな表面形状において、一定範囲の表面粗さとすることで、リードフレーム材と封止材との密着性(以下、樹脂密着性と表現する)が向上することを見出した。表面の平滑性を、マクロな表面粗さ、ミクロな表面粗さという2つの表面粗さを制御することで、樹脂密着性を高めながら反射率を向上させることを見出した。
本発明におけるマクロな表面粗さとは、触針式表面粗さ計の測定距離で得られる表面粗さのことである。具体的には基材自体の微小なうねりなどが数値として現れる。測定距離は数mm〜数十mmの間が適切であり、実験の結果より4mmの測定距離がマクロな表面粗さを最も良く表し、樹脂密着性との相関があることが分かった。JIS B 6010−2001に基づく方法により表面粗さRaを求め、圧延方向、垂直方向の2方向をそれぞれ5点測定し、その平均値をマクロな表面粗さとした。
本発明におけるミクロな表面粗さとは、原子間力顕微鏡(Atomic Force Microscope:AFM)の観察視野で得られる表面粗さのことである。このミクロな表面粗さは、マクロな表面粗さでは測定することができないが、反射率に大きく影響する。具体的にはめっき上がりのデンドライト状の析出の頻度などがこの数値として現れる。表面の数十nmオーダーの凹凸が反射率を低減させる原因であることを見いだした。このミクロな表面粗さを測定するためには、AFMを用い、数ミクロン〜数十ミクロン視野内にて測定することが適切であり、実験の結果より6.16ミクロン×6.16ミクロンの視野による測定がミクロな表面粗さを最も良く表わし、反射率との相関があることが分かった。AFMを用い、6.16ミクロン×6.16ミクロンの視野にてnmオーダーの微細な凹凸の表面粗さSaを求めた。なお、リードフレームの大きな表面キズ、圧延筋の影響を小さくするため、リードフレームの任意の5点において測定し、その平均値をミクロな表面粗さとした。
マクロな表面粗さを残しながら、ミクロな表面粗さを極力押さえることで、波長340〜400nmの近紫外域と400nm付近〜800nm付近の可視光領域の光両方に対して反射率に優れながら、高い樹脂密着性を有する半導体装置用リードフレームを得ることを見出した。この知見に基づき本発明をなすに至った。
As a result of conducting sincerity studies in view of the above problems, the present inventors have made the surface shape of the frame macro in the lead frame for an optical semiconductor device in which the outermost reflective layer on the conductive substrate is formed by electroplating. In addition, it has been found that the microscopic control can improve the reflectivity and increase the resin adhesion. It has been clarified that the absorption peak disappears in the near ultraviolet region, particularly in the vicinity of 355 nm, by setting the surface roughness to a predetermined range within a microscopic surface shape. At the same time, it has been found that the reflectance is improved over the entire visible light range. On the other hand, it was found that the adhesion between the lead frame material and the sealing material (hereinafter referred to as resin adhesion) is improved by setting the surface roughness within a certain range in the macro surface shape. It has been found that the surface smoothness is improved by controlling the two surface roughnesses, macro surface roughness and micro surface roughness, to improve the reflectance while improving the resin adhesion.
The macro surface roughness in the present invention is a surface roughness obtained by a measurement distance of a stylus type surface roughness meter. Specifically, minute undulations of the substrate itself appear as numerical values. The measurement distance is appropriately between several mm to several tens mm, and it was found from the experimental results that the measurement distance of 4 mm best represents the macroscopic surface roughness and has a correlation with the resin adhesion. The surface roughness Ra was determined by a method based on JIS B 6010-2001, and the two directions of the rolling direction and the vertical direction were each measured at five points, and the average value was defined as a macro surface roughness.
The micro surface roughness in the present invention is a surface roughness obtained in an observation field of an atomic force microscope (AFM). This micro surface roughness cannot be measured with a macro surface roughness, but greatly affects the reflectance. Specifically, the frequency of dendritic precipitation after plating appears as this value. It was found that irregularities on the surface of the order of several tens of nanometers are the cause of reducing the reflectance. In order to measure this micro surface roughness, it is appropriate to use an AFM and measure within a field of several to several tens of microns. From the results of experiments, a field of view of 6.16 microns × 6.16 microns It was found that the measurement by means best represents the micro surface roughness and has a correlation with the reflectance. Using AFM, the surface roughness Sa of fine irregularities on the order of nm was determined in a field of view of 6.16 microns × 6.16 microns. In order to reduce the influence of large surface scratches and rolling stripes on the lead frame, measurements were taken at any five points on the lead frame, and the average value was defined as a micro surface roughness.
While maintaining the macro surface roughness as much as possible, by suppressing the micro surface roughness as much as possible, while having excellent reflectivity with respect to both light in the near ultraviolet region having a wavelength of 340 to 400 nm and the visible light region in the vicinity of 400 nm to 800 nm, It has been found that a lead frame for a semiconductor device having high resin adhesion can be obtained. Based on this finding, the present invention has been made.

