JP4978105B2 - Imaging element cover and imaging apparatus - Google Patents

Imaging element cover and imaging apparatus Download PDF

Info

Publication number
JP4978105B2
JP4978105B2 JP2006217824A JP2006217824A JP4978105B2 JP 4978105 B2 JP4978105 B2 JP 4978105B2 JP 2006217824 A JP2006217824 A JP 2006217824A JP 2006217824 A JP2006217824 A JP 2006217824A JP 4978105 B2 JP4978105 B2 JP 4978105B2
Authority
JP
Japan
Prior art keywords
refractive index
diffraction grating
wavelength
index material
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006217824A
Other languages
Japanese (ja)
Other versions
JP2008042796A5 (en
JP2008042796A (en
Inventor
融一郎 木村
智樹 磯村
正之 大戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2006217824A priority Critical patent/JP4978105B2/en
Publication of JP2008042796A publication Critical patent/JP2008042796A/en
Publication of JP2008042796A5 publication Critical patent/JP2008042796A5/ja
Application granted granted Critical
Publication of JP4978105B2 publication Critical patent/JP4978105B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Description

本発明は、デジタルスチルカメラ、デジタルビデオカメラ等に用いられる固体撮像素子カバーおよび撮像装置に関する。   The present invention relates to a solid-state image sensor cover and an imaging apparatus used for a digital still camera, a digital video camera, and the like.

デジタルスチルカメラ、デジタルビデオカメラ等には撮像装置が用いられている。これら携帯デジタル機器では、小型化、低価格化が進んでいる。それに伴い、撮像装置の小型化、低背化、低価格化も求められている。
撮像装置は複数の構成部品からなり、固体撮像素子、固体撮像素子を外部環境から保護するためのパッケージ、パッケージを封止する固体撮像素子カバー等を備えている(特許文献1参照)。
また、固体撮像素子の素子密度の向上により、撮影像に含まれる空間的な高周波成分を抑制する光学ローパスフィルタが必要となってきている。
光学ローパスフィルタとしての回折格子を撮像装置に取り込んで、デジタル機器全体として部品数を減らした構成が知られている(特許文献2および特許文献3参照)。
An imaging device is used for a digital still camera, a digital video camera, and the like. These portable digital devices are becoming smaller and cheaper. Accordingly, there is a demand for downsizing, low profile, and low price of the imaging apparatus.
The imaging apparatus includes a plurality of components, and includes a solid-state imaging device, a package for protecting the solid-state imaging device from the external environment, a solid-state imaging device cover for sealing the package, and the like (see Patent Document 1).
In addition, an optical low-pass filter that suppresses a spatial high-frequency component included in a captured image has become necessary due to an improvement in the element density of the solid-state imaging device.
There is known a configuration in which a diffraction grating as an optical low-pass filter is incorporated in an imaging device and the number of parts is reduced as a whole digital device (see Patent Document 2 and Patent Document 3).

特開平9−69618号公報(第4頁、図3)JP-A-9-69618 (Page 4, FIG. 3) 特許第2968357号公報(第3および4頁、図6)Japanese Patent No. 2968357 (pages 3 and 4, FIG. 6) 特開平5−273501号公報(第2頁、図2)Japanese Patent Laid-Open No. 5-273501 (2nd page, FIG. 2)

回折格子を光学ローパスフィルタとして使用した場合、可視光領域の各波長に渡って一定の回折効率が得られず波長によって強度差が生じ、被写体の色調を忠実に再現できないという問題があった。
本発明の目的は、小型化、低背化、および低価格化に対応しつつ、可視光領域で被写体の色調を忠実に再現できる固体撮像素子カバーおよび撮像装置を得ることにある。
When the diffraction grating is used as an optical low-pass filter, there is a problem that a certain diffraction efficiency cannot be obtained over each wavelength in the visible light region, and an intensity difference occurs depending on the wavelength, so that the color tone of the subject cannot be faithfully reproduced.
An object of the present invention is to obtain a solid-state image sensor cover and an imaging apparatus that can faithfully reproduce the color tone of a subject in the visible light region while corresponding to downsizing, low profile, and low price.

本発明の撮像素子カバーは、像素子が収納されているパッケージを封止する撮像素子カバーであって、前記撮像素子カバーは、透光性基板と、前記透光性基板の主面上に第1の屈折率材料と第2の屈折率材料とが交互に配置されている第1の回折格子と、を含み、前記第1の屈折率材料の幅Wと前記第1の回折格子の周期Pとの比W/Pが0.5であり、前記第1の屈折率材料の前記透光性基板の表面からの高さをdとし、前記第2の屈折率材料の前記透光性基板の表面からの高さをdとし、波長λの光に対する前記第1の屈折率材料の屈折率をnL1とし、前記波長λの光に対する前記第2の屈折率材料の屈折率をnH1とし、波長λの光に対する前記第1の屈折率材料の屈折率をnL2とし、前記波長λの光に対する前記第2の屈折率材料の屈折率をnH2とし、前記波長λの光に対する前記第1の回折格子の位相変調量Γとし、前記波長λの光に対する前記第1の回折格子の位相変調量Γとしたとき、
Γ={(nH1−nL1)×d+(1−nL1)×(d−d)}/λ・・・(3)
Γ={(nH2−nL2)×d+(1−nL2)×(d−d)}/λ・・・(4)
Γ=Γ・・・(5)
を満足していることを特徴とする。
An imaging element cover of the present invention is a that IMAGING element cover resign sealed packages IMAGING element is housed, prior Symbol IMAGING element cover, and the light-transmitting substrate, the transparent substrate wherein between the first diffraction grating first refractive index material and a second refractive index material are alternately on arranged on the main surface, and the width W of the first refractive index material No. The ratio W / P with the period P of one diffraction grating is 0.5, the height of the first refractive index material from the surface of the translucent substrate is d L, and the second refractive index The height of the material from the surface of the translucent substrate is d H , the refractive index of the first refractive index material with respect to the light with the wavelength λ 1 is n L1, and the second with respect to the light with the wavelength λ 1 the refractive index of the refractive index material and n H1, the refractive index of the first refractive index material for the wavelength lambda 2 of the light and n L2, with respect to the wavelength lambda 2 of light Serial refractive index of the second refractive index material and n H2, the wavelength lambda 1 and the phase modulation amount gamma 1 of the first diffraction grating to light, of the first diffraction grating with respect to the wavelength lambda 2 of light When the phase modulation amount is Γ 2 ,
Γ 1 = {(n H1 −n L1 ) × d H + (1−n L1 ) × (d L −d H )} / λ 1 (3)
Γ 2 = {(n H2 −n L2 ) × d H + (1−n L2 ) × (d L −d H )} / λ 2 (4)
Γ 1 = Γ 2 (5)
It is characterized by satisfying .

