JP4981317B2 - Fuel cell power supply system - Google Patents

Fuel cell power supply system Download PDF

Info

Publication number
JP4981317B2
JP4981317B2 JP2005364238A JP2005364238A JP4981317B2 JP 4981317 B2 JP4981317 B2 JP 4981317B2 JP 2005364238 A JP2005364238 A JP 2005364238A JP 2005364238 A JP2005364238 A JP 2005364238A JP 4981317 B2 JP4981317 B2 JP 4981317B2
Authority
JP
Japan
Prior art keywords
power
fuel cell
unit
fuel cells
boost chopper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005364238A
Other languages
Japanese (ja)
Other versions
JP2007172841A (en
Inventor
功次 小西
Original Assignee
河村電器産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 河村電器産業株式会社 filed Critical 河村電器産業株式会社
Priority to JP2005364238A priority Critical patent/JP4981317B2/en
Publication of JP2007172841A publication Critical patent/JP2007172841A/en
Application granted granted Critical
Publication of JP4981317B2 publication Critical patent/JP4981317B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Fuel Cell (AREA)

Description

本発明は、複数の燃料電池が出力した直流電力を交流電力に変換して電力消費ユニットに供給する給電システム、特に、小規模集合住宅に適した燃料電池給電システムに関するものである。 The present invention relates to a power supply system that converts DC power output from a plurality of fuel cells into AC power and supplies it to a power consuming unit, and more particularly to a fuel cell power supply system suitable for a small-scale apartment house.

従来、燃料電池が出力した直流電力をパワーコンディショナーで交流電力に変換し、商用系統(商用交流電源)と連系して、小規模集合住宅の複数の住戸に供給する給電システムが提案されている(例えば、特許文献1)。
特開2004−327160号公報
Conventionally, a power supply system has been proposed in which DC power output from a fuel cell is converted into AC power by a power conditioner and connected to a commercial system (commercial AC power supply) and supplied to a plurality of dwelling units in a small apartment house. (For example, patent document 1).
JP 2004-327160 A

図3は従来の燃料電池給電システムの一例を示す。このシステムは、5戸の住戸71〜75で構成された小規模集合住宅70を対象とし、5Kwの一台の燃料電池51と貯湯タンク等の排熱回収用の給湯設備(図示せず)とを備え、燃料電池51の出力する直流電力をパワーコンディショナー52で交流電力に変換し、電力線網に連系して各住戸71〜75へ電力を供給している。このシステムでは集合住宅70側での使用電力が低い軽負荷運転のとき、燃料電池51の発電効率や補機類の排熱回収効率が低下し、総合的なエネルギー効率が低下するという問題点が有った。 FIG. 3 shows an example of a conventional fuel cell power supply system. This system is intended for a small apartment 70 composed of five units 71 to 75, a single 5Kw fuel cell 51 and a hot water supply facility (not shown) for recovering exhaust heat such as a hot water storage tank. The DC power output from the fuel cell 51 is converted into AC power by the power conditioner 52, and the power is supplied to each of the dwelling units 71 to 75 through the power line network. This system has a problem that the power generation efficiency of the fuel cell 51 and the exhaust heat recovery efficiency of the auxiliary machinery are reduced during the light load operation with low power consumption on the apartment house 70 side, and the overall energy efficiency is reduced. There was.

図4は従来の改良システムを示す。このシステムは、燃料電池部61に1kWの独立運転可能な5台の燃料電池61〜65を備え、集合住宅70での使用電力が少ないときは、5台のうち必要に応じた台数の燃料電池で直流電力を発電することで、軽負荷運転時の効率低下を抑えている。そして、図3のシステムと同様、燃料電池61〜65で発電した直流電力をパワーコンディショナー52で交流電力に変換し、電力線網を経て各住戸71〜75に電力を供給する。 FIG. 4 shows a conventional improved system. This system is provided with five fuel cells 61 to 65 capable of independent operation of 1 kW in the fuel cell unit 61. When the power consumption in the apartment house 70 is small, as many fuel cells as necessary out of the five units are used. By generating direct-current power with the, the efficiency drop during light load operation is suppressed. 3, DC power generated by the fuel cells 61 to 65 is converted into AC power by the power conditioner 52, and power is supplied to each of the units 71 to 75 via the power line network.