マクロな表面粗さは、基材の中間圧延、または、最終圧延で決定することが可能である。圧延条件やロール番手などを変えることでマクロな表面粗さを変化させることが可能である。
ミクロな表面粗さは、めっき後の最表面に微細粒子を用いた機械的な研磨などの処理を施すことで変化させることが出来る。例えば機械的な研磨の場合は、番手や研磨時間などを変えることでミクロな表面粗さを変えることが可能である。また非接触な研磨として、化学研磨、電解研磨などの手法を用いても良い。
また、圧延などの塑性加工において、ミクロな表面粗さとマクロな表面粗さを同時に制御することも工業的に有用である。例えば、基材にめっき等で反射皮膜層を形成した後に圧延することにより、圧延条件を適宜設定することでマクロな表面粗さを制御しながら、表面粗度を小さくした平滑ロールにてミクロな表面粗さを制御することも可能である。
Macro surface roughness can be determined by intermediate rolling or final rolling of the substrate. It is possible to change the macro surface roughness by changing the rolling conditions and roll number.
The micro surface roughness can be changed by subjecting the outermost surface after plating to a treatment such as mechanical polishing using fine particles. For example, in the case of mechanical polishing, it is possible to change the micro surface roughness by changing the count and polishing time. Further, as non-contact polishing, methods such as chemical polishing and electrolytic polishing may be used.
In addition, it is industrially useful to simultaneously control the micro surface roughness and the macro surface roughness in plastic working such as rolling. For example, by rolling after forming a reflective coating layer on the base material by plating or the like, by controlling the macro surface roughness by appropriately setting the rolling conditions, it is microscopic with a smooth roll with reduced surface roughness. It is also possible to control the surface roughness.

本発明の特徴として、これまで反射率の向上に寄与するとされてきた結晶粒径、方位などの因子(例えば特許文献2)は本質的に向上させる因子でないことを研究により明らかにし、表面の平滑性のみが反射率に影響を及ぼすことを見出したところにある。これにより、表面平滑化を得るあらゆる塑性加工を施した場合でも、結晶粒径、方位などの因子を気にすることなく、表面の平滑性のみに着目すればよいことが明らかになった。
また、反射率に影響を及ぼすミクロな表面粗さだけに注目し表面を平滑にするだけでなく、基材の小さなうねりなどに対応するマクロな表面粗さをあえて粗くすることで樹脂密着性を向上させることを明らかにした。表面平滑化は2つの表面粗さをバランスさせることで決まり、近紫外域から可視光域における反射率が良好で、高輝度かつ封止材との密着性に優れたリードフレームを提供することを可能にした。
As a feature of the present invention, it has been clarified through research that factors such as crystal grain size and orientation, which have been considered to contribute to the improvement of reflectance so far (for example, Patent Document 2), are not essential factors for improvement. It is in the place where it discovered that only sex had an influence on reflectance. As a result, it has been clarified that even when any plastic processing for obtaining surface smoothing is performed, it is only necessary to focus on the surface smoothness without worrying about factors such as crystal grain size and orientation.
In addition to smoothing the surface by focusing only on the micro surface roughness that affects the reflectivity, the resin adhesion can be improved by roughening the macro surface roughness corresponding to small waviness of the substrate. Clarified to improve. Surface smoothing is determined by balancing the two surface roughnesses, providing a lead frame that has good reflectivity in the near ultraviolet to visible light range, high brightness, and excellent adhesion to the sealing material. Made possible.