この発明では、可視光領域の各波長に対して回折効率が略一定に保たれる。したがって、回折格子は、各波長において入射光強度に対し一定の回折光強度を取り出せる光学ローパスフィルタとして機能し、可視光領域で被写体の色調を忠実に再現できる固体撮像素子カバーが得られる。  In this invention, the diffraction efficiency is kept substantially constant for each wavelength in the visible light region. Accordingly, the diffraction grating functions as an optical low-pass filter that can extract a constant diffracted light intensity with respect to the incident light intensity at each wavelength, and a solid-state imaging device cover that can faithfully reproduce the color tone of the subject in the visible light region is obtained.

本発明では、下記式(6)を満足することが好ましい。  In the present invention, it is preferable that the following formula (6) is satisfied.
  d LL =2.87×d= 2.87 x d HH ・・・(6)  ... (6)
可視光領域における0次回析光の回析効率を略同じに設定することが出来る。また、1次回析光の回析効率も略同じに設定することが出来る。  It is possible to set the diffraction efficiency of the zero next-order diffraction light in the visible light region to be approximately the same. Further, the diffraction efficiency of the first-order diffracted light can be set substantially the same.

本発明では、前記第1の屈折率材料を二酸化ケイ素とし、前記第2の屈折率材料を二酸化チタン及び五酸化タンタルの何れかするのが好ましい。
この発明では、回折格子を形成する材料として耐久性に優れた誘電体を用いているので、信頼性の高い撮像素子カバーが得られる。
In the present invention, it is preferable that the first refractive index material is silicon dioxide, and the second refractive index material is any one of titanium dioxide and tantalum pentoxide.
In the present invention, since a dielectric having excellent durability as a material for forming a diffraction grating, high have an imaging element cover of reliability.

本発明では、前記第1の屈折率材料を紫外線硬化樹脂及び熱硬化樹脂の何れかとし、前記第2の屈折率材料を二酸化チタン及び五酸化タンタルの何れかとするのが好ましい。
この発明では、第1の屈折率材料が樹脂を含んでいるため、撮像素子カバーの低価格化に対応できる。
In the present invention, it is preferable that the first refractive index material is any one of an ultraviolet curable resin and a thermosetting resin, and the second refractive index material is any one of titanium dioxide and tantalum pentoxide.
In this invention, the first refractive index materials because it contains resins, it can cope with cost reduction of an imaging element cover.

本発明では、前記第1の回折格子の主面上に、順に1/4波長板と第2の回折格子配置されており記第2の回折格子は、前記第1の回折格子と同一の形状であり、前記第2の回折格子の形成方向と、前記第1の回折格子の形成方向とは直交関係にあるのが好ましい。
この発明では、2つの回折格子の回折方向を直交させて用いているので、4点分離の光学ローパスフィルタが構成され、より高性能の光学ローパスフィルタを備えた撮像素子カバーが得られる。
In the present invention, on the main surface of the first diffraction grating, they are sequentially arranged 1/4 wavelength plate and a second diffraction grating, before Symbol second diffraction grating, said first diffraction grating It is preferable that the second diffraction grating is formed in the same shape and the first diffraction grating is formed in an orthogonal relationship with the formation direction of the first diffraction grating.
In the present invention, because of the use by the orthogonal direction of diffraction of the two diffraction gratings are configured optical low-pass filter of the four-point separation, more IMAGING device cover with a high-performance optical low-pass filter is obtained.

本発明では、前記第1の回折格子の主面上に、順に1/4波長板と複屈折板配置されており、前記第1の回折格子の回折方向と、前記複屈折板の複屈折方向とは直交関係にあるのが好ましい。
この発明では、複屈折方向と回折方向が略直交した4点分離の光学ローパスフィルタが構成され、より高性能の光学ローパスフィルタを備えた撮像素子カバーが得られる。
In the present invention, the on a first main surface of the diffraction grating is arranged in turn a quarter wavelength plate and the birefringent plate, the diffraction direction of said first diffraction grating, the birefringence of the birefringent plate The direction is preferably orthogonal to the direction.
In the present invention, the diffraction direction birefringent direction is configured optical low-pass filter of the four-point separation that is substantially perpendicular, more IMAGING device cover with a high-performance optical low-pass filter is obtained.

本発明の撮像装置は、像素子が収納されているパッケージを封止する撮像素子カバーであって、前記撮像素子カバーは、透光性基板と、前記透光性基板の主面上に第1の屈折率材料と第2の屈折率材料とが交互に配置されている第1の回折格子と、を含み、前記第1の屈折率材料の幅Wと前記第1の回折格子の周期Pとの比W/Pが0.5であり、前記第1の屈折率材料の前記透光性基板の表面からの高さをdとし、前記第2の屈折率材料の前記透光性基板の表面からの高さをdとし、波長λの光に対する前記第1の屈折率材料の屈折率をnL1とし、前記波長λの光に対する前記第2の屈折率材料の屈折率をnH1とし、波長λの光に対する前記第1の屈折率材料の屈折率をnL2とし、前記波長λの光に対する前記第2の屈折率材料の屈折率をnH2とし、前記波長λの光に対する前記第1の回折格子の位相変調量Γとし、前記波長λの光に対する前記第1の回折格子の位相変調量Γとしたとき、
Γ={(nH1−nL1)×d+(1−nL1)×(d−d)}/λ・・・(3)
Γ={(nH2−nL2)×d+(1−nL2)×(d−d)}/λ・・・(4)
Γ=Γ・・・(5)
を満足していることを特徴とする。
Imaging apparatus of the present invention is a that IMAGING element cover resign sealed packages IMAGING element is housed, prior Symbol IMAGING element cover, and the light-transmitting substrate, the main of the light-transmitting substrate includes a first diffraction grating first refractive index material and a second refractive index material are mutually arranged exchange on the surface, and the width W of the first refractive index material of the first The ratio W / P with respect to the period P of the diffraction grating is 0.5, the height of the first refractive index material from the surface of the translucent substrate is d L, and the second refractive index material The height from the surface of the translucent substrate is d H , the refractive index of the first refractive index material for light of wavelength λ 1 is n L1, and the second refractive index for light of wavelength λ 1. the refractive index of the material and n H1, the refractive index of the first refractive index material for the wavelength lambda 2 of the light and n L2, the with respect to the wavelength lambda 2 of the light first Of the refractive index of the refractive index material and n H2, the wavelength lambda 1 and the phase modulation amount gamma 1 of the first diffraction grating to light, the phase modulation amount of the first diffraction grating with respect to the wavelength lambda 2 of light When Γ 2
Γ 1 = {(n H1 −n L1 ) × d H + (1−n L1 ) × (d L −d H )} / λ 1 (3)
Γ 2 = {(n H2 −n L2 ) × d H + (1−n L2 ) × (d L −d H )} / λ 2 (4)
Γ 1 = Γ 2 (5)
It is characterized by satisfying .

この発明では、可視光領域の各波長に対して回折効率が略一定に保たれる。したがって、回折格子は、各波長において入射光強度に対し一定の回折光強度を取り出せる光学ローパスフィルタとして機能し、可視光領域で被写体の色調を忠実に再現できる撮像装置が得られる。  In this invention, the diffraction efficiency is kept substantially constant for each wavelength in the visible light region. Therefore, the diffraction grating functions as an optical low-pass filter that can extract a constant diffracted light intensity with respect to the incident light intensity at each wavelength, and an imaging apparatus that can faithfully reproduce the color tone of the subject in the visible light region can be obtained.

