JP4976736B2 - Rubber composition for tire sidewall and pneumatic tire - Google Patents

Rubber composition for tire sidewall and pneumatic tire Download PDF

Info

Publication number
JP4976736B2
JP4976736B2 JP2006113806A JP2006113806A JP4976736B2 JP 4976736 B2 JP4976736 B2 JP 4976736B2 JP 2006113806 A JP2006113806 A JP 2006113806A JP 2006113806 A JP2006113806 A JP 2006113806A JP 4976736 B2 JP4976736 B2 JP 4976736B2
Authority
JP
Japan
Prior art keywords
silica
weight
parts
rubber composition
tire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006113806A
Other languages
Japanese (ja)
Other versions
JP2007284575A (en
Inventor
進弥 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tire Corp
Original Assignee
Toyo Tire and Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tire and Rubber Co Ltd filed Critical Toyo Tire and Rubber Co Ltd
Priority to JP2006113806A priority Critical patent/JP4976736B2/en
Publication of JP2007284575A publication Critical patent/JP2007284575A/en
Application granted granted Critical
Publication of JP4976736B2 publication Critical patent/JP4976736B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Landscapes

  • Tires In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、空気入りタイヤのサイドウォール部に用いられるタイヤサイドウォール用ゴム組成物、及び空気入りタイヤに関するものである。   The present invention relates to a rubber composition for a tire sidewall used for a sidewall portion of a pneumatic tire, and a pneumatic tire.

従来、自動車走行の低燃費化を実現するために、タイヤのヒステリシスロスの大部分を占めるトレッドゴムの発熱性を下げ、これによりタイヤの転がり抵抗を低減することが知られている。しかしながら、トレッドゴムの発熱性を下げることは、同時にグリップ性能も低下するため、トレッド部以外の部位で転がり抵抗を低減することが望ましく、そのような提案がなされている。   Conventionally, it has been known to reduce the heat resistance of a tread rubber, which accounts for the majority of the hysteresis loss of a tire, and thereby reduce the rolling resistance of the tire in order to achieve a reduction in fuel consumption when driving a car. However, reducing the heat generation property of the tread rubber simultaneously reduces the grip performance. Therefore, it is desirable to reduce the rolling resistance at a portion other than the tread portion, and such a proposal has been made.

例えば、下記特許文献1には、タイヤのサイドウォール用ゴム組成物において、ジエン系ゴム100重量部に対し、特定の平均粒子径、圧縮DBP吸油量およびCTAB表面積を有するカーボンブラック5〜50重量部と、DBP吸油量が200ml/100g以上及びBET窒素吸着比表面積が180m/g以下の沈降性シリカ10〜60重量部と、更にシランカップリング剤の特定量とを配合することにより、転がり抵抗が小さく、耐摩耗性、WET性能に優れ、電気抵抗が小さいタイヤが得られることが記載されている。 For example, in Patent Document 1 below, in a rubber composition for a tire sidewall, 5 to 50 parts by weight of carbon black having a specific average particle diameter, a compressed DBP oil absorption amount and a CTAB surface area with respect to 100 parts by weight of a diene rubber. Rolling resistance by blending 10 to 60 parts by weight of precipitated silica having a DBP oil absorption of 200 ml / 100 g or more and a BET nitrogen adsorption specific surface area of 180 m 2 / g or less, and a specific amount of a silane coupling agent. It is described that a tire having a small electrical resistance, excellent wear resistance and WET performance, and low electrical resistance can be obtained.

なお、下記特許文献2には、ゴム成分100重量部に対し、CTAB比表面積が80〜150m/g、CTAB比表面積(m/g)に対するDBP吸油量(cm/100g)の比DBP/CTABが1.3以上であり、かつ、熱重量測定における1000℃での減少率から150℃での減少率を引いた値であるΔ熱重量減少率(%)とCTAB比表面積(m/g)との関係が所定の関係式を満足するシリカを5〜120重量部配合し、該シリカ100重量部に対してカップリング剤を2〜25重量部配合してなるタイヤ用ゴム組成物が開示されている。しかしながら、このゴム組成物は、タイヤのトレッド用であり、また目的も、耐摩耗性とウエットグリップ性を損なうことなく低燃費性と低温性能を改良するというものであり、本発明とは異なるものである。
特開平10−36559号公報 特開2003−155383号公報
Incidentally, in Patent Document 2, relative to 100 parts by weight of the rubber component, the ratio DBP of CTAB specific surface area of 80~150m 2 / g, CTAB specific surface area DBP oil absorption amount to the (m 2 / g) (cm 3 / 100g) / CTAB is 1.3 or more, and Δthermal weight reduction rate (%), which is a value obtained by subtracting the reduction rate at 150 ° C. from the reduction rate at 1000 ° C. in thermogravimetry, and the CTAB specific surface area (m 2 / G) 5 to 120 parts by weight of silica satisfying a predetermined relational formula, and 2 to 25 parts by weight of a coupling agent with respect to 100 parts by weight of the silica. Is disclosed. However, this rubber composition is used for tire treads, and its purpose is to improve fuel efficiency and low temperature performance without impairing wear resistance and wet grip properties, which is different from the present invention. It is.
JP 10-36559 A JP 2003-155383 A

本発明者は、低燃費化のためにトレッド部以外の部位に着目したところ、サイドウォール部が最も低燃費化に寄与すると考え、サイドウォール部の発熱性を下げることがタイヤの低燃費化に有効な手法であると考えた。そして、サイドウォール部の低発熱化を達成するためにシリカを用い、更なる低発熱化のため大粒径シリカの配合を検討したが、単なる大粒径シリカでは低燃費化が未だ十分ではなく、しかも、大粒径シリカを用いると耐カット性の低下が発生するなどのデメリットがあることが判明した。   The present inventor has focused on parts other than the tread portion for reducing fuel consumption, and considers that the sidewall portion contributes most to lower fuel consumption, and reducing the heat generation property of the sidewall portion contributes to lower fuel consumption of the tire. I thought it was an effective method. And, silica was used to achieve low heat generation in the side wall part, and the formulation of large particle size silica was examined for further heat generation, but mere large particle size silica is still not enough to reduce fuel consumption. Moreover, it has been found that there is a demerit such as a decrease in cut resistance when large particle size silica is used.