すなわち、上記課題は以下の手段により解決される。
(1) 金属基材上の、少なくとも片面もしくは両面に、一部もしくは全面に、電析によりめっき皮膜を析出させた後に、前記めっき皮膜の表面平滑化を加工して得られる、LED用部品材料において、触針式表面粗さ計による測定での表面粗さRaを0.010μm以上0.060μm以下であり、かつ原子間力顕微鏡による測定での表面粗さSaが50nm以下であることで、反射率と封止材との密着性が向上したことを特徴とするLED用部品材料。
(2) 前記めっき皮膜がAu、Ag、Cu、Pt、Rh、Alのいずれか、またはそれらの合金からなることを特徴する(1)項に記載のLED用部品材料。
(3)前記金属基材上に金属層がn層(nは1以上の整数)設けられ、かつ前記めっき皮膜が前記金属基材上に、直接、または前記金属層の少なくとも1層を介して設けられることを特徴する(1)または(2)項に記載のLED用部品材料。
(4) 前記(1)〜(3)項のいずれか1項に記載のLED用部品材料を用いることを特徴とするLED用部品。
That is, the said subject is solved by the following means.
(1) An LED component material obtained by depositing a plating film on at least one surface or both surfaces, a part or the entire surface of a metal substrate by electrodeposition, and then processing the surface smoothing of the plating film. In the surface roughness Ra measured by a stylus type surface roughness meter is 0.010 μm or more and 0.060 μm or less , and the surface roughness Sa measured by an atomic force microscope is 50 nm or less, LED component material characterized by improved adhesion between reflectance and sealing material.
(2) The LED component material according to (1), wherein the plating film is made of any one of Au, Ag, Cu, Pt, Rh, and Al, or an alloy thereof.
(3) n metal layers (n is an integer of 1 or more) are provided on the metal substrate, and the plating film is directly on the metal substrate or via at least one of the metal layers. The LED component material according to item (1) or (2), which is provided.
(4) An LED component comprising the LED component material according to any one of (1) to (3).

本発明の半導体装置用リードフレームは、波長340〜400nmの近紫外域と可視光領域(400nm付近〜800nm付近)の双方の光領域に対して反射率に優れ、かつ高い樹脂密着性を有する。   The lead frame for a semiconductor device of the present invention has excellent reflectivity and high resin adhesion to both the near ultraviolet region having a wavelength of 340 to 400 nm and the visible region (near 400 nm to 800 nm).