本発明では、下記式(6)を満足することが好ましい。  In the present invention, it is preferable that the following formula (6) is satisfied.
  d LL =2.87×d= 2.87 x d HH ・・・(6)  ... (6)
可視光領域における0次回析光の回析効率を略同じに設定することが出来る。また、1次回析光の回析効率も略同じに設定することが出来る。  It is possible to set the diffraction efficiency of the zero next-order diffraction light in the visible light region to be approximately the same. Further, the diffraction efficiency of the first-order diffracted light can be set substantially the same.

本発明では、前記第1の屈折率材料を二酸化ケイ素とし、前記第2の屈折率材料を二酸化チタン及び五酸化タンタルの何れかとするのが好ましい。
この発明では、回折格子を形成する材料として耐久性に優れた誘電体を用いているので、信頼性の高い撮像装置が得られる。
In the present invention, the first refractive index material silicon dioxide, preferably the second refractive index material and one of titanium dioxide and tantalum pentoxide.
In the present invention, since a dielectric having excellent durability is used as a material for forming the diffraction grating, a highly reliable imaging device can be obtained.

本発明では、前記第1の屈折率材料を紫外線硬化樹脂及び熱硬化樹脂の何れかとし、前記第2の屈折率材料を二酸化チタン及び五酸化タンタルの何れかとしているのが好ましい。
この発明では、第1の屈折率材料が樹脂を含んでいるため、撮像装置の低価格化に対応できる。
In the present invention, the first refractive index material as either of the ultraviolet curable resin and a thermosetting resin, preferably the second refractive index material is either titanium dioxide and tantalum pentoxide.
In the present invention, since the first refractive index material contains a resin, it is possible to cope with the cost reduction of the imaging device.

本発明では、前記第1の回折格子の主面上に、順に1/4波長板と第2の回折格子配置されており、前記第2の回折格子は、前記第1の回折格子と同一の形状であり、前記第2の回折格子の形成方向と、前記第1の回折格子の形成方向とは直交関係にあるのが好ましい。
この発明では、2つの回折格子の回折方向を直交させて用いているので、4点分離の光学ローパスフィルタが構成され、より高性能の光学ローパスフィルタを備えた撮像装置が得られる。
In the present invention, the on a first main surface of the diffraction grating, and in turn the quarter-wave plate and a second diffraction grating arranged, the second diffraction grating is equal to the first diffraction grating It is preferable that the formation direction of the second diffraction grating and the formation direction of the first diffraction grating are orthogonal to each other.
In the present invention, since the diffraction directions of the two diffraction gratings are orthogonal to each other, a four-point separation optical low-pass filter is formed, and an image pickup apparatus having a higher-performance optical low-pass filter can be obtained.

本発明では、前記第1の回折格子の主面上に、順に1/4波長板と複屈折板配置されており、前記第1の回折格子の回折方向と、前記複屈折板の複屈折方向とは直交関係にあるのが好ましい。
この発明では、複屈折方向と回折方向が略直交した4点分離の光学ローパスフィルタが構成され、より高性能の光学ローパスフィルタを備えた撮像装置が得られる。
In the present invention, the on a first main surface of the diffraction grating is arranged in turn a quarter wavelength plate and the birefringent plate, the diffraction direction of said first diffraction grating, the birefringence of the birefringent plate The direction is preferably orthogonal to the direction.
According to the present invention, an optical low-pass filter with a four-point separation in which the birefringence direction and the diffraction direction are substantially orthogonal to each other is configured, and an imaging apparatus having a higher-performance optical low-pass filter is obtained.

以下、本発明の実施形態について図面に基づいて説明する。
(第1実施形態)
図1(a)は、本実施形態の固体撮像素子カバー40および撮像装置10の概略斜視図、同図(b)は、(a)における正断面図を示している。
図1において、撮像装置10は、固体撮像素子1とパッケージ2とパッケージ2を封止する固体撮像素子カバー40とを備えている。
固体撮像素子1は、升形状のパッケージ2の底部に収納されている。パッケージ2の開口部は、固体撮像素子カバー40が接着剤4によって開口部に固定されることによって塞がれ、固体撮像素子1が封止されている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(First embodiment)
Fig.1 (a) is a schematic perspective view of the solid-state image sensor cover 40 and the imaging device 10 of this embodiment, FIG.1 (b) has shown the front sectional view in (a).
In FIG. 1, the imaging apparatus 10 includes a solid-state imaging device 1, a package 2, and a solid-state imaging device cover 40 that seals the package 2.
The solid-state image sensor 1 is housed in the bottom of a bowl-shaped package 2. The opening of the package 2 is closed by fixing the solid-state image sensor cover 40 to the opening by the adhesive 4, and the solid-state image sensor 1 is sealed.

固体撮像素子1には、CCD(Charge Coupled Device)、CMOS(Complementary Metal Oxide Semiconductor)、CPD(Charge Priming Device)等を用いることができる。
パッケージ2には、セラミック、熱硬化性のエポキシ樹脂,熱可塑性のポリスルフォン系であるポリフェニレンサルファイド樹脂を成形したものを用いることができる。
For the solid-state imaging device 1, a CCD (Charge Coupled Device), a CMOS (Complementary Metal Oxide Semiconductor), a CPD (Charge Priming Device), or the like can be used.
The package 2 may be formed by molding a ceramic, a thermosetting epoxy resin, or a polyphenylene sulfide resin that is a thermoplastic polysulfone.

固体撮像素子カバー40は、ガラスカバー3と回折格子5とを備えている。回折格子5は、ガラスカバー3の光の入射面30に形成されている。   The solid-state image sensor cover 40 includes a glass cover 3 and a diffraction grating 5. The diffraction grating 5 is formed on the light incident surface 30 of the glass cover 3.

ガラスカバー3には、可視光領域の光を透過するガラスを用いることができる。ガラスとしては、石英ガラス、ホウケイ酸ガラス、ソーダガラス等を使用することができる。
外部からの入射光は、固体撮像素子カバー40を透過し、パッケージ2内の固体撮像素子1に到達する。
回折格子5は、断面形状が周期的な凹凸を有している。図1では、凹凸の凸部52および凹部53の断面形状は矩形状であるが、台形状等であってもよい。
回折格子5の形成方法としては、ガラスカバー3の入射面30をエッチングして凹部53を形成して凹凸とする方法であってもよい。また、ガラスカバー3の入射面30に、凸部52を、二酸化ケイ素等の誘電体層を蒸着や、スパッタ等の成膜手段によって形成してもよい。さらに、紫外線硬化樹脂または熱硬化樹脂を用いて凸部52を形成してもよい。
For the glass cover 3, glass that transmits light in the visible light region can be used. As glass, quartz glass, borosilicate glass, soda glass, or the like can be used.
Incident light from the outside passes through the solid-state image sensor cover 40 and reaches the solid-state image sensor 1 in the package 2.
The diffraction grating 5 has irregularities with a periodic cross-sectional shape. In FIG. 1, the convex and concave portions 52 and the concave portions 53 are rectangular in cross section, but may be trapezoidal or the like.
As a method for forming the diffraction grating 5, a method may be used in which the concave portion 53 is formed by etching the incident surface 30 of the glass cover 3 to form the concave and convex portions. Moreover, you may form the convex part 52 in the incident surface 30 of the glass cover 3 by film-forming means, such as vapor deposition and a sputtering, etc., dielectric layers, such as a silicon dioxide. Furthermore, you may form the convex part 52 using an ultraviolet curable resin or a thermosetting resin.