本発明は、上記の点に鑑みてなされたものであり、耐カット性の低下を極力抑えながら、タイヤの転がり抵抗を低減して低燃費化を図ることができるタイヤサイドウォール用ゴム組成物、およびそれを用いた空気入りタイヤを提供することにある。   The present invention has been made in view of the above points, and while suppressing a decrease in cut resistance as much as possible, a rubber composition for a tire sidewall capable of reducing the rolling resistance of a tire and achieving low fuel consumption, And providing a pneumatic tire using the same.

本発明に係るタイヤサイドウォール用ゴム組成物は、ジエン系ゴム100重量部に対し、CTAB比表面積が80〜130/g、CTAB比表面積(m/g)に対するDBP吸油量(cm/100g)の比DBP/CTABが1.3以上であり、かつ、熱重量測定における1000℃での減少率から150℃での減少率を引いた値であるΔ熱重量減少率(%)とCTAB比表面積(m/g)との関係が下記式(1)を満足するシリカ5〜70重量部と、カーボンブラック0〜70重量部を、シリカ/カーボンブラック=0.2/1〜1/0の重量比で配合し、更に、カップリング剤をシリカ100重量部に対して2〜25重量部配合してなるものである。
Δ熱重量減少率≧0.0283×CTAB比表面積+0.6 … (1)
The rubber composition for a tire sidewall according to the present invention has a DBP oil absorption (cm 3 ) with respect to 100 parts by weight of a diene rubber with a CTAB specific surface area of 80 to 130 m 2 / g and a CTAB specific surface area (m 2 / g). / 100 g) ratio DBP / CTAB is 1.3 or more, and Δthermal weight reduction rate (%) which is a value obtained by subtracting the reduction rate at 150 ° C. from the reduction rate at 1000 ° C. in thermogravimetry 5 to 70 parts by weight of silica whose relationship with the CTAB specific surface area (m 2 / g) satisfies the following formula (1), and 0 to 70 parts by weight of carbon black, silica / carbon black = 0.2 / 1 to 1 / 0 weight ratio, and further, 2 to 25 parts by weight of a coupling agent is blended with respect to 100 parts by weight of silica.
ΔThermal weight reduction rate ≧ 0.0283 × CTAB specific surface area + 0.6 (1)

また、本発明に係る空気入りタイヤは、上記ゴム組成物からなるサイドウォールを有するものである。   Moreover, the pneumatic tire according to the present invention has a sidewall made of the rubber composition.

本発明によれば、上記のような比較的大粒径でありながら表面活性の大きい特定のシリカをサイドウォール用ゴム組成物に用いたことにより、同等の粒径を持つ単なる大粒径シリカを用いた場合に比べて、更に発熱性を低下させてタイヤの転がり抵抗を低減することができ、しかも耐カット性の低下しろを小さくすることができる。よって、耐カット性の低下を極力抑えながら、タイヤの転がり抵抗を低減して低燃費化を図ることができる。   According to the present invention, by using specific silica having a relatively large particle size and a large surface activity as described above in the rubber composition for a sidewall, a simple large particle size silica having an equivalent particle size can be obtained. Compared with the case where it is used, it is possible to further reduce the exothermic property and reduce the rolling resistance of the tire, and to reduce the margin for reduction in cut resistance. Therefore, it is possible to reduce the rolling resistance of the tire and reduce fuel consumption while suppressing the reduction in cut resistance as much as possible.

以下、本発明の実施に関連する事項について詳細に説明する。   Hereinafter, matters related to the implementation of the present invention will be described in detail.

本発明のタイヤサイドウォール用ゴム組成物に用いられるジエン系ゴムとしては、タイヤのサイドウォール部に使用されている各種ゴムを用いることができ、例えば、天然ゴム、イソプレンゴム、ブタジエンゴム、スチレンブタジエンゴム、エチレンプロピレンゴムなどが挙げられ、これらは1種のみで用いても、あるいは2種以上併用してもよい。   As the diene rubber used in the tire sidewall rubber composition of the present invention, various rubbers used in tire sidewall portions can be used. For example, natural rubber, isoprene rubber, butadiene rubber, styrene butadiene Examples thereof include rubber and ethylene propylene rubber. These may be used alone or in combination of two or more.

本発明のタイヤサイドウォール用ゴム組成物に用いられるシリカ(含水珪酸)は、CTAB比表面積(セチルトリメチルアンモニウムブロミド吸着比表面積)が80〜130/gの範囲にある比較的大粒径のシリカである。ここで、CTAB比表面積は、この値が小さいほどシリカの粒子径が大きいことを意味する。このような比較的大粒径のシリカを用いることにより、発熱性を低下させて転がり抵抗を低減することができる。CTAB比表面積のより好ましい下限は90m/gであThe silica (hydrous silicic acid) used in the rubber composition for a tire sidewall of the present invention has a relatively large particle size with a CTAB specific surface area (cetyltrimethylammonium bromide adsorption specific surface area) in the range of 80 to 130 m 2 / g. Silica. Here, the CTAB specific surface area means that the smaller the value, the larger the particle diameter of the silica. By using such a relatively large particle size silica, the heat generation can be reduced and the rolling resistance can be reduced. A more preferred lower limit of the CTAB specific surface area is Ru 90m 2 / g der.