本発明のLED用部品材料の製造方法を説明すると、例えば、導電性の材料の両面または片面に金属めっきを施す。金属めっきは電気めっき法により前記金属材料表面に析出させる方法により行う。金属めっき皮膜はAu、Ag、Cu、Pt、Rh、Alのいずれか、またはそれらの合金から形成する。金属めっき方法自体は通常の方法で行うことができる。得られためっき表面に対してコロイダルシリカなどによる研磨で表面を平滑にする。めっき表面を平滑にする手段は、あらゆる塑性加工の何であっても構わない。本発明において金属基材上の金属めっき膜自体の厚さは、めっき条件やその後の加工の施し方によって定めることができ、上記の研磨後において、好ましくは0.01〜20μm、より好ましくは0.1〜10μmとする。
金属基材としては特に制限はないが、銅または銅基合金、または鉄または鉄基合金等が用いられる。金属基材の最終圧延時のロール粗度を変えることでマクロな表面粗さを変化させることが出来る。マクロな表面粗さは触針式表面粗さ計で測定することが出来る。マクロな表面粗さは好ましくはRaが0.010μm以上、より好ましくは0.020μm以上、より好ましくは0.030μm以上であるようにすることで樹脂密着性が向上する。また、マクロな表面粗さが0.100μmを超えると、基材表面の起伏が大きくなるため封止材が起伏の谷に十分に入り込まない。本質的な樹脂密着性が低下する分けではないが、接触面積が減少するため、結果として樹脂密着性が減少する。これによりマクロな表面粗さは0.060μm以下が好ましい。
金属基材上の、少なくとも片面もしくは両面に、一部もしくは全面に、電析によりめっき皮膜を析出させた後に、前記めっき皮膜の表面を加工して得られるLED用部品材料において、ミクロな表面の粗さを規制する。ミクロな表面粗さは原子間力顕微鏡による視野角6.16μm×6.16μmでの測定で得る。ミクロな表面粗さRaは、好ましくは50nm以下で、より好ましくは30nm以下、特に好ましくは10nm以下、最も好ましくは5nm以下とすることでLED用部品材料の反射率が向上する。
また、ミクロな表面粗さが2.0nm程度以下になると、マクロな表面粗さに関係なく樹脂密着力が低下するため、ミクロな表面粗さは3.0nm以上が好ましい。
本発明において、マクロな表面粗さは、はんだ濡れ性、樹脂密着性に寄与して、LEDに好適な特性を付与するとともに、優れた平滑性を維持する。ミクロな表面粗さの制御は、反射率に直接寄与し、この粗さが小さい方ほど反射率が向上する。
The manufacturing method of the LED component material of the present invention will be described. For example, metal plating is performed on both sides or one side of a conductive material. Metal plating is performed by a method of depositing on the surface of the metal material by electroplating. The metal plating film is formed of any one of Au, Ag, Cu, Pt, Rh, Al, or an alloy thereof. The metal plating method itself can be performed by a normal method. The resulting plated surface is smoothed by polishing with colloidal silica or the like. The means for smoothing the plating surface may be any plastic working. In the present invention, the thickness of the metal plating film itself on the metal substrate can be determined by the plating conditions and the manner of subsequent processing, and is preferably 0.01 to 20 μm, more preferably 0 after the above polishing. .1 to 10 μm.
Although there is no restriction | limiting in particular as a metal base material, Copper or a copper base alloy or iron or an iron base alloy etc. are used. The macro surface roughness can be changed by changing the roll roughness during the final rolling of the metal substrate. Macro surface roughness can be measured with a stylus type surface roughness meter. The macroscopic surface roughness is preferably such that Ra is 0.010 μm or more, more preferably 0.020 μm or more, more preferably 0.030 μm or more, thereby improving the resin adhesion. On the other hand, if the macro surface roughness exceeds 0.100 μm, the undulations on the surface of the base material increase, and the sealing material does not sufficiently enter the undulation valleys. Although it is not a division in which the essential resin adhesion is lowered, the contact area is reduced, and as a result, the resin adhesion is reduced. Thereby, the macro surface roughness is preferably 0.060 μm or less.
In an LED component material obtained by depositing a plating film by electrodeposition on at least one surface or both surfaces, a part or the entire surface of a metal substrate, and then processing the surface of the plating film, Regulate roughness. The micro surface roughness is obtained by measurement at a viewing angle of 6.16 μm × 6.16 μm using an atomic force microscope. The micro surface roughness Ra is preferably 50 nm or less, more preferably 30 nm or less, particularly preferably 10 nm or less, and most preferably 5 nm or less, whereby the reflectance of the LED component material is improved.
Further, when the micro surface roughness is about 2.0 nm or less, the resin adhesion is reduced regardless of the macro surface roughness, and therefore the micro surface roughness is preferably 3.0 nm or more.
In the present invention, macro surface roughness contributes to solder wettability and resin adhesion, imparts suitable characteristics to the LED, and maintains excellent smoothness. Microscopic surface roughness control directly contributes to the reflectance, and the smaller the roughness, the better the reflectance.

本発明における反射率は、Agめっきの場合、可視光域(例えば400〜800nm)で全反射率が80%以上(光をそのまま反射させる白色LED用)、近紫外光域(例えば375nm)で全反射率が70%以上(紫外光域は黄色の蛍光体で青色の波長を跳ね返すことで白色にするLED用)という態様が好ましい。   In the case of Ag plating, the reflectance in the present invention is 80% or more (for white LEDs that reflect light as it is) in the visible light region (for example, 400 to 800 nm), and all in the near ultraviolet light region (for example, 375 nm). It is preferable that the reflectance is 70% or more (for an LED in which the ultraviolet light region is a yellow phosphor and turns white by repelling the blue wavelength).