回折格子5は、二点分離の光学ローパスフィルタとして働く。回折格子5の好ましい格子の高さは、0.1〜1μmであり、凸部52の幅および周期は、固体撮像素子1の画素周期に応じて設定することができる。
図2に、本実施形態の回折格子5の1次回折光の回折効率I1を実線で示した。横軸は波長λで、縦軸は回折効率Iを表している。
1次回折光の回折効率I1は、可視光領域で600nmにピークを持つ山型の波長依存性を示す。
The diffraction grating 5 functions as an optical low-pass filter with two-point separation. The preferred grating height of the diffraction grating 5 is 0.1 to 1 μm, and the width and period of the convex portion 52 can be set according to the pixel period of the solid-state imaging device 1.
In FIG. 2, the diffraction efficiency I 1 of the first- order diffracted light of the diffraction grating 5 of this embodiment is shown by a solid line. The horizontal axis represents the wavelength λ, and the vertical axis represents the diffraction efficiency I.
The diffraction efficiency I 1 of the first- order diffracted light shows a mountain-shaped wavelength dependency having a peak at 600 nm in the visible light region.

接着剤4には、エポキシ系、酢酸ビニル系、アクリル系、スチレン系、セルロース系、ポリアミド系、フェノール系等からなる樹脂を用いることができる。
回折格子5の表面および入射面30には、表面での反射を防ぐために反射防止層を設けることができる。反射防止層は、可視光領域に渡って反射を抑える多層反射防止層を用いるのがよい。
As the adhesive 4, a resin made of epoxy, vinyl acetate, acrylic, styrene, cellulose, polyamide, phenol, or the like can be used.
An antireflection layer can be provided on the surface of the diffraction grating 5 and the incident surface 30 in order to prevent reflection on the surface. The antireflection layer is preferably a multilayer antireflection layer that suppresses reflection over the visible light region.

このような本実施形態によれば以下の効果がある。
(1)ガラスカバー3に回折格子5が一体で形成され1つの部品を構成しており、固体撮像素子カバー40および撮像装置10全体として部品数を少なくできる。したがって、固体撮像素子カバー40および撮像装置10の小型化、低背化、および低価格化を可能にできる。
According to this embodiment, there are the following effects.
(1) The diffraction grating 5 is integrally formed on the glass cover 3 to constitute one component, and the number of components can be reduced as the solid-state image sensor cover 40 and the entire imaging apparatus 10. Therefore, the solid-state image sensor cover 40 and the imaging device 10 can be reduced in size, reduced in height, and reduced in price.

(2)ガラスカバー3の入射面30に直接凹部53が形成されているので、より部品点数を少なくできる。   (2) Since the concave portion 53 is directly formed on the incident surface 30 of the glass cover 3, the number of parts can be further reduced.

(3)回折格子5を形成する材料として耐久性に優れた誘電体を用いているので、信頼性の高い固体撮像素子カバー40および撮像装置10を得ることができる。   (3) Since a dielectric having excellent durability is used as the material for forming the diffraction grating 5, the solid-state image sensor cover 40 and the imaging device 10 having high reliability can be obtained.

(4)凸部52が樹脂を含んでいるため、固体撮像素子カバー40および撮像装置10の低価格化に対応できる。   (4) Since the convex part 52 contains resin, it can respond to the cost reduction of the solid-state image sensor cover 40 and the imaging device 10. FIG.

(第2実施形態)
図3(a)は、本実施形態の固体撮像素子カバー41および撮像装置20の正断面図、同図(b)は、(a)における拡大正断面図を示している。
図3(a)において、第1実施形態と異なる点は、ガラスカバー3の入射面30に凸部6および凹部7を備えた回折格子51が形成されていることである。
凸部6と凹部7とは交互に配置され、断面形状が周期的な凹凸となっている。
凸部6は、低屈折率材料からなり、凹部7は、高屈折率材料からなる。
(Second Embodiment)
3A is a front sectional view of the solid-state image sensor cover 41 and the imaging device 20 of the present embodiment, and FIG. 3B is an enlarged front sectional view of FIG.
In FIG. 3A, the difference from the first embodiment is that a diffraction grating 51 having a convex portion 6 and a concave portion 7 is formed on the incident surface 30 of the glass cover 3.
The convex portions 6 and the concave portions 7 are alternately arranged, and the cross-sectional shape is a periodic unevenness.
The convex portion 6 is made of a low refractive index material, and the concave portion 7 is made of a high refractive index material.

以下に、図3(b)を参照して、凸部6の厚みおよび凹部7の厚みの関係を説明する。これらの厚みは、可視光領域における回折効率Iが略一定となるようにそれぞれ設定されている。   Below, with reference to FIG.3 (b), the relationship between the thickness of the convex part 6 and the thickness of the recessed part 7 is demonstrated. These thicknesses are set so that the diffraction efficiency I in the visible light region is substantially constant.

凸部6の幅Wと周期Pとの比W/Pは、0.5に設定してある。
凸部6の厚みをdL、屈折率をnL、凹部7の厚みをdH、屈折率をnHとする。
ここで、回折効率のm次回折光の回折効率をImとすると、回折効率Imは、P、W、Γによって式(1)のような関数によって示すことができる。
m=f(P,W,Γ)・・・(1)
Γは位相変調量である。
位相変調量Γは、波長により変化するため、異なる波長で回折効率Imを同じ値にするためには、波長が変化しても位相変調量Γが変化しないように補償すればよい。
The ratio W / P between the width W of the protrusion 6 and the period P is set to 0.5.
The thickness of the convex portion 6 is d L , the refractive index is n L , the thickness of the concave portion 7 is d H , and the refractive index is n H.
Here, when the diffraction efficiency of the m-th order diffracted light of the diffraction efficiency is I m , the diffraction efficiency I m can be expressed by a function such as the expression (1) by P, W, and Γ.
I m = f (P, W, Γ) (1)
Γ is a phase modulation amount.
Since the phase modulation amount Γ varies depending on the wavelength, in order to make the diffraction efficiency Im the same value at different wavelengths, it is only necessary to compensate so that the phase modulation amount Γ does not change even if the wavelength changes.