上記シリカは、また、CTAB比表面積(m/g)に対するDBP(ジブチルフタレート)吸油量(cm/100g)の比DBP/CTABが1.3以上である高ストラクチャー品である。DBP/CTABのより好ましい範囲は1.4〜2.4である。なお、一般に、ストラクチャーの指標としてはDBP吸油量が単独で用いられるが、本発明では、CTAB比表面積に対する比であるDBP/CTABでストラクチャーの指標としている。これは、粒径が小さいものほど一定重量中の粒子数が多くなってその分だけDBP吸油量が高くなってしまうので、DBP吸油量単独ではストラクチャーの度合がそのまま表現されないためである。 The silica may also ratio DBP / CTAB of DBP for CTAB specific surface (m 2 / g) (dibutyl phthalate) oil absorption (cm 3/100 g) is high structure product is 1.3 or more. A more preferable range of DBP / CTAB is 1.4 to 2.4. In general, DBP oil absorption is used alone as a structure index, but in the present invention, DBP / CTAB, which is a ratio to a CTAB specific surface area, is used as a structure index. This is because the smaller the particle size, the larger the number of particles in a constant weight and the higher the DBP oil absorption, and the DBP oil absorption alone does not express the degree of structure as it is.

上記シリカは、また、熱重量測定における1000℃での減少率から150℃での減少率を引いた値であるΔ熱重量減少率(%)とCTAB比表面積(m/g)との関係が式(1)を満足するものである。 The above silica also has a relationship between Δthermal weight reduction rate (%), which is a value obtained by subtracting the reduction rate at 150 ° C. from the reduction rate at 1000 ° C. in thermogravimetry, and the CTAB specific surface area (m 2 / g). Satisfies the formula (1).

Δ熱重量減少率≧0.0283×CTAB比表面積+0.6 … (1)
上記熱重量測定において、150℃での揮発分は付着水分によるものであり、1000℃での揮発分は表面シラノール基が水分として揮発するものが主体であるため、両者の差であるΔ熱重量減少率が、シリカ表面にシラノール基(Si-OH)がどれだけ存在するかという指標になる。Δ熱重量減少率が大きいほど、シリカ表面のシラノール基が多いこと、即ち、シリカの表面活性が大きいことを意味する。
ΔThermal weight reduction rate ≧ 0.0283 × CTAB specific surface area + 0.6 (1)
In the thermogravimetric measurement, the volatile matter at 150 ° C. is due to adhering moisture, and the volatile matter at 1000 ° C. is mainly the one in which the surface silanol groups are volatilized as moisture. The rate of decrease is an indicator of how much silanol groups (Si-OH) are present on the silica surface. The larger the Δthermal weight reduction rate, the more silanol groups on the silica surface, that is, the greater the surface activity of the silica.

この式(1)は、比表面積が比較的小さいシリカを用いるものでありながら、表面活性を大きくして低発熱性と耐カット性を改善するために規定したものである。すなわち、式(1)を満たさない場合、本発明のような比較的大粒径のシリカでは、ポリマーとの結合量が少なく、引裂強力が低くなって、耐カット性が大幅に低下することになる。また、低発熱性も、ポリマーとの結合量が少ないことにより劣る。   This formula (1) is defined in order to increase the surface activity and improve the low heat buildup and cut resistance while using silica having a relatively small specific surface area. That is, when the formula (1) is not satisfied, the silica having a relatively large particle size as in the present invention has a small amount of bonding with a polymer, a low tear strength, and a significant reduction in cut resistance. Become. Also, the low exothermic property is inferior due to the small amount of bonding with the polymer.

Δ熱重量減少率はシリカ表面の揮発分量であるためCTAB比表面積が大きくなるほど大きくなる傾向にあるが、従来のタイヤサイドウォール用ゴム組成物において、CTAB比表面積に対し上記のような高いΔ熱重量減少率を持つシリカは用いられていない。従来のタイヤサイドウォール用ゴム組成物において通常用いられているシリカでは、Δ熱重量減少率が0.0283×CTAB比表面積と同程度若しくはそれ以下であり、本発明で用いるシリカとは明らかに異なるものである。   The Δthermal weight reduction rate tends to increase as the CTAB specific surface area increases because it is the amount of volatile matter on the silica surface. However, in the conventional rubber composition for a tire sidewall, the high Δheat as described above with respect to the CTAB specific surface area. Silica with a weight loss rate is not used. The silica usually used in the conventional rubber composition for tire sidewall has a Δthermal weight reduction rate of about 0.0283 × CTAB specific surface area or less, and is clearly different from the silica used in the present invention. is there.

以上のように、シリカのコロイダル特性として、比表面積が比較的小さいが、ストラクチャーが高く、表面活性が大きいものを使用することにより、シリカが物理的又は化学的にポリマーと結合して、発熱性を大幅に軽減することができる。また、同等の粒径を持つシリカと比べて、引裂強力の低下しろを少なくすることができ、耐カット性の悪化を抑えることができる。   As described above, the colloidal characteristics of silica have a relatively small specific surface area, but have a high structure and a large surface activity, so that the silica is physically or chemically bonded to the polymer to generate heat. Can be greatly reduced. Moreover, compared with the silica with an equivalent particle diameter, it is possible to reduce the drop in tear strength and to suppress the deterioration of cut resistance.