以下に、本発明を実施例に基づきさらに詳細に説明するが、本発明はこれに限定されるものではない。   Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited thereto.

金属基材は古河電気工業株式会社製銅基合金「EFTEC64T−C(C18045)」(商品名)を使用した。幅100mmである。以下に示す前処理を行った後、以下に示す電気めっき処理を施すことで銀めっき層を1.0μmの厚さで形成させた。   As the metal base material, a copper base alloy “EFTEC64T-C (C18045)” (trade name) manufactured by Furukawa Electric Co., Ltd. was used. The width is 100 mm. After performing the pretreatment shown below, the following electroplating treatment was performed to form a silver plating layer with a thickness of 1.0 μm.

(前処理条件)
[電解脱脂]
脱脂液:NaOH 60g/リットル
脱脂条件:2.5A/dm、温度60℃、脱脂時間60秒
[酸洗]
酸洗液:10%硫酸
酸洗条件:30秒 浸漬、室温
[銀ストライクめっき]
めっき液:KAg(CN)2 4.45g/リットル、KCN 60g/リットル
めっき条件:電流密度 5A/dm、温度 25℃
[銀めっき]
めっき液:AgCN 50g/リットル、KCN 100g/リットル、KCO 30g/リットル
めっき条件:電流密度 1A/dm、温度 30℃
(Pretreatment conditions)
[Electrolytic degreasing]
Degreasing solution: NaOH 60 g / liter Degreasing conditions: 2.5 A / dm 2 , temperature 60 ° C., degreasing time 60 seconds [pickling]
Pickling solution: 10% sulfuric acid Pickling conditions: 30 seconds immersion, room temperature [silver strike plating]
Plating solution: KAg (CN) 2 4.45 g / liter, KCN 60 g / liter Plating condition: current density 5 A / dm 2 , temperature 25 ° C.
[Silver plating]
Plating solution: AgCN 50 g / liter, KCN 100 g / liter, K 2 CO 3 30 g / liter Plating condition: current density 1 A / dm 2 , temperature 30 ° C.

前記金属基材の圧延加工工程において、最後に実施される圧延時のロール粗度を変えることでマクロな表面粗さをある程度制御することが出来る。実際の条製品ではある程度ばらつきが出るため、条件を振って作成した条の中から望みの粗さになっているものを選択し、それに前記めっきを施した。ロール粗度が小さい場合にはマクロな表面粗さが小さい基材、ロール粗度が大きい場合はマクロな表面粗さが大きい基材を得ることが出来る。実験において、ロールの表面粗さRzが小さい順に、得られる蝕針式のマクロな表面粗さが、それぞれ、Ra≒0.005μm、0.01μm、0.02μm、0.03μm、0.04μmとなるように異なるロールを使用して、マクロな表面粗さを制御した。   In the rolling process of the metal substrate, the macro surface roughness can be controlled to some extent by changing the roll roughness at the time of the last rolling. Since actual strip products vary to some extent, a strip having a desired roughness is selected from strips prepared under various conditions, and the above-described plating is applied thereto. A substrate having a small macro surface roughness can be obtained when the roll roughness is small, and a substrate having a large macro surface roughness can be obtained when the roll roughness is large. In the experiment, the macroscopic surface roughness of the obtained stylus type is as follows: Ra≈0.005 μm, 0.01 μm, 0.02 μm, 0.03 μm, 0.04 μm in order of increasing surface roughness Rz of the roll. Different rolls were used to control the macro surface roughness.