位相変調量Γは、式(2)のように示すことができる。
Γ={(nH−nL)dH+(1−nL)(dL−dH)}/λ・・・(2)
ここで、波長λ1での凸部6の屈折率をnL1、凹部7の屈折率をnH1とし、波長λ2での凸部6の屈折率をnL2、凹部7の屈折率をnH2とすると、波長λ1における位相変調量Γ1、および波長λ2における位相変調量Γ2は、式(3)、(4)のように示すことができる。
Γ1={(nH1−nL1)dH+(1−nL1)(dL−dH)}/λ1・・・(3)
Γ2={(nH2−nL2)dH+(1−nL2)(dL−dH)}/λ2・・・(4)
波長λ1および波長λ2における回折効率Imを同じにするには、Γ1=Γ2であれば良いから、式(5)を満足するように各条件を設定すればよい。
{(nH1−nL1)dH+(1−nL1)(dL−dH)}/λ1={(nH2−nL2)dH+(1−nL2)(dL−dH)}/λ2・・・(5)
The phase modulation amount Γ can be expressed as shown in Equation (2).
Γ = {(n H −n L ) d H + (1−n L ) (d L −d H )} / λ (2)
Here, the refractive index of the convex portion 6 at the wavelength λ 1 is n L1 , the refractive index of the concave portion 7 is n H1 , the refractive index of the convex portion 6 at the wavelength λ 2 is n L2 , and the refractive index of the concave portion 7 is n. When H2, the phase modulation amount gamma 2 in the phase modulation amount gamma 1, and the wavelength lambda 2 at a wavelength lambda 1 of the formula (3), can be expressed as (4).
Γ 1 = {(n H1 −n L1 ) d H + (1−n L1 ) (d L −d H )} / λ 1 (3)
Γ 2 = {(n H2 −n L2 ) d H + (1−n L2 ) (d L −d H )} / λ 2 (4)
In order to make the diffraction efficiencies Im the same at the wavelengths λ 1 and λ 2 , Γ 1 = Γ 2 suffices, so each condition may be set so as to satisfy Expression (5).
{(N H1 −n L1 ) d H + (1−n L1 ) (d L −d H )} / λ 1 = {(n H2 −n L2 ) d H + (1−n L2 ) (d L − d H )} / λ 2 (5)

次に、可視光領域を想定して、dLおよびdHの関係を求める。
凸部6を二酸化ケイ素、凹部7を五酸化タンタル、波長λ1を400nm、波長λ2を700nmとする。各波長λ1およびλ2における二酸化ケイ素、五酸化タンタルの屈折率は次のようになる。波長λ1=400nmのとき、二酸化ケイ素の屈折率は1.495、五酸化タンタルの屈折率は2.312であり、波長λ2=800nmのとき、二酸化ケイ素の屈折率は1.467、五酸化タンタルの屈折率は2.158となる。
これらの値を式(5)に代入して式(6)の結果が得られる。
L=2.87dH・・・(6)
Next, assuming the visible light region, the relationship between d L and d H is obtained.
The convex portion 6 is silicon dioxide, the concave portion 7 is tantalum pentoxide, the wavelength λ 1 is 400 nm, and the wavelength λ 2 is 700 nm. The refractive indexes of silicon dioxide and tantalum pentoxide at each wavelength λ 1 and λ 2 are as follows. When the wavelength λ 1 = 400 nm, the refractive index of silicon dioxide is 1.495, the refractive index of tantalum pentoxide is 2.312, and when the wavelength λ 2 = 800 nm, the refractive index of silicon dioxide is 1.467, five The refractive index of tantalum oxide is 2.158.
By substituting these values into equation (5), the result of equation (6) is obtained.
d L = 2.87 d H (6)

したがって、式(6)を満たすように凸部6の厚みdLと凹部7の厚みdHとを設定すれば、可視光領域における0次回折光の回折効率I0を略同じに設定することができる。また1次回折光の回折効率I1も略同じに設定することができる。
ここで、2点に分離する場合を考えると、0次回折光の回折効率I0が略0であって、1次回折光の回折効率I1が最大となるように設定すればよいから、略Γ1=Γ2=0.5であればよい。さらにdHおよびdLは、式(3)に式(6)を代入することで求められ、dL=5374nm、dH=1872nmが得られる。ここで得られた値は波長λ1=400nmにおける最適値である。そこで、可視光域内で最も良い効率が得られるように、式(2)を用いてdHおよびdLを微調整し、使用する波長範囲内で最適化した。この結果dH=1700nm、dL=4878nmが得られた。
Therefore, if the thickness d L of the convex portion 6 and the thickness d H of the concave portion 7 are set so as to satisfy Expression (6), the diffraction efficiency I 0 of the 0th- order diffracted light in the visible light region can be set to be substantially the same. it can. Also, the diffraction efficiency I 1 of the first- order diffracted light can be set substantially the same.
Here, considering the case of separation into two points, the diffraction efficiency I 0 of the 0th-order diffracted light may be set to approximately 0, and the diffraction efficiency I 1 of the 1st- order diffracted light may be set to the maximum. = Γ2 = 0.5 is sufficient. Further, d H and d L are obtained by substituting Equation (6) into Equation (3), and d L = 5374 nm and d H = 1873 nm are obtained. The value obtained here is the optimum value at the wavelength λ 1 = 400 nm. Therefore, in order to obtain the best efficiency in the visible light range, d H and d L were finely adjusted using the formula (2) and optimized within the wavelength range to be used. As a result, d H = 1700 nm and d L = 4878 nm were obtained.

図4に、波長と回折効率I0、I1との関係をシミュレーションした結果を示した。
最適化前として、波長λ1=400nmにおける最適値である凸部6の厚みdL=5374nm、凹部7の厚みdH=1872nmに設定したときの結果を細線で示した。
最適化後として、使用する波長範囲内でさらに最適化した凸部6の厚みdL=4878nm、凹部7の厚みdH=1700nmに設定したときの結果を太線で示した。
この図4に示すシミュレーション結果から、凸部6の厚みdLと凹部7の厚みdHとを最適化することにより、可視光領域における回折効率I1を略同じに設定でき、かつ0次光の回折効率I0のピークが無くなり、0次光はほとんど回折されないことが確認された。
FIG. 4 shows the result of simulating the relationship between the wavelength and the diffraction efficiencies I 0 and I 1 .
Before the optimization, the results when the thickness d L = 5374 nm of the convex portion 6 and the thickness d H = 1872 nm of the concave portion 7 which are the optimum values at the wavelength λ 1 = 400 nm are shown by thin lines.
After optimization, the results when the thickness d L = 4878 nm of the convex portion 6 and the thickness d H = 1700 nm of the concave portion 7 that are further optimized within the wavelength range to be used are shown by bold lines.
From the simulation results shown in FIG. 4, by optimizing the thickness d L of the convex portion 6 and the thickness d H of the concave portion 7, the diffraction efficiency I 1 in the visible light region can be set to be substantially the same, and the zero-order light can be set. It was confirmed that the peak of the diffraction efficiency I 0 disappeared and the zero-order light was hardly diffracted.