本発明のタイヤサイドウォール用ゴム組成物において、上記シリカは、ジエン系ゴム100重量部に対して5〜70重量部配合される。シリカの配合量が5重量部未満では、上記した本発明の効果を充分に発揮することができず、また70重量部を超えると、十分な発熱性の低減効果が得られない。シリカのより好ましい配合量は、下限が20重量部、上限が60重量部である。   In the rubber composition for a tire sidewall of the present invention, the silica is blended in an amount of 5 to 70 parts by weight based on 100 parts by weight of the diene rubber. When the blending amount of silica is less than 5 parts by weight, the above-described effects of the present invention cannot be sufficiently exhibited, and when it exceeds 70 parts by weight, a sufficient exothermic reduction effect cannot be obtained. As for the more preferable compounding quantity of a silica, a minimum is 20 weight part and an upper limit is 60 weight part.

本発明のタイヤサイドウォール用ゴム組成物には、シリカとともに、必須ではないがカーボンブラックを配合してもよく、カーボンブラックは、ジエン系ゴム100重量部に対して0〜70重量部配合される。また、シリカとカーボンブラックは、シリカ/カーボンブラック=0.2/1〜1/0の比率で配合される。シリカの比率がこの範囲よりも少ないと、低燃費性の改善効果が不十分となる。   The rubber composition for a tire sidewall of the present invention may contain carbon black, although not essential, together with silica, and the carbon black is blended in an amount of 0 to 70 parts by weight with respect to 100 parts by weight of the diene rubber. . Silica and carbon black are blended at a ratio of silica / carbon black = 0.2 / 1 to 1/0. When the ratio of silica is less than this range, the effect of improving fuel efficiency becomes insufficient.

本発明のタイヤサイドウォール用ゴム組成物に用いられるカップリング剤は、シリカとジエン系ゴムとを結合させるものであり、例えば、スルフィド、アミノ基、メルカプト基、ビニル基、メタクリル基、エポキシ基などのポリマーと反応し得る有機部と、ハロゲンやアルコキシ基などを有する有機シラン化合物が挙げられる。好ましくは、下記一般式(2)で表されるスルフィドシラン、又は一般式(3)で表される保護化メルカプトシランを用いることである。   The coupling agent used in the rubber composition for a tire sidewall of the present invention binds silica and a diene rubber, for example, sulfide, amino group, mercapto group, vinyl group, methacryl group, epoxy group, etc. And an organic silane compound having an organic moiety capable of reacting with the above polymer and a halogen or an alkoxy group. Preferably, a sulfide silane represented by the following general formula (2) or a protected mercaptosilane represented by the general formula (3) is used.

(CO)Si−C−S−C−Si(OC …(2)
式(2)中、xは2〜4である。なお、式中の−S−につき、xは通常分布を有しており、即ち、硫黄連鎖結合の数が異なるものの混合物として一般に市販されており、xはその平均値を表す。かかるシランカップリング剤の具体例としては、ビス(3−トリエトキシシリルプロピル)テトラスルフィド、ビス(3−トリエトキシシリルプロピル)ジスルフィドなどが挙げられる。
(C 2 H 5 O) 3 Si-C 3 H 6 -S x -C 3 H 6 -Si (OC 2 H 5) 3 ... (2)
In formula (2), x is 2-4. Incidentally, -S x in the formula - per, x is has a normal distribution, i.e., generally sold on the market as a mixture of several of sulfur chain binding different, x is representative of the average value. Specific examples of such silane coupling agents include bis (3-triethoxysilylpropyl) tetrasulfide, bis (3-triethoxysilylpropyl) disulfide, and the like.

(C2n+1O)Si−C2m−S−CO−C2k+1 …(3)
式(3)中、nは1〜3の整数、mは1〜5の整数、kは5〜9の整数である。このシランカップリング剤は、メルカプト官能基の水素原子が置換されている保護化メルカプトシランであり、例として特表2001−505225号公報に記載の方法に準拠して製造することができる。かかる保護化メルカプトシランを用いることにより、低燃費性を一層向上させることができ、また引裂強力の悪化も更に抑制することができる。
(C n H 2n + 1 O ) 3 Si-C m H 2m -S-CO-C k H 2k + 1 ... (3)
In formula (3), n is an integer of 1 to 3, m is an integer of 1 to 5, and k is an integer of 5 to 9. This silane coupling agent is a protected mercaptosilane in which a hydrogen atom of a mercapto functional group is substituted, and can be produced, for example, according to the method described in JP-T-2001-505225. By using such a protected mercaptosilane, fuel efficiency can be further improved, and deterioration of tear strength can be further suppressed.

上記カップリング剤は、シリカ100重量部に対して2〜25重量部、好ましくは4〜15重量部配合される。なお、該カップリング剤は、予めシリカに処理しておいて、この処理済みのシリカを上記ジエン系ゴムに添加混合して配合することもできる。   The coupling agent is blended in an amount of 2 to 25 parts by weight, preferably 4 to 15 parts by weight, based on 100 parts by weight of silica. The coupling agent may be preliminarily treated with silica, and the treated silica may be added to and mixed with the diene rubber.

本発明のタイヤサイドウォール用ゴム組成物には、上記した各成分の他に、加硫剤、加硫促進剤、老化防止剤、軟化剤、可塑剤、活性剤、滑剤等の各種添加剤を必要に応じて添加することができる。   In addition to the above-described components, the rubber composition for a tire sidewall of the present invention includes various additives such as a vulcanizing agent, a vulcanization accelerator, an anti-aging agent, a softening agent, a plasticizer, an activator, and a lubricant. It can be added as necessary.

以上よりなる本発明のタイヤサイドウォール用ゴム組成物は、空気入りラジアルタイヤのサイドウォール部のためのゴム組成物として用いられ、常法に従い加硫成形することにより、サイドウォール部を形成することができる。   The tire sidewall rubber composition of the present invention comprising the above is used as a rubber composition for a sidewall portion of a pneumatic radial tire, and is formed by vulcanization molding according to a conventional method. Can do.