得られためっきサンプルに対して、前記金属基材において表面形状が異なるサンプルを使用し、かつ、コロイダルシリカによる研磨を表1に示す時間施すことで、望みの表面粗さを得られるようにした。ここで、0秒は研磨していないめっき上がりのサンプルという意味である。コロイダルシリカはOP−S懸濁液(OPSIF−5リットル入り)(商品名、丸本ストルアス(株))を使用した。   With respect to the obtained plated sample, a sample having a different surface shape in the metal base material was used, and polishing with colloidal silica was performed for the time shown in Table 1, so that the desired surface roughness was obtained. . Here, 0 second means a plated sample that has not been polished. The colloidal silica used was an OP-S suspension (with OPSIF-5 liter) (trade name, Marumoto Struers Co., Ltd.).

触針式表面粗さ計(SE−30H:製品名、(株)小坂研究所製)にてマクロな表面粗さRaを測定した。測定距離は4mm、針の速度は0.8mm/sである。
AFM(Mobile S:製品名、Nanosurf)でミクロな表面粗さSaを測定した。視野角は6.16μm×6.16μmである。
Macro surface roughness Ra was measured with a stylus type surface roughness meter (SE-30H: product name, manufactured by Kosaka Laboratory Ltd.). The measurement distance is 4 mm, and the needle speed is 0.8 mm / s.
Micro surface roughness Sa was measured with AFM (Mobile S: product name, Nanosurf). The viewing angle is 6.16 μm × 6.16 μm.

それぞれのサンプルを2.5cm×2.5cmに切り出し、分光光度計(U−4100(商品名、(株)日立ハイテクノロジーズ製))において、全反射率を300nm〜800nmにかけて連続測定を実施した。実施例に示す波長は、紫外光領域の代表値として375nm、可視光領域の閾値として下限を400nm、上限を800nm、可視光領域中の青色、緑色、黄色、赤色の代表的な波長として、それぞれ450nm、520nm、590nm、660nm、である。それぞれの波長に対する全反射率を表1に示した。連続測定の結果から、各波長間で全反射率が急落することはないことを確認している。   Each sample was cut into 2.5 cm × 2.5 cm, and continuous measurement was performed with a spectrophotometer (U-4100 (trade name, manufactured by Hitachi High-Technologies Corporation)) with a total reflectance of 300 nm to 800 nm. The wavelengths shown in the examples are 375 nm as a representative value in the ultraviolet light region, a lower limit is 400 nm as a threshold value in the visible light region, an upper limit is 800 nm, and blue, green, yellow, and red are representative wavelengths in the visible light region, respectively. 450 nm, 520 nm, 590 nm, and 660 nm. The total reflectance for each wavelength is shown in Table 1. From the results of continuous measurement, it has been confirmed that the total reflectance does not drop sharply between wavelengths.

樹脂密着性は前記めっきが施された前記金属基材にLED用シリコーン封止樹脂の皮膜を形成させ、前記樹脂皮膜にクロスカット試験(1mm×1mm、剥離テープ:631S #25 ポリエステルフィルム粘着テープ:株式会社寺岡製作所製)を行うことで評価を行った。評価基準は以下のとおり。
◎:全くハガレが無い(優)
○:端に浮きが見られる(良)
△:多少の剥離が認められる(可)
×:剥離してしまう(不可)
For resin adhesion, a film of a silicone sealing resin for LED is formed on the metal base that has been plated, and a cross-cut test (1 mm × 1 mm, release tape: 631S # 25 polyester film adhesive tape: Evaluation was performed by performing Teraoka Seisakusho Co., Ltd. The evaluation criteria are as follows.
A: No peeling at all (excellent)
○: Floating edge is seen (good)
Δ: Some peeling is possible (possible)
×: peeled off (impossible)

Figure 0004981979
Figure 0004981979

Au、Cu、Rh、Pt、AlでもAgと同様の方法で評価を行った。以下に結果を示す。   Au, Cu, Rh, Pt, and Al were also evaluated by the same method as Ag. The results are shown below.