凸部6に二酸化ケイ素、凹部7に二酸化チタンまたは五酸化タンタルの誘電体を用いた場合には、例えば、以下のように凸部6、凹部7を形成する。
ガラスカバー3に真空蒸着やスパッタ等の成膜手段によって二酸化ケイ素膜を形成後、フォトリソグラフィ法およびエッチング法によって二酸化ケイ素膜をエッチング、パターニングして凸部6を形成し、二酸化ケイ素膜を除去した箇所に二酸化チタンまたは五酸化タンタルを真空蒸着やスパッタによって形成し凹部7を形成する。
In the case where silicon dioxide or tantalum pentoxide dielectric is used for the convex portion 6 and the concave portion 7, for example, the convex portion 6 and the concave portion 7 are formed as follows.
After a silicon dioxide film is formed on the glass cover 3 by film deposition means such as vacuum deposition or sputtering, the silicon dioxide film is etched and patterned by photolithography and etching methods to form convex portions 6 and the silicon dioxide film is removed. Titanium dioxide or tantalum pentoxide is formed at the location by vacuum deposition or sputtering to form the recess 7.

凸部6に紫外線硬化樹脂を用いる場合には、例えば、以下のように回折格子を形成する。
ガラスカバー3に、二酸化チタンまたは五酸化タンタルを真空蒸着やスパッタによって形成する。次にフォトリソグラフィ法およびエッチング法によって選択的にエッチングを行う。二酸化チタンまたは五酸化タンタルが除去された場所に紫外線硬化樹脂を塗布し、ガラスカバー3を介して、裏側から紫外線を照射して感光させる。二酸化チタンまたは五酸化タンタルの存在する部分は、紫外線の透過率が低下し、紫外線硬化樹脂が感光しない。したがって、剥離液を用いて未硬化の紫外線硬化樹脂の除去ができる。
When an ultraviolet curable resin is used for the convex portion 6, for example, a diffraction grating is formed as follows.
Titanium dioxide or tantalum pentoxide is formed on the glass cover 3 by vacuum deposition or sputtering. Next, etching is selectively performed by a photolithography method and an etching method. An ultraviolet curable resin is applied to the place from which titanium dioxide or tantalum pentoxide has been removed, and is exposed to ultraviolet rays from the back side through the glass cover 3 to be exposed. In the portion where titanium dioxide or tantalum pentoxide is present, the transmittance of ultraviolet rays is reduced, and the ultraviolet curable resin is not sensitized. Therefore, the uncured ultraviolet curable resin can be removed using the stripping solution.

また、フォトリソグラフィ法、エッチング法以外に、ナノインプリント技術と呼ばれるナノオーダーのパターンを有する金型を利用して格子を形成してもよい。   In addition to the photolithography method and the etching method, a lattice may be formed using a mold having a nano-order pattern called a nanoimprint technique.

このような本実施形態によれば第1実施形態の効果に加え、以下のような効果がある。
(5)可視光領域の各波長に対して1次回折光の回折効率I1を略一定に保つことができ、0次回折光の回折効率I0を少なくすることができる。したがって、凸部6、凹部7は、各波長において入射光強度に対し一定の回折光強度を取り出せる光学ローパスフィルタとして機能し、可視光領域で被写体の色調を忠実に再現できる固体撮像素子カバー41および撮像装置20を得ることができる。
According to this embodiment, in addition to the effects of the first embodiment, there are the following effects.
(5) The diffraction efficiency I 1 of the first- order diffracted light can be kept substantially constant for each wavelength in the visible light region, and the diffraction efficiency I 0 of the zero- order diffracted light can be reduced. Accordingly, the convex portion 6 and the concave portion 7 function as an optical low-pass filter that can extract a constant diffracted light intensity with respect to the incident light intensity at each wavelength, and the solid-state image sensor cover 41 that can faithfully reproduce the color tone of the subject in the visible light region. The imaging device 20 can be obtained.

(第3実施形態)
本実施形態は、第2実施形態で得られた固体撮像素子カバー41にさらに別の回折格子を組み合わせて4点分離の光学ローパスフィルタの機能を持たせたものである。
図5(a)には、本実施形態の固体撮像素子カバー42および撮像装置100の概略斜視図が示されている。同図(b)は、(a)における正断面図である。
凸部6、凹部7上には、1/4波長板8が配置され、さらにその上に、回折格子54が形成されたガラスカバー31が配置されている。
回折格子54は、ガラスカバー3に形成されている凸部6、凹部7と同様に二つの回折格子からなっていても、1つの回折格子からなっていてもよい。
また、回折格子54は、その回折方向が、凸部6、凹部7の回折方向と略直交するように配置されている。
(Third embodiment)
In the present embodiment, the solid-state image sensor cover 41 obtained in the second embodiment is further combined with another diffraction grating to provide the function of a four-point separation optical low-pass filter.
FIG. 5A shows a schematic perspective view of the solid-state image sensor cover 42 and the imaging apparatus 100 of the present embodiment. FIG. 2B is a front sectional view in FIG.
On the convex part 6 and the concave part 7, the quarter wavelength plate 8 is arrange | positioned, Furthermore, the glass cover 31 in which the diffraction grating 54 was formed is arrange | positioned on it.
The diffraction grating 54 may be composed of two diffraction gratings as in the case of the convex portions 6 and the concave portions 7 formed on the glass cover 3 or may be composed of one diffraction grating.
The diffraction grating 54 is arranged so that the diffraction direction thereof is substantially orthogonal to the diffraction directions of the convex portions 6 and the concave portions 7.

このような本実施形態によれば以下のような効果がある。
(6)凸部6、凹部7と回折格子54との回折方向を直交させて用いているので、4点分離の光学ローパスフィルタが構成され、より高性能の光学ローパスフィルタを備えた固体撮像素子カバー42および撮像装置100を得ることができる。
According to this embodiment, there are the following effects.
(6) Since the diffractive directions of the convex portion 6 and the concave portion 7 and the diffraction grating 54 are orthogonal to each other, a four-point separation optical low-pass filter is configured, and a solid-state imaging device having a higher-performance optical low-pass filter The cover 42 and the imaging device 100 can be obtained.

(第4実施形態)
本実施形態は、第2実施形態で得られた固体撮像素子カバー41にさらに複屈折板9を組み合わせて4点分離の光学ローパスフィルタの機能を持たせたものである。
図6(a)には、本実施形態の固体撮像素子カバー43および撮像装置110の概略斜視図が示されている。同図(b)は、(a)における正断面図である。
凸部6、凹部7上には、1/4波長板8が配置され、さらにその上に、複屈折板9が配置されている。
複屈折板9は、その複屈折方向と凸部6、凹部7の回折方向とが略直交するように配置されている。
(Fourth embodiment)
In this embodiment, the solid-state imaging device cover 41 obtained in the second embodiment is further combined with a birefringent plate 9 to provide a function of an optical low-pass filter with four-point separation.
FIG. 6A shows a schematic perspective view of the solid-state imaging device cover 43 and the imaging device 110 of the present embodiment. FIG. 2B is a front sectional view in FIG.
A quarter-wave plate 8 is disposed on the convex portions 6 and the concave portions 7, and a birefringent plate 9 is disposed thereon.
The birefringent plate 9 is arranged so that the birefringence direction thereof is substantially orthogonal to the diffraction directions of the convex portions 6 and the concave portions 7.