以下、実施例及び比較例を挙げて本発明をさらに詳細に説明するが、本発明はこれら実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated further in detail, this invention is not limited to these Examples.

1.シリカ
シリカとしては、下記表1に示す5種類のシリカを用いた。そのうち、シリカ(1)はタイヤ用ゴム組成物に配合するシリカとして汎用されている日本シリカ製「ニップシール AQ」である。シリカ(2)はローディア製「Zeosil 1115MP」であり、シリカ(3)はデグサ製「Ultrasil VN3」である。
1. Silica As the silica, five types of silica shown in Table 1 below were used. Among them, silica (1) is “Nip Seal AQ” made by Nippon Silica, which is widely used as silica to be blended in the tire rubber composition. Silica (2) is “Zeosil 1115MP” manufactured by Rhodia, and silica (3) is “Ultrasil VN3” manufactured by Degussa.

また、シリカ(4)及び(5)は、特許第3304097号に準拠して、ケイ酸ナトリウムと硫酸ナトリウムを含む初期底部生成物を形成し、該底部生成物に硫酸を加えてpH7以上の反応生成物を得て、得られた反応生成物にケイ酸ナトリウムと硫酸を同時に加えて反応させた後、硫酸アルミニウム及び次いで水酸化ナトリウム溶液を加えて熟成させて、沈降シリカの懸濁液を調製し、得られた懸濁液を分離し、乾燥することにより調製されたシリカである。但し、硫酸アルミニウムの添加量を減らし、かつpH7〜10で熟成することで、比表面積、ストラクチャー及び表面活性度を調整して表1に示す特性のシリカを得た。

Figure 0004976736
Silica (4) and (5) form an initial bottom product containing sodium silicate and sodium sulfate in accordance with Japanese Patent No. 3304097, and sulfuric acid is added to the bottom product to react at a pH of 7 or higher. A product is obtained, and sodium silicate and sulfuric acid are simultaneously added to the obtained reaction product for reaction, and then aluminum sulfate and then sodium hydroxide solution are added and aged to prepare a suspension of precipitated silica. And the silica prepared by separating and drying the resulting suspension. However, the specific surface area, structure and surface activity were adjusted by reducing the amount of aluminum sulfate added and aging at pH 7 to 10 to obtain silica having the characteristics shown in Table 1.
Figure 0004976736

シリカ特性の測定方法は以下の通りである。   The measuring method of silica characteristics is as follows.

・CTAB比表面積:ASTM D3765−92記載の方法に準拠して測定した。但し、同方法はカーボンブラックについての測定法であるため、変更を加えて行った。すなわち、カーボンブラックの標品であるITRB(83.0m/g)を使用せず、別途にCTAB(セチルトリメチルアンモニウムブロミド)標準液を調製し、これによってエアロゾルOT(ジ−2−エチルヘキシルスルホコハク酸ナトリウム)溶液の標定を行い、シリカ表面に対するCTAB1分子当たりの吸着断面積を35平方オングストロームとしてCTABの吸着量から比表面積を算出した。 CTAB specific surface area: Measured according to the method described in ASTM D3765-92. However, since this method is a measurement method for carbon black, it was changed. That is, without using the carbon black standard ITRB (83.0 m 2 / g), a CTAB (cetyltrimethylammonium bromide) standard solution was prepared separately, whereby aerosol OT (di-2-ethylhexylsulfosuccinic acid) was prepared. (Sodium) solution was standardized, and the specific surface area was calculated from the amount of CTAB adsorbed, assuming that the adsorption cross-section per molecule of CTAB on the silica surface was 35 square angstroms.

・DBP吸油量:JIS K−5101に準拠して測定した。 -DBP oil absorption: measured in accordance with JIS K-5101.

・Δ熱重量減少率:ティー・エイ・インスツルメント社製の熱重量測定装置を用い、雰囲気ガスは空気で、常温から昇温速度10℃/minにて熱重量測定を行い、1000℃での減少率と150℃での減少率から両者の差を求めた。 -Δ thermogravimetric reduction rate: Thermogravimetric measurement was performed at a temperature rising rate of 10 ° C / min from ambient temperature using air with an atmospheric gas as a thermogravimetric measuring device manufactured by TA Instruments Inc. The difference between the two was determined from the decrease rate at 150 ° C. and the decrease rate at 150 ° C.

2.ゴム組成物の調製及び評価
バンバリーミキサーを使用し、下記表2に示す配合に従い、ゴム組成物を調製した。表2の各成分の詳細は以下の通りである。
2. Preparation and Evaluation of Rubber Composition Using a Banbury mixer, a rubber composition was prepared according to the formulation shown in Table 2 below. Details of each component in Table 2 are as follows.

・天然ゴム:RSS#3(ガラス転移点Tg=−60℃)、
・イソプレンゴム:JSR製「IR2200」(ガラス転移点Tg=−59℃)、
・ブタジエンゴム:宇部興産製ハイシスブタジエンゴム「BR150B」(1,4−シスブタジエン単位量=97重量%、ガラス転移点Tg=−104℃)、
・カーボンブラック:東海カーボン製「シーストV」、
・オイル:JOMO製「プロセスX140」、
・カップリング剤(1):デグサ社製「Si−75」(上記式(2)で表されるポリスルフィドシラン(x=2(平均値))、
・カップリング剤(2):GEシリコーンズ社製「NXT」(上記式(3)で表される保護化メルカプトシラン(n=2,m=3,k=7)。
Natural rubber: RSS # 3 (glass transition point Tg = −60 ° C.)
Isoprene rubber: “IR2200” manufactured by JSR (glass transition point Tg = −59 ° C.),
-Butadiene rubber: Ube Industries high cis butadiene rubber "BR150B" (1,4-cis butadiene unit amount = 97 wt%, glass transition point Tg = -104 ° C),
・ Carbon black: "Seast V" made by Tokai Carbon
・ Oil: JOMO “Process X140”
Coupling agent (1): Degussa “Si-75” (polysulfide silane represented by the above formula (2) (x = 2 (average value)),
Coupling agent (2): “NXT” manufactured by GE Silicones (protected mercaptosilane represented by the above formula (3) (n = 2, m = 3, k = 7).