Figure 0004981979
Figure 0004981979

前記実施例1にあるコロイダルシリカの研磨による表面の平滑化を、ロールの表面粗さを変えた圧延による表面の平滑化に変え、同様の評価を行った。前記Agめっき層を形成させた後に、圧延工程を通すため、マクロな表面粗さとミクロな表面粗さが同時に変化することになる。
圧延加工率を変えることでマクロな表面粗さとミクロな表面粗さを同時に変えることが可能である。圧延に使用するロール粗度を変化させることで、ある程度ミクロな表面粗さを制御することが可能である。同じ圧延加工率においてもロール粗度が小さければミクロな表面粗さは小さくなる。
The same evaluation was performed by changing the smoothing of the surface by polishing the colloidal silica in Example 1 to the smoothing of the surface by rolling with the surface roughness of the roll changed. Since the Ag plating layer is formed and then passed through the rolling process, the macro surface roughness and the micro surface roughness change simultaneously.
It is possible to simultaneously change the macro surface roughness and the micro surface roughness by changing the rolling rate. By changing the roll roughness used for rolling, it is possible to control the micro surface roughness to some extent. Even at the same rolling ratio, if the roll roughness is small, the micro surface roughness becomes small.

Figure 0004981979
Figure 0004981979

Claims (4)

金属基材上の、少なくとも片面もしくは両面に、一部もしくは全面に、電析によりめっき皮膜を析出させた後に、前記めっき皮膜の表面平滑化を加工して得られる、LED用部品材料において、触針式表面粗さ計による測定での表面粗さRaを0.010μm以上0.060μm以下であり、かつ原子間力顕微鏡による測定で表面粗さSaが50nm以下であることで、反射率と封止材との密着性が向上したことを特徴とするLED用部品材料。 In an LED component material obtained by depositing a plating film by electrodeposition on at least one surface or both surfaces, a part or the entire surface of a metal substrate, and then processing the surface smoothing of the plating film. The surface roughness Ra as measured with a needle-type surface roughness meter is 0.010 μm or more and 0.060 μm or less , and the surface roughness Sa as measured with an atomic force microscope is 50 nm or less. LED component material characterized by improved adhesion to a stop material. 前記めっき皮膜がAu、Ag、Cu、Pt、Rh、Alのいずれか、またはそれらの合金からなることを特徴とする請求項1に記載のLED用部品材料。   2. The LED component material according to claim 1, wherein the plating film is made of any one of Au, Ag, Cu, Pt, Rh, and Al, or an alloy thereof. 前記金属基材上に金属層がn層(nは1以上の整数)設けられ、かつ前記めっき皮膜が前記金属基材上に、直接、または前記金属層の少なくとも1層を介して設けられることを特徴する請求項1または請求項2記載のLED用部品材料。   The metal layer is provided with n layers (n is an integer of 1 or more) on the metal substrate, and the plating film is provided on the metal substrate directly or via at least one of the metal layers. The LED component material according to claim 1, wherein: 前記請求項1〜3のいずれか1項に記載のLED用部品材料を用いることを特徴とするLED用部品。   The LED component material according to any one of claims 1 to 3, wherein the LED component material is used.
JP2011133716A 2010-06-15 2011-06-15 LED component material having a highly reflective plating film and LED component Active JP4981979B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011133716A JP4981979B2 (en) 2010-06-15 2011-06-15 LED component material having a highly reflective plating film and LED component

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010136596 2010-06-15
JP2010136596 2010-06-15
JP2011133716A JP4981979B2 (en) 2010-06-15 2011-06-15 LED component material having a highly reflective plating film and LED component

Publications (2)

Publication Number Publication Date
JP2012023355A JP2012023355A (en) 2012-02-02
JP4981979B2 true JP4981979B2 (en) 2012-07-25

Family

ID=45777316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011133716A Active JP4981979B2 (en) 2010-06-15 2011-06-15 LED component material having a highly reflective plating film and LED component

Country Status (1)

Country Link
JP (1) JP4981979B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201337342A (en) * 2012-02-14 2013-09-16 Fujifilm Corp Mirror film, method for producing same, and mirror film for solar thermal power generation device or solar photovoltaic device
JP5901382B2 (en) * 2012-03-26 2016-04-06 古河電気工業株式会社 Base for lead frame for optical semiconductor device, lead frame for optical semiconductor device using the same, method for manufacturing the same, and optical semiconductor device
JP2014049594A (en) * 2012-08-31 2014-03-17 Dainippon Printing Co Ltd Lead frame for optical semiconductor device and optical semiconductor device using the same
CN110731129B (en) * 2017-06-09 2024-01-09 电化株式会社 Ceramic circuit board