図5は従来の給電システムで用いられるパワーコンディショナー52の回路構成を示す。このパワーコンディショナー52は、昇圧チョッパ部83とインバータ部84と連系部85とを備え、燃料電池51の出力するDC48V程度の低い電圧を昇圧チョッパ部83でDC350〜400V程度まで昇圧し、インバータ部84で交流電力に変換した後に、連系部85を経て商用系統60や電力線網に給電するように構成されている。 FIG. 5 shows a circuit configuration of a power conditioner 52 used in a conventional power feeding system. The power conditioner 52 includes a step-up chopper 83, an inverter 84, and a connection portion 85. The power conditioner 52 boosts a low voltage of about 48V DC output from the fuel cell 51 to about 350 to 400V DC by the step-up chopper 83, and the inverter unit. After being converted into AC power at 84, power is supplied to the commercial system 60 and the power line network via the interconnection unit 85.

しかし、従来の給電システムによると、燃料電池の発電電力が5kWで出力電圧が48Vの場合、パワーコンディショナー52の入力端子、昇圧チョッパ部83のリアクトルL、スイッチング素子SWおよびその配線には100A以上の電流が流れる。この電流による損失は次式より求められる。
(電流)×(抵抗)
抵抗:リアクトルLと配線の直流抵抗及びスイッチング素子SWのオン抵抗を含む
従って、昇圧チョッパ部83の入力電流が大きくなるほど、パワーコンディショナー52の損失が電流の2乗に比例して大きくなり、給電システム全体のエネルギー効率が低下する問題点が有った。
However, according to the conventional power supply system, when the generated power of the fuel cell is 5 kW and the output voltage is 48 V, the input terminal of the power conditioner 52, the reactor L of the boost chopper 83, the switching element SW, and the wiring thereof are 100A or more. Current flows. The loss due to this current is obtained from the following equation.
(Current) 2 x (resistance)
Resistance: including the DC resistance of the reactor L and the wiring and the ON resistance of the switching element SW. Therefore, as the input current of the boost chopper 83 increases, the loss of the power conditioner 52 increases in proportion to the square of the current. There was a problem that the overall energy efficiency was lowered.

そこで、本発明の目的は、パワーコンディショナーの損失を抑えて、総合エネルギー効率を高めることができる燃料電池給電システムを提供することにある。 Accordingly, an object of the present invention is to provide a fuel cell power supply system that can suppress the loss of a power conditioner and increase the total energy efficiency.

上記課題を解決するために、請求項1に係る発明は、複数の燃料電池が出力した直流電力をパワーコンディショナーで交流電力に変換して複数の電力消費ユニットに供給する燃料電池給電システムにおいて、パワーコンディショナーが各燃料電池に個別に接続された複数の昇圧チョッパ部と、各昇圧チョッパ部が直列に接続された一つのインバータ部とを備えたことを特徴とする。 In order to solve the above-described problem, the invention according to claim 1 is directed to a fuel cell power supply system that converts DC power output from a plurality of fuel cells into AC power by a power conditioner and supplies the AC power to a plurality of power consuming units. The conditioner includes a plurality of boost chopper units individually connected to each fuel cell, and one inverter unit in which each boost chopper unit is connected in series.

また、本発明の燃料電池給電システムは、各燃料電池の出力電圧を別々に検出する電圧検出部と、パワーコンディショナーを制御する制御部とを備え、制御部が電圧検出部の検出値に基づいて燃料電池の運転台数を判別し、運転中の燃料電池に接続された昇圧チョッパ部に燃料電池の運転台数に応じた出力電圧目標値を設定することを特徴とする。 Further, the fuel cell power supply system of the present invention includes a voltage detection unit that separately detects the output voltage of each fuel cell and a control unit that controls the power conditioner, and the control unit is based on the detection value of the voltage detection unit. The number of operating fuel cells is discriminated, and an output voltage target value corresponding to the number of operating fuel cells is set in the boost chopper connected to the operating fuel cell .

請求項1の発明によれば、複数の燃料電池を備えた給電システムにおいて、パワーコンディショナーに燃料電池と同数の昇圧チョッパ部を設けたので、個々の昇圧チョッパ部の入力電流を小さくし、パワーコンディショナーの損失を抑えて、総合エネルギー効率を高めることができる効果がある。また、パワーコンディショナーの出力電力が大きくなるほど、昇圧チョッパ部一台あたりの昇圧比が小さくなるため、昇圧運転の制御が容易となり、パワーコンディショナーの動作が安定する利点もある。さらに、燃料電池の保守・点検時に、対象となる燃料電池に接続された昇圧チョッパ部のみを停止させることができ、システムダウン(全発電停止)させることなく、メンテナンスを実施できる効果もある。 According to the first aspect of the present invention, in the power supply system including a plurality of fuel cells, since the power conditioner is provided with the same number of boost chopper units as the fuel cells, the input current of each boost chopper unit is reduced, and the power conditioner There is an effect that the total energy efficiency can be improved by suppressing the loss of the energy. In addition, as the output power of the power conditioner increases, the boost ratio per boost chopper section decreases, so that the boost operation can be easily controlled and the operation of the power conditioner is stable. Further, at the time of maintenance / inspection of the fuel cell, only the boost chopper connected to the target fuel cell can be stopped, and there is an effect that the maintenance can be performed without causing the system to go down (stopping all power generation).

また、本発明の燃料電池給電システムによれば、制御部が運転中の燃料電池に接続された昇圧チョッパ部に燃料電池の運転台数に応じた出力電圧目標値を設定するので、給電システムを電力需要の変動に合わせて経済的に稼動できる効果がある。 Further , according to the fuel cell power supply system of the present invention , the control unit sets the output voltage target value corresponding to the number of operating fuel cells in the boost chopper connected to the operating fuel cell. It has the effect of being able to operate economically according to fluctuations in demand.

以下、本発明の実施の形態について図面を参照して説明する。図1は小規模集合住宅用の燃料電池給電システムを示す。この給電システムは、5台の燃料電池11〜15からなる燃料電池部1と、各燃料電池11〜15が出力した直流電力を交流電力に変換するパワーコンディショナー2と、燃料電池部1及びパワーコンディショナー2を制御するマイクロコンピュータを用いた制御部3とを備え、パワーコンディショナー2の出力を商用系統6と連系して電力消費ユニットである複数の住戸71〜75(図3参照)に供給するように構成されている。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows a fuel cell power supply system for a small apartment house. This power supply system includes a fuel cell unit 1 including five fuel cells 11 to 15, a power conditioner 2 that converts DC power output from each fuel cell 11 to 15 into AC power, a fuel cell unit 1, and a power conditioner. And a control unit 3 using a microcomputer for controlling 2 and supplying the output of the power conditioner 2 to a plurality of dwelling units 71 to 75 (see FIG. 3) which are connected to the commercial system 6 and are power consumption units. It is configured.

燃料電池11〜15には1Kwの普及型電池が用いられ、5台の燃料電池11〜15が給湯設備等の排熱回収用の補機類を共有している。このため、最大発電容量5Kwの燃料電池部1を安価に設備できるとともに、集合住宅70側の電力需要が低下する軽負荷運転時に、5台の燃料電池11〜15のうち一部の電池のみを独立運転することで、燃料電池部1の総合発電効率を高めることが可能となる。 1 Kw popular type batteries are used for the fuel cells 11 to 15, and the five fuel cells 11 to 15 share auxiliary equipment for exhaust heat recovery such as hot water supply facilities. For this reason, while being able to install the fuel cell unit 1 having the maximum power generation capacity of 5 Kw at a low cost, only a part of the five fuel cells 11 to 15 can be installed at the time of light load operation in which the power demand on the apartment house 70 side is reduced. By performing the independent operation, the total power generation efficiency of the fuel cell unit 1 can be increased.