なお、各ゴム組成物には、共通配合として、ジエン系ゴム100重量部に対し、ステアリン酸(花王製「ルナックS−20」)2重量部、亜鉛華(三井金属製「亜鉛華1種」)3重量部、老化防止剤(住友化学製「アンチゲン6C」)2重量部、ワックス(大内新興化学製「サンノックN」)2重量部、加硫促進剤(住友化学製「ソクシノールCZ」)1.0重量部、硫黄(鶴見化学製「粉末硫黄」)2.0重量部を配合した。   In each rubber composition, 2 parts by weight of stearic acid (“Lunac S-20” manufactured by Kao) and zinc white (“Zinc Hana 1 type” manufactured by Mitsui Metals) are used as a common formulation with respect to 100 parts by weight of diene rubber. ) 3 parts by weight, anti-aging agent (“Antigen 6C” manufactured by Sumitomo Chemical) 2 parts by weight, 2 parts by weight of wax (“Sannok N” manufactured by Ouchi Shinsei Chemical), vulcanization accelerator (“Sokucinol CZ” manufactured by Sumitomo Chemical) 1.0 part by weight and 2.0 parts by weight of sulfur (“powder sulfur” manufactured by Tsurumi Chemical) were blended.

各ゴム組成物について、ムーニー粘度を測定するとともに、動的弾性率および引裂強力を測定した。また、各ゴム組成物をサイドウォールゴムとして用いて、常法に従い加硫成形することにより、205/65R15 94Hの乗用車用ラジアルタイヤを作製し、転がり抵抗を測定した。各測定・評価方法は次の通りである。   For each rubber composition, the Mooney viscosity was measured, and the dynamic elastic modulus and tear strength were measured. Further, each rubber composition was used as a sidewall rubber and vulcanized and molded according to a conventional method to produce a 205 / 65R159H radial tire for passenger cars, and the rolling resistance was measured. Each measurement / evaluation method is as follows.

・ムーニー粘度(加工性):JIS K6300に準拠してムーニー粘度を測定し、比較例1の値を100とした指数で表示した。指数が小さいほど粘度が低いこと、即ち加工性が良好であることを示す。 Mooney viscosity (workability): Mooney viscosity was measured in accordance with JIS K6300, and displayed as an index with the value of Comparative Example 1 being 100. A smaller index indicates a lower viscosity, that is, better workability.

・動的弾性率:所定形状の試験片(160℃×15分にて加硫成形)をユービーエム社製の動的粘弾性測定装置を使用して、温度25℃、静歪み10%、動歪み0.1%、周波数10Hzの条件で損失係数tanδを測定し、比較例1の値を100とした指数で表示した。指数が小さいほど低発熱性であることを示す。 -Dynamic elastic modulus: A test piece having a predetermined shape (vulcanized and molded at 160 ° C for 15 minutes) was measured using a dynamic viscoelasticity measuring device manufactured by UBM, at a temperature of 25 ° C, a static strain of 10%, The loss factor tan δ was measured under the conditions of a strain of 0.1% and a frequency of 10 Hz, and displayed as an index with the value of Comparative Example 1 as 100. A smaller index indicates a lower exothermic property.

・引裂強力(耐カット性):JIS K6252規定のクレセント形で加硫ゴムサンプル(160℃×15分にて加硫)を打ち抜き、くぼみ中央に0.50±0.08mmの切れ込みを入れたサンプルを、島津製作所製の引張試験機によって500mm/分の引張速度で引き裂き、引裂強力を測定した。比較例1の値を100とした指数で表示し、指数が大きいほど引裂強力が高く、耐カット性に優れることを示す。 -Tear strength (cut resistance): A sample obtained by punching a vulcanized rubber sample (vulcanized at 160 ° C. for 15 minutes) in the crescent form of JIS K6252 and making a notch of 0.50 ± 0.08 mm in the center of the indentation Was teared at a tensile speed of 500 mm / min with a tensile tester manufactured by Shimadzu Corporation, and the tear strength was measured. The value of Comparative Example 1 is expressed as an index, and the larger the index, the higher the tear strength and the better the cut resistance.

・転がり抵抗(低燃費性):使用リムを15×6.5JJとしてタイヤを装着し、空気圧230kPa、荷重450kgfとして、転がり抵抗測定ドラムにて23℃、80km/hで走行させたときの転がり抵抗を測定した。比較例1の値を100とした指数で表示し、指数が小さいほど、転がり抵抗が小さく、よって低燃費性に優れることを示す。

Figure 0004976736
Rolling resistance (low fuel consumption): Rolling resistance when running at 23 ° C and 80 km / h on a rolling resistance measuring drum with tires mounted with a rim of 15 x 6.5 JJ and an air pressure of 230 kPa and a load of 450 kgf Was measured. The value of Comparative Example 1 is expressed as an index, and the smaller the index is, the smaller the rolling resistance is, and thus the better the fuel efficiency is.
Figure 0004976736

表2に示されるように、本発明のコロイダル特性を満足するシリカ(4),(5)を用いた実施例1,2及び4では、シリカ未配合の比較例1や小粒径シリカを配合した比較例2,5に対して、ゴム組成物自体が低発熱化されるとともに、タイヤとしての転がり抵抗も大幅に低減されていた。また、単なる大粒径シリカを配合した比較例3では、引裂強力が大幅に低下していたのに対し、大粒径かつ表面活性の高いシリカを用いた実施例1,2及び4では、引裂強力の低下しろが小さく、耐カット性が改善されていた。また、実施例1,2及び4では、比較例3に対して転がり抵抗も更に改善されており、また、ムーニー粘度も低く加工性に優れるものであった。   As shown in Table 2, in Examples 1, 2, and 4 using silica (4), (5) satisfying the colloidal characteristics of the present invention, Comparative Example 1 containing no silica and small particle size silica were blended. In comparison with Comparative Examples 2 and 5, the rubber composition itself was reduced in heat generation, and the rolling resistance as a tire was also greatly reduced. Further, in Comparative Example 3 in which mere large particle size silica was blended, the tear strength was greatly reduced, whereas in Examples 1, 2 and 4 using silica having a large particle size and high surface activity, tearing was performed. The drop in strength was small and the cut resistance was improved. In Examples 1, 2 and 4, the rolling resistance was further improved compared to Comparative Example 3, and the Mooney viscosity was low and the processability was excellent.

この点を図示したのが、図1,2であり、図1では引裂強力(耐カット性)と転がり抵抗(低燃費性)との関係を、図2ではムーニー粘度(加工性)と転がり抵抗(低燃費性)との関係を、それぞれ示している。図中の矢印A、Bで示す方向が好ましい方向であり、実施例1,2及び4は比較例3に対して上記の両関係とも好ましい方向に改善されていた。   FIGS. 1 and 2 illustrate this point. FIG. 1 shows the relationship between tear strength (cut resistance) and rolling resistance (low fuel consumption), and FIG. 2 shows Mooney viscosity (workability) and rolling resistance. The relationship with (low fuel consumption) is shown respectively. The directions indicated by arrows A and B in the figure are preferred directions, and Examples 1, 2, and 4 are improved in the preferred direction in both of the above relationships with respect to Comparative Example 3.

また、実施例3では、上記シリカ(4)にカップリング剤として保護化メルカプトシランを組み合わせることにより、実施例1,2に対して、加工性、耐カット性および低燃費性のいずれにおいても大幅に改善されており、図1,2にも示されるように、単なる大粒径シリカと保護化メルカプトシランを組み合わせた比較例4に対しても、好ましい方向に改善されていた。   Further, in Example 3, by combining protected silica (4) with a protected mercaptosilane as a coupling agent, the processability, cut resistance and fuel efficiency are greatly improved compared to Examples 1 and 2. As shown in FIGS. 1 and 2, it was improved in a preferable direction as compared with Comparative Example 4 in which mere large particle size silica and protected mercaptosilane were combined.

上記のように、本発明によれば、耐カット性の低下を極力抑えながら、タイヤの転がり抵抗を低減して低燃費化を図ることができるので、乗用車用ラジアルタイヤを始めとして各種空気入りタイヤに利用することができる。   As described above, according to the present invention, it is possible to reduce the rolling resistance of the tire and reduce fuel consumption while suppressing a reduction in cut resistance as much as possible. Therefore, various pneumatic tires including radial tires for passenger cars are used. Can be used.

実施例及び比較例の引裂強力と転がり抵抗との関係を示すグラフである。It is a graph which shows the relationship between the tearing strength and rolling resistance of an Example and a comparative example. 実施例及び比較例のムーニー粘度と転がり抵抗との関係を示すグラフである。It is a graph which shows the relationship between the Mooney viscosity of an Example and a comparative example, and rolling resistance.

Claims (3)

ジエン系ゴム100重量部に対し、CTAB比表面積が80〜130/g、CTAB比表面積(m/g)に対するDBP吸油量(cm/100g)の比DBP/CTABが1.3以上であり、かつ、熱重量測定における1000℃での減少率から150℃での減少率を引いた値であるΔ熱重量減少率(%)とCTAB比表面積(m/g)との関係が下記式(1)を満足するシリカ5〜70重量部と、カーボンブラック0〜70重量部を、シリカ/カーボンブラック=0.2/1〜1/0の重量比で配合し、更に、カップリング剤をシリカ100重量部に対して2〜25重量部配合してなるタイヤサイドウォール用ゴム組成物。
Δ熱重量減少率≧0.0283×CTAB比表面積+0.6 … (1)
To diene rubber 100 parts by weight, a CTAB specific surface area of 80~ 130 m 2 / g, DBP oil absorption amount to the CTAB specific surface area (m 2 / g) (cm 3 / 100g) ratio DBP / CTAB of 1.3 or more The relationship between ΔC weight reduction rate (%), which is a value obtained by subtracting the reduction rate at 150 ° C. from the reduction rate at 1000 ° C. in thermogravimetry, and the CTAB specific surface area (m 2 / g) 5 to 70 parts by weight of silica satisfying the following formula (1) and 0 to 70 parts by weight of carbon black are blended at a weight ratio of silica / carbon black = 0.2 / 1 to 1/0, and further coupling is performed. A rubber composition for a tire sidewall obtained by blending 2 to 25 parts by weight of an agent with respect to 100 parts by weight of silica.
ΔThermal weight reduction rate ≧ 0.0283 × CTAB specific surface area + 0.6 (1)
前記カップリング剤が下記一般式(2)又は一般式(3)で表されるものである請求項1記載のタイヤサイドウォール用ゴム組成物。
(CO)Si−C−S−C−Si(OC …(2)
(式中、xは2〜4である。)
(C2n+1O)Si−C2m−S−CO−C2k+1 …(3)
(式中、nは1〜3の整数、mは1〜5の整数、kは5〜9の整数である。)
The rubber composition for a tire sidewall according to claim 1, wherein the coupling agent is represented by the following general formula (2) or general formula (3).
(C 2 H 5 O) 3 Si-C 3 H 6 -S x -C 3 H 6 -Si (OC 2 H 5) 3 ... (2)
(In the formula, x is 2 to 4.)
(C n H 2n + 1 O ) 3 Si-C m H 2m -S-CO-C k H 2k + 1 ... (3)
(In the formula, n is an integer of 1 to 3, m is an integer of 1 to 5, and k is an integer of 5 to 9.)
請求項1又は2記載のゴム組成物からなるサイドウォールを有する空気入りタイヤ。   A pneumatic tire having a sidewall made of the rubber composition according to claim 1.
JP2006113806A 2006-04-17 2006-04-17 Rubber composition for tire sidewall and pneumatic tire Active JP4976736B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006113806A JP4976736B2 (en) 2006-04-17 2006-04-17 Rubber composition for tire sidewall and pneumatic tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006113806A JP4976736B2 (en) 2006-04-17 2006-04-17 Rubber composition for tire sidewall and pneumatic tire

Publications (2)

Publication Number Publication Date
JP2007284575A JP2007284575A (en) 2007-11-01
JP4976736B2 true JP4976736B2 (en) 2012-07-18

Family

ID=38756661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006113806A Active JP4976736B2 (en) 2006-04-17 2006-04-17 Rubber composition for tire sidewall and pneumatic tire

Country Status (1)

Country Link
JP (1) JP4976736B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108997409A (en) * 2018-08-28 2018-12-14 山东省宁津县浩润科技有限公司 A method of reducing ethyl alcohol in polysulfide silanes coupling agent

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4874315B2 (en) 2008-10-14 2012-02-15 住友ゴム工業株式会社 Rubber composition for tire and tire
JP5524652B2 (en) * 2009-11-13 2014-06-18 住友ゴム工業株式会社 Rubber composition for tire and pneumatic tire
JP6154262B2 (en) * 2013-09-11 2017-06-28 住友ゴム工業株式会社 Pneumatic tire
JP6154260B2 (en) * 2013-09-11 2017-06-28 住友ゴム工業株式会社 Pneumatic tire
JP6154261B2 (en) * 2013-09-11 2017-06-28 住友ゴム工業株式会社 Pneumatic tire
JP7182459B2 (en) * 2018-12-27 2022-12-02 Toyo Tire株式会社 Tire rubber composition and pneumatic tire

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61215633A (en) * 1985-03-22 1986-09-25 Nippon Shirika Kogyo Kk Precipitation-process synthetic silica for reinforcing and filling elastomer
JPH07292157A (en) * 1994-04-26 1995-11-07 Bridgestone Corp Rubber composition
JP3792830B2 (en) * 1996-04-22 2006-07-05 住友ゴム工業株式会社 Rubber composition for tire sidewall and tire
JP4678975B2 (en) * 2001-04-03 2011-04-27 住友ゴム工業株式会社 Pneumatic tire
JP2003155383A (en) * 2001-11-21 2003-05-27 Toyo Tire & Rubber Co Ltd Rubber composition for tire tread
JP4438336B2 (en) * 2003-07-24 2010-03-24 住友ゴム工業株式会社 Rubber composition for tread and tire using the same
JP2005112918A (en) * 2003-10-03 2005-04-28 Tokuyama Corp Rubber composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108997409A (en) * 2018-08-28 2018-12-14 山东省宁津县浩润科技有限公司 A method of reducing ethyl alcohol in polysulfide silanes coupling agent

Also Published As

Publication number Publication date
JP2007284575A (en) 2007-11-01

Similar Documents

Publication Publication Date Title
JP4663687B2 (en) Rubber composition and tire having tread and / or sidewall using the same
US8127812B2 (en) Pneumatic tire having cap tread including crosslinked rubber particles
US7754802B2 (en) Rubber composition for bead and pneumatic tire
JP4455907B2 (en) Rubber composition for pneumatic tire and pneumatic tire
EP3312232B1 (en) Rubber composition for tires and pneumatic tire
JP4976736B2 (en) Rubber composition for tire sidewall and pneumatic tire
JP4405849B2 (en) Rubber composition for tire tread and tire using the same
JP5468891B2 (en) Rubber composition for tire and pneumatic tire
JP2006124487A (en) Rubber composition for tire side wall and pneumatic tire
JP6140121B2 (en) Rubber composition for tire
JP5582921B2 (en) Rubber composition for studless tire and studless tire
JP5138900B2 (en) Rubber composition and pneumatic tire
JP2002121327A (en) Tread rubber composition and manufacturing method therefor
JP5016215B2 (en) Pneumatic tire
JP5138918B2 (en) Rubber composition for tire sidewall and pneumatic tire
JP2005075952A (en) Rubber composition for reinforcement of side part of tire and runflat tire using it
JP4435335B2 (en) Rubber composition for tire tread
JP4464723B2 (en) Rubber composition
JP4088260B2 (en) Rubber composition for clinch and pneumatic tire using the same
JP6024390B2 (en) Rubber composition for tire
JP2002226631A (en) Rubber composition for tire
JP3410984B2 (en) Rubber composition
WO2024085031A1 (en) Masterbatch, method for producing masterbatch, tire rubber composition, method for producing tire rubber composition, tire rubber material, and tire
JP5431769B2 (en) Rubber composition for side reinforcing layer and run flat tire
JP2006306947A (en) Rubber composition for tire tread and pneumatic tire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120410

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120413

R150 Certificate of patent or registration of utility model

Ref document number: 4976736

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150420

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250