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61156779A (en) * 1984-12-28 1986-07-16 Toshiba Corp Manufacture of electrode member for luminescence display device
JP2005029849A (en) * 2003-07-07 2005-02-03 Kobe Steel Ltd Ag ALLOY REFLECTIVE FILM FOR REFLECTOR, REFLECTOR USING THE Ag ALLOY REFLECTIVE FILM, AND Ag ALLOY SPUTTERING TARGET FOR DEPOSITING THE Ag ALLOY REFLECTIVE FILM
JP2008277349A (en) * 2007-04-25 2008-11-13 Kyocera Corp Base for mounting light-emitting element, and its manufacturing method, and light-emitting element
JP4758976B2 (en) * 2007-12-03 2011-08-31 日立ケーブルプレシジョン株式会社 Lead frame for mounting semiconductor light emitting device, method for manufacturing the same, and light emitting device

Also Published As

Publication number Publication date
JP2012023355A (en) 2012-02-02

Similar Documents

Publication Publication Date Title
TWI536616B (en) A lead frame for an optical semiconductor device, a manufacturing method of a lead frame for an optical semiconductor device, and an optical semiconductor device
WO2010150824A1 (en) Lead frame for optical semiconductor device, process for manufacturing lead frame for optical semiconductor device, and optical semiconductor device
JP5089795B2 (en) Optical semiconductor device lead frame, optical semiconductor device lead frame manufacturing method, and optical semiconductor device
TWI465614B (en) Lead frame for optical semiconductor device and method for manufacturing the same
US20120256224A1 (en) Insulated substrate, process for production of insulated substrate, process for formation of wiring line, wiring substrate, and light-emitting element
JP5503388B2 (en) LED lead frame
JP2013168622A (en) Reflection substrate for light-emitting element and method for manufacturing the same
JP4981979B2 (en) LED component material having a highly reflective plating film and LED component
JP5695841B2 (en) LED lead frame
WO2013005717A1 (en) Insulating reflective substrate and method for producing same
JP5901382B2 (en) Base for lead frame for optical semiconductor device, lead frame for optical semiconductor device using the same, method for manufacturing the same, and optical semiconductor device
WO2013027847A1 (en) Reflective substrate for led light emitting elements, and led package
JP5525315B2 (en) LED lead frame
JP2013125859A (en) Optical semiconductor device lead frame, optical semiconductor device lead frame manufacturing method and optical semiconductor device
KR102571291B1 (en) Lead frame, package for light emitting device, light emitting device, and method for manufacturing light emitting device
WO2015029211A1 (en) Base body for optical semiconductor device lead frame, method for manufacturing base body for optical semiconductor device lead frame, optical semiconductor device lead frame using base body for optical semiconductor device lead frame, and method for manufacturing optical semiconductor device lead frame, and optical semiconductor device
JP6034233B2 (en) Lead frame for optical semiconductor device, method for manufacturing the same, and optical semiconductor device
JP2015079841A (en) Lead frame base for optical semiconductor devices, lead frame for optical semiconductor devices and method for manufacturing lead frame for optical semiconductor devices
JP5995641B2 (en) Optical semiconductor device lead frame, optical semiconductor device lead frame manufacturing method, and optical semiconductor device
JP2012151289A (en) Optical semiconductor mounting board, manufacturing method of the same and optical semiconductor device
JP2017005224A (en) Lead frame for optical element and manufacturing method therefor
JP2012227327A (en) Lead frame for optical semiconductor devices, and method for manufacturing the same
JP6635152B2 (en) Lead frame, light emitting device package, light emitting device, and method of manufacturing light emitting device
JP2012033919A (en) Lead frame for optical semiconductor device, method of manufacturing the same, and optical semiconductor device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20111101

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20111101

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20111124

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111124

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20111124

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20120105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120410

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120420

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150427

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4981979

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350