このような本実施形態によれば以下のような効果がある。
(7)複屈折方向と回折方向が略直交した4点分離の光学ローパスフィルタが構成され、より高性能の光学ローパスフィルタを備えた固体撮像素子カバー43および撮像装置110を得ることができる。
According to this embodiment, there are the following effects.
(7) A four-point separation optical low-pass filter in which the birefringence direction and the diffraction direction are substantially orthogonal to each other is configured, and the solid-state image sensor cover 43 and the imaging device 110 having a higher-performance optical low-pass filter can be obtained.

なお、本発明は前述の実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれるものである。   It should be noted that the present invention is not limited to the above-described embodiments, and modifications, improvements, and the like within the scope that can achieve the object of the present invention are included in the present invention.

また、本発明を実施するための最良の方法などは、以上の記載で開示されているが、本発明は、これに限定されるものではない。すなわち、本発明は、主に特定の実施形態に関して説明されているが、本発明の技術的思想および目的の範囲から逸脱することなく、以上述べた実施形態に対し、使用する材料、形状その他の詳細な事項において、当業者が様々な変形を加えることができるものである。したがって、上記に開示した材料、形状などを限定した記載は、本発明の理解を容易にするために例示的に記載したものであり、本発明を限定するものではないから、それらの材料、形状などの限定の一部もしくは全部の限定を外した記載は、本発明に含まれるものである。   The best method for carrying out the present invention has been disclosed in the above description, but the present invention is not limited to this. In other words, the present invention has been mainly described with reference to specific embodiments, but the materials, shapes, and other materials used for the above-described embodiments are not deviated from the technical idea and the scope of the present invention. In detail, various modifications can be made by those skilled in the art. Accordingly, the description of the materials, shapes, and the like disclosed above is exemplary for ease of understanding of the present invention, and does not limit the present invention. Descriptions excluding some or all of the limitations are included in the present invention.

(a)は、本発明の第1実施形態にかかる固体撮像素子カバーおよび撮像装置の概略斜視図、(b)は、正断面図。(A) is a schematic perspective view of the solid-state image sensor cover and imaging device concerning 1st Embodiment of this invention, (b) is a front sectional view. 第1実施形態の回折効率を示す図。The figure which shows the diffraction efficiency of 1st Embodiment. (a)は、本発明の第2実施形態にかかる固体撮像素子カバーおよび撮像装置の正断面図、(b)は、拡大正断面図。(A) is a front sectional view of a solid-state image sensor cover and an imaging device concerning a 2nd embodiment of the present invention, and (b) is an enlarged front sectional view. 波長と回折効率との関係を示した図。The figure which showed the relationship between a wavelength and diffraction efficiency. (a)は、本発明の第3実施形態にかかる固体撮像素子カバーおよび撮像装置の概略斜視図、(b)は正断面図。(A) is a schematic perspective view of the solid-state image sensor cover and imaging device concerning 3rd Embodiment of this invention, (b) is a front sectional view. (a)は、本発明の第4実施形態にかかる固体撮像素子カバーおよび撮像装置の概略斜視図、(b)は正断面図。(A) is a schematic perspective view of the solid-state image sensor cover and imaging device concerning 4th Embodiment of this invention, (b) is a front sectional view.

符号の説明Explanation of symbols

1…固体撮像素子、2…パッケージ、3,31…ガラスカバー、5,51,54…回折格子、6,52…凸部、7,53…凹部、8…1/4波長板、9…複屈折板、10,20,100,110…撮像装置、30…入射面、40,41,42,43…固体撮像素子カバー。
DESCRIPTION OF SYMBOLS 1 ... Solid-state image sensor, 2 ... Package, 3, 31 ... Glass cover, 5, 51, 54 ... Diffraction grating, 6, 52 ... Convex part, 7, 53 ... Concave part, 8 ... 1/4 wavelength plate, 9 ... Multiple Refractive plate, 10, 20, 100, 110... Imaging device, 30... Entrance surface, 40, 41, 42, 43.

Claims (7)