パワーコンディショナー2は、燃料電池11〜15と同数である5台の昇圧チョッパ部31〜35と、各昇圧チョッパ部31〜35が出力した直流電力を交流電力に変換する一台のインバータ部4と、インバータ部4の出力を商用系統6と連系させる連系部5とから構成されている。一つの昇圧チョッパ部の容量は燃料電池の発電容量に合わせて1kw程度に設定され、各昇圧チョッパ部31〜35の入力端子が5台の燃料電池11〜15にそれぞれ別々に接続されている。また、各昇圧チョッパ部31〜35の出力端子はダイオードD1〜D5を介してインバータ部4の入力端子に直列に接続されている。 The power conditioner 2 includes five boost chopper units 31 to 35 that are the same number as the fuel cells 11 to 15, and one inverter unit 4 that converts DC power output from the boost chopper units 31 to 35 into AC power. The interconnecting unit 5 interconnects the output of the inverter unit 4 with the commercial system 6. The capacity of one boost chopper is set to about 1 kw according to the power generation capacity of the fuel cell, and the input terminals of the boost choppers 31 to 35 are separately connected to the five fuel cells 11 to 15, respectively. The output terminals of the boost chopper units 31 to 35 are connected in series to the input terminal of the inverter unit 4 via the diodes D1 to D5.

ここで、燃料電池11〜15の一台あたりの出力電圧がDC48Vの場合、各昇圧チョッパ31〜35がそれぞれDC80Vを出力することで、インバータ部4に計400Vの直流電圧を供給できる。インバータ部4が単相3線路のAC200V回路と連系するためには、ピーク値で280V強〜300V程度の交流電圧を出力する必要がある。このため、昇圧チョッパ31〜35がインバータ部4にDC400Vを供給すれば、インバータ部4はそれ自身の半導体スイッチやリアクトルでの電圧降下を考慮してもAC200V回路に余裕を持って連系することができる。 Here, when the output voltage per unit of the fuel cells 11 to 15 is DC 48V, each boost chopper 31 to 35 outputs DC 80V, so that a DC voltage of 400V in total can be supplied to the inverter unit 4. In order for the inverter unit 4 to be linked to a single-phase three-line AC 200V circuit, it is necessary to output an AC voltage having a peak value of slightly higher than 280V to about 300V. For this reason, if the step-up choppers 31 to 35 supply DC 400V to the inverter unit 4, the inverter unit 4 should be connected to the AC 200V circuit with a margin even if the voltage drop in its own semiconductor switch or reactor is taken into consideration. Can do.

また、昇圧チョッパ部31〜35を燃料電池11〜15と同数設けたことにより、一台のチョッパ部の入力電流値を小さく抑えて、電流による損失値を低下させることも可能である。昇圧チョッパ部の損失値を従来のパワーコンディショナー52(図5参照)とこの実施形態のパワーコンディショナー2とで比較すると、次のようになる。次式では、一つの昇圧チョッパ部のリアクトルLと配線の直流抵抗及びスイッチング素子SWのオン抵抗の合計がR(Ω)であると仮定する。 Further, by providing the same number of boosting chopper units 31 to 35 as the fuel cells 11 to 15, it is possible to suppress the input current value of one chopper unit to be small and to reduce the loss value due to the current. The loss value of the boost chopper is compared between the conventional power conditioner 52 (see FIG. 5) and the power conditioner 2 of this embodiment as follows. In the following equation, it is assumed that the sum of the reactor L of one step-up chopper unit, the DC resistance of the wiring, and the on-resistance of the switching element SW is R (Ω).

従来のパワーコンディショナー(1台の昇圧チョッパ部)の場合
入力電流 5Kw÷48(V)≒104.2(A)
損失 (104.2)×R≒10857.6・R(W)
この実施形態のパワーコンディショナー(5台の昇圧チョッパ部)の場合
入力電流 1Kw÷48(V)≒20.8(A)
損失 (20.8)×R×5≒2163.2R(W)
従って、この実施形態のパワーコンディショナー2によれば、昇圧チョッパ部31〜35の一台あたりの損失を従来のおよそ1/5程度まで低下させることができる。
In the case of a conventional power conditioner (one step-up chopper), the input current is 5 Kw ÷ 48 (V) ≈104.2 (A)
Loss (104.2) 2 × R≈10857.6 · R (W)
In the case of the power conditioner (five step-up chopper units) of this embodiment, the input current is 1 Kw ÷ 48 (V) ≈20.8 (A)
Loss (20.8) 2 × R × 5≈2163.2R (W)
Therefore, according to the power conditioner 2 of this embodiment, the loss per one step-up chopper part 31-35 can be reduced to about 1/5 of the conventional one.

一方、この実施形態の燃料電池給電システムは、各昇圧チョッパ部31〜35の入力電圧(燃料電池11〜15の出力電圧)を別々に検出する電圧検出器41〜45を燃料電池11〜15と昇圧チョッパ部31〜35との間の回路上に備えている。そして、図2のフローチャートに示すように、制御部3が電圧検出器41〜45の検出値に基づいて運転中の燃料電池11〜15の台数を判別し、運転中の燃料電池11〜15に接続された昇圧チョッパ部31〜35に運転台数に応じた出力電圧の目標値を設定するように構成されている。 On the other hand, in the fuel cell power feeding system of this embodiment, the voltage detectors 41 to 45 that individually detect the input voltages (output voltages of the fuel cells 11 to 15) of the boost chopper units 31 to 35 are connected to the fuel cells 11 to 15, respectively. It is provided on the circuit between the step-up chopper units 31-35. Then, as shown in the flowchart of FIG. 2, the control unit 3 determines the number of operating fuel cells 11 to 15 based on the detection values of the voltage detectors 41 to 45, and determines the number of operating fuel cells 11 to 15. The booster chopper units 31 to 35 connected to each other are configured to set a target value of an output voltage corresponding to the number of operating units.

図2において、まず、制御部3は電圧検出器41〜45の出力に基づいて昇圧チョッパ部31〜35の入力電圧を予め定めた閾値と比較してチェックする(S1)。閾値には例えば燃料電池11〜15の定格出力であるDC48Vを使用でき、燃料電池が運転していると電圧検出値はDC48V以上となり、停止していると0Vとなる。このため、DC48V以上の電圧を出力する燃料電池を運転中と判別し、これに接続された昇圧チョッパ部nの運転を登録し(S2)、DC48V未満の電圧を出力する燃料電池に接続された昇圧チョッパ部31〜35は運転を停止する(S3)。 In FIG. 2, first, the control unit 3 checks the input voltage of the boost chopper units 31 to 35 based on the outputs of the voltage detectors 41 to 45 by comparing with a predetermined threshold (S1). For example, DC48V, which is the rated output of the fuel cells 11 to 15, can be used as the threshold value. When the fuel cell is operating, the detected voltage value is DC48V or more, and when the fuel cell is stopped, it is 0V. For this reason, it is determined that the fuel cell that outputs a voltage of DC48V or higher is in operation, the operation of the boost chopper unit n connected thereto is registered (S2), and the fuel cell that outputs a voltage of less than DC48V is connected. The step-up chopper units 31 to 35 stop operating (S3).

全部の昇圧チョッパ部31〜35の電圧チェックを完了すると(S4:Yes)、次に、制御部3は運転登録された昇圧チョッパ部に登録台数に応じた出力電圧目標値を設定したのち、そのチョッパ部の昇圧運転を制御する(S5〜S14)。例えば、すべての燃料電池11〜15が運転し、5台の昇圧チョッパ部31〜35が運転登録されている場合に(S5)、各昇圧チョッパ部31〜35の出力電圧目標値をそれぞれDC80Vに設定する(S6)。また、図1に示す一つの燃料電池13が運転し、これに接続された昇圧チョッパ部33のみが運転登録されている場合は(S13)、その出力電圧目標値をDC400Vに設定し(S14)、残り4台の昇圧チョッパ部31,32,34,35を停止した状態で、一台の昇圧チョッパ部33の昇圧運転を制御する。この結果、インバータ部4は昇圧チョッパ部33の出力コンデンサCに蓄えられたDC400Vを+側はダイオードD2,D1を経て、−側はダイオードD5,D4を経て入力することができる。 When the voltage check of all the boost chopper units 31 to 35 is completed (S4: Yes), the control unit 3 then sets the output voltage target value corresponding to the registered number in the boost chopper unit registered for operation. The step-up operation of the chopper unit is controlled (S5 to S14). For example, when all the fuel cells 11 to 15 are operated and five boost chopper units 31 to 35 are registered for operation (S5), the output voltage target value of each boost chopper unit 31 to 35 is set to DC 80V, respectively. Set (S6). Further, when one fuel cell 13 shown in FIG. 1 is operated and only the step-up chopper unit 33 connected thereto is registered for operation (S13), the output voltage target value is set to DC400V (S14). The boosting operation of one boosting chopper 33 is controlled in a state where the remaining four boosting choppers 31, 32, 34, 35 are stopped. As a result, the inverter unit 4 can input DC 400V stored in the output capacitor C of the boost chopper unit 33 through the diodes D2 and D1 on the + side and the diodes D5 and D4 on the − side.

従って、この実施形態の燃料電池給電システムによれば、次のような効果が得られる。
(イ)パワーコンディショナー2に燃料電池11〜15と同数の昇圧チョッパ部31〜35を設けたので、個々の昇圧チョッパ部の入力電流を小さくし、パワーコンディショナー2の損失を抑制できる。
(ロ)パワーコンディショナー2の出力が大きくなるほど、昇圧チョッパ部一台あたりの昇圧比が小さくなるため、昇圧運転の制御がしやすくなり、パワーコンディショナー2の動作が安定する。
(ハ)燃料電池部1の保守・点検時に、対象となる燃料電池11〜15に接続された昇圧チョッパ部31〜35のみを停止させることができ、給電システム全体をダウンさせることなく、メンテナンスを支障なく実施できる。
(ニ)運転中の燃料電池11〜15に接続された昇圧チョッパ部31〜35に登録台数に応じた出力電圧目標値を設定するので、給電システムを集合住宅70側の電力需要の変動に合わせて経済的に稼動できる。
(ホ)燃料電池11〜15に1kw程度の普及型電池を使用したので、高価な補機類を共有して燃料電池部1を安価に設備できるとともに、小規模集合住宅の電力需要の変動に的確に対応できる。
Therefore, according to the fuel cell power feeding system of this embodiment, the following effects can be obtained.
(A) Since the same number of boost chopper units 31 to 35 as the fuel cells 11 to 15 are provided in the power conditioner 2, the input current of each boost chopper unit can be reduced and the loss of the power conditioner 2 can be suppressed.
(B) As the output of the power conditioner 2 is increased, the boost ratio per boost chopper is reduced, so that the boost operation can be easily controlled and the operation of the power conditioner 2 is stabilized.
(C) During maintenance and inspection of the fuel cell unit 1, only the boost chopper units 31 to 35 connected to the target fuel cells 11 to 15 can be stopped, and maintenance can be performed without bringing down the entire power feeding system. Can be carried out without hindrance.
(D) Since the output voltage target value corresponding to the number of registered units is set in the boost chopper units 31 to 35 connected to the fuel cells 11 to 15 in operation, the power feeding system is adjusted to the fluctuation of power demand on the apartment house 70 side. Can operate economically.
(E) Since a popular battery of about 1 kW is used for the fuel cells 11 to 15, the fuel cell unit 1 can be installed at low cost by sharing expensive auxiliary machinery, and the power demand of the small-scale housing complex can be changed. Can respond accurately.

尚、本発明は上記実施形態に限定されるものではなく、例えば、燃料電池及び昇圧チョッパ部の台数を電力消費ユニットの規模に応じて増減したり、複数の燃料電池の出力を相違させたりするなど、本発明の趣旨を逸脱しない範囲で各部の構成を適宜に変更して実施することも可能である。 In addition, this invention is not limited to the said embodiment, For example, the number of fuel cells and a pressure | voltage rise chopper part is increased / decreased according to the scale of an electric power consumption unit, or the output of several fuel cells is made different. For example, the configuration of each part can be changed as appropriate without departing from the spirit of the present invention.

本発明の一実施形態を示す燃料電池給電システムの回路図である。1 is a circuit diagram of a fuel cell power supply system showing an embodiment of the present invention. 図1の給電システムの制御部による処理を示すフローチャートである。It is a flowchart which shows the process by the control part of the electric power feeding system of FIG. 従来の燃料電池給電システムを示すブロック図である。It is a block diagram which shows the conventional fuel cell electric power feeding system. 従来の別の給電システムを示すブロック図である。It is a block diagram which shows another conventional electric power feeding system. 従来のパワーコンディショナーを示す回路図である。It is a circuit diagram which shows the conventional power conditioner.

符号の説明Explanation of symbols

1 燃料電池部
2 パワーコンディショナー
3 制御部
4 インバータ部
5 連系部
11〜15 燃料電池
31〜35 昇圧チョッパ部
41〜45 電圧検出器
DESCRIPTION OF SYMBOLS 1 Fuel cell part 2 Power conditioner 3 Control part 4 Inverter part 5 Interconnection parts 11-15 Fuel cells 31-35 Boost chopper parts 41-45 Voltage detector

Claims (1)

複数の燃料電池が出力した直流電力をパワーコンディショナーで交流電力に変換して複数の電力消費ユニットに供給する給電システムにおいて、パワーコンディショナーが各燃料電池に個別に接続された複数の昇圧チョッパ部と、各昇圧チョッパ部が直列に接続された一つのインバータ部と、各燃料電池の出力電圧を別々に検出する電圧検出部とを備え、パワーコンディショナーを制御する制御部が電圧検出部の検出値に基づいて燃料電池の運転台数を判別し、運転中の燃料電池に接続された昇圧チョッパ部に燃料電池の運転台数に応じた出力電圧目標値を設定することを特徴とする燃料電池給電システム。 In a power supply system that converts DC power output from a plurality of fuel cells into AC power by a power conditioner and supplies the AC power to a plurality of power consuming units, a plurality of boost chopper units in which the power conditioner is individually connected to each fuel cell; Each boost chopper unit includes one inverter unit connected in series and a voltage detection unit that separately detects the output voltage of each fuel cell, and the control unit that controls the power conditioner is based on the detection value of the voltage detection unit A fuel cell power supply system that determines the number of operating fuel cells and sets an output voltage target value corresponding to the number of operating fuel cells in a boost chopper connected to the operating fuel cell.
JP2005364238A 2005-12-19 2005-12-19 Fuel cell power supply system Active JP4981317B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005364238A JP4981317B2 (en) 2005-12-19 2005-12-19 Fuel cell power supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005364238A JP4981317B2 (en) 2005-12-19 2005-12-19 Fuel cell power supply system

Publications (2)

Publication Number Publication Date
JP2007172841A JP2007172841A (en) 2007-07-05
JP4981317B2 true JP4981317B2 (en) 2012-07-18

Family

ID=38299154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005364238A Active JP4981317B2 (en) 2005-12-19 2005-12-19 Fuel cell power supply system

Country Status (1)

Country Link
JP (1) JP4981317B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0278159A (en) * 1988-09-13 1990-03-19 Toshiba Corp Route switching device for fuel cell
JPH0690567A (en) * 1992-09-07 1994-03-29 Uinzu:Kk Energy-combined high output inverter
JP4416102B2 (en) * 2001-05-31 2010-02-17 パナソニック電工株式会社 Booster and fuel cell system using the booster

Also Published As

Publication number Publication date
JP2007172841A (en) 2007-07-05

Similar Documents

Publication Publication Date Title
JP5344759B2 (en) Power distribution system
US8263276B1 (en) Startup power control in a fuel cell system
JP5081596B2 (en) Power supply system
US8531855B2 (en) Power conversion apparatus
JP4570245B2 (en) Distributed power system
JP6522901B2 (en) DC distribution system
US7656057B2 (en) Power conditioner and method of operating the same
JP2003289626A (en) Power conditioner for solar power generation system
JP2019198223A (en) Power conversion system
JP5211772B2 (en) Power conditioner operation control device and photovoltaic power generation system
JP5412297B2 (en) Power converter
JP6232912B2 (en) Power conditioner for photovoltaic power generation
JP4046700B2 (en) Grid-connected inverter device
JP2016134990A (en) Power supply system
JP5931345B2 (en) Uninterruptible power supply system
JP2015133870A (en) Power converter and power conversion method
JP2014130416A (en) System interconnection device
KR100664090B1 (en) Power converting control apparatus and method for line conection type fuel cell system
JP4981317B2 (en) Fuel cell power supply system
JP6704479B2 (en) POWER SUPPLY SYSTEM, POWER SUPPLY DEVICE, AND POWER SUPPLY SYSTEM CONTROL METHOD
JP4119392B2 (en) Junction box and power generator
JP2016082706A (en) Photovoltaic power generation utilization system
WO2015170626A1 (en) Independent power supply system
JP2013026242A (en) Photovoltaic power generation system
JP2024501631A (en) Photovoltaic systems with energy storage and how to control them

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120417

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120420

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150427

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4981317

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250