像素子が収納されているパッケージを封止する撮像素子カバーであって、
記撮像素子カバーは、
透光性基板と
前記透光性基板の主面上に第1の屈折率材料と第2の屈折率材料とが交互に配置されている第1の回折格子と、
含み
前記第1の屈折率材料の幅Wと前記第1の回折格子の周期Pとの比W/Pが0.5であり、
前記第1の屈折率材料の前記透光性基板の表面からの高さをdとし、
前記第2の屈折率材料の前記透光性基板の表面からの高さをdとし、
波長λの光に対する前記第1の屈折率材料の屈折率をnL1とし、
前記波長λの光に対する前記第2の屈折率材料の屈折率をnH1とし、
波長λの光に対する前記第1の屈折率材料の屈折率をnL2とし、
前記波長λの光に対する前記第2の屈折率材料の屈折率をnH2とし、
前記波長λの光に対する前記第1の回折格子の位相変調量Γとし、
前記波長λの光に対する前記第1の回折格子の位相変調量Γとしたとき、
Γ={(nH1−nL1)×d+(1−nL1)×(d−d)}/λ・・・(3)
Γ={(nH2−nL2)×d+(1−nL2)×(d−d)}/λ・・・(4)
Γ=Γ・・・(5)
を満足していることを特徴とする撮像素子カバー。
The package of an imaging device is housed a IMAGING element cover that abolish sealed,
Before Symbol An imaging element cover,
A translucent substrate ;
A first diffraction grating first refractive index material and a second refractive index material are alternately on disposed on the main surface of the transparent substrate,
Including
The ratio W / P of the width W of the first refractive index material to the period P of the first diffraction grating is 0.5;
The height of the first refractive index material from the surface of the translucent substrate is d L ,
The height of the second refractive index material from the surface of the translucent substrate is d H ,
The refractive index of the first refractive index material for light of wavelength λ 1 is n L1 ,
The refractive index of the second refractive index material for the light of the wavelength λ 1 is n H1 ,
The refractive index of the first refractive index material for light of wavelength λ 2 is n L2 ,
The refractive index of the second refractive index material for the light of the wavelength λ 2 is n H2 ,
A phase modulation amount Γ 1 of the first diffraction grating with respect to the light of the wavelength λ 1 ,
When the phase modulation amount Γ 2 of the first diffraction grating with respect to the light of the wavelength λ 2 is used,
Γ 1 = {(n H1 −n L1 ) × d H + (1−n L1 ) × (d L −d H )} / λ 1 (3)
Γ 2 = {(n H2 −n L2 ) × d H + (1−n L2 ) × (d L −d H )} / λ 2 (4)
Γ 1 = Γ 2 (5)
It characterized IMAGING element cover that satisfies the.
請求項1において、
=2.87×d・・・(6)
を満足していることを特徴とする記載の撮像素子カバー。
In claim 1,
d L = 2.87 × d H (6)
An imaging device cover according to, characterized in that it satisfies the.
請求項1又は2において、
前記第1の屈折率材料を二酸化ケイ素とし、
前記第2の屈折率材料を二酸化チタン及び五酸化タンタルの何れかとしていることを特徴とする撮像素子カバー。
In claim 1 or 2,
The first refractive index material is silicon dioxide;
Wherein either as it characterized by being IMAGING element cover of the second refractive index titanium dioxide material and tantalum pentoxide.
請求項1又は2において、
前記第1の屈折率材料を紫外線硬化樹脂及び熱硬化樹脂の何れかとし、
前記第2の屈折率材料を二酸化チタン及び五酸化タンタルの何れかとしていることを特徴とする撮像素子カバー。
In claim 1 or 2,
Said first refractive index material as either of the ultraviolet curable resin and a thermosetting resin,
Wherein either as it characterized by being IMAGING element cover of the second refractive index titanium dioxide material and tantalum pentoxide.
請求項1乃至4の何れか一項において、
前記第1の回折格子の主面上に、順に1/4波長板と第2の回折格子配置されており
前記第2の回折格子は、前記第1の回折格子と同一の形状であり
前記第2の回折格子の形成方向と、前記第1の回折格子の形成方向とは直交関係にあることを特徴とする撮像素子カバー。
In any one of Claims 1 thru | or 4,
On the main surface of the first diffraction grating, and in turn the quarter-wave plate and the second diffraction grating is arranged,
The second diffraction grating is the first same shape as the diffraction grating,
Wherein the forming direction of the second diffraction grating, to that an imaging device cover, characterized in that an orthogonal relationship to the forming direction of the first diffraction grating.
請求項1乃至4の何れか一項において、
前記第1の回折格子の主面上に、順に1/4波長板と複屈折板配置されており
前記第1の回折格子の回折方向と、前記複屈折板の複屈折方向とは直交関係にあることを特徴とする撮像素子カバー。
In any one of Claims 1 thru | or 4,
On the main surface of the first diffraction grating, a quarter-wave plate and a birefringent plate are arranged in order,
It said first diffraction direction of the diffraction grating, you characterized IMAGING element cover that are orthogonal to the birefringence direction of the birefringent plate.
像素子と、
記撮像素子収納されているパッケージと、
前記パッケージを封止している請求項1乃至6の何れか一項に記載の撮像素子カバーと、
を備えていることを特徴とする撮像装置。
And an imaging element,
And packages before Symbol an imaging element is housed,
Taking a picture element cover according to any one of the package according to claim 1 to 6 that are sealed,
Imaging device according to claim Tei Rukoto equipped with.
JP2006217824A 2006-08-10 2006-08-10 Imaging element cover and imaging apparatus Expired - Fee Related JP4978105B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006217824A JP4978105B2 (en) 2006-08-10 2006-08-10 Imaging element cover and imaging apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006217824A JP4978105B2 (en) 2006-08-10 2006-08-10 Imaging element cover and imaging apparatus

Publications (3)

Publication Number Publication Date
JP2008042796A JP2008042796A (en) 2008-02-21
JP2008042796A5 JP2008042796A5 (en) 2009-09-10
JP4978105B2 true JP4978105B2 (en) 2012-07-18

Family

ID=39177285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006217824A Expired - Fee Related JP4978105B2 (en) 2006-08-10 2006-08-10 Imaging element cover and imaging apparatus

Country Status (1)

Country Link
JP (1) JP4978105B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109716176A (en) * 2016-06-07 2019-05-03 艾瑞3D 有限公司 Optical field imaging device and method for depth acquisition and three-dimensional imaging

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7821900B2 (en) * 2008-05-15 2010-10-26 Northrop Grumman Systems Corporation Diffractive optical element and method of designing the same
JP2022021100A (en) * 2020-07-21 2022-02-02 ソニーセミコンダクタソリューションズ株式会社 Solid-state imaging apparatus, method for manufacturing solid-state imaging apparatus, and electronic apparatus

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04282991A (en) * 1991-03-12 1992-10-08 Hitachi Ltd Solid-state image pickup device
JP3861270B2 (en) * 1996-02-23 2006-12-20 エプソントヨコム株式会社 Optical pickup and optical element used therefor
JP2002286934A (en) * 2001-03-28 2002-10-03 Kyocera Corp Optical filter, imaging unit using the same and imaging appliance using the same
EP1619678B1 (en) * 2003-04-25 2011-03-23 Asahi Glass Company Ltd. Diffraction element and optical head device
JP2006073042A (en) * 2004-08-31 2006-03-16 Asahi Glass Co Ltd Diffraction element and optical head device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109716176A (en) * 2016-06-07 2019-05-03 艾瑞3D 有限公司 Optical field imaging device and method for depth acquisition and three-dimensional imaging
CN109716176B (en) * 2016-06-07 2021-09-17 艾瑞3D 有限公司 Light field imaging device and method for depth acquisition and three-dimensional imaging

Also Published As

Publication number Publication date
JP2008042796A (en) 2008-02-21

Similar Documents

Publication Publication Date Title
JP5037044B2 (en) Color image sensor
JP5077404B2 (en) Diffraction element and optical device
US20020089750A1 (en) Element having fine periodic structure, and optical member, optical system, and optical device having element
JP5237998B2 (en) Solid-state imaging device, imaging device, and signal processing method
JP2017522595A (en) Security element with subwavelength grating
WO2005008781A1 (en) Image sensor and method for fabricating the same
US9425229B2 (en) Solid-state imaging element, imaging device, and signal processing method including a dispersing element array and microlens array
KR20010080549A (en) Improved microlens upon a photodetector
US8199231B2 (en) Image pickup element unit with an image pickup element on a substrate for picking up an image and an optical low pass filter spaced from the image pickup element
TW201807386A (en) Multispectral imaging device
JP4978105B2 (en) Imaging element cover and imaging apparatus
US8848092B2 (en) Solid-state imaging device and electronic apparatus
JP2563236Y2 (en) Solid-state imaging device
US8902339B2 (en) Solid-state imaging element and dispersing element array for improved color imaging
JP4978106B2 (en) Imaging element cover and imaging apparatus
JP2009217123A (en) Diffraction grating type low pass filter
US6930833B2 (en) Diffractive optical element, and optical system and optical apparatus provide with the same
JP2006229116A (en) Solid state image sensor
JP2005026567A (en) Solid state imaging device and method for manufacturing the same
JP6852134B2 (en) Optical filter structure
JP2016018143A (en) Optical filter, image capturing device and projector having the same
CN113031142A (en) Collimating grating and manufacturing method thereof, color film substrate and display device
US7256947B2 (en) Optical element having minute periodic structure
US20020039233A1 (en) Diffractive optical element and image reader using the same
KR101891913B1 (en) Transmissive structural color filter and method of manufacturing the transmissive structural color filter

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090724

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090724

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090724

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110729

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110729

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110819

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120321

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120403

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150427

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees